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Chapter 1

Existence and uniqueness

1.1 Introduction

Definition 1.1 A differential equation is an equation that relates a function to
its derivative(s). The unknown is the function. A differential equation is said to be
ordinary (רגילה!) if the function is uni-variate, and more precisely if its domain is
a connected subset of R. We abbreviate ordinary differential equation into ode.

Example: Find a function y ∶ R→ R that satisfies the equation

y′ = 6y,

or in a different notation,

∀t ∈ R y′(t) = 6 y(t).

▲▲▲
A number of questions arise right away:

À Does the equation have a solution?

Á If it does, is the solution unique?

Â What is the solution?

Ã Is there a systematic way to solve such an equation?
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In the above example, direct substitution shows that any function of the form
y(t) = a e6t, a ∈ R is a solution of the equation. Thus, a solution exists and it is not
unique. This is not surprising. We know from elementary calculus that knowing
the derivative of a function does not uniquely determine the function; it does only
up to an integration constant. We could try to obtain a problem for which there
exists a unique solution by imposing an additional condition, like the value of the
function at a certain point, say, y(2) = 8. In this case, the unique solution that
belongs to the above exponential family of solutions is found by setting

y(2) = a e12 = 8,

i.e., a = 8 e−12. Still, can we be sure that this is the unique solution to the equation

y′ = 6y y(2) = 8 ?

We will soon know the answer to this question.

Definition 1.2 An ordinary differential equation is said to be of order k if the
highest derivative of the unknown function that appears in the equation is the k-th
derivative.

Example: The following equation is a first-order ode:

y′(t) = t sin
√

3 + y2(t),

which we will often write in the more sloppy form:

y′ = t sin
√

3 + y2.

(It is sloppy because it is not clear in this notation that t is a point in the domain
of y; suppose we wanted to denote the independent variable by x, as we often do.)
▲▲▲

First-order ode The most general first-order ode is of the form

Φ(y′(t), y(t), t) = 0.

Such an equation is said to be implicit סתומה!) .(הצגה We will always assume that
the equation has been brought into explicit form מפורשת!) :(הצגה

y′(t) = f (t, y(t)).
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Second-order ode The most general second-order ode is of the form

Φ(t, y′′(t), y′(t), y(t)) = 0,

and in explicit form
y′′(t) = f (t, y′(t), y(t)).

Example: Consider the following equation:

y′′(t) + y(t)y′(t) + y(t) sin t = 0.

As in the first example, we ask ourselves whether this equation has a solution and
whether it is unique. At this point it is clear that there won’t be a unique solution
unless we specify some extra information about the function at certain points. The
question is how much extra information is needed in order to obtain an equation
that has a unique solution (assuming that such exists). ▲▲▲

Systems of differential equations In the same way as we go from univariate al-
gebraic equations into multivariate ones, so we can extend the idea of a differential
equation into a system of differential equations in which more than one function
is unknown.

Example: Find functions y, z, such that

y′(t) = 6tz
z′(t) = z3y′ + 4.

▲▲▲
More generally, in a first-order system of n (explicit) odes the unknown is a vector-
valued function, y ∶ R→ Rn, that satisfies an equation of the form

y′(t) = f (t, y(t)),

where f ∶ R ×Rn → Rn. In components,

yi(t) = fi(y1(t), . . . , yn(t), t), i = 1, . . . ,n.
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High-order equations and first-order systems Every n-th order (scalar) equa-
tion can be turned into a first-order system of n odes by a simple procedure. Sup-
pose we have an equation of the form

y(n)(t) = f (t, yn−1(t), . . . , y′(t), y(t)).

We then define the following vector-valued function,

Y =
⎛
⎜⎜⎜
⎝

y
y′

⋮
y(n−1)

⎞
⎟⎟⎟
⎠
.

It satisfies the following system of equations,

Y ′
1 = Y2 Y ′

2 = Y3 ⋯ Y ′
n−1 = Yn Y ′

n = f (t,Y1, . . . ,Yn),

which we can rewrite in vector form,

Y ′(t) = F(t,Y(t)).

What is ordinary in an ode? A differential equation is called ordinary when the
unknown function depends on a single real-valued variable. This is in contrast to
partial differential equations חלקיות!) ,(משוואות in which the unknown function
depends on more than one variable.

Example: An example of a pde is the heat equation (also known as the diffusion
equation): the unknown function depends on two variables (position and time),
y ∶ R ×R→ R, and satisfies the equation,

∂y
∂t

(x, t) = ∂
2y
∂x2

(x, t).

▲▲▲
The theory of pdes is infinitely harder than the theory of odes, and will not be con-
sidered in this course (we will eventually explain why there is such a fundamental
difference between the two).
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Why do we care about odes? Differential and integral calculus were developed
in the 17th century motivated by the need to describe the laws of nature. Classical
mechanics is “one big system of odes”; if the instantaneous position of all the
particles in the world at time t can be viewed as a huge vector y(t), then according
to classical mechanics, the second derivative of this vector (the acceleration) is a
god-given function of the current positions and velocities of all the particles. That
is,

y′′(t) = f (t, y′(t), y(t)).
As we will see, such a system may have a unique solution if we specify both y
(positions) and y′ (velocities) at an initial time (the big bang?). By Newton’s laws,
the evolution of the universe is determined forever from its initial conditions.

Example: Consider a single “point particle” that can only move along a single
axis. The particle is attached to a spring that is connected to the origin. Newton’s
law is

my′′(t) = −k y(t),
where m is the mass of the particle and k is the spring constant (the force law is
that the force on the particle is propositional to its distance from the origin and
inverse in sign). As we will learn, the most general solution to this equation is

y(t) = a cos
√

k
m t + b sin

√
k
m t,

where a,b are two “integration constants”. They can be determined by specifying,
say, y(0) and y′(0). ▲▲▲
odes are important not only in physics. Any (deterministic ) process that evolves
continuously can be described by an ode. odes are used generically to describe
evolving systems in chemistry, economics, ecology, demography, and much more.

The oldest ode The first documented instance of an ode is an equation studied
by Newton (1671), while developing differential calculus:

y′(t) = 1 − 3t + y(t) + t2 + ty(t) y(0) = 0.

Newton’s approach to solve this equation was based on a method that we call
today an asymptotic expansion. He looked for a solution that can be expressed
as a power series חזקות!) ,(טור

y(t) = a1t + a2t2 + a3t3 +⋯.
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Substituting into the equation,

a1 + 2a2t + 3a3t2 + 4a4t3 = 1 − 3t + (a1t + a2t2 + a3t3) + t2 + t(a1t + a2t2 + a3t3).

He then proceeded to identify equal powers of t,

a1 = 1 2a2 = −3 + a1 3a3 = a2 + 1 + a1 4a4 = a3 + a2,

etc. This yields, a1 = 1, a2 = −1, a3 = 1/3, a4 = −1/6, so that

y(t) = t − t2 + t3

3
− t4

6
+⋯

For fixed t, as more terms as added, the closer we are to the true solution, however,
for every fixed number of terms the approximation deteriorates for large t.

A problem studied by Leibniz In 1674 Leibniz (Newton’s competitor on the
development of calculus) studied a geometrical problem that had been studied
earlier by Fermat. He tried to solve the following differential equation,

y′(t) = − y(t)√
a2 − y2(t)

.

Remember that at that time, derivatives were not defined as rigorously as you
learned it (it took 200 more years until calculus took the form you know). For
Leibniz, the derivative was roughly,

y′(t) ≈ ∆y
∆t

= − y(t)√
a2 − y2(t)

.

If we consider ∆y and ∆t as finite numbers, then we may write
√

a2 − y2

y
∆y = −∆t.

Suppose that y(0) = y0. Then summing over many small steps ∆t and ∆y,

∫
y

y0

√
a2 − ξ2

ξ
dξ = −t.

This integral can actually be calculated analytically (the primitive function is
known) and so Leibniz could get an implicit representation of the solution.
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Initial and boundary value problems Recall that any n-th order equation can
be represented as a first-order system, thus, until further notice we will assume
that we deal with first order systems,

y′(t) = f (t, y(t)).

As we saw, even if such an equation has a solution, it will fail to be unique unless
additional conditions on y are prescribed. In general, a system of n first-order
equations requires n additional data on y. If all the data are prescribed at a single
point we call the resulting problem an initial value problem. The origin of this
name is realizations where t is time, and the data are prescribed as some initial
time. If the data are distributed between two points of more then we call the re-
sulting problem a boundary value problem. The origin of the name is situations
where the independent variable is space (and then often denoted by x), and y(x) is
some function of space that is prescribed at the boundary of the region of interest.

While the distinction between initial and boundary value problems may seem im-
material it is fundamental. The theories of initial and boundary value problems
are very different. The first part of this course will be devoted to initial value
problems.

Integral formulation Consider a first order system,

y′(s) = f (s, y(s)) y(t0) = y0.

Integrating both sides from t0 to t,

y(t) = y0 + ∫
t

t0
f (s, y(s))ds.

This is an integral equation (y(t) is still unknown), which shares a lot in common
with the differential equation. We will later see in which sense the differential and
integral systems are equivalent, and in what sense they differ.

1.2 Euler’s approximation scheme

Consider an initial value problem,

y′(t) = f (t, y(t)), y(t0) = y0,
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where y and f are vector-valued, and suppose that we want to find the function in
some interval [t0,T ] (we will often refer to t as “time” as a suggestive interpreta-
tion).

In 1768 Euler proposed a method to approximate the solution. He considered
partitions of the interval:

t0 < t1 < t2 < ⋯ < tn = T,

and approximated y(t j) by y j given by

y j+1 − y j

t j+1 − t j
= f (t j, y j),

or equivalently,

y j+1 = y j + f (t j, y j)(t j+1 − t j), j = 0, . . . ,n − 1.

Thus, the first-order differential equation is approximated by a one-step differ-
ence equation (!Mהפרשי .(משוואת

Euler’s belief was that if we refine the partition sufficiently, then we will get ar-
bitrarily close to the true solution (whose existence was not questioned). Euler’s
method (usually variants of it) is used until today to numerically approximate the
solution of ordinary differential systems.

In 1820 Cauchy proved that Euler’s approximation does indeed converge, as the
partition is refined, to a solution of the differential equation, and in fact Cauchy’s
proof is the first proof that the differential system has a solution and that this
solution is unique.

. Exercise 1.1 Approximate the solution to the equation

y′(t) = 6y(t) y(0) = 1

at the point t = 1 using Euler’s scheme for a uniform partition t j+1 − t j = 1/n. (i)
Obtain an explicit expression for the approximate solution. (ii) What is the true
solution? Does the approximate solution converge to the true solution as n→∞?

TA material 1.1 Learn to solve a large class of equations.
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1.3 The Cauchy-Peano existence proof

In order to be able to analyze the differential system, we must have some a priori
assumptions about the function f . Throughout, we will assume that f is continu-
ous in its two arguments in some open and connected domain D ⊂ R ×Rn.

Rn can be endowed with a norm. As we know from advanced calculus, all norms
on Rn are equivalent1, and without loss of generality we will use the Euclidean
norm, which we denote by ∥ ⋅ ∥.

(2 hrs, ((תשעב!)

Definition 1.3 Let D ⊂ Rn ×R be a domain in which f is continuous. Let I be an
open connected interval. A function ϕ ∶ I → Rn is called an ε-approximation to
the differential system in D if:

À ϕ is continuous.
Á ϕ is continuously differentiable, except perhaps at a finite set of points S ,

where ϕ′ has one-sided limits.
Â For every t ∈ I, (t, ϕ(t)) ∈ D.
Ã For every t ∈ I ∖ S ,

∥ϕ′(t) − f (t, ϕ(t))∥ ≤ ε.

Let (t0, y0) ∈ D and consider a rectangle of the form

R = [t0, t0 + a] × {y ∶ ∥y − y0∥ ≤ b} ⊂ D.

Since f is continuous and R is compact, it follows that f is bounded in R; define

M = max
(t,y)∈R

∥ f (t, y)∥.

Then, we define
α = min(a,b/M),

and replace R by another rectangle,

R0 = [t0, t0 + α] × {y ∶ ∥y − y0∥ ≤ b} ⊂ D.
1Two norms ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are said to be equivalent if there exist constants c,C > 0 such that

(∀x) c∥x∥1 ≤ ∥x∥2 ≤ C∥x∥1.
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t0#

y0#

y0+b#

y0'b#

t0+a#t0+α#

Theorem 1.1 There exists for every ε > 0 an ε-approximation in R0 to the equation
y′(t) = f (t, y(t)) on the interval [t0, t0 + α] satisfying the initial condition y(t0) =
y0.

Comment: A similar theorem can be formulated for an interval on the left of t0.
Mathematically, there is no difference between “past” and “future”.

Proof : Since f is continuous on R0, it is uniformly continuous ( שווה! במידה .(רציפה
Thus, given ε > 0 there exists a δ > 0 such that if

∣t − s∣ < δ and ∥y − z∥ < δ then ∥ f (t, y) − f (s, z)∥ < ε.

Take the interval [t0, t0 + α] and partition it,

t0 < t1 < . . . tn = t0 + α,

such that
max

j
(t j+1 − t j) < min(δ, δ/M).

We then construct the Euler approximation to this solution, and connect the point
by straight segments, so that Euler’s approximation is a polygon, which we denote
by ϕ(t). It is a piecewise continuously differentiable function.

As long as the polygon is in R0 its derivative, which is equal to some f (t j, y(t j)),
has norm less than M. Thus, over an interval of length α, ϕ(t) can differ from y0

(in norm) by at most αM ≤ b. This means that all Euler’s polygons remain in R0

on the entire interval [t0, t0+α], no mater how the partition of the segment is done.
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Let t be a point in the j-th interval. Then,

ϕ′(t) = f (t j, ϕ(t j)),

and further,
∥ϕ′(t) − f (t, ϕ(t))∥ = ∥ f (t j, ϕ(t j)) − f (t, ϕ(t))∥.

By our choice of the partition,
∣t − t j∣ < δ.

Because the derivative of ϕ is bounded (in norm) by M,

∥ϕ(t) − ϕ(t j)∥ ≤ M∣t − t j∣ ≤ M(δ/M) = δ.

By our choice of δ,
∥ f (t j, ϕ(t j)) − f (t, ϕ(t))∥ < ε,

which proves that ϕ is an ε-approximation to our system. n

Definition 1.4 A family F of functions I → Rn is said to be equicontinuous
אחידה!) במידה Mרציפי) if there exists for every ε > 0 a δ > 0, such that for every
∣t1 − t2∣ < δ and every g ∈ F ,

∥g(t1) − g(t2)∥ < ε.

(Equicontinuity is uniform continuity with the same δ valid for all g ∈ F .)

Theorem 1.2 (Arzela-Ascoli) Let F be an infinite family of functions I → Rn that
are uniformly bounded, namely,

sup
f ∈F

max
t∈I

∥ f (t)∥ <∞,

and equicontinuous. Then there exists a sequence fn ∈ F that converges uniformly
on I.

(3 hrs, ((תשעב!)
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Proof : Let (rk) be a sequence that contains all the rational numbers in I. Consider
the set

{ f (r1) ∶ f ∈ F} ⊂ Rn.

Since F is uniformly bounded, this set is bounded, and therefore has an accumu-
lation point: there exists a sequence f (1)

j ∈ F for which f (1)
j (r1) converges.

Consider then the set
{ f (1)

j (r2) ∶ j ∈ N}.

This set is bounded, therefore there exists a subsequence f (2)
j ∈ ( f (1)

k ) for which
f (2)

j (r2) converges (and also f (2)
j (r1) converges).

We proceed inductively, and for every k derive a sequence f (k)
j such that f (k)

j (ri)
converges for every i ≤ j.

Consider now the diagonal sequence Fk = f (k)
k . It converges pointwise on all the

rationals in I. Why? Because for every ` the diagonal sequence is eventually a
subsequence of f (`)j . This means that

(∀r ∈ I ∩Q)(∀ε > 0)(∃N ∈ N) ∶ (∀m,n > N) (∥Fn(r) − Fm(r)∥) < ε.

Note that since we don’t know what the limit is, we use instead the Cauchy crite-
rion for convergence.

Fix ε > 0. Since the family of functions F is equicontinuous,

(∃δ > 0) ∶ (∀t1, t2, ∣t1 − t2∣ < δ)(∀ f ∈ F ) (∥ f (t1) − f (t2)∥ < ε).

Partition the interval I into subintervals,

I = I1 ∪ I2 ∪ ⋅ ⋅ ⋅ ∪ IK ,

such that each subinterval if shorter than δ. In every subinterval Ik select a rational
number rk. Since there is a finite number of such rks,

(∃N ∈ N) ∶ (∀m,n > N)(∀k = 1, . . . ,K) (∥Fn(rk) − Fm(rk)∥) < ε

Then for every t ∈ Ik, and m,n > N,

∥Fn(t) − Fm(t)∥ ≤ ∥Fn(t) − Fn(rk)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

equicontinuity

+ ∥Fn(rk) − Fm(rk)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

convergence

+ ∥Fm(rk) − Fm(t)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

equicontinuity

≤ 3ε.

Thus, the sequence Fn satisfies Cauchy’s criterion for uniform convergence, which
concludes the proof. n

With this, we can prove Cauchy’s theorem:
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Theorem 1.3 (Cauchy-Peano) Let f (t, y) and the rectangle R0 be defined as
above. Then the differential equation y′(t) = f (t, y(t)) has a solution on the
interval [t0, t0 + α] satisfying the initial condition y(t0) = y0.

Comments:

À Note that our only conditions on f is that it be continuous.

Á At this stage not a word about uniqueness.

Â This theorem is known as a local existence theorem. It only guarantees the
existence of a solution on some interval. We have no a priori knowledge on
how long this interval is.

Proof : Let (εk) be a sequence of positive numbers that tends to zero. We proved
that for every k there exists a function ϕk ∶ I → Rn that is an εk-approximation on
I = [t0, t0 + α] to the differential equation, and satisfies the initial conditions.

The sequence (ϕk) is uniformly bounded on I because

(∀t ∈ I)(∀k ∈ N) (∥ϕk(t) − y0∥ < b).

It is also equicontinuous because

(∀t1, t2 ∈ I)(∀k ∈ N) (∥ϕk(t2) − ϕk(t1)∥ ≤ M ∣t2 − t1∣),

and therefore, given ε > 0 we set δ = ε/M, and

(∀∣t1 − t2∣ < δ)(∀k ∈ N) (∥ϕk(t2) − ϕk(t1)∥ ≤ ε).

It follows from the Arzela-Ascoli theorem that (ϕk) has a subsequence (which we
do not relabel) that converges uniformly on I; denote the limit by y. It remains to
show that y is a solution to the differential equation.
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For each k ∈ N it follows from the fundamental theorem of calculus that2

ϕk(t) = y0 + ∫
t

t0
ϕ′k(s)ds

= y0 + ∫
t

t0
f (s, ϕk(s))ds + ∫

t

t0
[ϕ′k(s) − f (s, ϕk(s))]ds.

The fact that ϕ′k is not defined at a finite number of points is immaterial.

Using the fact that ϕk is an εk-approximation to the differential equation,

∥∫
t

t0
[ϕ′k(s) − f (s, ϕk(s))]ds∥ ≤ εk∣t − t0∣.

Letting k → ∞ and using the fact that the convergence of ϕk to y is uniform, we
get that

y(t) = y0 + ∫
t

t0
f (s, y(s))ds.

Since y ∈ C1(I), we can differentiate this equation and obtain y′(t) = f (t, y(t)). n

. Exercise 1.2 Let D ⊂ R × Rn be an open domain, f ∈ C(D), and (t0, y0) ∈ D.
Show that the equation

y′(t) = f (t, y(t)), y(t0) = y0

has a solution on some open interval I that contains t0.

1.4 Uniqueness

Example: Consider the initial value problem,

y′(t) = y1/3(t), y(0) = 0.

2The functions ϕk are absolutely continuous ( בהחלט! ,(רציפות which means that there exists
for every ε > 0 a δ > 0 such that for every finite sequence of disjoint intervals (xk, yk) that satisfies
∑k(yk − xk) < δ,

∑
k
∥ f (yk) − f (xk)∥ < ε.

A function is absolutely continuous if and only if it is almost everywhere differentiable, and its
derivative satisfies the fundamental theorem of calculus.
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By the Cauchy-Peano theorem there exists an α > 0 such that this equation has
a solution in the interval [0, α]. The Cauchy-Peano theorem, however, does not
guarantee the uniqueness of the solution. A trivial solution to this equation is

y(t) = 0.

Another solution is

y(t) = (2t
3
)

3/2

.

In fact, there are infinitely many solutions of the form

y(t) =
⎧⎪⎪⎨⎪⎪⎩

0 0 ≤ t ≤ c

(2(t−c)
3 )

3/2
t > c,

for every c > 0.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(What would have happened had we approximated the solution with Euler’s method?)
▲▲▲
The above example shows that existence of solutions does not necessarily go hand
in hand with uniqueness. It turns out that in order to guarantee uniqueness we need
more stringent requirements on the function f .

Proposition 1.1 Let f ∶ R ×Rn → Rn by continuous in t and Lipschitz continuous
in y with constant L in the domain D. Let ϕ1 and ϕ2 be ε1- and ε2-approximations
to the equation y′(t) = f (t, y(t)) contained in D on the interval I, and moreover
for a certain t0 ∈ I,

∥ϕ1(t0) − ϕ2(t0)∥ < δ.
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Then, for all t ∈ I,

∥ϕ1(t) − ϕ2(t)∥ < δeL∣t−t0∣ + ε1 + ε2

L
(eL∣t−t0∣ − 1) .

Comment: By Lipschitz continuity in y we mean that for every (t, y) and (t, z) in
D,

∥ f (t, y) − f (t, z)∥ ≤ L∥y − z∥.

Comment: This proposition states that the deviation between two approximate
solutions can be split into two: (i) an initial deviation that may grow exponentially
fast, and (ii) a deviation due to the fact that both functions are only approximate
solutions to the same equation.

Proof : Suppose, without loss of generality that t > t0. By the definition of ε-
approximations, for every t0 ≤ s ≤ t,

∥ϕ′1(s) − f (s, ϕ1(s))∥ ≤ ε1

∥ϕ′2(s) − f (s, ϕ2(s))∥ ≤ ε2.

For i = 1,2,

ϕi(t) = ϕi(t0) + ∫
t

t0
f (s, ϕi(s))ds + ∫

t

t0
[ϕ′i(s) − f (s, ϕi(s))]ds,

hence
∥ϕi(t) − ϕi(t0) − ∫

t

t0
f (s, ϕi(s))ds∥ ≤ εi(t − t0).

Using the triangle inequality, ∥a − b∥ ≤ ∥a∥ + ∥b∥,

∥[ϕ1(t) − ϕ2(t)] − [ϕ1(t0) − ϕ2(t0)] − ∫
t

t0
[ f (s, ϕ1(s)) − f (s, ϕ2(s))]ds∥ ≤ (ε1+ε2)(t−t0).

It further follows that

∥ϕ1(t) − ϕ2(t)∥ ≤ ∥ϕ1(t0) − ϕ2(t0)∥

+ ∫
t

t0
∥ f (s, ϕ1(s)) − f (s, ϕ2(s))∥ds + (ε1 + ε2)(t − t0).
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Define now r(t) = ∥ϕ1(t) − ϕ2(t)∥. Then, using the Lipschitz continuity of f and
the bound on the initial deviation,

r(t) ≤ δ + L∫
t

t0
r(s)ds + (ε1 + ε2)(t − t0). (1.1)

This is an integral inequality. Our goal is to get an explicit bound for r(t). We
proceed as follows: define

R(t) = ∫
t

t0
r(s)ds,

so that
R′(t) ≤ δ + LR(t) + (ε1 + ε2)(t − t0), R(t0) = 0,

which is a differential inequality.

Next, for every t0 ≤ s ≤ t:

(eL(s−t0)R(s))′ = eL(s−t0)[R′(s) − LR(s)] ≤ eL(s−t0) (δ + (ε1 + ε2)(s − t0)) ,

Since integration preserves order, we may integrate this inequality from t0 to t and
get

eL(t−t0)R(t) − R(0)
±

0

≤ ∫
t

t0
eL(s−t0) (δ + (ε1 + ε2)(s − t0)) ds,

and it only remains to integrate the right hand side explicitly3 and substitute back
into (1.1). n

TA material 1.2 Various Gronwall inequalities.

Theorem 1.4 (Uniqueness) Let ϕ1 and ϕ2 be two solutions of the initial value
problem

y′(t) = f (t, y(t)), y(t0) = y0,

where f is continuous in t and Lipschitz continuous in y. Then ϕ1 = ϕ2.

Proof : This is an immediate corollary of the previous proposition as δ = ε1 = ε2 =
0. n

3

∫
t

0
se−Ls ds = − t

L
e−Lt − 1

L2
(e−Lt − 1) .
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Comment: We have obtained also an estimate for the error of Cauchy’s approx-
imation. It y is the solution and ϕ is an ε-approximation with exact initial data,
then

∥ϕ(t) − y(t)∥ < ε

L
(eL∣t−t0∣ − 1) .

(5 hrs, ((תשעב!)

1.5 The Picard-Lindlöf existence proof

There is another standard way to prove the existence of solutions, and it is of suf-
ficient interest to justify a second proof. Recall that a solution to the initial value
problem y′(t) = f (t, y(t)), y(t0) = y0 is also a solution to the integral equation,

y(t) = y0 + ∫
t

t0
f (s, y(s))ds.

Define the function y(0)(t) ≡ y0, and further define

y(1)(t) = y0 + ∫
t

t0
f (s, y(0)(s))ds.

For what values of t is it defined? For the same [t0, t0 + α] as in the previous
sections. We can show that (t, y(1)(t)) remains in R0 as follows: let

τ = sup{t ∈ I ∶ ∥y(1)(t) − y0∥ ≤ b}.

If τ < t0 + α then
∥y(1)(τ) − y0∥ ≤ M(t − t0) < b,

contradicting the fact that τ is the supremum.

We then define inductively for every n ∈ N:

y(n+1)(t) = y0 + ∫
t

t0
f (s, y(n)(s))ds,

and show as above that (t, y(n+1)(t)) remains in R0 for all t ∈ I.

We are now going to show that the sequence y(n) converges uniformly to a solution
to the initial value problem. The difference with the proof based on Euler’s method
is that we need to assume the Lipschitz continuity of f in R0. Define,

∆(n) = y(n+1) − y(n),
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then,

∆(n+1)(t) = ∫
t

t0
[ f (s, y(n)(s)) − f (s, y(n−1)(s))] ds,

and
∥∆(n+1)(t)∥ ≤ L∫

t

t0
∥∆(n)(s)∥ds,

with
∥∆(1)(t)∥ ≤ ∫

t

t0
∥ f (s, y0)∥ds ≤ M ∣t − t0∣.

Once again, we have an integral inequality, but we may proceed differently:

∥∆(2)(t)∥ ≤ L∫
t

t0
∥∆(1)(s)∥∣ds ≤ LM∫

t

t0
(s − t0)ds ≤ LM

2
∣t − t0∣2,

∥∆(3)(t)∥ ≤ L∫
t

t0
∥∆(2)(s)∥∣ds ≤ L2M

2 ∫
t

t0
(s − t0)2 ds ≤ L2M

3!
∣t − t0∣3,

and generally,

∥∆(n)(t)∥ ≤ M
L

(L∣t − t0∣)n

n!
.

Now we write the n-th function as follows:

y(n) = (y(n) − y(n−1)) + (y(n−1) − y(n−2)) + ⋅ ⋅ ⋅ + y0 = y0 +
n−1

∑
k=0

∆(k).

By the Weierstaß M-test this series converges uniformly to a limit y. All that
remains is to let n→∞ in the equation

y(n+1)(t) = y0 + ∫
t

t0
f (s, y(n)(s))ds,

to obtain
y(t) = y0 + ∫

t

t0
f (s, y(s))ds.

Comment: Usually one puts this proof in the context of the Picard’s contractive
mapping theorem. I purposely did it here “by hand” to show how straightforward
the proof is. This method is known as the method of successive approximations.

Note also that we can estimate the error of the successive approximations. We
have

y(n) − y(m) =
n−1

∑
k=m

∆(k),
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hence

∥y(n)(t) − y(m)(t)∥ ≤
n−1

∑
k=m

∥∆(k)(t)∥ ≤
n−1

∑
k=m

Lk−1M
k!

(t − t0)k

≤
∞
∑
k=m

Lk−1M
k!

(t − t0)k =
∞
∑
k=0

Lm+k−1M
(m + k)!

(t − t0)m+k

≤
∞
∑
k=0

Lm+k−1M
m!k!

(t − t0)m+k = Lm−1M(t − t0)m

m!

∞
∑
k=0

Lk

k!
(t − t0)k

= M[L(t − t0)]m

Lm!
eL(t−t0).

The right hand side does not depend on n, so we can let n →∞ to get an estimate
for y − y(m).

1.6 Continuation of solutions

The existence and uniqueness proof shows that there exists an α such that a unique
solution exists in the interval [t0, t0 + α]. Does it really mean that the domain of
existence is limited? What prevents the existence of solution for all t ∈ R?

Example: Consider the initial value problem:

y′(t) = y2(t), y(0) = 1.

It is easy to check that

y(t) = 1
1 − t

,

is a solution on the interval [0,1), and we know therefore that it is unique. This
solution however diverges as t → 1, indicating that it can’t be further continued.
▲▲▲
This situation is typical to equations that do not have global solutions. Suppose
that f (t, y) is continuous in t and Lipschitz continuous in y for all (t, y) ∈ R × Rn

(as is f (t, y) = y2), and define

a = sup{τ > t0 ∶ there exists a solution on [t0, τ]}.

If a is finite and
lim
t→a

y(t) = b <∞,
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then consider the initial value problem

y′(t) = f (t, y(t)), y(a) = b.

By the existence and uniqueness theorems there exists a γ such that a unique
solution exists on [a,a + γ], i.e., a unique solution exists on [t0,a + γ], violating
the definition of a as a supremum. Thus, if a is finite then

lim
t→a

y(t) =∞,

namely, the only way a solution can fail to exist indefinitely is if it diverges.

This observation has an important implication: whenever you want to show that a
certain equation has global solutions, you can try to show that as long as a solution
exists it is bounded uniformly.

(6 hrs, ((תשעב!)

1.7 Generalized solutions

1.8 Continuity of solutions with respect to initial con-
ditions

The solution of an ivp is of course a function of “time” t, but it can also be viewed
as a function of the initial data, namely, we can viewed the solution of

y′(t) = f (t, y(t)), y(τ) = ξ

as a function of t,τ, and ξ; for now we denote this solution as ϕ(t, τ, ξ). This is
a different point of view in which we have a function that represents the solution
not to a single ivp, but to all ivps together.

We know that ϕ is differentiable in t, as it satisfies the equations,

∂ϕ

∂t
(t, τ, ξ) = f (t, ϕ(t, τ, ξ)), ϕ(τ, τ, ξ) = ξ. (1.2)

The question is how regular it is with respect to the initial data τ and ξ. This is an
important question, as if it were, for example, discontinuous with respect to the
initial data, it would not be an appropriate model for any real life problem. In this
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context, one speaks of the well-posedness of an equation, which includes exis-
tence, uniqueness, and continuity on initial data (and possibly other parameters in
the equation).

Let D ⊂ R × Rn be a domain in which f is continuous in t and Lipschitz in y. Let
I = [a,b] and let ψ ∶ I → Rn be a solution to the differential equation, such that

{(t, ψ(t)) ∶ t ∈ I} ⊂ D.

Theorem 1.5 There exists a δ > 0 such that for every

(τ, ξ) ∈ Uδ = {(τ, ξ) ∶ τ ∈ I, ∥ξ − ψ(τ)∥ < δ}

There exists a solution ϕ to (1.2) on I with ϕ(τ, τ, ξ) = ξ. Moreover, ϕ is continuous
on I ×Uδ.
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Linear equations

2.1 Preliminaries

Recall that for every normed space (X , ∥ ⋅ ∥) we can endow the vector space of
linear operators L(X ,X ) with an operator norm,

∥A∥ = sup
x≠0

∥Ax∥
∥x∥

.

It can be shown that this is indeed a norm. This norm has the following (addi-
tional) properties:

1. For every x ∈ X and A ∈ L(X ,X ),

∥Ax∥ ≤ ∥A∥∥x∥.

2. For every A,B ∈ L(X ,X ),

∥AB∥ ≤ ∥A∥∥B∥.

3. It is always the case that ∥id∥ = 1.

We will deal with the vector space Rn endowed with the Euclidean norm. One can
ask then what is the explicit form of the corresponding operator norm for matrices
A ∶ Rn×n.

. Exercise 2.1 Find the explicit form of the operator norm corresponding to the
Euclidean norm on Rn.
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2.2 Linear homogeneous systems

2.2.1 The space of solutions

Let I ⊂ R be a closed interval and let A ∶ I → Rn×n be a continuous n-by-n matrix-
valued function of I. We denote its entries, which are real-valued functions, by
ai j. The first-order system of differential equations,

y′(t) = A(t)y(t) (2.1)

is called a linear homogeneous system. In component notation,

y′j(t) =
n

∑
k=1

a jk(t)yk(t).

Example: A linear homogeneous system for n = 2:

(y1

y2
)
′

(t) = ( 0 1
−1 + 1

2 sin t 0)(y1

y2
)(t).

▲▲▲

Proposition 2.1 For every τ ∈ I and ξ ∈ Rn, there exists a unique function y ∶ I →
Rn such that

y′(t) = A(t)y(t), y(τ) = ξ.

Comment: The main claim is that a (unique) solution exists on the whole of I; in
fact this remains true also if I = R.

Proof : The function f (t, y) = A(t)y is continuous in t and Lipschitz in y, hence
a local solution exists for some interval containing τ. We need to show that the
solution can be continued on the entire of I, i.e., that it cannot diverge. This is
done as follows. We first write the corresponding integral equation,

y(t) = ξ + ∫
t

τ
A(s)y(s)ds,

which holds as long as a solution exists.
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Taking norms,

∥y(t)∥ ≤ ∥ξ∥ + ∫
t

τ
∥A(s)y(s)∥ds ≤ ∥ξ∥ + ∫

t

τ
∥A(s)∥∥y(s)∥ds.

Because A is continuous on I, so is ∥A∥, which means that there exists a uniform
bound

∥A(s)∥ ≤ M, ∀t ∈ I.

This implies that

∥y(t)∥ ≤ ∥ξ∥ + M∫
t

τ
∥y(s)∥ds.

This is an integral inequality that we can solve. Defining Y(t) = ∫
t
τ ∥y(s)∥ds we

get
Y ′(t) ≤ ∥ξ∥ + MY(t), Y(τ) = 0.

Then,
e−M(t−τ)[Y ′(t) − MY(t)] ≤ ∥ξ∥e−M(t−τ).

Integrating from τ to t,

e−M(t−τ)Y(t) ≤ ∥ξ∥
−M

(e−M(t−τ) − 1) ,

and further

Y(t) ≤ ∥ξ∥
M

(eM(t−τ) − 1) .

Substituting back into the inequality for ∥y(t)∥,

∥y(t)∥ ≤ ∥ξ∥ + M
∥ξ∥
M

(eM(t−τ) − 1) = ∥ξ∥eM(t−τ).

This can never diverge in I, which proves that a solution to the ivp exists on I. n

The trivial solution One characteristic of linear homogeneous systems is that
y ≡ 0 is always a solution. This solution is called the trivial solution.

Proposition 2.2 Let X be the space of functions y ∶ I → Rn satisfying the linear
homogeneous system (2.1). Then X is a vector space over the complex field C
with respect to pointwise addition and scalar multiplication.



28 Chapter 2

Proof : Let y, z ∈ X , i.e.,

y′(t) = A(t)y(t) and z′(t) = A(t)z(t).

For every α, β ∈ C,

(αy + βz)′(t) = αA(t)y(t) + βA(t)z(t) = A(t)(αy + βz)(t),

which proves that αy + βz ∈ X . n

Comment: The elements of X are functions I → Rn.

Comment: This is what physicists call the principle of superposition. Any linear
combination of solutions is also a solution.

Recall that the dimension of a vector space is defined as the maximal number n
for which there exists a set of n linearly independent vectors, but every (n + 1)
vectors are linearly dependent.

Proposition 2.3 Let X be defined as above, then

dimX = n,

that is there exists a set of functions ϕ1, . . . , ϕn ∈ X , such that

n

∑
k=1

ckϕk = 0

implies that ck = 0 for all k. Moreover, for every set of n+1 function ϕk ∈ X there
exist scalars ck, not all of them zero, such that

n+1

∑
k=1

ckϕk = 0.

Proof : Take τ ∈ I, and select n independent vectors ξ1, . . . , ξn ∈ Rn; we denote the
k-th component of ξ j by ξk j. For each ξ j, the ivp

ϕ′j(t) = A(t)ϕ j(t), ϕ j(τ) = ξ j
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has a unique solution. We claim that these solution are independent. Indeed,
suppose that

n

∑
k=1

ckϕk ≡ 0,

then in particular for t = τ,
n

∑
k=1

ckξk = 0,

but because the ξk are independent, the ck are all zero.

Let ϕ1, . . . , ϕn be linear independent solutions. Take any τ ∈ I and let

ξ j = ϕ(τ).

The ξn are linearly independent, for if they were linearly dependent, we would
have

ξn =
n−1

∑
k=1

ckξk,

but then

ψ =
n−1

∑
k=1

ckϕk

is a solution to the differential system satisfying ψ(τ) = ξn, and by uniqueness
ψ = ϕn, which contradicts the linear independence of the ϕk.

Suppose now that ϕ is another solution of the differential system. Set

ξ = ϕ(τ).

Because the ξ j span Rn, there exist coefficients ck such that

ξ =
n

∑
k=1

ckξk.

By the same argument as above,

ϕ =
n

∑
k=1

ckϕk,

which proves that the ϕk form a basis. n
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2.2.2 Fundamental matrices

Let now ϕ1, . . . , ϕn be a basis. Let Φ ∶ I → Rn×n be the matrix-valued function
whose columns are the vectors ϕ j,

Φ(t) =
⎛
⎜
⎝

ϕ11 ⋯ ϕ1n

⋮ ⋱ ⋮
ϕn1 ⋯ ϕnn

⎞
⎟
⎠
(t),

that is, ϕi j is the i-th component of the j-th basis function. This matrix satisfies
the matrix-valued differential equation,

Φ′(t) = A(t)Φ(t),

which in components reads

ϕ′i j(t) = aik(t)ϕk j(t).

Φ(t) is called a fundamental matrix יסודית!) (מטריצה for the linear homogeneous
system (2.1); we call a fundamental matrix for (2.1) any solution X ∶ I → Rn×n of
the matrix equation

X′(t) = A(t)X(t), (2.2)

whose columns are linearly independent.

Because the columns of a fundamental matrix span the space of solutions to (2.1),
any solution y ∶ I → Rn can be represented as

yi =
n

∑
j=1

c jϕi j,

where the c j’s are constant, and in vector form,

y = Φc.

Proposition 2.4 For a matrix-valued function to be a fundamental matrix of
(2.1), it has to satisfy the matrix equation (2.2) and its columns have to be inde-
pendent for some τ ∈ I. In particular, if this holds then its columns are independent
for all t ∈ I.
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Proof : Let Φ ∶ I → Rn×n be a fundamental matrix; we know that it is a solution of
(2.2) and that any solution y ∶ I → Rn of (2.1) can be represented as

y = Φc,

Fix a τ ∈ I. The vector c is determined by the equation

y(τ) = Φ(τ)c.

This is a linear equation for c; we know that it has a unique solution (because
the columns of Φ span the space of solutions), hence from basic linear algebra,
det Φ(τ) ≠ 0. Since the same considerations hold for every t ∈ I, det Φ(t) ≠ 0 for
all t ∈ I. n

(8 hrs, ((תשעב!)

Here is another proof that the columns of the matrix remain independent, but it
comes with a quantitative estimate:

Proposition 2.5 Let Φ ∶ I → Rn×n be a fundamental matrix. Then

det Φ(t) = det Φ(t0) exp(∫
t

t0
Tr A(s)ds) .

In particular, if det Φ(t0) ≠ 0 then det Φ(t) ≠ 0 for all t ∈ I.

Proof : Since

Φ =
RRRRRRRRRRRRRR

ϕ11 ⋯ ϕ1n

⋮ ⋱ ⋮
ϕn1 ⋯ ϕnn

RRRRRRRRRRRRRR
,

we differentiate to obtain

Φ′ =
RRRRRRRRRRRRRR

ϕ′11 ⋯ ϕ′1n
⋮ ⋱ ⋮
ϕn1 ⋯ ϕnn

RRRRRRRRRRRRRR
+⋯ +

RRRRRRRRRRRRRR

ϕ11 ⋯ ϕ1n

⋮ ⋱ ⋮
ϕ′n1 ⋯ ϕ′nn

RRRRRRRRRRRRRR

=
RRRRRRRRRRRRRR

∑ j a1 jϕ j1 ⋯ ∑ j a1 jϕ jn

⋮ ⋱ ⋮
ϕn1 ⋯ ϕnn

RRRRRRRRRRRRRR
+⋯ +

RRRRRRRRRRRRRR

ϕ11 ⋯ ϕ1n

⋮ ⋱ ⋮
∑ j an jϕ j1 ⋯ ∑ j an jϕ

′
jn

RRRRRRRRRRRRRR
.
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Consider the first determinant. We subtract from the first line a12 times the second
line, a13 times the third line, etc. Then we remain with a11 det Φ. We do the same
with the second determinant and remains with a22 det Φ, and so on. Thus,

Φ′ = (Tr A)Φ.

This is a scalar linear ode, and it remains to integrate it.

n

Example: Consider the matrix

Φ(t) = ( t t2

0 0) .

This matrix is singular, but its columns are linearly independent. What does it
imply? That this matrix-valued function cannot be a fundamental matrix of a
linear homogeneous system; there exists no matrix A(t) such that

( t
0)

′

= A(t)( t
0) and (t2

0)
′

= A(t)(t2

0) .

▲▲▲

Theorem 2.1 Let Φ be a fundamental matrix for (2.1) and let C ∈ Cn×n be a non-
singular complex (constant) matrix. Then ΦC is also a fundamental matrix. More-
over, if Ψ is a fundamental matrix then Ψ = ΦC for some nonsingular complex
matrix C.

Proof : By definition Φ′ = AΦ and we know that det Φ(t) ≠ 0 for all t. Then for
every nonsingular complex matrix C,

(ΦC)′ = AΦC

and det Φ(t)C = det Φ(t) detC ≠ 0 for all t ∈ I.

Let Ψ be a fundamental matrix. Because it is nonsingular for all t, Ψ−1 exists, and

0 = (ΨΨ−1)′ = Ψ(Ψ−1)′ +Ψ′Ψ−1,
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from which we get that

(Ψ−1)′ = −Ψ−1Ψ′Ψ−1 = −Ψ−1AΨΨ−1 = −Ψ−1A.

Now,
(Ψ−1Φ)′ = (Ψ−1)′Φ +Ψ−1Φ′ = −Ψ−1AΦ +Ψ−1AΦ = 0.

It follows that Ψ−1Φ = C, or Φ = ΨC. n

Comment: The matrix (Ψ∗)−1 satisfies the equation,

[(Ψ∗)−1]′ = −A∗(Ψ∗)−1.

This equation is known as the equation adjoint צמודה!) (משוואה to (2.1).

Proposition 2.6 If Φ is a fundamental matrix for (2.1) then Ψ is a fundamental
matrix for the adjoint system if and only if

Ψ∗Φ = C,

where C is a nonsingular constant matrix.

(9 hrs, ((תשעב!)

Proof : Let Ψ satisfy the above equation then

(Ψ∗)′Φ +Ψ∗Φ′ = 0,

i.e.,
(Ψ∗)′Φ = −Ψ∗AΦ,

and since Φ is nonsingular
(Ψ∗)′ = −Ψ∗A,

and it remains to take the Hermitian adjoint of both sides.

Conversely, if Ψ is a fundamental solution of the adjoint equation then

(Ψ∗Φ)′ = 0,

which concludes the proof. n
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Corollary 2.1 Let A be anti-hermitian, i.e.,

A(t) = −A∗(t),

then the linear homogeneous system and its adjoint coincide. In particular, if Φ is
a fundamental matrix for (2.1) then it is also a fundamental matrix for its adjoint,
and

Φ∗(t)Φ(t) = C.

The matrix Φ∗(t)Φ(t) determines the magnitudes of the columns of Φ(t) and the
angles between pairs of vectors. In particular, since any solution is of the form

y(t) =
n

∑
j=1
α jϕ j(t),

then
∥y(t)∥2 =

n

∑
i, j=1

αiα j(ϕi, ϕ j) =
n

∑
i, j=1

αiα jCi j,

i.e., the norm of any solution is independent of t.

Example: Consider the linear system

y′(t) = ( 0 1
−1 0) y(t).

Two independent solutions are

ϕ1(t) = (sin t
cos t) and ϕ2(t) = ( cos t

− sin t) .

A fundamental matrix is therefore

Φ(t) = (sin t cos t
cos t − sin t) .

It follows that,

Φ∗(t)Φ(t) = (sin t cos t
cos t − sin t)(sin t cos t

cos t − sin t) = (1 0
0 1) .
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Any solution of this linear system is of the form

y(t) = α(sin t
cos t) + β(

cos t
− sin t) .

Now,

∥y(t)∥2 = α2 (sin t cos t)(sin t
cos t) + 2αβ (sin t cos t)( cos t

− sin t)

+ β2 (cos t − sin t)( cos t
− sin t) = α2 + β2.

▲▲▲

2.2.3 The solution operator

Consider the initial value problem,

y′(t) = A(t)y(t), y(t0) = given.

If Φ(t) is a fundamental matrix, then the solution is of the form

y(t) = Φ(t)c.

The vector c is found by substituting the initial data, y(t0) = Φ(t0)c, i.e., c =
Φ−1(t0)y(t0), and the solution is therefore,

y(t) = Φ(t)Φ−1(t0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡R(t,t0)

y(t0).

Comments:

À It follows that the solution at time t depends linearly on the solution at time
t0, and the linear transformation between the solution at two different times
is the matrix R(t, t0). We call the matrix R(t, t0) the solution operator
(!Nהפתרו (אופרטור between times t0 and t.

Á The solution operator seems to depend on the choice of the fundamental
matrix, but it doesn’t. It doesn’t because the solution is unique. We can also
see it as any other fundamental matrix Ψ(t) can be represented as Ψ(t) =
Φ(t)C, and then

Ψ(t)Ψ−1(t0) = Φ(t)CC−1Φ−1(t0) = Φ(t)Φ−1(t0).
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Â For every t0, t1, t2,
R(t2, t1)R(t1, t0) = R(t2, t0).

Why? Because for every y(t0),

y(t2) = R(t2, t0)y(t0),

but also,
y(t2) = R(t2, t1)y(t1) = R(t2, t1)R(t1, t0)y(t0).

Ã R(t, t) = I for all t.

Ä R(t, t0) is non-singular and

[R(t, t0)]−1 = R(t0, t).

Let us recapitulate: given a homogeneous linear system, we need to find n inde-
pendent solutions. Then we can construct a fundamental matrix and the associated
solution operator. This gives an explicit solution for any initial value problem. The
catch is that in most cases we will not be able to find n independent solutions.

2.2.4 Order reduction

Consider an n-dimensional linear homogeneous system, and suppose that we have
m linearly independent solutions

ϕ1, . . . , ϕm,

with m < n.

Example: Consider the differential system in some interval that does not include
the origin:

y′(t) = ( 0 1
3/2t2 −1/2t) y(t).

A solution to this system is

ϕ1(t) = ( 1/t
−1/t2) ,
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as

ϕ′1(t) = (−1/t2

2/t3 ) = ( 0 1
3/2t2 −1/2t)( 1/t

−1/t2) .

All we need in order to be able to solve an initial value problem is to find another
independent solution. The knowledge of one solution enables us to get for the
other solution an equation of lower order (in this case, a scalar equation). ▲▲▲

2.3 Non-homogeneous linear systems

Consider now a system of the form

y′(t) = A(t)y(t) + b(t),

where A ∶ I → Rn×n and b ∶ I → Rn are continuous. Such a system is called a linear
non-homogeneous system.

It turns out that if a fundamental matrix for the corresponding homogeneous sys-
tem is known, then we can solve the non-homogeneous system in explicitly form.

Theorem 2.2 Let Φ(t) be a fundamental matrix for the homogenous system, then
the solution for the non-homogeneous system is

y(t) = R(t, t0)y(t0) + ∫
t

t0
R(t, s)b(s)ds,

where as above R(t, t0) = Φ(t)Φ−1(t0).

Proof : Note that the solution operator also satisfies the homogeneous system,

R′(t, t0) = A(t)R(t, t0)

Differentiating the above solution,

y′(t) = R′(t, t0)y(t0) + ∫
t

t0
R′(t, s)b(s)ds + R(t, t)b(t)

= A(t)R(t, t0)y(t0) + A(t)∫
t

t0
R(t, s)b(s)ds + b(t)

= A(t)y(t) + b(t).
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By uniqueness, this is the solution. n

(10 hrs, ((תשעב!)

Look at the structure of the solution. It is a sum of the solution of the solution to
the homogeneous problem and a term that “accumulates” the non-homogeneous
term.

The space of solutions is an affine space Another point of practical interest is
the following. Suppose that yin(t) is a solution to the non-homogeneous equation
and let y(t) by any other solution. Then,

(y − yin)′ = A(t)(y − yin),

which implies that any solution to the non-homogeneous system can be expressed
as yin(t) plus a solution to the homogeneous system.

The method of variation of constants Another way to derive Theorem 2.2 is
the method of variation of constants. The solution to the homogeneous system
is of the form

y(t) = Φ(t)C.
We then look for a solution where C is a function of time,

y(t) = Φ(t)C(t).

Differentiating we get

y′(t) = Φ′(t)
²
A(t)Φ(t)

C(t) +Φ(t)C′(t) = A(t)y(t) + b(t) = A(t)Φ(t)C(t) + b(t),

hence
Φ(t)C′(t) = b(t) or C′(t) = Φ−1(t)b(t).

Integrating we find a solution to the non-homogeneous equation,

C(t) = ∫
t

t0
Φ−1(s)b(s)ds i.e. y(t) = ∫

t

t0
Φ(t)Φ−1(s)b(s)ds.

This is not the most general equation: we can always add a solution to the homo-
geneous system:

y(t) = Φ(t)C1 + ∫
t

t0
Φ(t)Φ−1(s)b(s)ds,

and substituting the initial data we get that C1 = Φ−1(t0)y(t0).
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Comment: The method shown here is a special case of something known as
Duhammel’s principle. It is a general approach for expressing the solution of
a linear non-homogeneous system in terms of the solution operator of the homo-
geneous system.

Example: Consider a forced linear oscillator,

y′(t) = ( 0 1
−1 0) y(t) + ( 0

sinωt) ,

where ω is a frequency. This system describes a unit mass attached to a spring
with unit force constant and forced externally with frequency ω. The entries of
y(t) are the displacement and the momentum.

A fundamental matrix for the homogeneous system is

Φ(t) = (sin t cos t
cos t − sin t) .

Since

Φ−1(t) = (sin t cos t
cos t − sin t) ,

then the solution operator is

R(t, t0) = (sin t cos t
cos t − sin t)(sin t0 cos t0

cos t0 − sin t0
) = ( cos(t − t0) sin(t − t0)

− sin(t − t0) cos(t − t0)
) .

Substituting into Theorem 2.2 we get

y(t) = ( cos(t − t0) sin(t − t0)
− sin(t − t0) cos(t − t0)

) y(t0) + ∫
t

t0
( cos(t − s) sin(t − s)
− sin(t − s) cos(t − s))( 0

sinωs) ds

= ( cos(t − t0) sin(t − t0)
− sin(t − t0) cos(t − t0)

) y(t0) + ∫
t

t0
(sinωs sin(t − s)

sinωs cos(t − s)) ds.

Assume that t0 = 0. Then

y(t) = ( cos t sin t
− sin t cos t) y(0) + 1

ω2 − 1
( ω sin t − sinωt
ω(cos t − cosωt)) .

The solution splits into a part that depends on the initial condition plus a part
that depends on the forcing. The expression for the non-homogeneous term holds
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only of ω ≠ 1. If ω = 1, then the “natural frequency” coincides with the ”forcing
frequency, a phenomenon known as resonance. If ω = 1 then we get

y(t) = ( cos t sin t
− sin t cos t) y(0) + 1

2
(sin t − t cos t

t sin t ) ,

i.e., the solution diverges linearly in time. ▲▲▲

2.4 Systems with constant coefficients

2.4.1 The Jordan canonical form

Let A be a (constant) n-by-n matrix. Recall that any matrix is similar to a matrix
in Jordan form: that is, there exists a non-singular complex matrix P such that

A = PJP−1.

and J is of the form

J =
⎛
⎜⎜⎜
⎝

J0

J1

⋱
Js

⎞
⎟⎟⎟
⎠
,

where

J0 =
⎛
⎜⎜⎜
⎝

λ1

λ2

⋱
λq

⎞
⎟⎟⎟
⎠

and Ji =

⎛
⎜⎜⎜⎜⎜⎜
⎝

λq+i 1 0 0 ⋯ 0
0 λq+i 1 0 ⋯ 0
⋅ ⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 0 ⋯ 1
0 0 0 0 ⋯ λq+i

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

for i = 1, . . . , s. If A is diagonalizable then it only has the diagonal part J0. (Recall
that a matrix is diagonalizable if it is normal, i.e., it commutes with its adjoint.)

2.4.2 The exponential of a matrix

Let A be a (constant) n-by-n matrix. We define

eA =
∞
∑
n=0

An

n!
.
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Is it well-defined? Yes, because,

∑
k>n

∥Ak∥
k!

≤∑
k≥n

∥A∥k

k!
=

∞
∑
k=0

∥A∥k+n

(k + n)!
≤

∞
∑
k=0

∥A∥k+n

n! k!
≤ ∥A∥n

n!
e∥A∥ n→∞Ð→ 0,

and by Cauchy’s criterion the series converges absolutely.

What can we say about the exponential of a matrix? In general,

eA+B ≠ eAeB,

unless A and B commute.

If A = PJP−1, where J is the Jordan canonical form, then

eA =
∞
∑
n=0

(PJP−1)n

n!
=

∞
∑
n=0

PJnP−1

n!
= PeJP−1,

which means that it is sufficient to learn to exponentiate matrices in Jordan canon-
ical form.

Note that for a block-diagonal matrix J,

eJ =
⎛
⎜⎜⎜
⎝

eJ0

eJ1

⋱
eJs

⎞
⎟⎟⎟
⎠
,

so that it is sufficient to learn to exponentiate diagonal matrices and matrices of
the form

J =

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ 1 0 0 ⋯ 0
0 λ 1 0 ⋯ 0
⋅ ⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 0 ⋯ 1
0 0 0 0 ⋯ λ

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The exponential of a diagonal matrix

J0 =
⎛
⎜⎜⎜
⎝

λ1

λ2

⋱
λq

⎞
⎟⎟⎟
⎠

is eJ0 =
⎛
⎜⎜⎜
⎝

eλ1

eλ2

⋱
eλq

⎞
⎟⎟⎟
⎠
.
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The non-diagonal blocks have the following structure:

Ji = λq+iIri + Eri ,

where ri is the size of the i-th block and

Ei =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
⋅ ⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 0 ⋯ 1
0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Because Iri and Ei commute then

eJi = eλq+iIeEi = eλq+ieEi .

The matrix Ei is nilpotent. Suppose for example that ri = 4, then

Ei =
⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟
⎠

E2
i =

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

E3
i =

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

E4
i = 0.

Then,

eEi =
⎛
⎜⎜⎜
⎝

1 1 1
2!

1
3!

0 1 1 1
2!

0 0 1 1
0 0 0 1

⎞
⎟⎟⎟
⎠

For later use, we note that if we multiply J j by a scalar t, then

etJi = etλq+i

⎛
⎜⎜⎜⎜
⎝

1 t t2
2!

t3
3!

0 1 t t2
2!

0 0 1 t
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

Example: Let

A = ( 0 t
−t 0) .
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One way to calculate etA is to calculate powers of A:

A2 = −t2I A3 = −t3A A4 = t4I,

hence

etA = I + tA − t2

2!
I − t3

3!
A + t4

4!
I + t5

5!
A − t6

6!
I −⋯ = cos t I + sin t A,

i.e.,

etA = ( cos t sin t
− sin t cos t) .

Alternatively, we diagonalize the matrix,

A = [ 1√
2
(1 1

i −i)](
it 0
0 −it)[ 1√

2
(1 −i

1 i )] ,

and then

etA = [ 1√
2
(1 1

i −i)](
eit 0
0 e−it)[ 1√

2
(1 −i

1 i )]

= 1
2
(1 1

i −i)( eit −ieit

e−it ie−it)

= 1
2
( eit + e−it −ieit + ie−it

ieit − ie−it eit + e−it )

= ( cos t sin t
− sin t cos t) .

▲▲▲

2.4.3 Linear system with constant coefficients

We now consider homogeneous linear systems in which the coefficients are con-
stant,

y′(t) = Ay(t),
where A is a (constant) n-by-n matrix. As we know, solving this system amounts
to finding a fundamental matrix.



44 Chapter 2

Proposition 2.7 The matrix etA is a fundamental matrix for the system with con-
stant coefficients A.

Proof : From the definition of the derivative,

lim
h→0

e(t+h)A − etA

h
= (lim

h→0

ehA − I
h

) etA = A etA,

hence y(t) = etA is a fundamental solution. n

Comments:

À Since A and etA commute it is also the case that
d
dt

etA = etAA.

Á It follows that the solution operator is

R(t, t0) = etAe−t0A = e(t−t0)A,

where we used the fact that etA and esA commute for every t, s.
Â It follows that the solution of the inhomogenous equation y′(t) = Ay(t)+b(t)

is
y(t) = e(t−t0)Ay(t0) + ∫

t

t0
e(t−s)Ab(s)ds.

Ã Inspired by the case of n = 1, one may wonder whether the exponential is
only a fundamental solution for constant coefficients. Isn’t the solution to
y′(t) = A(t)y(t),

Φ(t) = e∫
t

0 A(s) ds ?

Let’s try to differentiate:

Φ(t + h) −Φ(t)
h

= e∫
t+h

0 A(s) ds − e∫
t

0 A(s) ds

h
.

However, in general

e∫
t+h

0 A(s) ds ≠ e∫
t

0 A(s) dse∫
t+h

t A(s) ds,

which is what prevents us from proceeding. These matrices commute either
if A is constant, or if it is diagonal (in which case we have n independent
equations).
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Ä If A = PJP−1 then
etA = PetJP−1,

and by the properties of fundamental matrices,

etAP = PetJ

is also a fundamental solution. This means that the t dependence of all the
components of the fundamental matrix is a linear combinations of terms of
the form tmeλt, where λ is an eigenvalue of A and m is between zero is one
minus the multiplicity of λ.

2.5 Linear differential equations of order n

2.5.1 The Wronskian

Let a0,a1, . . . ,an ∶ I → C be continuous complex-valued functions defined on some
interval. We define the linear differential operator, Ln ∶ C1(I)↦ C0(I).

Ln( f ) = a0 f (n) + a1 f (n−1) +⋯ + an−1 f ′ + an f ,

or in another notation,

Ln = a0
dn

dtn
+ a1

dn−1

dtn−1
+⋯ + an−1

d
dt
+ an.

(It will be assume that a0(t) ≠ 0 for all t ∈ I.)

A (scalar) differential equation of the form

Lny = 0

is called a homogeneous linear equation of order n. It can also be written in the
form

y(n)(t) = −a1(t)
a0(t)

y(n−1)(t) − a2(t)
a0(t)

y(n−2)(t) − ⋅ ⋅ ⋅ − an−1(t)
a0(t)

y′(t) − an(t)
a0(t)

y(t).

As usual, we can convert an n-th order equation into a first-order system of n
equations,

Y ′(t) = A(t)Y(t),
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where

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
⋅ ⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 0 ⋯ 1

−an/a0 −an−1/a0 −an−2/a0 −an−3/a0 ⋯ −a1/a0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

This is a homogeneous linear system, hence we know a lot about the structure
of its solutions. It is however a very special system, as the matrix A has most of
its elements zero. In fact, every solution of the linear system has the following
structure:

⎛
⎜⎜⎜⎜⎜⎜
⎝

ϕ
ϕ′

ϕ′′

⋮
ϕ(n−1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

In particular, a fundamental matrix is determined by n independent scalar func-
tions ϕ j:

Φ =

⎛
⎜⎜⎜⎜
⎝

ϕ1 ϕ2 ⋯ ϕn

ϕ′1 ϕ′2 ⋯ ϕ′n
⋅ ⋅ ⋯ ⋅

ϕ
(n−1)
1 ϕ

(n−1)
2 ⋯ ϕ

(n−1)
n

⎞
⎟⎟⎟⎟
⎠

.

The determinant of this matrix is called the Wronskian of the system Lny = 0
with respect to the solutions ϕ1, . . . , ϕn. We denote it as follows:

W(ϕ1, . . . , ϕn)(t) = det Φ(t).

By Proposition 2.5

W(ϕ1, . . . , ϕn)(t) = W(ϕ1, . . . , ϕn)(t0) exp(∫
t

t0
Tr A(s)ds)

= W(ϕ1, . . . , ϕn)(t0) exp(−∫
t

t0

a1(s)
a0(s)

ds) .

As we know, n solutions ϕ j(t) are linearly independent if the Wronskian (at any
point t) is not zero.
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The fact that for any n linearly independent solutions ϕ j,

W(ϕ1, . . . , ϕn)(t) = c exp(−∫
t a1(s)
a0(s)

ds)

is known as Abel’s theorem.

TA material 2.1 Use Abel’s theorem to show how given one solution one can
reduce the order of the equation for the remaining solutions. Show it explicitly for
n = 2 and solve an example. Look for example at

http://www.ux1.eiu.edu/˜wrgreen2/research/Abel.pdf

Thus, given an n-th order linear operator Ln on I and n solutions ϕ j ∶ I → R
satisfying Lnϕ j = 0 for which W(ϕ1, . . . , ϕn)(t) ≠ 0, then every function y ∶ I → R
satisfying Lny = 0 is a linear combination of the ϕ j’s.

It turns out that the opposite is also true. To every n linearly independent functions
corresponds a linear differential operator of order n for which they form a basis:

Theorem 2.3 Let ϕ1, . . . , ϕn be n-times continuously differentiable functions on an
interval I such that

∀t ∈ I W(ϕ1, . . . , ϕn)(t) ≠ 0.

Then there exists a unique linear differential operator of order n (assuming that
the coefficient of the n-th derivative is one) for which these functions form a basis.

Proof : We start by showing the existence of such an equation. Consider the equa-
tion

(−1)n W(y, ϕ1, . . . , ϕn)(t)
W(ϕ1, . . . , ϕn)(t)

= 0.

This is an n-th order linear differential equation for y. Also the coefficient of y(n)

is 1.

Clearly,
W(ϕ j, ϕ1, . . . , ϕn)(t) = 0

for all j’s, which means that the ϕ j’s form a basis for this equation.
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It remains to prove the uniqueness of this equation. The solutions ϕ j provide us
with a fundamental matrix Φ for the associated first-order system:

Y ′(t) = A(t)Y(t).

I.e., the matrix A(t) is uniquely determined, and this in turn uniquely determines
the ratios a j(t)/a0(t).

n

2.5.2 The adjoint equation

In the context of first-order linear systems we encountered the equation adjoint to
a given equation:

Y ′(t) = −A∗(t)Y(t).

The adjoint equation will become important later when we deal with boundary
value problems.

Consider now the n-th order operator Ln, and assume that a0(t) = 1. The adjoint
system is

−A∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 ⋯ 0 an

−1 0 0 0 ⋯ 0 an−1

0 −1 0 0 ⋯ 0 an−2

⋅ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅
0 0 0 0 ⋯ 0 a2

0 0 0 0 ⋯ −1 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let us write down this equation in components:

y′1 = anyn

y′2 = −y1 + an−1yn

y′3 = −y2 + an−2yn

⋮
y′n−1 = −yn−2 + a2yn

y′n = −yn−1 + a1yn.

Differentiate the last equation (n − 1) times,

y(n)
n = −y(n−1)

n−1 + (a1yn)(n−1).
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Differentiating (n − 2) times the equation for y′n−1 and substituting:

y(n)
n = y(n−2)

n−2 − (a2yn)(n−2) + (a1yn)(n−1).

We proceed, and eventually get an n-th order scalar equation for yn,

L∗n y = 0,

where the adjoint operator L∗n is given by

L∗n = (−1)n dn

dtn
+ (−1)n−1 dn−1

dtn−1
a1 + (−1)n−2 dn−2

dtn−2
a2 −⋯ − d

dt
an−1 + an.

Theorem 2.4 (Lagrange identity) Suppose that the coefficients a j in the operator
Ln are differentiable sufficiently many times. Then for every pair of functions u, v
that are n-times differentiable,

v Lnu − u L∗n v = [uv]′,

where [uv] is defined as follows:

[uv] =
n

∑
m=1

∑
j+k=m−1

(−1) ju(k)(an−mv)( j).

Proof : We will prove the case n = 2. The general proof is left as an exercise. For
n = 2 (which is what we’ll end up using later anyway):

L2 =
d2

dt2
+ a1

d
dt
+ a2

and

L∗2 =
d2

dt2
− d

dt
a1 + a2.

Thus,

v Lnu − u L∗n v = v(u′′ + a1u′ + a2u) − u(v′′ − (a1v)′ + a2v)
= (u′′v + a1u′v + a2uv) − (u(v)′′ − u(a1v)′ + ua2v)
= (u′v − uv′ + u a1v)′.

n
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Corollary 2.2 (Green’s formula) For every t1, t2:

∫
t2

t1
[v Lnu − u L∗n v] dt = [uv](t2) − [uv](t1).

Proof : Obvious n

2.5.3 Non-homogeneous equation

We know how to express the solution of the non-homogeneous linear equation
in terms of the solution operator of the homogeneous system for a general first-
order system. In this section we derive an expression for the solution of an non-
homogeneous n-th order linear equation,

(Lny)(t) = b(t).

We may assume without loss of generality that a0(t) ≡ 1. The corresponding
first-order system is

Y ′(t) = A(t)Y(t) + B(t),

where A(t) is as above and

B(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0

b(t)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The differences between this problem and the general inhomogenous system is:

À The vector B(t) has all entries but one zero.

Á We are only looking for the 1st component of the solution.
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Theorem 2.5 Let ϕ1, . . . , ϕn be n independent solution of the homogeneous equa-
tion Lny = 0, then the solution of the initial-value problem

(Lny)(t) = b(t) Y(t0) = Y0,

is

y(t) = yh(t) +
n

∑
k=1
ϕk(t)∫

t

t0

Wk(ϕ1,⋯, ϕn)(s)
W(ϕ1,⋯, ϕn)(s)

b(s)ds,

where yh(t) is the solution to the homogeneous initial-value problem, and

Wk(vp1,⋯, ϕn) =

RRRRRRRRRRRRRRRRRRR

ϕ1 ⋯ ϕk−1 0 ϕk+1 ⋯ ϕn

ϕ′1 ⋯ ϕ′k−1 0 ϕ′k+1 ⋯ ϕ′n
⋅ ⋯ ⋅ ⋮ ⋅ ⋯ ⋅

ϕ
(n−1)
1 ⋯ ϕ

(n−1)
k−1 1 ϕ

(n−1)
k+1 ⋯ ϕ

(n−1)
n

RRRRRRRRRRRRRRRRRRR

Proof : We know that for we can express the non-homogeneous part of the solution
(in vector form) as

∫
t

t0
Φ(t)Φ−1(s)B(s)ds.

Since we are only interested in the first component and by the structure of B(t),

y(t) = yh(t) =
n

∑
j=1
∫

t

t0
Φ1 j
°
ϕ j(t)

(t)Φ−1
jn (s)b(s)ds

Thus, it only remains to show that

Φ−1
jn = Wk(ϕ1,⋯, ϕn)

W(ϕ1,⋯, ϕn)
,

but this follows from basic linear algebra (formula of the inverse by means of
cofactors). n

TA material 2.2 Apply this formula for n = 2.
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2.5.4 Constant coefficients

We now consider the case of an n-th order equation with constant coefficients:

Lny = y(n) + a1y(n+1) +⋯ + any,

where the a j’s are now constant. In matrix form,

Y ′(t) = AY(t),

where

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
⋅ ⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 0 ⋯ 1
−an −an−1 −an−2 −an−4 ⋯ −a1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Lemma 2.1 The characteristic polynomial of A is

p(λ) = det(λI − A) = λn + a1λ
n−1 +⋯ + an−1λ + an.

Proof : We prove it inductively on n. For n = 2

λI − A = ( λ −1
a2 λ + a1

) ,

and so
p2(A) = λ(λ + a1) + a2 = λ2 + a1λ + a2.

For n = 3,

λI − A =
⎛
⎜
⎝

λ −1 0
0 λ −1
a3 a2 λ + a1

⎞
⎟
⎠
.

Hence,
p3(λ) = λp2(λ) + a3.

It is easy to see that pn(λ) = λ pn−1(λ) + an. n
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Theorem 2.6 Let λ1, . . . , λs be distinct roots of the characteristic polynomial of A
such that λ j has multiplicity m j,

s

∑
j=1

m j = n.

Then the space of solutions is spanned by the functions

eλ jt, t eλ jt, t2 eλ jt,⋯, tm−1 eλ jt, j = 1, . . . , s.

Proof : We need to show that these n functions are indeed solutions and that they
are linearly independent. First, note that for every λ (not necessarily a root of the
characteristic polynomial):

Ln (eλt) = pn(λ) eλt.

Let λ be a root of the characteristic polynomial of multiplicity m, and let 0 ≤ k ≤
m − 1. Then,

Ln (tkeλt) = Ln (
dk

dλk
eλt) = dk

dλk
Ln (eλt) = dk

dλk
(pn(λ)eλt) .

If λ has multiplicity m and k < m, then

pn(λ) = p′n(λ) = ⋯ = p(k)
n (λ) = 0,

which proves that
Ln (tkeλt) = 0.

It remains to prove that these solutions are linearly independent. Suppose that
they were dependent. Then there would have existed constants c jk, such that

s

∑
j=1

m j−1

∑
k=0

c jktk

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P j(t)

eλ jt = 0.

Dividing by eλ1t,

P1(t) + e(λ2−λ1)tP2(t) +⋯ + e(λs−λ1)tPs(t) = 0.
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The P j are polynomials. Differentiate sufficiently many times until P1 disappears.
We will get an equation of the form:

e(λ2−λ1)tQ2(t) +⋯ + e(λs−λ1)tQs(t) = 0.

We then divide by e(λ2−λ1)t, get

Q2(t) + e(λ3−λ2)tQ3(t) +⋯ + e(λs−λ2)tQs(t) = 0.

We proceed this way until we get that Qs(t) = 0. It follows then backwards that
all the Q j’s (or the P j’s) vanish, i.e., all the c j’s were zero. n

Example: Consider the equation

y′′′′ − y = 0.

The characteristic polynomial is

λ4 − 1 = 0,

and its roots are λ = ±1,±i. This means that the linear space of solutions is spanned
by

et, e−t, eit and e−it.

Since
cos t = eit + e−it

2
and sin t = eit − e−it

2i
we may also change basis and use instead the real-valued functions

et, e−t, cos t and sin t.

▲▲▲

Example: Consider the equation

y′′′′ + 2y′′ + y = 0.

The characteristic polynomial is

(λ2 + 1)2 = 0

and it has two roots of multiplicity 2: λ = ±i. Thus, the space of solution is
spanned by the basis

eit, teit, e−it, and te−it,

to after a change in bases,

cos t, t cos t, sin t, and t sin t.

▲▲▲
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2.6 Linear systems with periodic coefficients: Flo-
quet theory

2.6.1 Motivation

Consider a linear homogeneous system of the form

y′(t) = A(t)y(t), (2.3)

where for every t,
A(t + T) = A(t).

We will assume that T is the smallest number for which this holds. Note that A
is automatically kT periodic for every integer k. Such equations are of interest in
systems in which the dynamics have some inherent periodicity (e.g., dynamics of
some phenomenon on earth that is affected by the position of the moon).

Another important application of linear systems with periodic coefficients is the
stability of periodic solutions. Consider a (generally nonlinear) differential sys-
tem:

y′(t) = f (y(t)).

Note that f does not depend explicitly on t; such a system is called autonomous.

Suppose that this system has a particular solution, z(t), that is T -periodic, and
that this solution passes through the point z0. Since the system is autonomous,
we can arbitrarily assume that z(0) = z0. An important question is whether this
periodic solution is stable. The periodic solution is said to be stable if solutions
with “slightly perturbed” initial data,

y(0) = z0 + εη0,

where η≪ 1 do not diverge “too fast” from z(t).

A standard way to analyze the stability of a particular solution is to represent the
solution as a sum of this particular solution plus a perturbation. In this case we set

y(t) = z(t) + εη(t).

Substituting into the equation we get

z′(t) + εη′(t) = f (z(t) + εη(t)).
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We then use Taylor’s theorem (assuming that f is twice differentiable):

z′(t) + εη′(t) = f (z(t)) + ε∇ f (z(t))η(t) +O(ε2).

Since z′(t) = f (z(t)) we remain with

η′(t) = ∇ f (z(t))η(t) +O(ε).

This is a linear equation with T -periodic coefficients. The rationale of this ap-
proach is that if η(t) remains bounded in time then for small enough ε, the per-
turbed solution will remain in an ε neighborhood of z(t). Otherwise, the perturbed
solution diverges away from the periodic solution.

The above is a very rough analysis intended to motivate the study of linear systems
with periodic coefficients.

Might be interesting to read in this context: the van der Pol oscillator. See:

http://www.scholarpedia.org/article/Van_der_Pol_oscillator

2.6.2 General theory

A natural question is whether the periodicity of the equation implies the periodic-
ity of the solution.

Example: Consider the scalar equation:

y′(t) = (1 + sin t) y(t),

which is 2π-periodic. One can check by direct substitution that the general solu-
tion is

y(t) = c exp (t − cos t) ,
which is not periodic (in fact, it diverges as t →∞). ▲▲▲

Theorem 2.7 Let Φ(t) be a fundamental matrix for the periodic equation, then
Φ(t + T) is also a fundamental solution, and moreover, there exists a constant
matrix B, such that

Φ(t + T) = Φ(t)B,

and
det B = exp(∫

T

0
Tr A(s)ds) .
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Proof : Let Φ(t) be a fundamental matrix and set Ψ(t) = Φ(t + T). Then,

Ψ′(t) = Φ′(t + T) = A(t + T)Φ(t + T) = A(t)Ψ(t),

which proves the first part.

As we know, if both Φ(t) and Ψ(t) are fundamental matrices, then there exists a
constant matrix B, such that

Ψ(t) = Φ(t + T) = Φ(t)B.

Finally, we use Proposition 2.5 to get that

det Φ(t + T) = det Φ(t) (∫
t+T

t
Tr A(s)ds) ,

and since A(t) is periodic, we may as well integrate from 0 to T ,

det Φ(t) det B = det Φ(t) (∫
T

0
Tr A(s)ds) ,

which concludes the proof. n

Note that in the last step we used the following property:

Lemma 2.2 Let f be periodic with period T , then for every t,

∫
t+T

t
f (s)ds = ∫

T

0
f (s)ds.

The fact that Φ(t + T) = Φ(t)B implies that the fundamental matrix is in general
not periodic. Since this relation holds for every t, it follow that

B = Φ−1(0)Φ(T).

Furthermore, we may always choose the fundamental matrix Φ(t) such that Φ(0) =
I, in which case B = Φ(T), i.e., for every t,

Φ(t + T) = Φ(t)Φ(T).

This means that the knowledge of the fundamental matrix in the interval [0,T ]
determines the fundamental matrix everywhere.



58 Chapter 2

Moreover, it is easy to see by induction that for k ∈ N:

Φ(t + kT) = Φ(t)Bk.

Thus, for arbitrary t,
Φ(t) = Φ(t mod T)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T -periodic

B⌊t/T⌋,

where
t mod T = t − ⌊t/T ⌋T.

It follows that the behaviour of solution for large t is dominated by powers of the
matrix B. The forthcoming analysis will make this notion more precise.

Definition 2.1 The eigenvalues of B = Φ(T), ρi are called the characteristic
multipliers (!Mאופיניי Mכופלי) of the periodic system. The constants µi defined by

ρi = eµiT

are called the characteristic exponents ( !Mאופיניי Mאקספוננטי) of the periodic
linear system. (Note that the characteristic exponents are only defined modulo
2πik/T.)

Theorem 2.8 Let ρ and µ be a pair of characteristic multiplier/exponent of the
periodic linear system. There there exists a solution y(t) such that for every t,

y(t + T) = ρy(t).

Also, there exists a solution y(t) such that for every t,

y(t + T) = eµt p(t),

where p(t) is T -periodic.

Proof : Let Bu = ρu, and define y(t) = Φ(t)u. By the definition of a fundamental
matrix, y(t) is a solution of (2.3) and

y(t + T) = Φ(t + T)u = Φ(t)Bu = ρΦ(t)u = ρy(t),

which proves the first part.
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Next define p(t) = e−µty(t), then

p(t + T) = e−µ(t+T)y(t + T) = e−µTρ
²

1

e−µty(t) = p(t),

which concludes the proof. n

Suppose now that B is diagonalizable (i.e., has a complete set of eigenvectors).
Then there are n pairs (ρi, µi), and the general solution to the periodic linear sys-
tem is

y(t) =
n

∑
k=1
αkeµkt pk(t),

where the functions pk(t) are T -periodic. In other words, every solution is of the
form

y(t) =
⎛
⎜
⎝

⋮ ⋯ ⋮
p1(t) ⋯ pn(t)
⋮ ⋯ ⋮

⎞
⎟
⎠

⎛
⎜
⎝

eµ1t

⋱
eµnt

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fundamental matrix

C,

for some constant vector C.

An immediate corollary is that the system will have periodic solutions if one of
the characteristic exponents of B is zero.

Comment: At this stage the theory we developed is not useful in finding the funda-
mental matrix. Its importance is so far theoretical in that it reveals the structure of
the solution as a combination of exponential functions times periodic functions.

2.6.3 Hill’s equation

I ended up not teaching this section; makes sense only with a good problem
to study, like the stability of a limit cycle.
We will now exploit the results of the previous section to study a periodic (scalar)
second order equation of the form,

y′′(t) + a(t)y(t) = 0,

where a(t + T) = a(t). Such equations arise in mechanics when then force on the
particle is proportional to its location and the coefficient of proportionality is peri-
odic in time (i.e., a pendulum in which the point of support oscillates vertically).
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Note that there is no general explicit solution to a linear second-order equation
with non-constant coefficients.

As usual, we start by rewriting this equation as a first order system,

y′(t) = A(t)y(t),

where

A(t) = ( 0 1
−a(t) 0) .

Note that Tr A(t) = 0, which implies that det B = 1, i.e., ρ1ρ2 = 1.

We are looking for a fundament matrix

Φ(t) = (ϕ11(t) ϕ12(t)
ϕ21(t) ϕ22(t)) ,

with Φ(0) = I. Since,
ϕ′1 j(t) = ϕ2 j(t),

it follows that

Φ(t) = (ϕ11(t) ϕ12(t)
ϕ′11(t) ϕ′12(t)) .

Thus,

B = (ϕ11(T) ϕ12(T)
ϕ′11(T) ϕ′12(T)) .

Moreover, since the Wronskian is constant, W(t) = det B = 1, it follows that

ϕ11(t)ϕ′12(t) − ϕ12(t)ϕ′11(t) = 1.

The characteristic multiplier are the eigenvalues of B. For any 2-by-2 matrix

B = (a b
c d)

the eigenvalues are satisfy the characteristic equation

(a − ρ)(d − ρ) − bc = ρ2 − (Tr B)ρ + det B = 0,

and since det B = 1 we get that

ρ1,2 = γ ±
√
γ2 − 1,
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where γ = 1
2 Tr B = 1

2[ϕ11(T) + ϕ′12(T)]. Note that

ρ1 + ρ2 = 2γ and ρ1ρ2 = 1.

The characteristic exponents are ρ1,2 = eµ1,2T , which implies that

e(µ1+µ2)T = 1,

hence µ1 + µ2 = 0, and

2γ = eµ1T + eµ2T = 2 coshµ1T.

Thus, we are able to express the characteristic coefficients in terms of the single
parameter γ:

coshµ1T and µ1 + µ2 = 0.

Even though we do not have a general solution for this type of problems, it turns
out that the range of possible solutions can be determined by the single parameter
γ.

À Case 1: γ > 1 In this case ρ1,2 are both real and positive, and furthermore,

0 < ρ2 < 1 < ρ1.

Thus, µ1 and µ2 = −µ1 are both real-valued. The general solution is of the
form

y(t) = c1eµ1t p1(t) + c2e−µ1t p2(t),
where pi(t) are periodic. It follows that there are no periodic solutions and
that in general the solution diverges as t →∞.

Á Case 2: γ < −1 In this case both ρ1,2 are real and negative,

ρ2 < −1 < ρ1 < 0,

in which case
eµ1T = ρ1

implies that
e(µ1−ıπ/T)T = ∣ρ1∣,

i.e.,

µ1 =
iπ
T
+ log ∣ρ1∣.
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Thus, the general solution is of the form

y(t) = c1elog ∣ρ1∣t eiπt/T p1(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

period 2T

+c2e− log ∣ρ1∣t e−iπt/T p2(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

period 2T

.

Note the doubling of the period. Once again there are no periodic solutions
and that in general the solution diverges as t →∞.

Â Case 3: −1 < γ < 1 Now ρ1,2 are both complex and located on the unit
circle,

ρ1,2 = e±iσT

(this relation defines σ) and thus µ1,2 = ±iσ. In this case the general solution
is of the form

y(t) = c1eiσt p1(t) + c2e−iσt p2(t),

with p1,2(t) periodic.

In this case the solutions remain bounded, however they will not be periodic,
unless it happens that σT = 2π/m for some integer m.

Ã Case 4: γ = 1
Ä Case 5: γ = −1
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Boundary value problems

3.1 Motivation

Many problems in science involve differential equations with conditions that are
specified at more than one point. Boundary value problems arise also in the study
of partial differential equations.

Example: The equation that describes the motion of an elastic string is known as
the wave equation (!Mהגלי ,(משוואת

∂2y
∂t2

= c2 ∂
2y
∂x2

,

where the unknown is a function y(x, t) of space x and time t. The constant c is
the wave speed that depends on the mass density and tension of the string.

Consider a finite string, x ∈ [0, L] tied at its two ends, such that

(∀t) y(0, t) = y(L, t) = 0.

In addition, one has to specify initial conditions,

y(x,0) = f (x) and
∂y
∂t

(x,0) = g(x).

(It is a initial-boundary problem.)
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This problem is analytically solvable. Note that this equation is linear, so that if
y1(x, t) and y2(x, t) are solutions to the wave equation, then so is any linear com-
bination. One method of solution is to look for solutions that have a separation
of variables:

y(x, t) = u(x)v(t).

Substituting into the wave equation:

u′′(x)v(t) = c2u(x)v′′(t),

and further,
u′′(x)
u(x)

= c2 v′′(t)
v(t)

.

Since this equation holds for all x and t, it must be the case that both sides are
equal to the same constant, namely, there exists a constant k, such that

u′′(x) = ku(x) and v′′(t) = k
c2

v(t).

Note that we may have many such solutions for various values of k, and any linear
combination of these solutions is also a solution to the wave equation.

Consider the equation for u(x). Because of the boundary conditions, we have a
boundary value problem:

u′′(x) = ku(x) u(0) = u(L) = 0.

Does it have a solution? Yes, u ≡ 0. Are there other solutions? yes, u(x) =
sin(

√
kx), but only if

√
k = πm/L for some integer m. Are there more solutions?

Such questions are going to be addressed in the course of this chapter. ▲▲▲
Because the independent variable in boundary value problem is often space rather
than time, we will denote it by x rather than t. Of course, a notation is nothing but
a notation.

Let’s get back to the same boundary value problem, this time on the interval [0,1]:

⎧⎪⎪⎨⎪⎪⎩

Ly = λy
y(0) = y(1) = 0,

where

L = − d2

dx2
.
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The parameter λ can be in general complex (the reason for the minus sign in L will
be made clear later). We know that the general solution to the equation Ly = λy is

y(x) = A sinλ1/2x + B cosλ1/2x.

Since we require y(0) = 0 then B = 0. Since we further require y(1) = 0, it follows
that

λ = π2m2,

for m = 1,2, . . . (m = 0 is the trivial solution and we ignore it as of now).

What we see is that the equation Ly = λy with boundary values has a solution only
for selected values of λ. Does it remind us something? L is a linear operator, λ
is a scalar... yes, this looks like an eigenvalue problem! Indeed, the values of λ
for which the boundary value problem has a solution are called eigenvalues. The
corresponding “eigenvectors” are rather called eigenfunctions עצמיות!) .(פונקציות

Like for vectors, we endow the space of functions on [0,1] with an inner product:

( f ,g) = ∫
1

0
f (x)g(x)dx.

Then, the normalized eigenfunctions are

ψm(x) =
√

2 sin(mπx).

Note that this is an orthonormal set,

(ψm, ψk) = 2∫
1

0
sin(mπx) sin(kπx)dx = δmk.

The class of functions that are (well, Lebesgue...) square integrable, i.e,

∫
1

0
∣ f (x)∣2 dx exists

is known as L2[0,1]. It is a Hilbert space, which is an object that you learn about
in Advanced Calculus 2. In case you didn’t take this course, no worry. We will
provide all the needed information.

For a function f ∈ L2[0,1], its inner-product with the elements of the orthogonal
set ψk are called its Fourier coefficients,

f̂ (k) = ( f , ψk) =
√

2∫
1

0
f (x) sin(kπx)dx.
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The series
∞
∑
k=1

f̂ (k)ψk(x)

converges in the L2[0,1] norm to f , namely,

lim
n→∞

∥ f −
n

∑
k=1

f̂ (k)ψk∥ = 0.

Finally, the norm of f and its Fourier coefficients satisfy a relation known as the
Parseval identity:

∥ f ∥2 =
∞
∑
k=1

∣ f̂ (k)∣2.

We have stated all these facts without any proof or any other form of justification.
As we will see, these results hold in a much wider scope.

TA material 3.1 Solve the wave equation initial-value problem. Talk about har-
monics. Talk about what happens when you touch the center of a guitar string.

Comment: An interesting connection between these infinite-dimensional bound-
ary value problems and “standard” eigenvalue problems can be made by consid-
ering discretizations. Suppose that we want to solve the boundary value problem

−y′′(x) = λ y(x), y(0) = y(1) = 0.

We can approximate the solution by defining a mesh,

xi =
i
N
, i = 0, . . . ,N,

and look for yi = y(xi), by approximating the differential equation by a finite-
difference approximation,

−yi−1 + yi+1 − 2yi

2∆x2
, i = 1, . . . ,N − 1,

where ∆x = 1/N is the mesh size. In addition we set y0 = yN = 0. We get a linear
equation for the discrete vector (yi),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋯ 0
⋅ ⋅ ⋅ ⋅ ⋯ ⋅
0 ⋯ 0 −1 2 −1
0 ⋯ 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

y1

y2

⋮
yN−2

yN−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜
⎝

y1

y2

⋮
yN−2

yN−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.
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This is a “standard” eigenvalue problem, for which we expect N eigenvalues. As
we refine the mesh and take N → ∞, the number of eigenvalues is expected to
tend to infinity.

. Exercise 3.1 Find the eigenvalues and eigenvectors of this discretized system,
and verify their dependence on N. Compare your results with the solution of the
continuous equation.

3.2 Self-adjoint eigenvalue problems on a finite in-
terval

3.2.1 Definitions

Consider a linear n-th order differential operator,

L = p0(x) dn

dxn
+ p2(x) dn−1

dxn−1
+ ⋅ ⋅ ⋅ + pn−1(x) d

dx
+ pn(x),

where p j ∈ Cn− j(a,b) is in general complex-valued; we assume that p0(x) ≠ 0 for
all x ∈ (a,b). We also define a linear operator U ∶ Cn(a,b)→ Rn of the form

Uky =
n

∑
j=1

(Mk jy( j−1)(a) + Nk jy( j−1)(b)) , k = 1, . . . ,n,

where the M jk and N jk are constant. That is,

Uky = Mk1y(a) + Mk2y′(a) +⋯ + Mkny(n−1)(a)
+ Nk1y(b) + Nk2y′(b) +⋯ + Nkny(n−1)(b).

The equation
Ly = λy, Uy = 0

is called an eigenvalue problem.

Example: The example we studied in the previous section is such an instance,
with n = 2,

p0(x) = −1, p1(x) = p2(x) = 0,
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and
M11 = N21 = 1, and other M jk, N jk are zero,

i.e.,
U1y = M11y(a) + N11y(b) + M12y′(a) + N12y′(b) = y(a)
U2y = M21y(a) + N21y(b) + M22y′(a) + N22y′(b) = y(b).

▲▲▲

Example: Another class of examples for n = 2:

M11 = −N11 = 1, M22 = −N22 = 1, and other M jk, N jk are zero,

i.e.,

U1y = M11y(a) + N11y(b) + M12y′(a) + N12y′(b) = y(a) − y(b)
U2y = M21y(a) + N21y(b) + M22y′(a) + N22y′(b) = y′(a) − y′(b).

This corresponds to periodic boundary conditions. ▲▲▲

Definition 3.1 The eigenvalue problem is said to be self-adjoint לעצמו!) (צמוד if

(Lu, v) = (u, Lv)

for every u, v ∈ Cn(a,b) that satisfy the boundary conditions Uu = Uv = 0.

Example: The two above examples are self-adjoint. In the first case Uu = 0
implies that u(a) = u(b) = 0, and then

(Lu, v) = −∫
b

a
u′′(x)v(x)dx = ∫

b

a
u′(x)v′(x)dx = −∫

b

a
u(x)v′′(x)dx = (u, Lv).

▲▲▲
Recall the adjoint operator L∗ derived in the previous chapter:

L∗ = (−1)n dn

dxn
p0(x) + (−1)n−1 dn−1

dxn−1
p1(x) +⋯ − d

dx
pn−1(x) + pn(x).

The Green identity proved in the previous chapter showed that

(Lu, v) − (u, L∗v) = [uv](b) − [uv](a).

Thus, if L∗ = L and Uu = Uv = 0 implies that [uv](b) = [uv](a), then the problem
is self-adjoint.

A self-adjoint problem always has a trivial solution for any value of λ. Values of
λ for which a non-trivial solution exists are called eigenvalues; the corresponding
functions are called eigenfunctions.
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3.2.2 Properties of the eigenvalues

Proposition 3.1 Consider a self-adjoint boundary value problem. Then,

À The eigenvalues are real.
Á Eigenfunctions that correspond to distinct eigenvalues are orthogonal.
Â The eigenvalues form at most a countable set that has no (finite-valued)

accumulation point.

Comment: At this stage there is no guarantee that eigenvalues exist, so as of now
this theorem can hold in a vacuous sense.

Comment: The last part of the proof relies on complex analysis. Fasten your seat
belts.

Proof : Let λ be an eigenvalue with eigenfunction ψ. Then,

λ(ψ,ψ) = (Lψ,ψ) = (ψ, Lψ) = λ(ψ,ψ),

i.e.,
(λ − λ)(ψ,ψ) = 0,

which proves that ψ is real.

Let λ ≠ µ be distinct eigenvalues,

Lψ = λψ, Lϕ = µϕ.

Then,
λ(ψ,µ) = (Lψ,ϕ) = (ψ, Lϕ) = µ(ψ,ϕ),

i.e.,
(λ − µ)(ψ,ϕ) = 0,

which implies that ψ and ϕ are orthogonal.

Let now ϕ j(x, λ), j = 1, . . . ,n, be solutions of the equation Lϕ j = λϕ j with initial
conditions,

ϕ
(k−1)
j (c, λ) = δ jk,
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where c is some point in (a,b). That is,

ϕ1(c) = 1 ϕ′1(c) = ϕ′′1 (c) = ϕ′′′1 (c) = ⋯ = ϕ(n−1)
1 (c) = 0

ϕ′2(c) = 1 ϕ2(c) = ϕ′′2 (c) = ϕ′′′2 (c) = ⋯ = ϕ(n−1)
2 (c) = 0

ϕ′′3 (c) = 1 ϕ3(c) = ϕ′3(c) = ϕ′′′3 (c) = ⋯ = ϕ(n−1)
3 (c) = 0

etc.

Note, we are back in initial values problems; there no issue of existence nor non-
uniqueness, i.e., the ϕ j(x, λ) are defined for every (complex) λ. Also, the functions
ϕ j are continuous both in x and λ. In fact, for fixed x the function λ ↦ ϕ(x, λ) is
analytic. 1

The functions ϕ j are linearly independent, hence every solution of the equation
Ly = λy is of the form

y(x) =
n

∑
j=1

c jϕ j(x, λ).

For λ to be an eigenvalue we need

U`y =
n

∑
j=1

c jU`ϕ j(⋅, λ) = 0, ` = 1, . . . ,n,

i.e.,

n

∑
j=1

n

∑
k=1

(M`kϕ
(k−1)
j (a, λ) + N`kϕ

(k−1)
j (b, λ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A` j(λ)

c j = 0, ` = 1, . . . ,n.

This is a homogeneous linear system for the coefficients c j. For it to have a non-
trivial solution the determinant of the matrix A` j(λ) must vanish. That is, the
eigenvalues λ are identified with the roots of detA` j(λ).

detA` j(λ) is analytic in the entire complex plane. It is not identically zero because
it can only vanish on the real line. It is well-known (especially if you learn it...)
that the zeros of an entire analytic function that it not identically zero do not have
accumulation points (except at infinity). n

1A concept learned in complex analysis; I will say a few words about it.
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3.2.3 Non-homogeneous boundary value problem

We turn now to study the non-homogeneous equation

Ly = λy + f , Uy = 0,

where f ∈ C(a,b). What to expect? Think of the linear-algebraic analog,

Ax = λx + b.

A (unique) solution exists if the matrix A − λI is not singular, i.e., if λ is not an
eigenvalue of A. Similarly, we will see that the non-homogeneous boundary value
problem has a solution for values of λ that are not eigenvalues of the homogeneous
equation.

Example: Such boundary value problems may arise, for example, in electrostat-
ics. The Poisson equation for the electric potential in a domain Ω ⊂ Rn with a
metallic boundary is

∆ϕ = 4πρ, ϕ∣∂Ω = 0,

where ∆ is the Laplacian and ρ(x) is the charge density. For n = 1 we get

d2ϕ

dx2
= 4πρ ϕ(0) = ϕ(L) = 0,

which is of the same type as above with λ = 0. ▲▲▲
Let ϕ j(x, λ) be as in the previous section solutions to Lϕ j(⋅, λ) = λϕ j(⋅, λ), subject
to the boundary conditions

ϕ
(k−1)
j (c, λ) = δ jk.

Note that
W(ϕ1, . . . , ϕn)(c) = det I = 1,

hence

W(ϕ1, . . . , ϕn)(x) = exp(−∫
x

c

p1(s)
p0(s)

ds) .

Note that p0 and p1 are the same for L and L − λ id.
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We now define the following function:

K(x, ξ, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p0(ξ)W(ϕ1, . . . , ϕn)(ξ)

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

ϕ1(ξ, λ) ⋯ ϕn(ξ, λ)
ϕ′1(ξ, λ) ⋯ ϕ′n(ξ, λ)

⋅ ⋯ ⋅
ϕ
(n−2)
1 (ξ, λ) ⋯ ϕ

(n−2)
n (ξ, λ)

ϕ1(x, λ) ⋯ ϕn(x, λ)

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

ξ ≤ x

0 x < ξ.

This function depends on x and ξ, both taking values in [a,b]. It is apparently
discontinuous, however note that

K(ξ+, ξ, λ) = d
dx

K(ξ+, ξ, λ) = ⋯ = dn−2

dxn−2
K(ξ+, ξ, λ) = 0,

hence K and its first n − 2 derivatives with respect to x are continuous over all
(x, ξ); in particular K is continuous for n ≥ 2. The (n − 1)-st and n-th derivatives
are continuous in every subdomain. Also,

dn−1

dxn−1
K(ξ+, ξ, λ) = 1

p0(ξ)
.

Finally, for x > ξ,

LK(x, ξ, λ) = 1
p0(ξ)W(ϕ1, . . . , ϕn)(ξ)

RRRRRRRRRRRRRRRRRRRRRRRR

ϕ1(ξ, λ) ⋯ ϕn(ξ, λ)
ϕ′1(ξ, λ) ⋯ ϕ′n(ξ, λ)

⋅ ⋯ ⋅
ϕ
(n−2)
1 (ξ, λ) ⋯ ϕ

(n−2)
n (ξ, λ)

Lϕ1(x, λ) ⋯ Lϕn(x, λ)

RRRRRRRRRRRRRRRRRRRRRRRR

= λK(x, ξ, λ).

This relation holds trivially for x < ξ.
Define now the function

u(x, λ) = ∫
b

a
K(x, ξ, λ) f (ξ)dξ = ∫

x

a
K(x, ξ, λ) f (ξ)dξ.

We calculate its first n derivatives with respect to n,

u′(x, λ) = ∫
x

a

d
dx

K(x, ξ, λ) f (ξ)dξ + K(x, x−, λ) f (x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

,
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u′′(x, λ) = ∫
x

a

d2

dx2
K(x, ξ, λ) f (ξ)dξ + d

dx
K(x, x−, λ) f (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0

,

and so until

u(n−1)(x, λ) = ∫
x

a

dn−1

dxn−1
K(x, ξ, λ) f (ξ)dξ + dn−2

dxn−2
K(x, x−, λ) f (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0

.

Finally,

u(n)(x, λ) = ∫
x

a

dn

dxn
K(x, ξ, λ) f (ξ)dξ + dn−1

dxn−1
K(x, x−, λ) f (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f (x)/p0(x)

.

It follows that

Lu(x, λ) = ∫
x

a
LK(x, ξ, λ) f (ξ)dξ + f (x) = λu(x, λ) + f (x),

i.e., u(x, λ) is a solution to the non-homogeneous equation.

We are looking for a solution of the non-homogeneous equation that satisfies the
boundary conditions, Uky = 0. Define

G(x, ξ, λ) = K(x, ξ, λ) +
n

∑
j=1

c j(ξ)ϕ j(x, λ),

and set c j(ξ) such that for every k = 1, . . . ,n and every ξ ∈ [a,b]:

UkG(⋅, ξ, λ) = UkK(⋅, ξ, λ) +
n

∑
j=1

c j(ξ)Ukϕ j(⋅, λ) = 0.

This linear system has a unique solution if det Ukϕ j(⋅, λ) ≠ 0, i.e., if λ is not an
eigenvalue of the homogeneous boundary value problem.

Set then

u(x, λ) = ∫
b

a
G(x, ξ, λ) f (ξ)dξ

= ∫
b

a
K(x, ξ, λ) f (ξ)dξ +

n

∑
j=1
ϕ j(x)∫

b

a
c j(ξ) f (ξ)dξ.
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Then,
Lu(x, λ) = λu(x, λ),

and

Uku(⋅, λ) = ∫
b

a
(UkK(⋅, ξ, λ) +

n

∑
j=1

c j(ξ)Ukϕ(⋅, λ)) f (ξ)dξ = 0.

Thus, we found a solution to the non-homogeneous boundary value problem for
every value of λ that is not an eigenvalue of the homogeneous boundary value
problem.

. Exercise 3.2 Solve the boundary value problem,

−y′′(x) = λy(x) + f (x), y(0) = y(1) = 0.

For what values of λ solutions exist? Repeat the above analysis (including the
calculation of K(x, ξ, λ) and G(x, ξ, λ) for this particular example.

Solution 3.2: We start by constructing the two independent solution,

−ϕ′′1 (x) = λϕ1(x), ϕ1(0) = 1 ϕ′1(0) = 0
−ϕ′′2 (x) = λϕ2(x), ϕ2(0) = 0 ϕ′2(0) = 1,

namely,
ϕ1(x) = cosλ1/2x and ϕ2(x) = λ−1/2 sinλ1/2x.

Thus,

W(ϕ1, ϕ2)(x) = ∣
cosλ1/2x λ1−0/2 sinλ1/2x

−λ1/2 sinλ1/2x cosλ1/2x
∣ = 1.

Next, since p0(ξ) = −1,

K(x, ξ, λ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
RRRRRRRRRRR

cosλ1/2ξ sinλ1/2ξ
cosλ1/2x sinλ1/2x

RRRRRRRRRRR
= sinλ1/2(ξ − x) ξ ≤ x

0 x < ξ
.

Now,

G(x, ξ, λ) = K(x, ξ, λ) − c1(ξ) cosλ1/2x − c2(ξ)λ−1/2 sinλ1/2x.

The coefficients c1,2 have to satisfy,

G(0, ξ, λ) = 0 − c1(ξ) = 0,

and
G(1, ξ, λ) = sinλ1/2(ξ − 1) − c1(ξ) cosλ1/2 − c2(ξ)λ−1/2 sinλ1/2 = 0,
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from which we get that

G(x, ξ, λ) = K(x, ξ, λ) − sinλ1/2(ξ − 1)
sinλ1/2 sinλ1/2x

Thus, the solution to the boundary value problem is

u(x, λ) = ∫
x

0
sinλ1/2(ξ − x) f (ξ)dξ − sinλ1/2x

sinλ1/2 ∫
1

0
sinλ1/2(ξ − 1) f (ξ)dξ.

It is easy to see that the boundary conditions are indeed satisfied. You may now check by direct
differentiation that the differential equation is indeed satisfied.

Suppose now that zero is not an eigenvalue of the homogeneous boundary value
problem, and consider the boundary value problem

Ly = f Uy = 0.

The fact the we require zero not to be an eigenvalue of f will turn out not to be
a real restriction since there exists a λ0 that is not en eigenvalue and then L − λ0I
will be used as an operator for which zero is not en eigenvalue.

We will denote G(x, ξ,0) simply by G(x, ξ). Note that by definition LG(x, ξ) = 0
at all points where x ≠ ξ.
Define the linear integral operator:

G ∶ f ↦ ∫
b

a
G(⋅, ξ) f (ξ)dξ,

which maps the non-homogeneous term into the solution of the boundary value
problem.

Proposition 3.2 The integral operator G (and the Green function G) satisfies the
following properties:

À LG f = f and UG f = 0 for all f ∈ C(a,b).
Á (G f ,g) = ( f ,Gg).

Â G(x, ξ) = G(ξ, x).
Ã GLu = u for all u ∈ Cn(a,b) satisfying Uu = 0.

(Note that L and G are almost inverse to each other.)
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Proof : The first statement follows from the fact that G maps f into the solution
of the boundary value problem. By the self-adjointness of L and the fact that
UG f = UGg = 0,

(LG f ,Gg) = (G f , LGg),
hence by the first statement

( f ,Gg) = (G f ,g),

which proves the second statement.

It follows from the second statement that

∫
b

a
(∫

b

a
G(x, ξ) f (ξ)dξ)g(x)dx = ∫

b

a
f (x)(∫

b

a
G(x, ξ)g(ξ)dξ)dx.

Changing the order of integration and interchanging x and ξ in the second integral:

∫
b

a
∫

b

a
(G(x, ξ) −G(ξ, x)) f (ξ)g(x)dxdξ = 0.

Since this holds for every f and g the third statement follows.

Finally, for every g ∈ C(a,b) and u ∈ Cn(a,b) satisfying Uu = 0,

(GLu,g) = (u, LGg) = (u,g),

which implies that GLu = u. n

3.3 The existence of eigenvalues

So far we haven’t shown that the eigenvalue problem

Ly = λy, Uy = 0, (3.1)

has solutions. We only know properties of solutions if such exist. In this section
we will show that self-adjoint eigenvalue problems always have a countable set of
eigenvalues.

Assuming that zero is not an eigenvalue we defined the Green function G(x, ξ)
and the operator G. The first step will be to show that eigenfunctions of L coincide
with eigenfunctions of G:
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Proposition 3.3 ϕ is an eigenfunction of (3.1) with eigenvalue λ if and only if it
is also an eigenfunction of G with eigenfunction 1/λ, namely

Gϕ = 1
λ
ϕ, (3.2)

Proof : Let (λ, ϕ) be eigensolutions of (3.1). Then,

Gϕ = 1
λ
Gλϕ = 1

λ
GLϕ,

and since Uϕ = 0, it follows from the fourth statement of Proposition 3.2 that

Gϕ = 1
λ
ϕ.

Conversely, suppose that (3.2) holds. Then,

Lϕ = λL
1
λ
ϕ = λLGϕ = λϕ,

and
Uϕ = λUGϕ = 0,

where we used the fact that the range of G is functions that satisfy the boundary
conditions. n

Thus, in order to show that (3.1) has eigenvalues we can rather show that G has
eigenvalues.

Lemma 3.1 The set of functions

X = {Gu ∶ u ∈ C(0,1), ∥u∥ ≤ 1}

is bounded (in the sup-norm) and equicontinuous (but the norm ∥ ⋅ ∥ is the L2-
norm).
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Proof : We will consider the case of n ≥ 2; the case of n = 1 requires a slightly
different treatment. For n ≥ 2 the function G(x, ξ) is continuous on the square
(x, ξ) ∈ [a,b]2, hence it is uniformly continuous, and in particular,

(∀ε > 0)(∃δ > 0) ∶ (∀ξ ∈ [a,b]) (∀x1, x2 ∶ ∣x1−x2∣ < δ) ∣G(x1, ξ)−G(x2, ξ)∣ < ε.

Thus,
(∀ε > 0)(∃δ > 0) ∶ (∀u ∈ X ) (∀x1, x2 ∶ ∣x1 − x2∣ < δ)

it holds that

∣Gu(x1) − Gu(x2)∣ ≤ ∫
b

a
∣G(x1, ξ) −G(x2, ξ)∣∣u(ξ)∣dξ ≤ ε∫

b

a
∣u(ξ)∣dξ.

Using the Cauchy-Schwarz inequality,

∣Gu(x1) − Gu(x2)∣ ≤ (∫
b

a
∣u(ξ)∣2 dξ)

1/2

(∫
b

a
dξ)

1/2

= ε(b − a)1/2∥u∥,

which proves the equicontinuity of X .

Since G(x, ξ) is continuous, it is also bounded; let K be a bound. Then, for all
u ∈ X and x ∈ [a,b],

∣Gu(x)∣ ≤ ∫
b

a
∣G(x, ξ)∣∣u(ξ)∣dξ ≤ K(b − a)1/2∥u∥,

which proves the uniform boundedness of X . n

It follows from the Arzela-Ascoli theorem:

Corollary 3.1 Every sequence in X has a subsequence that converges uniformly
on [a,b].

The map G is actually a map from L2(a,b) → L2(a,b). 2 We therefore define its
operator norm:

∥G∥ = sup
∥u∥=1

∥Gu∥ = sup
(u,u)=1

(Gu,Gu)1/2.

It follows from Lemma 3.1 that ∥G∥ <∞ (i.e., G is a bounded linear operator).

2We defined it as a map from C(a,b) to Cn(a,b) to avoid measure-theoretic subtleties.
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Proposition 3.4
∥G∥ = sup

∥u∥=1
∣(Gu,u)∣.

Proof : For every normalized u, it follows from the Cauchy-Schwarz inequality
and the definition of the norm that

∣(Gu,u)∣ ≤ ∥Gu∥∥u∥ ≤ ∥G∥∥u∥2 = ∥G∥,

i.e.,
sup
∥u∥=1

∣(Gu,u)∣ ≤ ∥G∥. (3.3)

By the bilinearity of the inner-product and the self-adjointness of G, for every u
and v,

(G(u + v),u + v) = (Gu,u) + (Gv, v) + (Gu, v) + (Gv,u)
= (Gu,u) + (Gv, v) + 2R(Gu, v)
≤ sup

∥w∥=1
∣(Gw,w)∣∥u + v∥2.

and

(G(u − v),u − v) = (Gu,u) + (Gv, v) − (Gu, v) − (Gv,u)
= (Gu,u) + (Gv, v) − 2R(Gu, v)
≥ − sup

∥w∥=1
∣(Gw,w)∣∥u − v∥2.

Subtracting the second inequality from the first,

4R(Gu, v) ≤ 2 sup
∥w∥=1

∣(Gw,w)∣ (∥u∥2 + ∥v∥2) .

Substitute now v = Gu/∥Gu∥. Then,

4R(Gu,
Gu

∥Gu∥
) ≤ 2 sup

∥w∥=1
∣(Gw,w)∣

⎛
⎝
∥u∥2 + ∥ Gu

∥Gu∥
∥

2⎞
⎠
,

or,
4∥Gu∥ ≤ 2 sup

∥w∥=1
∣(Gw,w)∣ (∥u∥2 + 1) .
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For ∥u∥ = 1 we get
∥Gu∥ ≤ sup

∥w∥=1
∣(Gw,w)∣,

and since this holds for every such u,

∥G∥ = sup
∥u∥=1

∥Gu∥ ≤ sup
∥w∥=1

∣(Gw,w)∣. (3.4)

Eqs. (3.3) and (3.4) together give the desired result. n

Theorem 3.1 Either ∥G∥ or −∥G∥ is an eigenvalue of G.

Comments:

À This proves the existence of an eigenvalue to the boundary value problem.
Á Since there exists an eigenfunction ϕ such that

Gϕ = ∥G∥ϕ or Gϕ = −∥G∥ϕ,

it follows that
∥Gϕ∥ = ∥G∥∥ϕ∥,

thus the sup in the definition of ∥G∥ is attained.
Â Everything we have been doing holds in the finite-dimensional case. If A is

an hermitian matrix then either ∥A∥ or −∥A∥ is an eigenvalue.

Proof : Denote ∥G∥ = µ0. then either

µ0 = sup
∥u∥=1

(Gu,u)

or
µ0 = − sup

∥u∥=1
(Gu,u).

Consider the first case; the second case is treated similarly.

By the definition of the supremum, there exists a sequence of functions (un) such
that

∥un∥ = 1 lim
n→∞

(Gun,un) = µ0.
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By Corollary 3.1 the sequence (Gun) has a subsequence (not relabeled) that con-
verges uniformly on [a,b]; denote its limit by ϕ0. In particular, uniform conver-
gence implies L2-convergence,

lim
n→∞

∥Gun − ϕ0∥ = 0.

Since

0← (Gun − ϕ0,Gun − ϕ0) = ∥Gun∥2 + ∥ϕ0∥2 − 2R(Gun, ϕ0)→ ∥Gun∥2 − ∥ϕ0∥2,

we get the convergence of the norm,

lim
n→∞

∥Gun∥ = ∥ϕ0∥.

(It is always true that convergence in norm implies the convergence of the norm.)

Now,
∥Gun − µ0un∥2 = ∥Gun∥2 + µ2

0 − 2µ0(Gun,un)→ ∥ϕ0∥2 − µ2
0,

from which follows that ϕ0 ≠ 0 (we need this to claim that ϕ0 is nontrivial).

Moreover, it follows that

0 ≤ ∥Gun − µ0un∥2 ≤ 2µ2
0 − 2µ0(Gun,un)→ 0,

from which follows that
lim
n→∞

∥Gun − µ0un∥ = 0.

Finally, by the triangle inequality

∥Gϕ0 − µ0ϕ0∥ ≤ ∥Gϕ0 − G(Gun)∥ + ∥G(Gun) − µ0Gun∥ + ∥µ0Gun − µ0ϕ0∥
≤ ∥G∥∥ϕ0 − Gun∥ + ∥G∥∥Gun − µ0un∥ + µ0∥Gun − ϕ0∥.

Letting n→∞ we get that
Gϕ0 = µ0ϕ0,

which concludes the proof. n

Theorem 3.2 G has an infinite number of eigenfunctions.
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Proof : Let ϕ0 and µ0 be as above and assume that ϕ0 has been normalized, ∥ϕ0∥ =
1. Define a new kernel

G1(x, ξ) = G(x, ξ) − µ0ϕ0(x)ϕ0(ξ),

and the corresponding operator,

G1 f (x) = ∫
b

a
G1(x, ξ) f (ξ)dξ.

This operator is also self-adjoint,

(G1u, v) = (Gu, v) + µ0∬
b

a
ϕ0(x)ϕ0(ξ)u(ξ)v(x)dξdx = (u,G1v).

Hence, unless G1 = 0 (the zero operator), it has an eigenvalue µ1, whose absolute
value is equal to ∥G1∥. Let,

G1ϕ1 = µ1ϕ1 ∥ϕ1∥ = 1.

Note that G1ϕ0 = 0, hence

(ϕ1, ϕ0) =
1
µ1

(G1ϕ1, ϕ0) =
1
µ1

(ϕ1,G1ϕ0) = 0,

i.e., ϕ0 and ϕ1 are orthogonal. Then,

Gϕ1 = G1ϕ1 + µ0ϕ1(ϕ1, ϕ0) = G1ϕ1 = µ1ϕ1,

which means that ϕ1 is also an eigenfunction of G. By the maximality of µ0,

∣µ1∣ ≤ ∣µ0∣.

We continue this way, defining next

G2(x, ξ) = G1(x, ξ) − µ1ϕ1(x)ϕ1(ξ)

and find a third orthonormal eigenfunction of G.

The only way this process can stop is if there is a Gm = 0 for some m. Suppose this
were the case, then for every f ∈ C(a,b),

Gm f (x) = G f (x) −
m−1

∑
j=1
µ jϕ j(x)( f , ϕ j) = 0.



Boundary value problems 83

Applying L on both sides, using the fact that LG f = f and Lϕ j = µ−1
j ϕ j,

f (x) =
m−1

∑
j=1
ϕ j(x)( f , ϕ j).

This would imply that every continuous function is in the span of m differentiable
functions, which is wrong. n

3.4 Boundary value problems and complete orthonor-
mal systems

We have thus proved the existence of a countable orthonormal system, ϕ j, with
corresponding eigenvalues

∣µ0∣ ≥ ∣µ1∣ ≥ ∣µ2∣ ≥ ⋯.

Lemma 3.2 (Bessel’s inequality) Let f ∈ L2(a,b). Then the sequence

∞
∑
j=0

∣( f , ϕ j)∣2

converges and
∞
∑
j=0

∣( f , ϕ j)∣2 ≤ ∥ f ∥2.

Proof : For every m ∈ N,

0 ≤ ∥ f −
m

∑
j=0

( f , ϕ j)ϕ j∥
2

= ∥ f ∥2 −
m

∑
j=0

∣( f , ϕ j)∣2,

which proves both statements. n



84 Chapter 3

Theorem 3.3 Let f ∈ Cn(a,b) and U f = 0, then

f =
∞
∑
j=0

( f , ϕ j)ϕ j,

where the convergence is uniform.

Corollary 3.2 An immediate consequence is Parseval’s identity. Multiplying this
equation by f̄ and integrating over [a,b], interchanging the order of integration
and summation, we get

∥ f ∥2 =
∞
∑
j=0

∣( f , ϕ j)∣2

Proof : For every j ∈M and x ∈ [a,b],

(Gϕ j)(x) = ∫
b

a
G(x, ξ)ϕ j(ξ)dξ = µ jϕ j(x).

Taking the complex conjugate and using the fact that G(x, ξ) = G(ξ, x),

(G(x, ⋅), ϕ j) = ∫
b

a
G(ξ, x)ϕ j(ξ)dξ = µ jϕ j(x).

Squaring and summing over j,

m

∑
j=0

∣(G(x, ⋅), ϕ j)∣2 =
m

∑
j=0

∣µ j∣2∣ϕ j(x)∣2 =
m

∑
j=0

∣µ j∣2.

By Bessel’s inequality applied to G(x, ⋅),

m

∑
j=0

∣µ j∣2 ≤ ∥G(x, ⋅)∥2 = ∫
b

a
∣G(x, ξ)∣2 dξ.

Integrating over x,

m

∑
j=0

∣µ j∣2 ≤∬
b

a
∣G(x, ξ)∣2 dξdx ≤ K2(b − a)2,

where K is a bound on ∣G(x, ξ)∣ It follows at once that ∑∞
j=0 ∣µ j∣2 converges and in

particular µ j → 0.
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For m ∈ N consider

Gm(x, ξ) = G(x, ξ) −
m−1

∑
j=0
µ jϕ j(x)ϕ j(ξ).

By the way we constructed the sequence of eigenfunctions, we know that

∥Gm∥ = ∣µm∣.

Thus, for every u ∈ C(a,b),

∥Gmu∥ = ∥Gu −
m−1

∑
j=0
µ j(u, ϕ j)ϕ j∥ ≤ ∣µm∣∥u∥.

Letting m→∞,

lim
m→∞

∥Gu −
m−1

∑
j=0
µ j(u, ϕ j)ϕ j∥ = 0.

This means that ∑∞
j=0 µ j(u, ϕ j)ϕ j converges to Gu in L2. We will show that it

converges in fact uniformly. For q > p,

q

∑
j=p
µ j(u, ϕ j)ϕ j = G (

q

∑
j=p

(u, ϕ j)ϕ j) .

Hence,

∣
q

∑
j=p
µ j(u, ϕ j)ϕ j∣ ≤ K(b − a)1/2 ∥

q

∑
j=p

(u, ϕ j)ϕ j∥ = K(b − a)1/2 (
q

∑
j=p

∣(u, ϕ j)∣2)
1/2

,

where we used the Cauchy-Schwarz inequality. Since the right hand side vanishes
as p,q →∞, it follows by Cauchy’s criterion that ∑q

j=p µ j(u, ϕ j)ϕ j converges uni-
formly. Since it converges to Gu in L2 and the latter is continuous, it follows that

∞
∑
j=0
µ j(u, ϕ j)ϕ j = Gu,

where the convergence is uniform.

Let now f ∈ Cn(a,b), U f = 0. Then, L f is continuous, and

∞
∑
j=0
µ j(L f , ϕ j)ϕ j = GL f .
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Since GL f = f and Lϕ j = µ−1
j ϕ j,

∞
∑
j=0

( f , ϕ j)ϕ j = f .

n
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Stability of solutions

4.1 Definitions

Consider the following nonlinear system:

y′1 = 1
3(y1 − y2)(1 − y1 − y2)

y′2 = y1(2 − y2).

This system does not depend explicitly on t; such systems are called autonomous.
More generally, in a system

y′(t) = f (t, y(t)),

the family of vector fields f (t, ⋅) is called autonomous if it does not depend on t,
i.e., f ∶ Rn → Rn.

Note that if ϕ is a solution to the autonomous initial data problem,

y′(t) = f (y(t)), y(0) = y0,

then ψ(t) = ϕ(t − t0) is a solution to the initial data problem

y′(t) = f (y(t)), y(t0) = y0.

Fixed points For the above system, four points in the y-plane that are of special
interest:

y = (0,0) y = (2,2) y = (0,1) and y = (−1,2).
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These are fixed points שבת!) ,(נקודות or equilibrium points משקל!) שיווי ,(נקודות
or stationary points. Each such point corresponds to a solution to the system that
does not change in time. If any of these points is prescribed as an initial value
then the solution will be constant.

The above system is nonlinear and cannot be solved by analytical means for ar-
bitrary initial values. Yet, in many cases, the global behaviour of solutions can
be inferred by knowing the behaviour of solutions in the vicinity of fixed points.
Roughly speaking, a fixed point is stable if any solution starting “close” to it will
be attracted to it asymptotically, and it is unstable if in any neighborhood there
exist points such that a solution starting at this point is repelled from the fixed
point.

The notion of stability can be made more precise and more general:

Definition 4.1 Let u(t) be a solution to the autonomous system y′(t) = f (y(t)).
It is called stable in the sense of Lyapunov if for every ε > 0 there exists a δ > 0,
such that for every solution y(t) satisfying ∥y(t0) − u(t0)∥ < δ,

∥y(t) − u(t)∥ < ε ∀t > t0.

It is called asymptotically stable if there exists a δ such that ∥y(t0) − u(t0)∥ < δ
implies that

lim
t→∞

∥y(t) − u(t)∥ = 0.

Comment: The stability of fixed points is a particular case of stability of solutions
as defined above.

We will be concerned in this chapter with the global behaviour of solutions. here
is a list of possible behaviors:

À Fixed point.
Á Asymptotic convergence to a fixed point.
Â Limit cycle (periodic solution).
Ã Asymptotic convergence to a limit cycle.
Ä Quasi-periodic.
Å Chaotic.
Æ Tends asymptotically to infinity.
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4.2 Linearization

Consider an autonomous system

y′(t) = f (y(t)), (4.1)

and a particular solution u(t). Since we are interested in understanding the be-
haviour of solutions in the vicinity of u(t), we set

y(t) = u(t) + z(t).

Substituting in the equation we get

u′(t) + z′(t) = f (u(t) + z(t)).

Since u′(t) = f (u(t)), we get a differential equation for the deviation z(t) of the
solution y(t) from the solution u(t):

z′(t) = f (u(t) + z(t)) − f (u(t)).

If f is twice continuously differentiable, then as long as z(t) is in some compact
set U ⊂ Rn.

z′(t) = D f (u(t))z(t) +O(∣z(t)∣2).

It is sensible to think that if z(t0) is “very small”, then at least as long as it remains
so, the quadratic correction to the Talor expansion is negligible, hence the devision
of the solution from u(t) is governed by the linearized equation,

y′(t) = D f (u(t))y(t), (4.2)

hence the stability of u(t) in the nonlinear equation (4.1) can be determined by
the stability of of the solution y = 0 of the linear equation (4.2).

The task is therefore 2-fold:

À Show that the zero solution of the linearized equation (4.2) is stable/unstable;
a solution u(t) of (4.1) for which the zero solution of the linearized equa-
tions is stable is called linearly stable ליניארית!) .(יציבה

Á Show that the stability/instability of the zero solution of (4.2) implies the
stability/instability of the solution u(t) of the nonlinear equation (4.1). (That
is, that linear stability implies nonlinear stability.)
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The first task is generally difficult, since we do not have a general way of solving
linear equations with non-constant coefficients. The second task is in fact not
always possible; one can find situations in which a solution is linearly stable but
nonlinearly unstable.

The first task is however easy if u(t) is a constant solution, i.e., if u is a fixed point.
In this case, we know the solution to the linearized equation,

y(t) = eD f (u) ty(0).

Moreover, we know the form of the exponential eD f (u) t, and can therefore deter-
mine the following:

Theorem 4.1 A fixed point u of (4.1) is linearly stable if and only if (i) all the
eigenvalues of D f (u) have non-positive real parts, and (ii) if an eigenvalue has a
zero real-part then it is of multiplicity one.

While we already know this is true, we will also prove it using a new technique.

Definition 4.2 A fixed point u is called hyperbolic if none of the eigenvalues of
D f (u) has real part equal to zero. It is called a sink (!Nבולע) if all the eigenvalues
have negative real parts; it is called a source (מקור!) all the eigenvalues have
positive real parts; it is called a center (מרכז!) if all the eigenvalues are imaginary;
it is called a saddle (!Pאוכ) if certain eigenvalues have positive real parts while
other have negative real parts.

Example: Consider the unforced Duffing oscillator,

y′1 = y2

y′2 = y1 − y3
1 − δy2,

where δ ≥ 0. This describes a particle that is repelled from the origin when close
it, but attracted to it when far away from it.

This system has three fixed points,

(0,0) and (±1,0).
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Let u = (u1,u2) be the fixed point. The linearized equation is

y′1 = y2

y′2 = y1 − 3u2
1y1 − δy2,

i.e.,

D f (u) = ( 0 1
1 − 3u2

1 −δ) .

The eigenvalues satisfy
λ(λ + δ) − (1 − 3u2

1) = 0,

which implies that

λ = 1
2
(−δ ±

√
δ2 + 4(1 − 3u2

1)) .

For the fixed point (0,0) there is a positive and a negative eigenvalue, which im-
plies that it is unstable. For the fixed point (±1,0) both eigenvalues have negative
real parts, which implies that these fixed points are stable. ▲▲▲

4.3 Lyapunov functions

Theorem 4.2 Let f ∶ Rn → Rn be twice differentiable; let u be a fixed point of
f . Suppose that all the eigenvalues of D f (u) have negative real parts. Then u is
asymptotically stable.

Comment: This is a situation in which linear stability implies nonlinear stability.

Comment: Without loss of generality we may assume that u = 0, for define z(t) =
y(t) − u. Then,

z′(t) = f (z + u) ≡ F(z).

Zero is a fixed point of F, which is stable if and only if u is a stable fixed point of
f ; furthermore,

DF(0) = D f (u).
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Proof : The idea of the proof is based on a so-called Lyapunov function. Suppose
we construct a function V ∶ Rn → R that satisfies the following conditions:

À V(y) ≥ 0 for all y.
Á V(y) = 0 iff y = 0.
Â The sets

Kc = {y ∈ Rn ∶ V(y) ≤ c}
are compact, connected and contain the origin as internal point.

Ã Close enough to the fixed point, the vector field f points “inward” on the
level sets of V . That is, there exists a neighborhood U of the origin, such
that

∀y ∈ U (DV(y), f (y)) ≤ 0.

Then, solutions are “trapped” within those level sets.

Back to the proof. There exists a neighborhood U of the origin and a constant
C > 0, such that

∀y ∈ U ∥ f (y) − D f (0)y∥ ≤ C∥y∥2.

Define the Lyapunov function

V(y) = 1
2
∥y∥2,

and set
g(t) = V(y(t)).

By the chain rule,

g′(t) = (y(t), f (y(t))) = (y(t),D f (0)y(t)) + (y(t), f (y(t)) − D f (0)y(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡R(t)

.

Since all the eigenvalues of D f (0) have negative real part, there exists a constant
α > 0 such that

(y,D f (0)y) < −α∥y∥2,

i.e.,
g′(t) < −2αg(t) + R(t).

Moreover, if y(t) ∈ U, then

∥R(t)∥ ≤ ∥y(t)∥ ⋅C∥y(t)∥2 ≤ C1g3/2(t).
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In particular, there exists a constant k > 0 such that Kc ⊂ U, and as long as
y(t) ∈ U ′

g′(t) < −αg(t).
If follows that if g(0) < c then g(t) < c for all t > 0.

In addition,
d
dt

(eαtg(t)) < 0,

and further,
eαtg(t) < g(0),

which implies that
lim
t→∞

g(t) = 0,

and in turn this implies that y(t)→ 0, i.e., the solution is asymptotically stable. n

. Exercise 4.1 Show that if A is a real matrix whose eigenvalues have all nega-
tive real parts, then there exists a constant β > 0, such that

∀x ∈ Rn (Ay, y) < −β∥y∥2.

Example: An important use of Lyapunov functions is in cases where linear stabil-
ity cannot conclusively determine the (nonlinear) stability of a fixed point. Con-
sider the following system,

y′1 = y2

y′2 = −y1 − εy2
1y2.

The point (0,0) is a fixed point. The linearized equation about the origin is

y′ = ( 0 1
−1 0) y,

and the eigenvalues are ±i. This means that (0,0) is a center and we have no
current way to determine its (nonlinear) stability.

Consider then the Lyapunov function

V(y) = 1
2
(y2

1 + y2
2).

Then,

(DV(y), f (y)) = (y1, y2)(
y2

−y1 − εy2
1y2

) = −εy2
1y2

2
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The origin is therefore stable for ε > 0.

▲▲▲

Example: Consider the system

y′1 = −3y2

y′2 = y1 + α(2y3
2 − y2),

where α > 0. The origin is a fixed point, and

D f (0) = (0 −3
1 0 )

The eigenvalues are ±
√

3i, i.e., the origin is a center. Consider the Lyapunov
function

V(y) = 1
2
(y2

1 + 3y2
2).

Setting g(t) = V(y(t)),

g′(t) = y1(−3y2) + 3y2 [y1 + α(2y3
2 − y2)] = −α(3y2

2 − 6y4
2).

It follows that g′(t) ≤ 0 as long as y2
2 < 1

2 , i.e., if

g(0) < 3,

then g′(t) ≤ 0 for all t. ▲▲▲

Theorem 4.3 Let V be a Lyapunov function, i.e., V(y) ≥ 0 with V(y) = 0 iff y = 0;
also the level sets of V are closed. If

d
dt

V(y(t)) < 0,

then the origin is asymptotically stable.

Proof : Suppose that y(t) does not converge to zero. Since V(y(t)) is monotoni-
cally decreasing it must converge to a limit δ > 0. That is,

∀t > 0 δ ≤ V(y(t)) ≤ V(y0).
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The set
C = {y ∶ δ ≤ V(y) ≤ V(y0)}

is closed and bounded and hence compact. Thus,

(DV(y), f (y))

must attain its maximum on C,

max
y∈C

(DV(y), f (y)) ≡ −α < 0.

Then,
d
dt

V(y(t)) = (DV(y(t)), f (y(t)) ≤ −α,

and therefore
V(y(t)) ≤ V(y0) − αt,

which leads to a contradiction for large t. n

. Exercise 4.2 Consider the nonlinear system

x′ = y
y′ = −ky − g(x),

where g is continuous and satisfies xg(x) > 0 for x ≠ 0 and k > 0. (This might
represent the equation of a mass and nonlinear spring subject to friction.) Show
that the origin is stable by using the Lyapunov function

V(x, y) = 1
2
+ ∫

x

0
g(s)ds.

. Exercise 4.3 Consider the system

x′ = −x3 − y2

y′ = xy − y3.

Prove that the origin is stable using the Lyapunov function

V(x, y) = −x − log(1 − x) − y − log(1 − y).
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4.4 Invariant manifolds

Definition 4.3 Let f ∶ Rn → Rn be an autonomous vector field. This vector field
induces a flow map זרימה!) ,(העתקת

Φt ∶ Rn → Rn

via the trajectories of the solutions, namely

y1 = Φt(y0),

if y1 is the solution at time t of the differential system,

y′ = f (y), y(0) = y0.

Another way to write it is

d
dt

Φt(y) = f (Φt(y)) Φ0(y) = y.

Definition 4.4 Let f ∶ Rn → Rn be an autonomous vector field. A set S ⊂ Rn is
said to be invariant if

Φt(y) ∈ S for all y ∈ S and for all t ∈ R.

That is, a trajectory that starts in S has always been in S and remains in S . It is
said to be positively invariant חיובית!) (אינווריאנטית if

Φt(y) ∈ S for all y ∈ S and for all t > 0.

It is said to be negatively invariant ( שלילית! (אינווריאנטית if

Φt(y) ∈ S for all y ∈ S and for all t < 0.

Example: Any trajectory,

O(y) = {Φt(y) ∶ t ∈ R}

is an invariant set. Any union of trajectories,

⋃
y∈A

O(y)
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is an invariant set, and conversely, any invariant set is a union of trajectories.

Any forward trajectory,

O+(y) = {Φt(y) ∶ t ≥ 0}

is a positively-invariant set, and any backward trajectory,

O+(y) = {Φt(y) ∶ t ≤ 0}

is a negatively-invariant set. ▲▲▲

Example: A fixed point is an invariant set (no matter if it is stable or not). ▲▲▲

Definition 4.5 An invariant set S is said to be an invariant manifold יריעה)
(אינווריאנטית! if “looks” locally like a smooth surface embedded in Rn. 1

Consider again an autonomous system,

y′ = f (y),

and let u be a fixed point. The behavior of the solution near the fixed point is
studied by means of the linearized equation,

y′ = Ay,

where A = D f (u). The solution of the linearized system is

y(t) = eAty0,

i.e., the flow map of the linearized system is given by the linear map

Φt = eAt.

As we know from linear algebra, we may decompose Rn as follows:

Rn = Es ⊕ Eu ⊕ Ec,

where
Es = Span{e1, . . . , es}

1This is of course a non-rigorous definition; for a rigorous definition you need to take a course
in differential geometry.
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is the span of (generalized) eigenvectors corresponding to eigenvalues with nega-
tive real part,

Eu = Span{es+1, . . . , es+u}

is the span of (generalized) eigenvectors corresponding to eigenvalues with posi-
tive real part, and

Ec = Span{es+u+1, . . . , es+u+c}

is the span of (generalized) eigenvectors corresponding to eigenvalues with zero
real part.

These three linear subspaces are examples of invariant manifolds (of the linearized
system!). The characterization of the stable manifold Es, is that

lim
t→∞

Φt(y) = 0 ∀y ∈ Es.

The characterization of the unstable manifold Eu, is that

lim
t→−∞

Φt(y) = 0 ∀y ∈ Eu.

Example: Let n = 3 and suppose that A has three distinct real eigenvalues,

λ1, λ2 < 0 and λ3 > 0.

Let e1, e2, e3 be the corresponding normalized eigenvectors. Then,

A =
⎛
⎜
⎝

⋮ ⋮ ⋮
e1 e2 e3

⋮ ⋮ ⋮

⎞
⎟
⎠

⎛
⎜
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎟
⎠

⎛
⎜
⎝

⋯ e1 ⋯
⋯ e2 ⋯
⋯ e3 ⋯

⎞
⎟
⎠

−1

≡ TΛT−1.

As we know,

y(t) = eAty0 = T
⎛
⎜
⎝

eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

⎞
⎟
⎠

T−1y0.

In this case
Es = Span{e1, e2} and Eu = Span{e3}

are invariant manifolds. The geometry of the trajectories is depicted in the follow-
ing figure:
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Es!

Eu!

▲▲▲

Example: Suppose now that

λ1,2 = ρ ± iω and λ3 > 0,

where ρ < 0. Then, the corresponding eigenvectors are complex, however

A(e1 + e2) = (ρ + iω)e1 + (ρ − iω)e2 = ρ(e1 + e2) + iω(e1 − e2)
A(e1 − e2) = (ρ + iω)e1 − (ρ − iω)e2 = ρ(e1 − e2) + iω(e1 + e2),

or,
A

e1 + e2√
2

= ρe1 + e2√
2

−ωe1 − e2√
2i

A
e1 − e2√

2i
= ρe1 − e2√

2i
+ωe1 + e2√

2
.

Thus, there exists a transformation of variables A = TΛT−1, in which

Λ =
⎛
⎜
⎝

ρ −ω 0
ω ρ 0
0 0 λ3

⎞
⎟
⎠
.

The solution to this system is

y(t) = T
⎛
⎜
⎝

eρt cosωt −eρt sinωt 0
eρt sinωt eρt cosωt 0

0 0 eλ3t

⎞
⎟
⎠

T−1y0.
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Here again there is a two-dimensional stable subspace and a one-dimensional un-
stable subspace.

SHOW FIGURE. ▲▲▲

Example: Consider now the case where λ1 < 0 is an eigenvalue of multiplicity
two and λ3 > 0. Then, A = TΛT−1 with

Λ =
⎛
⎜
⎝

λ1 1 0
0 λ1 0
0 0 λ3

⎞
⎟
⎠
,

and the solution is

y(t) = T
⎛
⎜
⎝

eλ1t teλ1t 0
0 eλ1t 0
0 0 eλ3t

⎞
⎟
⎠

T−1y0.

In this transformed system Es = Span{e1, e2} and Eu = Span{e3}. This is a defi-
cient system, hence has only one direction “entering” the fixed point.

SHOW FIGURE.

▲▲▲

. Exercise 4.4 Consider the following differential systems:

À y′ = (λ 0
0 µ

) y λ < 0, µ > 0.

Á y′ = (λ 0
0 µ

) y λ < 0, µ < 0.

Â y′ = (λ −ω
ω λ

) y λ < 0, ω > 0.

Ã y′ = (0 0
0 λ

) y λ < 0.

Ä y′ = (0 λ
0 0) y λ > 0.

Å y′ = (0 0
0 0) y.

In each case calculate all the trajectories and illustrate them on the plane. Describe
the stable and unstable manifolds of the origin.
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. Exercise 4.5 Consider the nonlinear systems:

À

⎧⎪⎪⎨⎪⎪⎩

y′1 = y2

y′2 = −δy2 − µy1 − y2
1

.

Á

⎧⎪⎪⎨⎪⎪⎩

y′1 = −y1 + y3
1

y′2 = y1 + y2
.

Find all the fixed points and determine their linear stability. Can you infer from
this analysis the nonlinear stability?

The question is what happens in the nonlinear case. How does the structure of the
linearized equation affect the properties of the solutions in the vicinity of the fixed
point?

Theorem 4.4 Suppose that the vector field f is k-times differentiable and let the
origin be a fixed point. Then there exists a neighborhood of the origin in which
there are Ck-invariant manifold,

W s,Wu and Wc,

that intersect at the origin are are tangent at the origin to the invariant manifolds
of the linearized invariant manifolds. Moreover, the nonlinear stable and unstable
manifolds retain the asymptotic properties of the linearized manifolds, namely,

∀y ∈ W s lim
t→∞

Φt(y) = 0,

and
∀y ∈ Wu lim

t→−∞
Φt(y) = 0,

Proof : Not in this course. n

Example: Consider again the Duffing oscillator,

x′ = y
y′ = x − x3 − δy.
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The linearized vector field is

y′ = (0 1
1 −δ) y,

with eigenvalues

λ1,2 =
1
2
(±

√
δ2 + 4 − δ) .

The corresponding (linear) stable and unstable manifolds are

y = λ1,2x.

The origin is a saddle, i.e., it has a one-dimensional stable manifold and a one
dimensional unstable manifold.

Wu#

Ws#

▲▲▲

Example: Consider the following artificial system,

x′ = x
y′ = −y + x2.

The origin is a fixed point and the linearized system is

(x
y)

′

= (1 0
0 −1)(x

y) ,

i.e., Es = Span{e2} and Eu = Span{e1} are the stable and unstable manifolds of
origin in the linearized system.
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In this case we can actually compute the stable and unstable manifolds of the
origin in the nonlinear system. We look for trajectories y(x). These satisfy the
differential equation,

y′(x) = y′(t)
x′(t)

= −y
x
+ x.

This is a linear system whose solution is

y(x) = C
x
+ x2

3
.

For C = 0, we get a one-dimensional manifold which is invariant (since it is a
trajectory) and tangent to the unstable manifold of the linearized system. The
stable manifold of the nonlinear system is the y-axis, x = 0.

Wu#
Ws#

▲▲▲

4.5 Periodic solutions

Definition 4.6 A solution through a point y is said to be periodic with period
T > 0 if

Φt(y) = y.

We will now concentrate on periodic solutions of autonomous systems in the
plane.
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Theorem 4.5 (Bendixon’s criterion) Consider the planar system,

y′ = f (y)

where f is at least C1. If in a simply connected domain D

div f = ∂ f1

∂y1
+ ∂ f2

∂y2

is not identically zero and does not change sign, then there are no closed orbits
lying entirely in D.

Proof : Suppose there was a closed orbit Γ that encloses a domain S ⊂ D. By
Green’s theorem,

∬
S

div f dy = ∫
Γ
( f ,n)d` = 0,

where n is the unit normal to Γ, and ( f ,n) = 0 because f is tangent to Γ. If, as
assumed div f is neither identically zero nor changes sign, then this is impossible.
n

Example: For the Duffing oscillator,

div f = −δ,

hence this system cannot have any closed orbit. ▲▲▲

4.6 Index theory

In this section we are concerned with autonomous differential systems in the
plane:

x′ = f (x, y)
y′ = g(x, y).

Let Γ be a closed curve in the plane. If the curve does not intersect a fixed point,
then at any point along the curve the vector field makes an angle φ with the x axis,

φ(x, y) = tan−1 g(x, y)
f (x, y)

.



Stability of solutions 105

When we complete a cycle along Γ the angle φ must have changed by a multiple
of 2π. We define the index of the curve by

i(Γ) = 1
2π ∫γ

dφ.

It turns out that the index of a curve satisfies the following properties:

À The index of a curve does not change when it is deformed continuously, as
long as it does not pass through a fixed point.

Á The index of a curve that encloses a single sink, source, or center is 1.
Â The index of a periodic orbit is 1.
Ã The index of a saddle is −1.
Ä The index of a curve that does not enclose any fixed point is zero.
Å The index of a curve is equal to the sum of the indexes of the fixed points

that it encloses.

Sink% Source%

Saddle% Periodic%

Corollary 4.1 Every periodic trajectory encloses at least one fixed point. If it
encloses a single fixed point then it is either a sink, a source, or a center. If all
the enclosed fixed points are hyperbolic, then there must be 2n + 1 of those with n
saddles and n + 1 sources/sinks/centers.
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Example: According to index theory, possible limit cycles in the Duffing oscilla-
tor are as follows:

▲▲▲

4.7 Asymptotic limits

We are back to autonomous systems in Rn; we denote by Φt ∶ Rn → Rn the flow
map. The trajectory through a point y is the set:

O(y) = {Φt(y) ∶ t ∈ R}

We also have the positive and negative trajectories:

O+(y) = {Φt(y) ∶ t ≥ 0}
O−(y) = {Φt(y) ∶ t ≤ 0}.

Definition 4.7 Let y ∈ Rn. A point ỹ belongs to the ω-limit of y,

ỹ ∈ ω(y),

if there exists a sequence tn →∞ such that

lim
n→∞

Φtn(y) = ỹ.
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It belongs to the α-limit y,
ỹ ∈ α(y),

if there exists a sequence tn → −∞ such that

lim
n→∞

Φtn(y) = ỹ.

Thus the ω-set אומגה!) (קבוצת ω(y) denotes the collection of all “future partial
limits” of trajectories that start at y, and α(y) denotes the collection of all “past
partial limits” of trajectories that pass through y.

Example: Let u be a fixed point and let y belong to the stable manifold of u. Then,

ω(y) = {u}.

If z belongs to the unstable manifold of u, then

α(z) = {u}.

▲▲▲

Example: Let y ∶ R→ Rn be a periodic solution. Then for every t0,

ω(y(t0)) = α(y(t0)) = O(y(t0)).

▲▲▲

4.8 The Poincaré-Bendixon theorem

We consider again two-dimensional systems,

y′ = f (y).

As before we denote the flow function by Φt(x, y).

Proposition 4.1 Let M be a compact positively invariant set (i.e., trajectories
that start inM remain inM at all future times). Let p ∈M. Then,
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À ω(p) ≠ ∅.
Á ω(p) is closed.
Â ω(p) is invariant, i.e., it is a union of trajectories.
Ã ω(p) is connected.

Proof :

À Take any sequence tn → ∞. Since Φtn(p) ∈ M and M is compact this
sequence has a converging subsequence,

lim
k→∞

Φtnk
(p) = q ∈M.

By definition q ∈ ω(p), which is therefore non-empty.
Á Let q /∈ ω(p). By the definition of the ω-set, there exists a neighborhood U

of q and a time T > 0 such that

Φt(p) /∈ U ∀t > T.

Since U is open, every point z ∈ U has a neighborhood V ⊂ U, and

Φt(p) /∈ V ∀t > T,

which implies that z /∈ ω(p), i.e.,

(ω(p))c is open,

hence ω(p) is closed.
Â Let q ∈ ω(p). By definition, there exists a sequence tn →∞, suchthat

lim
n→∞

Φtn(p) = q,

Let τ ∈ R be arbitrary. Then,

lim
n→∞

Φtn+τ(p) = lim
n→∞

Φτ (Φtn(p)) = Φτ ( lim
n→∞

Φtn(p)) = Φτ(q),

which proves that Φτ(q) ∈ ω(p) for all τ ∈ R, and hence ω(p) is invariant.
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Ã Suppose by contradiction that ω(p) was not connected. Then there exist
disjoint open sets V1,V2 such that

ω(p) ⊂ V1 ∪ V2 ω(p) ∩ V1 ≠ ∅ and ω(p) ∩ V2 ≠ ∅.

It follows that the trajectory O(p) must pass from V1 to V2 and back in-
finitely often. Consider a compact set K that encloses V1 and not intersect
V2. The trajectory must pass infinitely often in the compact set K∖V1, hence
must have there an accumulation point, in contradiction to ω(p) being con-
tained in V1 ∪ V2.

V1# V2#

K#

n

Definition 4.8 Let Σ be a continuous and connected arc in R2 (i.e., a map I →
R2). It is called transversal to the flow field f neither vanishes on Σ nor is tangent
to Σ, namely,

(Σ′(t), f (Σ(t)) ≠ ∥Σ′(t)∥ ∥ f (Σ(t)∥.

∑"

f"
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Lemma 4.1 LetM ⊂ R2 be a positively invariant set and let Σ be a transversal
arc in M. Then for every p ∈ M, the positive trajectory O+(p) intersects Σ

monotonically, that is, if pi = Σ(si) is the i-th intersection of O+(p) and Σ, then
the sequence si is monotonic.

Comment: The lemma does not say that O+(p) must intersect Σ at all, or that it
has to intersect it more than once.

Proof : Proof by sketch:

pi#
pi+1#

Posi)vely#invariant#set#

n

Corollary 4.2 LetM ⊂ R2 be a positively invariant set and let Σ be a transversal
arc inM. Then for every p ∈M, ω(p) intersects Σ at at most one point,

#∣Σ ∩ω(p)∣ ≤ 1.

Proof : The existence of two intersection points would violate the previous lemma,
for suppose that

p1, p2 ∈ Σ ∩ω(p).
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Then, O+(p) would intersect Σ at infinitely many points in disjoint neighborhoods
of p1 and p2.

Note that this point is somewhat subtle. If p1 ∈ Σ ∩ ω(p) we are guaranteed that
the trajectory will visit infinitely often any neighborhood of p1, but does it mean
that it has to intersect Σ each time? Yes. Take any neighborhood U of p1 and
consider

U ∩ Σ,

which is an open neighborhood of p1 in Σ. By transversality,

{Φt(U ∩ Σ) ∶ −ε < t < e}

is an open neighborhood of p1 in R2. Any trajectory visiting this neighborhood
intersects U ∩ Σ. n

Proposition 4.2 LetM be a positively invariant set and let p ∈M. If ω(p) does
not contain any fixed point, then ω(p) is a periodic trajectory.

Proof : Let q ∈ ω(p) and let x ∈ ω(q) (we know that both are non-empty sets).
Since O(q) ⊂ ω(p) (an ω-limit set is invariant) and ω(p) is closed, then

ω(q) ⊂ ω(p).

It follows that ω(q) does not contain fixed points, i.e., x is not a fixed point.

Since x is not a fixed point, we can trace through it a transversal arc Σ. The
trajectory O+(q) will intersect Σ monotonically at points qn → x, but since qn ∈
ω(p), then all the qn must coincide with x. It follows that O(q) intersects x more
than once, hence it is periodic.

It remains to show that O(q) coincides with ω(p). Let Σ now be a transversal
arc at q. We claim that O(q) has a neighborhood in which there are no other
points that belong to ω(p), for if every neighborhood of O(q) contained points in
r ∈ ω(p), O(r) ⊂ ω(p), and there would be such an r for which O(r) intersects Σ.

Since ω(p) is connected, it follows that ω(p) = O(q).
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p"
q"

A"zone"in"which"there""
are"no"point"in"w(p)"

n

Definition 4.9 A heteroclinic orbit is a trajectory that connects two fixed points,
i.e., a trajectory O(y), such that

α(O(y)) = {p1} and ω(O(y)) = {p2},

where p1 and p2 are fixed points. If p1 = p2 (a saddle), then it is called a homo-
clinic orbit.

Proposition 4.3 Let M be a positively invariant set. Let p1, p2 be fixed points
and

p1, p2 ∈ ω(p)

for some p ∈M. Since ω(p) is connected and invariant (a union of trajectories).
There exists a heteroclinic orbit that connects p1 and p2 (or vice versa). There
exists at most one trajectory, γ ⊂ ω(p), such that

{p1} = α(γ) and {p2} = ω(γ).

Proof : Proof by sketch:



Stability of solutions 113

p1# p2#
p#

n

Proposition 4.4 (Poincaré-Bendixon) Let M be a positively invariant set that
contains a finite number of fixed points. Let p ∈M. Then, one and only one of the
following occurs:

À ω(p) is a single fixed point.
Á ω(p) is a limit cycle.
Â ω(p) is a union of fixed points pi and heteroclinic orbits γ j that connect

them.

Proof : If ω(p) contains only fixed points then it only contains one due to con-
nectedness.

If ω(p) does not contain any fixed point then it is a limit cycle (we proved it).

Remains the case where ω(p) contains fixed points and points that are not fixed
points; let q ∈ ω(p) and consider the set ω(q). We will show that it contains a
single fixed point, hence q is on a trajectory that converges asymptotically to a
fixed point in ω(p). Similarly, α(q) contains a single fixed point, so that q lies, as
claimed, on a trajectory that connects between two fixed points in ω(p).
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So let x ∈ ω(q). Suppose that x was not a fixed point, then we would trace a
transversal arc Σ through r. The trajectory O(q) must intersect this arc infinitely
often, but since O(q) ∈ ω(p), it must intersect Σ at a single point, which implies
that O(q) is a periodic orbit, but this is impossible because ω(p) is connected. It
follows that ω(q) contains only fixed points, but then we know that it can only
contain a single fixed point.

n


