
Chapter 2

Local analysis I: Linear di↵erential
equations

Perturbation and asymptotic methods can be divided into two main categories:
local and global analysis. In local analysis one approximates a function in a
neighborhood of some point, whereas in global analysis one approximates a func-
tion throughout the domain. ivps can be treated by either approach whereas bvps
require inherently a global approach. Local analysis is easier and is therefore the
first approach we learn. This chapter is devoted to the local analysis of solutions
of linear di↵erential equations. In cases where the equation is solvable we can
explicitly assess the accuracy of the approximation by comparing the exact and
approximate solutions.

Example: The fourth-order di↵erential equation

d4y
dx4 (x) = (x4 + sin x) y(x),

cannot be solved in terms of elementary functions. Yet, we will be able to deter-
mine very easily (Bender and Orszag claim that on the back of a stamp) that as
x! 1 the solution is well-approximated by a linear combination of the functions

x�3/2e±x2/2, x�3/2 sin(x2/2) and x�3/2 cos(x2/2).

NNN
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2.1 Classification of singular points

We are concerned with homogeneous linear equations of the form

y(n)(x) + an�1(x)y(n�1)(x) + · · · + a1(x)y0(x) + a0(x)y(x) = 0. (2.1)

In local analysis we approximate its solution near a point x0.

Definition 2.1 A point x0 is called an ordinary point of (2.1) if the coe�cient
functions ai(x) are (real) analytic in a neighborhood of x0, that is, the Taylor
series at x0 converges to the function in a neighborhood of x0. (Recall that real-
analyticity implies the complex analyticity of its analytic continuation.)

Example: Consider the equation

y00(x) = exy(x).

Every point x0 2 R is an ordinary point because the function ez is entire. NNN

It was proved in 1866 (Fuchs) that all n independent solutions of (2.1) are analytic
in the neighborhood of an ordinary point. Moreover, if these solutions are Taylor
expanded about x0 then the radius of convergence is at least as the distance of
the nearest singularity of the coe�cient functions to x0. This is not surprising.
We know that an analytic equation has analytic solutions. In the case of linear
equations, this solution can be continued indefinitely as long as no singularity has
been encountered.

Example: Consider the equation

y0(x) +
2x

1 + x2 y(x) = 0.

The point x = 0 is an ordinary point. The complexified coe�cient function
2z

1 + z2

has singularities at z = ±ı, i.e., at a distance of 1 from the origin. The general
solution is

y(x) =
c

1 + x2 = c
1
X

n=0

(ıx)2n

and the Taylor series has a radius of convergence of 1. Note that the solution
y(x) = 1/(1 + x2) is analytic on the whole of R, yet the radius of convergence of
the Taylor series is bounded. NNN
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Definition 2.2 A point x0 is called a regular singular point of (2.1) if it is not
an ordinary point, but the functions

(x � x0)na0(x), (x � x0)n�1a1(x), . . . , (x � x0)an�1(x)

are analytic in a (complex) neighborhood of x0. Alternatively, x0 is a regular
singular point if the equation is of the form

y(n)(x) +
bn�1(x)
x � x0

y(n�1)(x) + · · · + b1(x)
(x � x0)n�1 y0(x) +

b0(x)
(x � x0)n y(x) = 0,

and the coe�cient functions b(x) are analytic at x0.

Example: Consider the equation

y0(x) =
y(x)
x � 1

.

The point x = 1 is a regular singular point. However, the point x = 0 is not a
regular singular point of the equation

y0(x) =
x + 1

x3 y(x).

NNN

It was proved (still Fuchs) that a solution may be analytic at a regular singular
point. If it is not, then its singularity can only be either a pole, or a branch point
(algebraic or logarithmic). Moreover, there always exists at least one solution of
the form

(x � x0)↵g(x),

where ↵ is called the indical exponent and g(x) is analytic at x0. For equations of
order two and higher, there exists another independent solution either of the form

(x � x0)�h(x),

or of the form
(x � x0)↵g(x) log(x � x0) + (x � x0)�h(x),

where h(x) is analytic at x0. This process can be continued.

Example: For the case where the coe�cients bi(x) are constant the equation is of
Euler type, and we know that the solutions are indeed of this type, with g(x) and
h(x) constant. NNN
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Example: Consider the equation

y0(x) =
y(x)

sinh x
.

It has a regular singular point at x = 0. The general solution is

y(x) = c tanh
x
2
,

which is analytic at x = 0. It’s Taylor series at zero, which involves the Bernoulli

numbers, has a radius of ⇡, which is the distance of the nearest singularity of the
coe�cient function (at z = ±ı⇡). NNN

Definition 2.3 A point x0 is called an irregular singular point of (2.1) if it is
neither an ordinary point nor a regular singular point.

There are no general properties of solutions near such point.
Finally, we consider also the point x = 1 by changing the dependent variable into
t = 1/x and looking at t = 0. The point x = 1 inherits the classification of the
point t = 0.

Examples:

1. Consider the three equations

y0(x) � 1
2

y(x) = 0

y0(x) � 1
2x

y(x) = 0

y0(x) � 1
2x2 y(x) = 0.

Changing variables t = 1/x we have

� y0(t) � 1
2t2 y(t) = 0

� y0(t) � 1
2t

y(t) = 0

� y0(t) � 1
2

y(t) = 0.



Local analysis I: Linear di↵erential equations 29

Thus, every point x , 0 is an ordinary point of the first equation, the point
x = 0 is a regular singular point of the second equation and an irregular
singular point of the third equation. At x = 1 it is the exact opposite. The
solutions are

y(x) = c ex/2, y(x) = c
p

x, and y(x) = c e�1/2x,

respectively. Note that the second solution has branch cuts at x = 0 and
x = 1, whereas the third solution has an essential singularity at x = 0.

. Exercise 2.1 Classify all the singular points (finite and infinite) of the follow-
ing equations

1. y00 = xy (Airy equation).

2. x2y00 + xy0 + (x2 � ⌫2)y = 0 (Bessel equation).

3. y00 + (h � 2✓ cos 2x)y = 0 (Mathieu equation).

2.2 Local solution near an ordinary point

In the vicinity of an ordinary point, the solution to a linear di↵erential equation
can be sought by explicitly constructing its Taylor series. The latter is guaranteed
to converge in a ball whose radius is a property of the coe�cient functions; that
is, it can be determined directly from the problem, without need to solve it. While
this method can (in principle) provide the full solution, we are interested in it as
a perturbation series, i.e., as an approximation to the exact solution as a power
series of the “small” parameter x� x0. We will discuss perturbation series in more
generality later on.

Example: Consider the ivp

y0(x) = 2x y(x) y(0) = 1.

The exact solution is y(x) = cex2 , but we will ignore it, and obtain it via a power
series expansion.
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Note first that the coe�cient function 2z is entire, hence the Taylor series of the
solution has an infinite radius of convergence. We now seek a solution of the form

y(x) =
1
X

n=0

anxn.

Substituting into the equation we get

1
X

n=0

nanxn�1 = 2
1
X

n=0

anxn+1.

Since the Taylor series is unique the two sides must have equal coe�cients, hence
we resort to a term by term identification. Equating the x0 terms we get that a1 = 0.
Then,

1
X

n=0

(n + 2)an+2xn+2 = 2
1
X

n=0

anxn+1,

and
an+2 =

2an

n + 2
, n = 0, 1, . . . .

The first coe�cients a0 is determined by the initial data a0 = 1. All the odd
coe�cients vanish. For the even coe�cients

a2 =
2
2
, a4 =

22

2 · 4 , a6 =
23

2 · 4 · 6 ,

and thus,

y(x) =
1
X

n=0

x2n

n!
,

which is the right solution.
Suppose that we interested in y(1) within an error of 10�8. If we retain n terms,
then the error is

1
X

k=n+1

1
k!
=

1
(n + 1)!

 

1 +
1

n + 2
+

1
(n + 2)(n + 3)

+ · · ·
!

 1
(n + 1)!

 

1 +
1
n
+

1
n2 + · · ·

!

=
1

(n + 1)!
n

n � 1
 2

(n + 1)!
.

Taking n = 11 will do. NNN
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The Gamma function Before going to the next example, we remind ourselves
the properties of the Gamma function. It is a complex-valued function defined
by

�(z) =
Z 1

0
e�ttz�1 dt.

This function is analytic in the upper half-plane. If has the property that

�(z + 1) =
Z 1

0
e�ttz dt = z�(z).

In particular,

�(1) =
Z 1

0
e�t dt = 1,

from which follows that �(2) = 1, �(3) = 2, �(4) = 6, and more generally, for n
integer,

�(n) = (n � 1)!.

In fact, the Gamma-function can be viewed as the analytic extension of the facto-
rial. The Gamma function can be used to shorten notations as

x(x + 1)(x + 2) . . . (x + k � 1) =
�(x + k)
�(x)

.

Example: Consider the Airy equation

1

y00(x) = x y(x).

Our goal is to analyze the solutions near the ordinary point x = 0. Here again, the
solutions are guaranteed to be entire.
Again, we seek for a solution of the form

y(x) =
1
X

n=0

anxn.

1The Airy function is a special function named after the British astronomer George Biddell
Airy (1838). The Airy equation is the simplest second-order linear di↵erential equation with a
turning point (a point where the character of the solutions changes from oscillatory to exponential).
The Airy function describes the appearance of a star–a point source of light–as it appears in a
telescope. The ideal point image becomes a series of concentric ripples because of the limited
aperture and the wave nature of light.
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Substituting we get

1
X

n=0

(n + 2)(n + 1)an+2xn =

1
X

n=0

anxn+1.

The coe�cient a0, a1 remain undetermined, and are in fact the two integration
constants. Equating the x0 terms we get a2 = 0. Then

an+3 =
an

(n + 2)(n + 3)
, n = 0, 1, 2, . . . .

This recursion relation can be solved: first the multiple of three,

a3 =
a0

2 · 3 , a6 =
a0

2 · 3 · 5 · 6 ,

and more generally,

a3n =
a0

2 · 3 · 5 · 6 . . . (3n � 1)3n
=

a0

32n 2
3 · 1 · (1 + 2

3 ) · 2 . . . (n � 1 + 2
3 )n
=

a0 �(2
3 )

32nn!�(n + 2
3 )
.

Similarly,

a4 =
a1

3 · 4 , a7 =
a1

3 · 4 · 6 · 7 ,

hence

a3n+1 =
a0

3 · 4 · 6 · 7 . . . 3n(3n + 1)
=

a1

32n1 · (1 + 1
3 ) · 2 · (2 + 1

3 ) . . . n(n + 1
3 )
=

a0 �( 4
3 )

32nn!�(n + 4
3 )
.

Thus, the general solution is

y(x) = a0

1
X

n=0

x3n

9nn!�(n + 2
3 )
+ a1

1
X

n=0

x3n+1

9nn!�(n + 4
3 )
,

where we absorbed the constants into the coe�cients.

These are very rapidly converging series, and their radius of convergence is infi-
nite. An approximate solution is obtained by truncating this series. To solve an
initial value problem one has to determine the coe�cients a0, a1 first.
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Figure 2.1: The Airy functions

The two terms we obtained are independent solutions. There is arbitrariness in the
choice of independent solutions. It is customary to the refer to Airy functions as
the two special (independent) choices of

Ai(x) = 3�2/3
1
X

n=0

x3n

9nn!�(n + 2
3 )
� 3�4/3

1
X

n=0

x3n+1

9nn!�(n + 4
3 )

Bi(x) = 3�1/6
1
X

n=0

x3n

9nn!�(n + 2
3 )
+ 3�5/6

1
X

n=0

x3n+1

9nn!�(n + 4
3 )
.

NNN

. Exercise 2.2 Find the Taylor expansion about x = 0 of the solution to the
initial value problem

(x � 1)(x � 2)y00(x) + (4x � 6)y0(x) + 2y(x) = 0, y(0) = 2, y0(0) = 1.

For which values of x we should expect the series to converge? What is its actual
radius of convergence?

. Exercise 2.3 Estimate the number of terms in the Taylor series need to es-
timate the Airy functions Ai(x) and Bi(x) to three decimal digits at x = ±1,
x = ±100 and x = ±10, 000.
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2.3 Local solution near a regular singular point

Let us first see what may happen if we Taylor expand the solution about a regular
singular point:

Example: Consider the Euler equation,

y00(x) +
y(x)
4x2 = 0, x0 = 0.

Substituting a power series

y(x) =
1
X

n=0

anxn,

we get
1
X

n=0

n(n � 1)anxn�2 +
1
4

1
X

n=0

anxn�2 = 0,

i.e.,
(n � 1

2 )2an = 0.

This gives an = 0 for all n, i.e., we only find the trivial solution. The general
solution, however, is of the form y(x) = c1

p
x + c2

p
x log x. NNN

The problem is that Taylor series are not general enough for this kind of problems.
Yet, we know from Fuchs’ theory that there exists at least one solution of the form

y(x) = (x � x0)↵g(x),

where g(x) is analytic at x0. This suggest to expand the solution in a series known
as a Frobenius series,

y(x) = (x � x0)↵
1
X

n=0

an(x � x0)n.

To remove indeterminacy we require a0 , 0.

Example: Going back to the previous example, we search a solution of the form

y(x) = x↵
1
X

n=0

anxn.
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Substituting we get
1
X

n=0

(n + ↵)(n + ↵ � 1)anxn+↵�2 +
1
4

1
X

n=0

anxn+↵�2 = 0,

i.e.,
h

(n + ↵)(n + ↵ � 1) + 1
4

i

an = 0.
Since we require a0 , 0, the indical exponent ↵ satisfies the quadratic equation

P(↵) = (↵ � 1
2 )2 = 0.

This equation has a double root at ↵ = 1/2. For n = 1, 2, . . . we have an = 0,
hence we found an exact solution, y(x) =

p
x. On the other hand, this method

does not allow us, for the moment, to find a second independent solution. NNN

We will discuss now, in generality, local expansions about regular singular points
of second-order equations,

y00(x) +
p(x)

x � x0
+

q(x)
(x � x0)2 = 0.

We assume that the functions p(x), q(x) are analytic at x0, i.e., they can be locally
expanded as

p(x) =
1
X

n=0

pn(x � x0)n

q(x) =
1
X

n=0

qn(x � x0)n.

We then substitute into the equation a Frobenius series,

y(x) = (x � x0)↵
1
X

n=0

an(x � x0)n.

This gives
1
X

n=0

(n + ↵)(n + ↵ � 1)an(x � x0)n+↵�2

+

0

B

B

B

B

B

@

1
X

k=0

pk(x � x0)k

1

C

C

C

C

C

A

1
X

n=0

(n + ↵)an(x � x0)n+↵�2

+

0

B

B

B

B

B

@

1
X

k=0

qk(x � x0)k

1

C

C

C

C

C

A

1
X

n=0

an(x � x0)n+↵�2 = 0.
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Equating same powers of (x � x0) we get

(n + ↵)(n + ↵ � 1)an +

n
X

k=0

⇥

pk(n � k + ↵) + qk
⇤

an�k = 0.

Separating the k = 0 term we get

P(n + ↵) an = �
n

X

k=1

⇥

pk(n � k + ↵) + qk
⇤

an�k,

where
P(z) = z2 + (p0 � 1)z + q0.

We write the left-hand side as P(n + ↵) an. The requirement that a0 , 0 implies
that P(↵) = 0, i.e., ↵ is a solution of a quadratic equation. a0 is indeterminate
(integration constant), whereas the other an are then given by a recursion relation,

an = �
1

P(↵ + n)

n
X

k=1

⇥

pk(n � k + ↵) + qk
⇤

an�k, n = 1, 2, . . . .

A number of problems arise right away: (1) ↵ may be a double root in which case
we’re lacking a solution. (2) The recursion relation may break down if for some
n 2 N, P(↵ + n) = 0. Yet, if ↵1,↵2 are the two roots of the indical equation, and
<↵1 � <↵2, then it is guaranteed that P(↵1 + n) , 0, and the recursion relation
can be continued indefinitely. This is why there is always at least one solution in
the form of a Frobenius series. More generally, we have the following possible
scenarios:

1. ↵1 , ↵2 and ↵1 � ↵2 < Z. In this case there are two solutions in the form of
Frobenius series.

2. (a) ↵1 = ↵2. There is one solution in the form of a Frobenius series and
we will see how to construct a second independent solution.

(b) ↵1 � ↵2 = N, N 2 N:

i. If
PN

k=1
⇥

pk(↵1 � k) + qk
⇤

aN�k = 0 then aN = 0 and the series can
be continued past the “bad” index.

ii. Otherwise, there is only one solution in the form of a Frobenius
series. We will see how to construct another independent solution.
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. Exercise 2.4 Find series expansions about x = 0 for the following di↵erential
equations. Try to sum (if possible) the infinite series.

¿ 2xy00(x) � y0(x) + x2y(x) = 0.
¡ x(x + 2)y00(x) + (x + 1)y0(x) � 4y(x) = 0.
¬ x(1 � x)y00(x) � 3xy0(x) � y(x) = 0.
√ sin x y00(x) � 2 cos x y0(x) � sin x y(x) = 0.

Example: We start with an example of type 1. Consider the modified Bessel
equation2

y00(x) +
1
x

y(x) �
 

1 +
⌫2

x2

!

y(x) = 0,

where ⌫ is a parameter. In this case

p(x) = 1 and q(x) = �x2 � ⌫2,

and therefore
P(z) = z2 � ⌫2.

The point x = 0 is a regular singular point, hence we substitute the Frobenius
series

y(x) =
1
X

n=0

anxn+↵.

This gives

1
X

n=0

(n+↵)(n+↵�1)anxn+↵�2+

1
X

n=0

(n+↵)anxn+↵�2�
1
X

n=0

anxn+↵�⌫2
1
X

n=0

anxn+↵�2 = 0.

Equating powers of x we get
h

(n + ↵)2 � ⌫2
i

an = an�2.

For n = 0 we get the indical equation

P(↵) = ↵2 � ⌫2 = 0,
2The Bessel equation arises in the solution of numerous partial di↵erential equations in cylin-

drical and spherical coordinates.
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i.e., ↵ = ±⌫. Take first ↵ = ⌫ > 0, in which case P(↵ + n) > 0 for all n.
For n = 1, since P(⌫ + 1) , 0 we have a1 = 0. For n � 2,

an =
an�2

(n + ⌫)2 � ⌫2 =
an�2

n(n + 2⌫)
.

That is,

a2n =
a0

2n(2n � 2) . . . 2 · (2n + 2⌫)(2n + 2⌫ � 2) . . . (4 + 2⌫)(2 + 2⌫)
.

We can express this using the � function,

a2n =
�(⌫ + 1)

4nn!�(n + ⌫ + 1)
a0.

Thus, a first solution is

y(x) = �(⌫ + 1)
1
X

n=0

x2n+⌫

4nn!�(n + ⌫ + 1)
.

It is conventional to define the modified Bessel function

I⌫(x) =
1
X

n=0

(1
2 x)2n+⌫

n!�(n + ⌫ + 1)
.

This series has an infinite radius of convergence, as expected from the analyticity
of the coe�cients.
A second solution can be found by setting ↵ = �⌫. In order for P(�⌫ + n) , 0 we
need 2⌫ not to be an integer. Note however that I�⌫(x) given by the above power
series is well defined as long as 2⌫ is not an even integer, i.e., I�1/2(x), I�3/2(x) and
so on are well-defined and form a second independent solution.

NNN

. Exercise 2.5 Show that all the solutions of the modified Bessel equation

y00(x) +
y0(x)

x
�

 

1 +
⌫2

x2

!

y(x) = 0.

with ⌫ = 1
2 ,

3
2 ,

5
2 , . . . , can be expanded in Frobenius series.
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Case 2b(i) This is the simplest “bad” case, where nevertheless as second solu-
tion in the form of a Frobenius series can be constructed.

Example: You will be asked as homework to examine the half-integer modified
Bessel equation. NNN

Case 2a This is that case where ↵ is a double root, ↵1 = ↵2 = ↵. Recall that
when we substitute in the equation a Frobenius series, we get

P(n + ↵)an = �
n

X

k=1

[pk(n � k + ↵) + qk]an�k,

where
P(z) = z2 + (p0 � 1)z + p0.

In the present case we have
P(z) = (z � ↵)2.

One solution can be obtained by this procedure. We solve iteratively for the an

and have

y1(x) =
1
X

n=0

an(x � x0)n+↵.

We may generalize this type of solutions by replacing ↵ by an arbitrary �, i.e.,
form a function

y(x; �) =
1
X

n=0

an(�)(x � x0)n+�,

where the coe�cients an(�) satisfy the recursion relations,

P(n + �)an(�) = �
n

X

k=1

[pk(n � k + �) + qk]an�k(�).

Of course, this is a solution only for � = ↵.
Let’s see now what happens if we substitute y(x; �) into the di↵erential equation,

L[y](x) = y00(x) +
p(x)

x � x0
y0(x) +

q(x)
(x � x0)2 y(x) = 0.
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We get

L[y(·; �)] =
1
X

n=0

(n + �)(n + � � 1)an(�)(x � x0)n+��2

+ p(x)
1
X

n=0

(n + �)an(�)(x � x0)n+��2

+ q(x)
1
X

n=0

an(�)(x � x0)n+��2.

If we substitute the series expansions for p(x), q(x), we find that almost all the
terms vanish, because the an(�) satisfy the correct recursion relations. The only
terms that do not vanish are those proportional to (x � x0)��2,

L[y(·; �)](x) = a0

h

�2 + (p0 � 1)� + q0

i

(x � x0)��2 = a0P(�)(x � x0)��2.

Indeed, this vanishes if and only if � = ↵. If we now di↵erentiate both sides with
respect to � and set � = ↵ the right-hand side vanishes because ↵ is a double root
of P. Thus,

L

"

@

@�
y(·; �)

�

�

�

�

�

�=↵

#

= 0,

that is we found another independent solution,

@

@�
y(·; �)

�

�

�

�

�

�=↵

=

1
X

n=0

dan

d�

�

�

�

�

�

�=↵

(x � x0)n+↵ + log(x � x0)
1
X

n=0

an(↵)(x � x0)n+↵,

where we have used the fact that

@

@�
x� = x� log x.

We write it in the more compact form,

y2(x) =
1
X

n=0

bn(x � x0)n+↵ + log(x � x0) y1(x), bn =
dan

d�

�

�

�

�

�

�=↵

.

Example: Consider the modified Bessel for ⌫ = 0. Recall that we get the recursion
relation

(n + ↵)2an = an�2,
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and therefore conclude that ↵ = 0 and that

y(x) = a0

1
X

n=0

x2n

4n(n!)2

is a first solution. We then define the coe�cients an(�) by the recursion relation

(n + �)2an(�) = an�2(�),

i.e.,
a2n(�) =

a2n�2(�)
(2n + �)2 =

a0

(2n + �)2(2n � 2 + �)2 . . . (2 + �)2 .

Di↵erentiating with respect to � and setting � = ↵ = 0 we get

b2n = �a2n(0)
 

1
n
+

1
n � 1

+ . . . 1
!

= � a0

4n(n!)2

 

1
n
+

1
n � 1

+ · · · + 1
!

.

Thus we have found another (independent solution)

y2(x) = a0 log x
1
X

n=0

( 1
2 x)2n

(n!)2 � a0

1
X

n=0

 

1 +
1
2
+ · · · + 1

n

! (1
2 x)2n

(n!)2 .

It is conventional to choose for other independent function a linear combination
of y2(x) and I0(x) (it is called K0(x)). NNN

Case 2b(ii) We are left with the case where

P(z) = (z � ↵1)(z � ↵2),

with ↵1 � ↵2 = N 2 N, and no “miracle” occurs. As before, using y(x; �) we have

L[y(·; �) = a0P(�)(x � x0)��2.

If we try to do again as before, di↵erentiating both sides with respect to � and
setting � = ↵1 we find

L

"

@

@�
y(·, �)

�

�

�

�

�

�=↵1

#

= a0N(x � x0)↵1�2 = a0N(x � x0)↵2+N�2.

In other words,
@

@�
y(·, �)

�

�

�

�

�

�=↵1
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satisfies the linear inhomogeneous equation

L[y](x) = a0N(x � x0)↵2+N�2.

A way to obtain a solution to the homogeneous equation is to subtract any partic-
ular solution to this inhomogeneous equation. Can we find such? It turns out that
we can find a solution in the form of a Frobenius series.

Setting

z(x) =
1
X

n=0

cn(x � x0)n+↵2 ,

and substituting into the inhomogeneous equation, we get

1
X

n=0

(n + ↵2)(n + ↵2 � 1)cn(x � x0)n+↵2�2

+

0

B

B

B

B

B

@

1
X

k=0

pn(x � x0)k

1

C

C

C

C

C

A

1
X

n=0

(n + ↵2)cn(x � x0)n+↵2�2

+

0

B

B

B

B

B

@

1
X

k=0

qn(x � x0)k

1

C

C

C

C

C

A

1
X

n=0

cn(x � x0)n+↵2�2 = a0N(x�0)↵2+N�2.

Equating the coe�cients of (x � x0)↵2�2 we get
h

↵2
2 + (p0 � 1)↵2 + q0

i

c0 = 0,

which is indeed satisfies since the pre-factor is P(↵2). In particular, c0 is not (yet)
determined. For all powers of (x � x0) other than ↵2 + N � 2 we have the usual
recursion relation,

P(n + ↵2)cn = �
n

X

k=1

[pk(n � k + ↵2) + qk]cn�k.

Since n , N there is no problem. Remain the terms proportional to (x � x0) to the
power ↵2 + N � 2, which give

P(N + ↵2)cN = �
N

X

k=1

[pk(N � k + ↵2) + qk]cN�k + a0N.
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While the left hand side is zero, we can view this equation as determining c0 (i.e.,
relating it to a0). Then, cN is left arbitrary, but that is not a problem. Particular so-
lutions are not unique. Thus, we have constructed a second (independent) solution
which is

y2(x) =
@

@�
y(·, �)

�

�

�

�

�

�=↵1

� z(x),

or,

y2(x) =
1
X

n=0

bn(x � x0)n+↵1 + log(x � x0)y1(x) �
1
X

n=0

cn(x � x0)n+↵2 .

. Exercise 2.6 Consider the modified Bessel equation with ⌫ = 1,

y00(x) +
1
x

y(x) �
 

1 +
⌫2

x2

!

y(x) = 0,

¿ Calculate explicitly the solution in the form of a Frobenius series with index
↵1 = 1; we denote this solution y(x;↵1).

¡ Show that one cannot construct a second such series y(x;↵2) with index
↵2 = �1.

¬ Show that
z =

d
d�

y(·; �)
�

�

�

�

�

�=↵1

is not a solution by calculating L [z].
√ Find a second independent solution by subtracting from z a series of the

form 1
X

n=0

cn(x � x0)n+↵2 ,

and determining the coe�cients cn.

2.4 Local solution near irregular singular points

So far everything was very straightforward (though sometimes tedious). Rigorous
methods to find local solutions, always guaranteed to work, reflecting the fact that
the theory of local solutions near ordinary and regular singular points is complete.
In the presence of irregular singular points, no such theory exists, and one has to
build up approximation methods that are often based on heuristics and intuition.
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In the same way as we examined the breakdown of Taylor series near regular
singular points, let’s examine the breakdown of Frobenius series near irregular
singular points.

Example: Let’s start with a non-dramatic example,

y0(x) = x1/2y(x).

The point x = 0 is an irregular singular point (note that nothing diverges). The
general solution is obtained by separation of variables,

d
dx

log y(x) =
2
3

d
dx

x3/2,

i.e.,
y(x) = c e

2
3 x3/2
.

This can be written as a series,

y(x) = c
1
X

n=0

( 2
3 x3/2)n

n!
,

that has nothing of a Frobenius series, where all powers must be of the form n+↵.
NNN

Example: We next consider the equation

x3y00(x) = y(x),

where x = 0 is clearly an irregular singular point. If we attempt a Frobenius series,

y(x) =
1
X

n=0

anxn+↵,

we get
1
X

n=0

(n + ↵)(n + ↵ � 1)anxn+↵+1 =

1
X

n=0

anxn+↵.

The first equation is a0 = 0, which is a contradiction. NNN
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Example: This third example is much more interesting,

x2y00(x) + (1 + 3x)y0(x) + y(x) = 0.

Substituting a Frobenius series gives
1
X

n=0

(n+↵)(n+↵�1)anxn+↵+

1
X

n=0

(n+↵)anxn+↵�1+3
1
X

n=0

(n+↵)anxn+↵+

1
X

n=0

anxn+↵ = 0.

Equating the coe�cients of ↵ � 1 we get ↵an = 0, i.e., ↵ = 0, which means that
the Frobenius series is in fact a power series. Then,

nan = � [(n � 1)(n � 2) + 3(n � 1) + 1] an�1 = �n2an�1,

from which we get that an = (�1)nn! a0, i.e., the solution is

y(x) = a0

1
X

n=0

(�1)nn!xn.

This is a series whose radius of convergence is zero! Thus, it does not look as
a solution at all. This is indeed a divergent series, on the other hand, it is a per-
fectly good asymptotic series, something we are going to explore in depth. If we
truncate this series at some n, it provides a very good approximation for small x.
NNN

Some definitions We will address the notion of asymptotic series later on, and
at this stage work “mechanically” in a way we will learn.

Definition 2.4 We say that f (x) is much smaller than g(x) as x! x0,

f (x) ⌧ g(x) as x! x0,

if

lim
x!x0

f (x)
g(x)

= 0.

We say that f (x) is asymptotic to g(x) as x! x0,

f (x) ⇠ g(x) as x! x0,

if
f (x) � g(x) ⌧ g(x).
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Note that asymptoticity is symmetric as f (x) ⇠ g(x) implies that

lim
x!x0

f (x) � g(x)
g(x)

= lim
x!x0

f (x)
g(x)

� 1 = 0,

i.e., that

lim
x!x0

f (x)
g(x)

= 1.

Examples:

1. x ⌧ 1/x as x! 0.

2. x1/2 ⌧ x1/3 as x! 0+.

3. (log x)5 ⌧ x1/4 as x! 1.

4. ex + x ⇠ ex as x! 1.

5. x2 / x as x! 0.

6. A function can never be asymptotic to zero!

7. x ⌧ �1 as x! 0+ even though x > �1 for all x > 0.

In the following, until we do it systematically, we will assume that asymptotic
relations can be added, multiplied, integrated and di↵erentiated. Don’t worry
about justifications at this point.

Example: Let’s return to the example

x3y00(x) = y(x),

for which we were unable to construct a Frobenius series. It turns out that as
x! 0, the two independent solutions have the asymptotic behavior,

y1(x) ⇠ c1x3/4e2x�1/2

y2(x) ⇠ c2x3/4e�2x�1/2
.

NNN
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Example: Recall the other example,

x2y00(x) + (1 + 3x)y0(x) + y(x) = 0,

for which we were able to construct only one series, which was divergent every-
where. It turns out that the second solution has the asymptotic behavior,

y2(x) ⇠ c2 1
x

e1/x as x! 0+.

NNN

All these solutions exhibit an exponential of a function that diverges at the singular
point. This turns out to be typical. These asymptotic expressions turn out to be
the most significant terms in an infinite series expansion of the solution. We call
these terms the leading terms (it is not clear how well-defined this concept is).
Each of these leading terms is itself a product of functions among which we can
identify one which is the “most significant”—the controlling factor. Identifying
the controlling factor is the first step in finding the leading term of the solution.

Comment: Note that if z(x) is a leading term for y(x) it does not mean that their
di↵erence is small; only that their ratio tends to one.
Consider now a linear second-order equation,

y00(x) + p(x)y0(x) + q(x)y(x) = 0,

where x0 is an irregular singular point. The first step in approximating the solution
near x0 is to substitute,

y(x) = exp S (x),
which gives,

S 00(x) + [S 0(x)]2 + p(x)S 0(x) + q(x) = 0.
This substitution goes back to Carlini (1817), Liouville (1837) and Green (1837).
The resulting equation is of course as complicated as the original one. It turns out,
however, that it is typical for

S 00(x) ⌧ [S 0(x)]2 as x! x0.

(Check for all above examples.) Then, it implies that

[S 0(x)]2 ⇠ �p(x)S 0(x) + q(x) as x! x0.

Note that we moved two terms to the right-hand side since no function can be
asymptotic to zero. We then proceed to integrate this relation (ignoring again any
justification) to find S (x).
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Example: Let us explore the example

x3y00(x) = y(x)

in depth. The substitution y(x) = exp S (x) yields,

x3S 00(x) + x3[S 0(x)]2 = 1,

which is not more solvable than the original equation (even less as it is nonlin-
ear). Assuming that S 00(x) ⌧ [S 0(x)]2, an assumption that we need to justify a
posteriori, we get

[S 0(x)]2 ⇠ x�3,

hence
S 0(x) ⇠ ±x�3/2.

If this were an equation we would have S (x) = ⌥2x�1/2 + c. Here this constant
could depend on x, i.e.,

S (x) = ⌥2x�1/2 + c±(x),

as long as
S 0(x) = ±x�3/2 + c0±(x) ⇠ ±x�3/2,

i.e., c0±(x) ⌧ x�3/2 as x! 0+. Note that this is consistent with the assumption that

S 00(x) ⇠ � ⌥ 3
2

x�5/2 ⌧ [S 0(x)]2 ⇠ x�3.

Let us focus on the positive solution and see if this result can be refined. Make the
ansatz

S (x) = 2x�1/2 + c(x), c0(x) ⌧ x�3/2,

which substituted into the (full) equation for S (x) gives

3
2

x3x�5/2 + x3c00(x) + x3(�x3/2 + c0(x))2 = 1,

or,
3
2

x1/2 + x3c00(x) � 2x3/2c0(x) + x3[c0(x)]2 = 0.

Since c0(x) ⌧ x�3/2 the last term is much smaller than the third. Moreover, as-
suming that we can di↵erentiate the asymptotic relation,

c00(x) ⌧ �3
2

x�5/2,
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we remain with 3
2 x1/2 ⇠ 2x3/2c0(x), or,

c0(x) ⇠ 3
4x
.

Again, if this were an equality we would get c(x) = 3
4 log x. Here we have

c(x) =
3
4

log x + d(x),

where d0(x) ⌧ 3
4x .

Once again, we restart, this time with the ansatz

S (x) = 2x�1/2 +
3
4

log x + d(x).

Substituting in the equation for S (x),

3
2

x�5/2 � 3
4x2 + d00(x) +

 

�x�3/2 +
3
4x
+ d0(x)

!2

=
1
x3 ,

which simplifies into

� 3
16x2 + d00(x) + [d0(x)]2 � 2x�3/2d0(x) +

3
2x

d0(x) = 0.

Since x�1 ⌧ x�3/2 and d0(x) ⌧ 3/4x (from which we conclude that d00(x) ⌧ x�2),
we remain with the asymptotic relation,

� 3
16x2 ⇠ 2x�3/2d0(x),

i.e.,
d0(x) ⇠ � 3

32
x�1/2.

From this we deduce that

d(x) ⇠ 3
16

x1/2 + �(x),

where �0(x) ⌧ x�1/2. This time, the leading term vanishes as x ! 0. Thus, we
conclude that

S (x) ⇠ 2x�1/2 +
3
4

log x + c,

which gives that
y(x) ⇠ c x3/4e2x�1/2

.

This was long, exhausting, and relying on shaky grounds!
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Figure 2.2:

Numerical validation Since we do not have a theoretical justification to the
above procedure, let us try to evaluate the quality of the approximation numeri-
cally. On the one hand, let us solve the equation x3y00(x) = y(x) numerically, with
the initial date

y(1) = 1 and y0(1) = 0.

The solution is shown in Figure 2.2a on a log-log scale.
We know, on the other hand that the solution is asymptotically a linear combina-
tion of the form

y(x) = c1x3/4e2x�1/2
(1 + ✏1(x)) + c2x3/4e�2x�1/2

(1 + ✏2(x)),

where ✏1,2(x) tend to zero as x ! 0. Since one of the two solutions terns to zero
as x! 0, we expect that

y(x)
x3/4e2x�1/2 ⇠ c1(1 + ✏2(x)).

In Figure 2.2a we show y(x)/x3/4e2x�1/2 versus x. The deviation from the constant
c1 ⇡ 0.1432 is c1✏1(x). NNN

The technique which we have used above is called the method of dominant bal-

ance. It based on (i) identifying the terms that appear to be small, dropping them,
thus replacing the equation by an asymptotic relation. (ii) We then replace the
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asymptotic sign by an equality and solve the di↵erential equation. (iii) We check
that the result is consistent and allow for additional weaker variations. (iv) We
iterate this procedure.

Example: We go back once more to our running example and try to improve the
approximation. At this stage we have

y(x) = x3/4e2x�1/2
[1 + ✏(x)].

We will substitute into the equation and try to solve for ✏(x) as a power series of
x. Setting w(x) = 1 + ✏(x), we have

y0(x) = x3/4e2x�1/2
"

3
4x

w(x) � x�3/2w(x) + w0(x)
#

,

and

y00(x) = x3/4e2x�1/2
"

3
4x
� x�3/2

# "

3
4x

w(x) � x�3/2w(x) + w0(x)
#

+ x3/4e2x�1/2
"

3
4x

w0(x) � x�3/2w0(x) + w00(x) � 3
4x2 w(x) +

3
2

x�5/2w(x)
#

.

This equals x3/4e2x�1/2w(x)x�3, which leaves us with the equation,

x�3w(x) =
"

3
4x
� x�3/2

# "

3
4x

w(x) � x�3/2w(x) + w0(x)
#

+

"

3
4x

w0(x) � x�3/2w0(x) + w00(x) � 3
4x2 w(x) +

3
2

x�5/2w(x)
#

.

This further simplifies into

w00(x) +
 

3
2x
� 2x�3/2

!

w0(x) � 3
16x2 w(x) = 0.

This is a linear equation. Since we have extracted the singular parts of the solution,
there is hope that this remaining equation can be dealt with by simpler means. This
does not mean that the resulting equation no longer has an irregular singularity at
zero. The only gain is that w(x) does not diverge at the origin.
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We proceed to solve this equation by the method of dominant balance. The equa-
tion for ✏(x) is

✏00(x) +
 

3
2x
� 2x�3/2

!

✏0(x) � 3
16x2 (1 + ✏(x)) = 0.

Since ✏(x) ⌧ 1 as x! 0 we remain with

✏00(x) � 2x�3/2✏0(x) ⇠ 3
16x2 ,

subject to the constraint that ✏(x)! 0. We do not know whether among the three
remaining terms there are some greater than the others. We therefore need to
investigate four possible scenarios:

¿ ✏00 ⇠ 3/16x2 and x�3/2✏0 ⌧ ✏00. In this case we get that

✏(x) ⇠ � 3
16

log x + ax + b,

which does not vanish at the origin.
¡ ✏00 ⇠ 2x�3/2✏0 and 3/16x2 ⌧ ✏00. In this case,

(log ✏(x))0 ⇠ 2x�3/2,

i.e.,
log ✏(x) ⇠ �4x�1/2 + c,

which again violates the condition at the origin.
¬ All three terms are of equal importance. This means that

(e�4x�1/2
✏0(x))0 ⇠ 3

16x2 e�4x�1/2
.

Integrating we get again divergence at the origin.
√ This leaves for unique possibility that �2x�3/2✏0 ⇠ 3

16x2 and ✏00 ⌧ �2x�3/2✏0.
Then

✏0(x) ⇠ � 3
32

x�1/2,

i.e.,
✏(x) ⇠ � 3

16
x1/2 + ✏1(x),

where ✏01(x) ⌧ x�1/2.
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Figure 2.3:

Thus, we already have for approximation

y(x) = x3/4e2x�1/2
"

1 � 3
16

x1/2 + ✏1(x)
#

.

See Figure 2.3a.

We can proceed further, discovering doing so that each correction is of power of
x1/2 greater than its predecessor. At this stage we may well substitute the asymp-
totic series,

w(x) =
1
X

n=0

anxn/2,

and a0 = 1. This yields after some manipulations,

y(x) ⇠ x3/4e2x�1/2
1
X

n=0

�(n � 1
2 )�(n + 3

2 )
⇡4n n!

xn/2.

In Figure 2.3b we show the ratio between the exact solution and the approximate
solution truncated at n = 10. Note how the solution becomes more accurate near
the origin, although it becomes less accurate further away, reflecting the fact that
the series has a vanishing radius of convergence. NNN
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. Exercise 2.7 Using the method of dominant balance, investigate the second
solution to the equation

x2y00(x) + (1 + 3x)y0(x) + y(x) = 0.

Try to imitate all the steps followed in class. You should actually end up with an
exact solution!

. Exercise 2.8 Find the leading behavior, as x ! 0+, of the following equa-
tions:

¿ y00(x) =
p

x y(x).
¡ y00(x) = e�3/xy(x).

2.5 Asymptotic series

Definition 2.5 The power series
P1

n=0 an(x� x0)n is said to be asymptotic to the

function y(x) as x! x0, denoted

y(x) ⇠
1
X

n=0

an(x � x0)n, x! x0,

if for every N 2 N

y(x) �
N

X

n=0

an(x � x0)n ⌧ (x � x0)N , x! x0.

This does not require the series to be convergent.

Comment: The asymptotic series does not need to be in integer powers of x � x0.
For example,

y(x) ⇠
1
X

n=0

an(x � x0)↵n, x! x0

where ↵ > 0, if for every N

y(x) �
N

X

n=0

an(x � x0)↵n ⌧ (x � x0)↵N , x! x0.
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Comment: For x0 = 1 the definition of the relation

y(x) ⇠
1
X

n=0

anx�↵n, x! 1,

is that for every N 2 N

y(x) �
N

X

n=0

anx�↵n ⌧ x�↵N , x! 1.

Comment: In particular, for N = 0,

lim
x!x0

[y(x) � a0] = 0,

i.e., for a function to have an asymptotic series at x0 it must have a finite limit at
this point.

Example: Not all functions have asymptotic series expansions. The function 1/x
does not have a asymptotic series expansion at x0 = 0 because it diverges. Sim-
ilarly, the function ex does not have an asymptotic series expansion at x0 = 1.
NNN

The di↵erence between a convergent series and an asymptotic series is worth
stressing. Recall that a series

P1
n=0 an(x � x0)n is convergent if

lim
N!1

1
X

n=N+1

an(x � x0)n = 0, for x fixed.

Convergence is an absolute property. A series is either convergent or not, and
convergence can be determined regardless of whether we know what the limit is
(we even have criteria for that). In contrast, a series is asymptotic to a function
f (x) if

f (x) �
N

X

n=0

an(x � x0)n ⌧ (x � x0)N , for N fixed.

Asymptoticity is relative to a function. It makes no sense to ask whether a series
is asymptotic. In fact, every power series is asymptotic to some function at x0.
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Proposition 2.1 Let (an) be a sequence of numbers. Then there exists a function
y(x) such that

y(x) ⇠
1
X

n=0

an(x � x0)n, x! x0.

Proof : Without loss of generality, let us take x0 = 0. We define the following
continuous function,

�(x;↵) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 |x|  1
2↵

2
⇣

1 � |x|↵
⌘

1
2↵ < |x| < ↵

0 otherwise,

i.e., �(x;↵) has suppose in [�↵,↵]. Then we set

↵n = min(1/|an|2, 2�n),

and

y(x) =
1
X

n=0

an�(x;↵n)xn.

Note that �(x;↵n) is non-zero only for |x| < 1/|an|2 and x < 1/2n.
For every x this series is finite and continuous because it truncates after a finite
number of terms. We will now show that

y(x) ⇠
1
X

n=0

anxn.

Fixing N we can find a � > 0 su�ciently small such that

�(x;↵n) = 1, for all n = 0, 1, . . . ,N for all |x| < �.

Thus,
y(x) �PN

n=0 anxn

xN =

1
X

n=N+1

an�(x;↵n)xn�N .

It remains to show that the right hand side tends to zero as x ! 0. For |x|  � we
only get contributions from n’s such that

|x| < 2�n and |x| < 1/a2
n,
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i.e.,
n <

log x
log 2

and |an| <
1p
x
.

Hence,
�

�

�

�

�

�

�

1
X

n=N+1

an�(x;↵n)xn�N

�

�

�

�

�

�

�

 log x
log 2

p
x! 0.

n

Before demonstrating the properties of asymptotic series, let us show that solu-
tions to di↵erential equations can indeed be represented by asymptotic series:

Example: Recall that we “found” that a solution to the di↵erential equation

x2y00(x) + (1 + 3x)y0(x) + y(x) = 0.

is a (diverging) power series

y(x) =
1
X

n=0

(�x)nn!.

This is of course meaningless. We will now prove that this series is indeed asymp-
totic to the solution.
We start by noting that

n! =
Z 1

0
e�ttn dt

(recall the definition of the � function). We then do formal manipulations, which
we do not justify,

y(x) =
1
X

n=0

(�x)n
Z 1

0
e�ttn dt =

Z 1

0
e�t

1
X

n=0

(�x)ntn dt =
Z 1

0

e�t

1 + xt
dt.

This integral exists, and in fact defines an analytic function (it is called a Stieltjes

integral). Moreover, we can check directly that this integral solves the di↵erential
equation.
We will now show that this solution has the above asymptotic expansion. Inte-
grating by parts we have

y(x) =
Z 1

0

e�t

1 + xt
dt = � (1 + xt)�1

�

�

�

1
0 � x

Z 1

0

e�t

(1 + xt)2 dt

= 1 � x
Z 1

0

e�t

(1 + xt)2 dt.
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We may proceed integrating by parts to get

y(x) = 1 � x � 2x2
Z 1

0

e�t

(1 + xt)3 dt,

and after N steps,

y(x) =
N

X

n=1

n!(�x)n + (N + 1)! (�x)N+1
Z 1

0

e�t

(1 + xt)N+1 dt.

Since the integral is bounded by 1, we get that

y(x) �
N

X

n=1

n!(�x)n  (N + 1)! (�x)N+1 ⌧ xN , x! 0.

A more interesting question is how many terms we need to take for the approxi-
mation to be optimal. It is not true that the more the better! We may rewrite the
error as follows

✏n = y(x) �
N

X

n=0

n!(�x)n =

Z 1

0

e�t

1 + xt
dt �

N
X

n=0

Z 1

0
e�t(�xt)n dt

=

Z 1

0
e�t

0

B

B

B

B

B

@

1
1 + xt

�
N

X

n=0

(�xt)n

1

C

C

C

C

C

A

=

Z 1

0
e�t (�xt)N

1 + xt
dt.

What is the optimal N? Note that the coe�cients of the series are alternating in
sign and their ratio is (�nx). As long as this ratio is less that 1 in absolute value,
the error decreases, otherwise it increases. The optimal N is therefore the largest
integer less than 1/x. An evaluation of the error at the optimal N gives

✏N ⇠
⇡

2x
e�1/x.

NNN

We are now in measure to prove the properties of asymptotic series:

Proposition 2.2 (Non-uniqueness) Let

f (x) ⇠
1
X

n=0

an(x � x0)n, x! x0.

Then there exists a function g(x) , f (x) asymptotic to the same series.
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Proof : Take
g(x) = f (x) + e�1/(x�x0)2

.

This follows from the fact that

e�1/x2 ⌧ xn, x! 0

for every n. The function e�1/x2 is said to be subdominant. n

Proposition 2.3 (Uniqueness) If a function y(x) has an asymptotic series expan-
sion at x0 then the series is unique.

Proof : By definition,

y(x) �
N�1
X

n=0

an(x � x0)↵n � aN(x � x0)↵N ⌧ (x � x0)↵N ,

hence,

aN = lim
x!x0

y(x) �PN�1
n=0 an(x � x0)↵n

(x � x0)↵N ,

which is a constructive definition of the coe�cients. n

Comment: It follows that if two sides of an equation are have asymptotic series
expansions we can equate the coe�cients term by term.

Proposition 2.4 (Arithmetic operations) Let

f (x) ⇠
1
X

n=0

an(x � x0)n and g(x) ⇠
1
X

n=0

bn(x � x0)n,

then

↵ f (x) + �g(x) ⇠
1
X

n=0

(↵an + �bn)(x � x0)n,

and

f (x)g(x) ⇠
1
X

n=0

cn(x � x0)n,

where

cn =

n
X

k=0

akbn�k.
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Proof : This follows directly from the definitions. Take the product rule for exam-
ple. Define h(x) = f (x)g(x). Then,

h(x) � a0b0 = f (x)g(x) � a0b0 = ( f (x) � a0)g(x) + a0(g(x) � b0),

and therefore,
lim
x!x0

[h(x) � a0b0] = 0.

Likewise,

h(x) � a0b0 � (a0b1 + a1b0)(x � x0) = ( f (x) � a0 � a1(x � x0))g(x)
+ (g(x) � b0 � b1(x � x0))a0

+ a1(x � x0)(g(x) � b0),

hence

h(x) � a0b0 � (a0b1 + a1b0)(x � x0)
x � x0

=
f (x) � a0 � a1(x � x0)

x � x0
g(x)

+
g(x) � b0 � b1(x � x0)

x � x0
a0

+ a1(g(x) � b0),

which tends to zero as x! x0. n

. Exercise 2.9 Show that if

f (x) ⇠
1
X

n=0

an(x � x0)n and g(x) ⇠
1
X

n=0

bn(x � x0)n,

then

f (x)g(x) ⇠
1
X

n=0

cn(x � x0)n,

where

cn =

n
X

k=0

akbn�k.

Proposition 2.5 (Integration) Let

f (x) ⇠
1
X

n=0

an(x � x0)n.
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If f is integrable near x0 then
Z x

x0

f (t) dt ⇠
1
X

n=0

an

n + 1
(x � x0)n+1.

Proof : Set N. By the asymptotic property of f it follows that for every ✏ there
exists a � such that

�

�

�

�

�

�

�

f (x) �
N

X

n=0

an(x � x0)n

�

�

�

�

�

�

�

 ✏(x � x0)N , |x|  �.

Thus,
�

�

�

�

�

�

�

Z x

x0

f (t) dt �
N

X

n=0

an

n + 1
(x � x0)n+1

�

�

�

�

�

�

�

 ✏(x � x0)N+1

N + 1
,

which proves the claim. n

Proposition 2.6 (Differentiation 1) Let

f (x) ⇠
1
X

n=0

an(x � x0)n.

Then it is not necessarily true that

f 0(x) ⇠
1
X

n=0

nan(x � x0)n�1.

Proof : The problem is tightly related to the presence of subdominant functions.
Defining

g(x) = f (x) + e�1/x2
sin(e1/x2

),
the two functions have the same asymptotic expansion at zero, but not their deriva-
tives. n

Proposition 2.7 (Differentiation 2) If f 0(x) has an asymptotic expansion and is
integrable near x0 then

f (x) ⇠
1
X

n=0

an(x � x0)n.

implies that

f 0(x) ⇠
1
X

n=0

nan(x � x0)n�1.
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Proof : Set

f 0(x) ⇠
1
X

n=0

bn(x � x0)n.

Using the integration Proposition and the uniqueness of the expansion we get the
desired result. n

We come now to the ultimate goal of this section. Suppose we have a di↵erential
equation

y00(x) + p(x)y0(x) + q(x)y(x) = 0.

Suppose that p(x) and q(x) have asymptotic expansions at x0. Does it imply that
y(x) has an asymptotic expansion as well, and that its coe�cient can be identified
by term-by-term formal manipulations? In general this is true.
First we need to assume that p0(x) also has an asymptotic expansion. Then we usu-
ally proceed in two steps. First we assume that y(x) has an asymptotic expansion.
Then, since

y00(x) + [p(x)y(x)]0 + [q(x) � p0(x)]y(x) = 0,

it follows that

y0(x) � y0(x0) + p(x)y(x) � p(x0)y(x0) +
Z x

x0

[q(t) � p0(t)]y(t) dt.

Hence y0(x) has an asymptotic expansion and so does y00(x) (by the arithmetic
properties). We are then allowed to use the arithmetic properties and the unique-
ness of the expansion to identify the coe�cients.
It remains however to show that y(x) can indeed to expanded in an asymptotic
series. In the next section we will demonstrate the standard approach to do so.

2.6 Irregular singular points at infinity

Irregular singular points at infinity are ubiquitous in equations that arise in phys-
ical applications (e.g., Bessel, Airy), and the asymptotic behavior at infinity is of
major importance in such applications. In principle, the investigation of irregular
singular points at infinity can be dealt with by the change of variables t = 1/x,
yet, we can use the method of dominant balance to study the asymptotic behavior
in the original variables.
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Example: Consider the function

y(x) =
1
X

n=0

xn

(n!)2 ,

reminiscent of the Bessel function

I0(x) =
1
X

n=0

(1
2 x)2n

(n!)2 ,

i.e., y(x) = I0(
p

2x). This series is convergent everywhere, yet to evaluate it at,
say, x = 10000 to ten significant digits requires at least,

10000n

(n!)2 < 10�10,

and using Stirling’s formula,

n log 10000 � 2n log n + 2n < �10 log 10,

this roughly gives n > 284. It would be useful to obtain an approximation that
does not require the addition of hundreds of numbers.
Consider the following alternative. First, note that

y0(x) =
1
X

n=1

xn�1

n!(n � 1)!
,

hence

(xy0(x))0 =
1
X

n=1

xn�1

[(n � 1)!]2 = y(x),

i.e., y(x) is a solution of the di↵erential equation

x y00(x) + y0(x) = y(x).

We are looking for a solution as x! 1, in the form y(x) = exp S (x), yielding

xS 00(x) + x[S 0(x)]2 + S 0(x) = 1.

As before, we assume that S 00(x) ⌧ [S 0(x)]2. We remain with

x[S 0(x)]2 + S 0(x) ⇠ 1.
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This is a quadratic equation, whose solution is

S 0(x) ⇠ �1 ±
p

1 + 4x
2x

⇠ ±x�1/2, x! 1.

Thus,
S (x) ⇠ ±2x1/2,

or
S (x) ± 2x1/2 +C(x),

where C0(x) ⌧ x�1/2.
Since all the coe�cients in the power series are positive, y(x) is an increasing
function of x, and the leading behavior must be dominated by the positive sign.
We then go to the next equation,

x[2x1/2 +C(x)]00 + x([2x1/2 +C(x)])02 + [2x1/2 +C(x)]0 = 1.

Expanding we get

x
"

�1
2

x�3/2 +C00(x)
#

+ x
h

x�1/2 +C0(x)
i2
+

h

x�1/2 +C0(x)
i

= 1,

and
1
2

x�1/2 + xC00(x) + 2x1/2C0(x) + x[C0(x)]2 +C0(x) = 0,

Recall that C0(x) ⌧ x�1/2 hence C00(x) ⌧ x�3/2, and so we remain with

2x1/2C0(x) ⇠ �1
2

x�1/2,

or
C(x) ⇠ �1

4
log x.

The next correction is asymptotic to a constant.
The leading solution is then

y(x) ⇠ c x�1/4e2x1/2
.

We cannot (at this point) evaluate the constant (the equation is homogeneous!),
which turns out to be 1

2⇡
�1/2. In Figure 2.4 we show the ratio of this asymptotic
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10−3 10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

0.5*π−1/2 x−1/4 e2x1/2
/y(x)

sumn=0
1 0 xn/(n!)2 / y(x)

Figure 2.4:

solution and y(x) versus x. Interestingly, the approximation is (relatively) excel-
lent for x > 100, whereas the power series truncated at n = 10 is very accurate
up to that point. Together, the two approximations yield a “uniformly accurate”
approximation.

NNN

. Exercise 2.10 Show that the asymptotic behavior at infinity of the solutions
to the modified Bessel equation,

x2y00(x) + xy0(x) � (x2 + ⌫2)y(x) = 0

is
y1(x) ⇠ c1x�1/2ex

y2(x) ⇠ c2x�1/2e�x.

Example: The modified Bessel equation

x2y00(x) + xy0(x) � (x2 + ⌫2)y(x) = 0

has an irregular singular point at x = 1. There are two independent solutions, one
which decays at infinity and one which diverges. We will study the behavior of
the converging one.
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By using the method of dominant balance (see above exercise) we find that

y(x) ⇠ cx�1/2e�x.

We “peel o↵” the leading behavior by setting

y(x) = x�1/2e�xw(x).

Then,

y0(x) = x�1/2e�x
 

�1
2

x�1w(x) � w(x) + w0(x)
!

y00(x) = x�1/2e�x
 

�1
2

x�1 � 1
!  

�1
2

x�1w(x) � w(x) + w0(x)
!

+ x�1/2e�x
 

1
2

x�2w(x) � 1
2

x�1w0(x) � w0(x) + w00(x)
!

.

Substituting we get

x2w00(x) � 2x2w0(x) +
⇣

1
4 � ⌫2

⌘

w(x) = 0.

At this point we construct an asymptotic series for w(x).

w(x) ⇠
1
X

n=0

anx�n,

and proceed formally. Substituting we get
1
X

n=0

n(n + 1)anx�n � 2
1
X

n=0

nanx�n+1 +
⇣

1
4 � ⌫2

⌘

anx�n = 0.

Equating the power of x�n we get

n(n + 1)an � 2(n + 1)an+1 +
⇣

1
4 � ⌫2

⌘

an = 0,

or

an+1 =
(n + 1

2 )2 � ⌫2

2(n + 1)
an.

Recall that we proved in the previous section that if w(x) assumes a power series
expansion, then it is given by the above procedure. We will now prove that this is
indeed the case. Setting � = 1

4 � ⌫2 we have

w00(x) � 2w0(x) +
�

x2 w(x) = 0,
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and we want to show that there exists a solution that can be expanded about infin-
ity. We first write this equation as an integral equation. First,

(e�2xw0(x))0 +
�e�2x

x2 w(x) = 0,

from which we deduce that

w0(x) = �
Z 1

x

e�2(s�x)

s2 w(s) ds.

Note that we chose the integration constant such that w0(x) ! 0 at infinity. One
more integration yields

w(x) = 1 + �
Z 1

x

Z 1

t

e�2(s�t)

s2 w(s) dsdt.

Exchanging the order of integration we end up with

w(x) = 1 + �
Z 1

x

Z s

x

e�2(s�t)

s2 w(s) dtds

= 1 +
�

2

Z 1

x

e�2(s�x) � 1
s2 w(s) ds

We now claim that the solution to this integral equation is bounded for su�ciently
large x. That is, there exist a, B > 0 such that |w(x)|  B for x � a. To show that
we proceed formally and iterate this integral,

w(x) = 1 +
�

2

Z 1

x

K(x, s)
s2 ds +

✓�

2

◆2 Z 1

x

Z 1

s1

K(x, s1)
s2

1

K(s1, ss)
s2

s
ds + . . . ,

where K(x, s) = e�2(s�x) � 1. Since |K(x, s)|  1 for x � s, it follows that the k-th
term of this series is bounded by

|Ik| 
✓�

2

◆n Z 1

x

Z 1

s1

. . .

Z 1

sn�1

1
s2

1
. . .

1
s2

n
dsn . . . ds1 

✓�

2

◆n x�n

n!
,

i.e., the series converges absolutely and is bounded by e��/2x. Since we constructed
an absolutely converging series that satisfies an iterative relation satisfied by w(x),
it is indeed the solution.
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Having proved the boundedness of w(x), it remains to show that it has an asymp-
totic expansion. We start with w(x) = 1 + w1(x), and

|w1(x)| =
�

�

�

�

�

�

2

Z 1

x

K(x, s)
s2 w(s) ds

�

�

�

�

�

 �
2

B
Z 1

s

ds
s2 =

�

2x
B,

i.e., w(x)! 1. Next,

w1(x) =
�

2

Z 1

x

e�2(s�x) � 1
s2 ds +

�

2

Z 1

x

e�2(s�x) � 1
s2 w1(s) ds

= � �
2x
+
�

2

Z 1

x

e�2(s�x) � 1
s2 w1(s) ds.

Using the bound, |w1(x)|  �B
2x , we get that

�

�

�

�

�

w1(x) +
�

2x

�

�

�

�

�

 �
2B
4

Z 1

x

ds
s3 =

�2B
12x2 ,

and so on.
NNN


