
Introduction to Scientific Computing

Raz Kupferman

September 30, 2008



2



Contents

1 Preliminaries 1
1.1 Review of calculus . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Order of convergence . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Floating point arithmetic . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Stability and condition numbers . . . . . . . . . . . . . . . . . . 9

2 Nonlinear systems of equations 15
2.1 The bisection method . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Newton’s method in R . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The secant method in R . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Newton’s method in Rn . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 A modified Newton’s method in Rn . . . . . . . . . . . . . . . . . 35

3 Numerical linear algebra 41
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Vector and matrix norms . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Perturbation theory and condition number . . . . . . . . . . . . . 59

3.4 Direct methods for linear systems . . . . . . . . . . . . . . . . . 63

3.4.1 Matrix factorization . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . 72



ii CONTENTS

3.5.1 Iterative refinement . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 Analysis of iterative methods . . . . . . . . . . . . . . . . 74

3.6 Acceleration methods . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6.1 The extrapolation method . . . . . . . . . . . . . . . . . 79

3.6.2 Chebyshev acceleration . . . . . . . . . . . . . . . . . . 82

3.7 The singular value decomposition (SVD) . . . . . . . . . . . . . 90

4 Interpolation 99
4.1 Newton’s representation of the interpolating polynomial . . . . . . 99

4.2 Lagrange’s representation . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Divided differences . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Hermite interpolation . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Approximation theory 109
5.1 Weierstrass’ approximation theorem . . . . . . . . . . . . . . . . 109

5.2 Existence of best approximation . . . . . . . . . . . . . . . . . . 112

5.3 Approximation in inner-product spaces . . . . . . . . . . . . . . . 113

6 Numerical integration 119

7 More questions 121
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Nonlinear equations . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Approximation theory . . . . . . . . . . . . . . . . . . . . . . . . 124



Chapter 1

Preliminaries

1.1 Review of calculus

Theorem 1.1 (Mean value theorem) If f ∈ C[a, b] is differentiable in (a, b), then
there exists a point c ∈ (a, b) such that

f ′(c) =
f (b) − f (a)

b − a
.

Notation: We denote by Ck(Ω) the set of functions that are k times continuously
differentiable on the domain Ω.

Theorem 1.2 (Mean value theorem for integrals) Let f ∈ C[a, b] and let g be
integrable on [a, b] and having constant sign. Then, there exists a point c ∈ (a, b)
such that ∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

If, in particular, g(x) = 1, then there exists a point where f equals to its average
on the interval.



2 Chapter 1

Theorem 1.3 (Taylor’s theorem) let f ∈ Cn[a, b] with f (n+1) existing on [a, b] (but
not necessarily differentiable). Let x0 ∈ [a, b]. Then, for every x ∈ [a, b] there
exists a point ξ(x) between x0 and x such that

f (x) = Pn(x) + Rn(x),

where

Pn(x) =

n∑
k=0

f (k)(x0)
k!

(x − x0)k

is the n-th Taylor polynomial of f about x0, and

Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x − x0)n+1

is the remainder term.

Comment: It is often useful to think of x as x0 + h; we know the function and
some of its derivatives at a point x0 and we want to estimate it at another point at
a distance h. Then,

f (x0 + h) =

n∑
k=0

f (k)(x0)
k!

hk +
f (n+1)(x0 + θ(h)h)

(n + 1)!
hn+1,

where 0 < θ(h) < 1. Often, we approximate the function f by its n-th Taylor
polynomial, in which case we refer to the remainder as the truncation error.

. Exercise 1.1 (a) Approximate the function f (x) = cos x at the point x = 0.01
by its second and third Taylor polynomials about the point x0 = 0. Estimate the
error. (b) Use the third Taylor polynomial to estimate

∫ 0.1

0
cos x dx. Estimate the

error.

Solution 1.1: (a) Since f ∈ C∞(R) then Taylor’s theorem applies everywhere on the line. Then,

cos x = cos x0 +
sin x0

1!
x −

cos x0

2!
x2 −

sin ξ(x)
3!

x3,

where the last term is the remainder. Substituting x0 = 0 and x = 0.01 we find

cos(0.01) = 1 −
(0.01)2

2
− sin(ξ(0.01))

(0.01)3

6
.
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Since | sin x| ≤ 1, we immediately obtain that

|cos(0.01) − 0.99995| ≤
1
6
× 10−6.

Since the third derivative of cos x vanishes at x0 = 0, we can in fact derive a sharper error bound
as

cos(0.01) = 1 −
(0.01)2

2
+ cos(ξ(0.01))

(0.01)4

24
,

so that
|cos(0.01) − 0.99995| ≤

1
24
× 10−8.

(b) Since

cos(x) = 1 −
x2

2
+ cos(ξ(x))

x4

24
,

we may integrate both side from 0 to 0.1, and obtain∫ 0.1

0
cos x dx =

∫ 0.1

0

(
1 −

x2

2

)
dx +

1
24

∫ 0.1

0
x4 cos(ξ(x)) dx.

The polynomial is readily integrated giving 0.01− 1
6 (0.1)3. The error is easily bounded as follows:∣∣∣∣∣∣

∫ 0.1

0
cos x dx −

[
0.1 −

1
6

(0.1)3
]∣∣∣∣∣∣ ≤ 1

24

∣∣∣∣∣∣
∫ 0.1

0
x4 dx

∣∣∣∣∣∣ =
10−5

120
.

Theorem 1.4 (Multi-dimensional Taylor theorem) Let f be n times continuously
differentiable on a convex domain Ω ⊆ Rk, and all its (n + 1)st partial derivatives
exist. Let x0 = (x0

1, . . . , x
0
k) ∈ Ω. Then for every x ∈ Ω

f (x) = Pn(x) + Rn(x),

where

Pn(x) =

n∑
i=1

1
i!

[
(x1 − x0

1)
∂

∂x1
+ · · · + (xk − x0

k)
∂

∂xk

]i

f (x0),

is the n-th Taylor polynomial and

Rn(x) =
1

(n + 1)!

[
(x1 − x0

1)
∂

∂x1
+ · · · + (xk − x0

k)
∂

∂xk

]n+1

f (x0 + θ(x − x0)),

where 0 < θ < 1.
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. Exercise 1.2 Let k be a positive integer and let 0 < α < 1. To what class of
functions Cn(R) does the function xk+α belong?

Solution 1.2: All its first k derivatives are continuous in R and its (k+1)-st derivative is singular
at x = 0. Therefore, xk+α ∈ Ck(R),

. Exercise 1.3 For small values of x it is standard practice to approximate the
function sin x by x itself. Estimate the error by using Taylor’s theorem. For what
range of x will this approximation give results accurate to six decimal places?

Solution 1.3: By Taylor’s theorem:

sin x = x −
x3

3!
sin(θx),

for some 0 < θ < 1. Thus,
| sin x − x|
|x|

≤
|x|2

6
.

The error is guaranteed to have a relative error of less than 10−6 if |x|2 ≤ 6 × 10−6.

. Exercise 1.4 Find the first two terms in the Taylor expansion of x1/5 about the
point x = 32. Approximate the fifth root of 31.999999 using these two terms in
the series. How accurate is your answer?

Solution 1.4: The Taylor expansion of x1/5 about x = 32 is

(32 + h)1/5 = 321/5 +
32−4/5

5
h −

4
2 · 25

(32 + θh)−9/5h2 = 2 +
h

80
−

2
25

(32 + θh)−9/5h2,

for some 0 < θ < 1. In the present case h = 10−6, and the resulting error can be bounded by

|Err| ≤
2

25
10−12

512
.

. Exercise 1.5 The error function defined by

erf(x) =
2
√
π

∫ x

0
e−t2 dt

gives the probability that a trial value will lie within x units of the mean, assum-
ing that the trials have a standard normal distribution. This integral cannot be
evaluated in terms of elementary functions.



Preliminaries 5

À Integrate Taylor’s series for e−t2 about t = 0 to show that

erf(x) =
2
√
π

∞∑
k=0

(−1)kx2k+1

(2k + 1) k!

(more precisely, use the Taylor expansion for e−x).
Á Use this series to approximate erf(1) to within 10−7.

Solution 1.5: The first part is trivial. For the second part, note that if we truncate the Taylor
series at n, then the remainder can be bounded by

|Rn(x)| ≤
2
√
π

∣∣∣∣∣∣
∫ 1

0

[−ξ(t)]n+1

(n + 1)!
dt

∣∣∣∣∣∣ ≤ 2
√
π (n + 1)!

,

where ξ(t) ∈ (02, 12). To ensure an error less than 10−7 it is sufficient to truncate the Taylor series
at n = 10, so that within the required error

erf(1) ≈
2
√
π

10∑
k=0

(−1)k

(2k + 1) k!
.

1.2 Order of convergence

Convergence of sequences is a subject you all know from the first calculus course.
Many approximation methods are based on the generation of sequences that even-
tually converge to the desired result. A question of major practical importance
is to know how fast does a sequence approach its limit. This section introduces
concepts pertinent to the notion of speed of convergence.

Definition 1.1 (Rate of convergence) Let (xn) be a converging sequence with limit
L. Its rate of convergence is said to be (at least) linear if there exist a constant
C < 1 and an integer N, such that for all n ≥ N,

|xn+1 − L| ≤ C |xn − L|.

The rate of convergence is said to be (at least) superlinear if there exists a se-
quence εn → 0, such that for all n ≥ N,

|xn+1 − L| ≤ εn |xn − L|.
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The rate of convergence is said to be of order (at least) α if there exists a constant
C (not necessarily smaller than 1) such that

|xn+1 − L| ≤ C |xn − L|α.

Comment: Can be generalized for sequences in a normed vector space.

Example 1.1 À The convergence of (1 + 1/n)n to e satisfies

|xn+1 − e|
|xn − e|

→ 1,

i.e., the rate of convergence is worse than linear.
Á The canonical sequence that converges linearly is xn = 1/2n. Note that

linear rate of convergence really means exponentially fast convergence...
Â The sequence 2−n/n is another example of a linear rate of convergence.
Ã Consider the sequence (xn) defined recursively by

xn+1 =
xn

2
+

1
xn
,

with x1 = 1. Then

2xnxn+1 = x2
n + 2

2xnxn+1 − 2
√

2xn = (xn −
√

2)2

2xn(xn+1 −
√

2) = (xn −
√

2)2,

i.e.,

xn+1 −
√

2 =
(xn −

√
2)2

2 xn
.

Clearly, if the distance of the initial value from
√

2 is less than 1/2, then
the sequence converges. The rate is by definition quadratic. The following
table gives the distance of xn from

√
2 for various n

n xn −
√

2
1 −0.41 × 10−1

2 8.58 × 10−2

3 2.5 × 10−3

4 2.12 × 10−6

5 1.59 × 10−12
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Definition 1.2 Let (xn) and (yn) be sequences. We say that xn = O(yn) if there
exist C,N such that

|xn| ≤ C|yn|

for all n ≥ N. We say that xn = o(yn) if

lim
n→∞

xn

yn
= 0.

Comments:

À Again generalizable for normed linear spaces.

Á If xn = O(yn) then there exists a C > 0 such that lim sup xn/yn ≤ C.

Â f (x) = O(g(x)) as x → x0 means that there exists a neighborhood of x0 in
which | f (x)| ≤ C |g(x)|. Also, f (x) = o(g(x)) if for every ε > 0 there exists
a neighborhood of x0 where | f (x)| ≤ ε|g(x)|.

Example 1.2 À Show that xn = O(zn) and yn = O(zn) implies that xn + yn =

O(zn).

Á Show that if αn → 0, xn = O(αn) and yn = O(αn), then xnyn = o(αn).

. Exercise 1.6 Prove that if xn = O(αn) then α−1
n = O(x−1

n ). Prove that the same
holds for the o-relation.

Solution 1.6: Let xn = O(αn). By definition there exist a C > 0 and an N ∈ N such that
|xn| ≤ C|αn| for all n > N. In particular, for all n > N αn = 0 only if xn = 0 as well. Taking the
inverse of this inequality we get

1
|αn|
≤ C

1
|xn|

,

where we accept the cases of 1/0 ≤ 1/0 and 1 ≤ 1/0.

. Exercise 1.7 Let n be fixed. Show that

n∑
k=0

xk =
1

1 − x
+ o(xn)

as x→ 0.
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Solution 1.7: We have
1

1 − x
−

n∑
k=0

xk =

∞∑
k=n+1

xk =
xn+1

1 − x
,

and as x→ 0,

lim
x→0

xn+1

(1 − x)xn = 0.

1.3 Floating point arithmetic

A real number in scientific notation has the following representation,

±(fraction) × (base)(exponent).

Any real number can be represented in this way. On a computer, the base is always
2. Due to the finiteness of the number of bits used to represent numbers, the range
of fractions and exponents is limited. A floating point numbers is a number in
scientific notation that fits the format of a computer word, e.g.,

−0.1101 × 2−8.

A floating point is called normalized if the leading digit of the fraction is 1.

Different computers have different ways of storing floating point numbers. In
addition, they may differ in the way they perform arithmetic operations on floating
point numbers. They may differ in

À The way results are rounded.
Á The way they deal with numbers very close to zero (underflow).
Â The way they deal with numbers that are too big (overflow).
Ã The way they deal with operations such as 0/0,

√
−1.

The most common choice of floating point arithmetic is the IEEE standard.

Floating point numbers in the IEEE standard have the following representation,

(−1)s (1 + f ) × 2e−1023,

where the sign, s, takes one bit, the fraction, f , takes 52 bits, and the exponent,
e, takes 11 bits. Because the number is assumed normalized, there is no need to
store its leading one. We note the following:
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À The exponent range is between 2−1023 ≈ 10−308 (the underflow threshold),
and 21024 ≈ 10308 (the overflow threshold).

Á Let x be a number within the exponential range and fl(x) be its approxima-
tion by a floating point number. The difference between x and fl(x) scales
with the exponent. The relative representation error, however, is bounded
by

|x − fl(x)|
|x|

≤ 2−53 ≈ 10−16,

which is the relative distance between two consecutive floating point num-
bers. The bound in the relative representation error is known as the machine-
ε.

IEEE arithmetic also handles ±∞ and NaN with the rules

1
0

= ∞, ∞ +∞ = ∞,
x
±∞

= 0,

and

∞−∞ = NaN,
∞

∞
= NaN,

√
−1 = NaN, x + NaN = NaN.

Let � be any of the four arithmetic operations, and let a, b be two floating point
numbers. After the computer performs the operation a � b, the result has to be
stored in a computer word, introducing a roundoff error. Then,

a � b − fl(a � b)
a � b

= δ,

where |δ| ≤ ε. That is
fl(a � b) = a � b (1 + δ).

1.4 Stability and condition numbers

Condition numbers Let X,Y be normed linear spaces and f : X → Y . Suppose
we want to compute f (x) for some x ∈ X, but we may introduce errors in x and
compute instead f (x + δx), where ‖δx‖ is “small”. A function is called well-
conditioned if small errors in its input result in small errors in its output, and it is
called ill-conditioned otherwise.



10 Chapter 1

Suppose that f is differentiable. Then, under certain assumptions,

f (x + δx) ≈ f (x) + D f (x) δx,

or,
‖ f (x + δx) − f (x)‖ ≈ ‖D f (x)‖‖δx‖.

The absolute output error scales like the absolute input error times a multiplier,
‖D f (x)‖, which we call the absolute condition number of f at x. In addition,

‖ f (x + δx) − f (x)‖
‖ f (x)‖︸                  ︷︷                  ︸

rel. output err.

≈
‖D f (x)‖‖x‖
‖ f (x)‖︸        ︷︷        ︸

rel. cond. number

·
‖δx‖
‖x‖︸︷︷︸

rel. input err.

.

Here we call the multiplier of the relative input and output errors the relative
condition number of f at x. When the condition number is infinite the problem
(i.e., the function) is called ill-posed. The condition number is a characteristic of
the problem, not of an algorithm.

Backward stability Suppose next that we want to compute a function f (x), but
we use an approximating algorithm which yields instead a result alg(x). We call
alg(x) a backward stable algorithm for f , if there exists a “small” δx such that

alg(x) = f (x + δx).

I.e., alg(x) gives the exact solution for a slightly different problem. If the algorithm
is backward stable, then

alg(x) ≈ f (x) + D f (x)δx,

i.e.,
‖ alg(x) − f (x)‖ ≈ ‖D f (x)‖‖δx‖,

so that the output error is small provided that the problem is well-conditioned. To
conclude, for an algorithm to gives accurate results, it has to be backward stable
and the problem has to be well-conditioned.

Example 1.3 Consider polynomial functions,

p(x) =

d∑
i=0

aixi, (1.1)
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Figure 1.1: Results of calculation of the polynomial (1.1) using Horner’s rule.

which are evaluated on the computer with Horner’s rule:

Algorithm 1.4.1:  (x)

p = ad

for i = d − 1 downto 0
do p = x ∗ p + ai

return (p)

The graph in Figure 1.1 shows the result of such a polynomial evaluation for
x9 − 18x8 + 144x7 − 672x6 + 2016x5 − 4032x4 + 5376x3 − 4608x2 + 2304x− 512 =

(x − 2)9, on the interval [1.92, 2.08].

We see that the behavior of the function is quite unpredictable in the interval
[1.05, 2.05], and merits the name of noise. In particular, try to imagine finding the
root of p(x) using the bisection algorithm.

Let’s try to understand the situation in terms of condition numbers and backward
stability. First, we rewrite Horner’s rule as follows:
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Algorithm 1.4.2:  (x)

pd = ad

for i = d − 1 downto 0
do pi = x ∗ pi+1 + ai

return (p0)

Then, insert a multiplicative term of (1 + δi) each time a floating point operations
is done:

Algorithm 1.4.3:  (x)

pd = ad

for i = d − 1 downto 0
do pi = [x ∗ pi+1(1 + δi) + ai](1 + δ′i)

return (p0)

What do we actually compute? The coefficients ai are in fact ai(1 + δ′i), and x is
really x(1 + δi)(1 + δ′i), so that

p0 =

d∑
i=0

(1 + δ′i)
i−1∏
j=0

(1 + δ j)(1 + δ′j)

 aixi.

This expression can be simplified,

p0 =

d∑
i=0

(1 + δ̄i)aixi,

where

(1 + δ̄i) = (1 + δ′i)
i−1∏
j=0

(1 + δ j)(1 + δ′j).

Now,
(1 + δ̄i) ≤ (1 + ε)1+2i ≤ 1 + 2dε + O(ε2)

(1 − δ̄i) ≥ (1 − ε)1+2i ≥ 1 − 2dε + O(ε2),

from which we deduce that |δ̄i| ≤ 2dε.

Thus, our algorithm computes exactly a polynomial with slightly different coeffi-
cients āi = (1 + δ̄i)ai, i.e., it is backward stable (the exact solution of a slightly
different problem).
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With that, we can compute the error in the computed polynomial:

|p(x) − p0(x)| =

∣∣∣∣∣∣∣
d∑

i=0

(1 + δ̄i)aixi −

d∑
i=0

aixi

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
d∑

i=0

δ̄iaixi

∣∣∣∣∣∣∣
≤ 2dε

d∑
i=0

|aixi|.

This error bound is in fact attainable if the δ̄i have signs opposite to that of aixi.
The relative error (bound) in polynomial evaluation is

|p(x) − p0(x)|
|p(x)|

≤ 2dε
∑d

i=0 |aixi|

|
∑d

i=0 aixi|
.

Since 2dε is a measure of the input error, the multiplier
∑d

i=0 |aixi|/|
∑d

i=0 aixi| is
the relative condition number for polynomial evaluation. The relative error bound
can be computed directly:

Algorithm 1.4.4:   (x)

p = ad

p̂ = |ad|

for i = d − 1 downto 0

do
{

p = x ∗ p + ai

p̂ = |x| ∗ p̂ + |ai|

return (2dε p̂/|p|)

From the relative error we may infer, for example, a lower bound number of cor-
rect digits,

n = − log10
|p(x) − p0(x)|
|p(x)|

.

In Figure 1.2 we show this lower bound along with the actual number of correct
digits. As expected, the relative error grows infinite at the root.

vComputer exercise 1.1 Generate the two graphs shown in this example.
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Figure 1.2: Number of significant digits in the calculation of the polynomial (1.1)
using Horner’s rule. The dots are the actual results and the solid line is the lower
bound.
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Nonlinear systems of equations

A general problem in mathematics: X,Y are normed vector spaces, and f : X →
Y . Find x ∈ X such that f (x) = 0.

Example 2.1 À Find a non-zero x ∈ R such that x = tan x (in wave diffrac-
tion); here f : R→ R is defined by f (x) = x − tan x.

Á Find (x, y, z) ∈ R3 for which

z2 − zy + 1 = 0

x2 − 2 − y2 − xyz = 0
ey + 3 − ex − 2 = 0.

Â Find a non-zero, twice differentiable function y(t) for which

t y′′(t) + (1 − t)y′(t) − y = 0.

Here f : C2(R)→ C(R) is defined by y 7→ ty′′ + (1 − t)y′ − y.

Comment:

À There are no general theorems of existence/uniqueness for nonlinear sys-
tems.

Á Direct versus iterative methods.
Â Iterative algorithms: accuracy, efficiency, robustness, ease of implementa-

tion, tolerance, stopping criteria.
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2.1 The bisection method

The bisection method applies for root finding in R, and is based on the following
elementary theorem:

Theorem 2.1 (Intermediate value theorem) Let f ∈ C[a, b] such that (with no
loss of generality) f (a) < f (b). For every y such that f (a) < y < f (b) there exists
an x ∈ (a, b) such that f (x) = y. In particular, if f (a) f (b) < 0, then there exists an
x ∈ (a, b) such that f (x) = 0.

The method of proof coincides with the root finding algorithm. Given a, b such
that f (a) f (b) < 0, we set c = 1

2 (a + b) to be the mid-point. If f (a) f (c) < 0 then
we set b := c, otherwise we set a := c.

Stopping criteria:

À Number of iterations M.
Á | f (c)| < ε.
Â |b − a| < δ.

Algorithm

Algorithm 2.1.1: (a, b,M, δ, ε)

fa ← f (a)
fb ← f (b)
∆← b − a
if fa fb > 0 return (error)
for k ← 1 to M

do



∆← 1
2∆

c← a + ∆

fc ← f (c)
if |∆| < δ or | fc| < ε return (c)
if fc fa < 0

then b← c, fb ← fc

else a← c, fa ← fc

return (error)



Nonlinear systems of equations 17

Comments:

À There is one evaluation of f per iteration (“cost” is usually measured by the
number of function evaluations).

Á There may be more than one root.

Error analysis Given (a, b) the initial guess is x0 = 1
2 (a + b). Let en = xn − r be

the error, where r is the/a root. Clearly,

|e0| ≤
1
2
|b − a| ≡ E0.

After n steps we have

|en| ≤
1

2n+1 |b − a| ≡ En.

Note that we don’t know what en is (if we knew the error, we would know the so-
lution); we only have an error bound, En. The sequence of error bounds satisfies,

En+1 =
1
2

En,

so that the bisection method converges linearly.

Discussion: The difference between error and mistake.

Complexity Consider an application of the bisection method, where the stop-
ping criterion is determined by δ (proximity to the root). The number of steps
needed is determined by the condition:

1
2n+1 |b − a| ≤ δ,

i.e.,

n + 1 ≥ log2
|b − a|
δ

.

(If for example the initial interval is of length 1 and a tolerance of 10−16 is needed,
then the number of steps exceeds n = 50.)
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Advantages and disadvantages

Advantages Disvantages
always works systems in Rn

easy to implement slow convergence
requires only continuity requires initial data a, b

. Exercise 2.1 Find a positive root of

x2 − 4x sin x + (2 sin x)2 = 0

accurate to two significant digits. Use a hand calculator!

2.2 Iterative methods

We are looking for roots r of a function f : X → Y . Iterative methods generate an
approximating sequence (xn) by starting with an initial value x0, and generating
the sequence with an iteration function Φ : X → X,

xn+1 = Φ(xn).

Suppose that each fixed point ζ of Φ corresponds to a root of f , and that Φ is
continuous in a neighborhood of ζ, then if the sequence (xn) converges, then by
the continuity of Φ, it converges to a fixed point of Φ, i.e., to a root of f .

General questions (1) How to choose Φ? (2) Will the sequence (xn) converge?
How fast will it converge?

Example 2.2 Set Φ(x) = x − f (x) so that

xn+1 = xn − f (xn).

If the sequence converges and f is continuous, then it converges to a root of f .

Example 2.3 (Newton’s method in R) If f is differentiable, Newton’s method
for root finding consists of the following iterations:

xn+1 = xn −
f (xn)
f ′(xn)

.
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Figure 2.1: Illustration of Newton’s iterative method for root finding in R.

Figure 2.1 illustrates the idea behind this method.

Another way to get to the same iteration function is,

0 = f (r) = f (xn) + (r − xn) f ′(xn) +
1
2

(r − xn)2 f ′′(xn + θ(r − xn)),

for some θ ∈ (0, 1). If we neglect the remainder we obtain

r ≈ xn −
f (xn)
f ′(xn)

.

vComputer exercise 2.1 Write a Matlab function which gets for input the name
of a real-valued function f , an initial value x0, a maximum number of iterations
M, and a tolerance ε. Let your function then perform iterations based on Newton’s
method for finding roots of f , until either the maximum of number iterations has
been exceeded, or the convergence criterion | f (x)| ≤ ε has been reached. Experi-
ment your program on the function f (x) = tan−1 x, whose only root is x = 0. Try
to characterize those initial values x0 for which the iteration method converges.

Example 2.4 (Newton’s method in Rn) Now we’re looking for the root r = (r1, . . . , rn)
of a function f : Rn → Rn, which means

f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...

fn(x1, . . . , xn) = 0
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Figure 2.2: Illustration of the secant method for root finding in R.

Using the same linear approximation:

0 = f (r) ≈ f (xn) + d f (xn) · (r − xn),

where d f is the differential of f , from which we obtain

r ≈ xn − [d f (xn)]−1 · f (xn) ≡ xn+1.

Example 2.5 (Secant method in R) Slightly different format. The secant line is

y = f (xn) +
f (xn) − f (xn−1)

xn − xn−1
(x − xn).

We define xn+1 to be the intersection with the x-axis:

xn+1 = xn −
f (xn)

[ f (xn) − f (xn−1)]/(xn − xn−1)

(see Figure 2.2). Think of it as an iteration(
xn+1

xn

)
= Φ

(
xn

xn−1

)
,

which requires at startup the input of both x0 and x1.

Definition 2.1 (Local and global convergence) Let Φ be an iteration function on
a complete normed vector space (X, ‖ · ‖), and let ζ be a fixed point of Φ. The
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iterative method defined by Φ is said to be locally convergent if there exists a
neighbourhood N(ζ) of ζ, such that for all x0 ∈ N(ζ), the sequence (xn) generated
by Φ converges to ζ. The method is called globally convergent if N(ζ) can be
extended to the whole space X.

Definition 2.2 (Order of an iteration method) Let Φ be an iteration function on
a complete normed vector space (X, ‖ · ‖), and let ζ be a fixed point of Φ. If there
exists a neighbourhood N(ζ) of ζ, such that

‖Φ(x) − ζ‖ ≤ C‖x − ζ‖p, ∀x ∈ N(ζ),

for some C > 0 and p > 1, or for 0 < C < 1 and p = 1, then the iteration method
is said to be of order (at least) p at the point ζ.

Theorem 2.2 Every iterative method Φ of order at least p at ζ is locally conver-
gent at that point.

Proof : Let N(ζ) be the neighbourhood of ζ where the iteration has order at least
p. Consider first the case C < 1, p = 1, and take any open ball

Br(ζ) = {x ∈ X : ‖x − ζ‖ < r} ⊆ N(ζ).

If x ∈ Br(ζ) then
‖Φ(x) − ζ‖ ≤ C‖x − ζ‖ < ‖x − ζ‖ < r,

hence Φ(x) ∈ Br(ζ) and the entire sequence lies in Br(ζ). By induction,

‖xn − ζ‖ ≤ Cn‖x0 − ζ‖ → 0,

hence the sequence converges to ζ.

If p > 1, take Br(ζ) ⊆ N(ζ), with r sufficiently small so that Crp−1 < 1. If
x ∈ Br(ζ) then

‖Φ(x) − ζ‖ ≤ C‖x − ζ‖p−1‖x − ζ‖ < Crp−1‖x − ζ‖ < ‖x − ζ‖,

hence Φ(x) ∈ Br(ζ) and the entire sequence lies in Br(ζ). By induction,

‖xn − ζ‖ ≤ (Crp−1)n‖x0 − ζ‖ → 0,

hence the sequence converges to ζ.

n
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One dimensional cases Consider the simplest case where (X, ‖·‖) = (R, |·|). If Φ

is differentiable in a neighbourhood N(ζ) of a fixed point ζ, with |Φ′(x)| ≤ C < 1
for all x ∈ N(ζ), then

Φ(x) = Φ(ζ) + Φ′(ζ + θ(x − ζ))(x − ζ),

from which we obtain
|Φ(x) − ζ | ≤ C|x − ζ |,

i.e., the iteration method is at least first order and therefore converges locally.
[Show geometrically the cases Φ′(x) ∈ (−1, 0) and Φ′(x) ∈ (0, 1).]

Example 2.6 Suppose we want to find a root ζ of the function f ∈ C1(R) with the
iteration

xn+1 = xn + α f (xn),

i.e., Φ(x) = x+α f (x). Suppose furthermore that f ′(ζ) = M. Then, for every ε > 0
there exists a neighbourhood N(ζ) = (ζ − δ, ζ + δ) such that

| f ′(x) − M| ≤ ε, ∀x ∈ N(ζ).

In this neighbourhood,
|Φ′(x)| = |1 + α f ′(x)|,

which is less than one provided that

−2 + |α|ε < αM < −|α|ε.

Thus, the iteration method has order at least linear provided that α has sign oppo-
site to that of f ′(ζ), and is sufficiently small in absolute value.

If Φ is sufficiently often differentiable in a neighbourhood N(ζ) of a fixed point ζ,
with

Φ′(ζ) = Φ′′(ζ) = · · · = Φ(p−1)(ζ) = 0,

then for all x ∈ N(ζ),

Φ(x) = Φ(ζ) + Φ′(ζ)(x − ζ) + · · · +
Φ(p)(ζ + θ(x − ζ))

p!
(x − ζ)p,

i.e.,

|Φ(x) − ζ | =
|Φ(p)(ζ + θ(x − ζ))|

p!
|x − ζ |p.
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If Φ(p) is bounded in some neighbourhood of ζ, say |Φ(p)(x)| ≤ M, then

|Φ(x) − ζ | ≤
M
p!
|x − ζ |p,

so that the iteration method is at least of order p, and therefore locally convergent.
Moreover,

lim
n→∞

|Φ(x) − ζ |
|x − ζ |p

=
|Φ(p)(ζ)|

p!
,

i.e., the method is precisely of order p.

Example 2.7 Consider Newton’s method in R,

Φ(x) = x −
f (x)
f ′(x)

,

and assume that f has a simple zero at ζ, i.e., f ′(ζ) , 0. Then,

Φ′(ζ) =
f (x) f ′′(x)
[ f ′(x)]2

∣∣∣∣∣
x=ζ

= 0,

and
Φ′′(ζ) =

f ′′(ζ)
f ′(ζ)

,

the latter being in general different than zero. Thus, Newton’s method is of second
order and therefore locally convergent.

. Exercise 2.2 The two following sequences constitute iterative procedures to
approximate the number

√
2:

xn+1 = xn −
1
2

(x2
n − 2), x0 = 2,

and
xn+1 =

xn

2
+

1
xn
, x0 = 2.

À Calculate the first six elements of both sequences.
Á Calculate (numerically) the error, en = xn−

√
2, and try to estimate the order

of convergence.
Â Estimate the order of convergence by Taylor expansion.
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. Exercise 2.3 Let a sequence xn be defined inductively by

xn+1 = F(xn).

Suppose that xn → x as n → ∞ and that F′(x) = 0. Show that xn+2 − xn+1 =

o(xn+1 − xn). (Hint: assume that F is continuously differentiable and use the mean
value theorem.)

. Exercise 2.4 Analyze the following iterative method,

xn+1 = xn −
f 2(xn)

f (xn + f (xn)) − f (xn)
,

designed for the calculation of the roots of f (x) (this method is known as Stef-
fensen’s method). Prove that this method converges quadratically (order 2) under
certain assumptions.

. Exercise 2.5 Kepler’s equation in astronomy is x = y−ε sin y, with 0 < ε < 1.
Show that for every x ∈ [0, π], there is a y satisfying this equation. (Hint: Interpret
this as a fixed-point problem.)

Contractive mapping theorems General theorems on the convergence of iter-
ative methods are based on a fundamental property of mapping: contraction.

Theorem 2.3 (Contractive mapping theorem) Let K be a closed set in a complete
normed space (X, ‖ · ‖), and let Φ be a continuous mapping on X such that (i)
Φ(K) ⊆ K, and there exists a C < 1 such that for every x, y ∈ K,

‖Φ(x) − Φ(y)‖ ≤ C‖x − y‖.

Then,

À The mapping Φ has a unique fixed point ζ in K.
Á For every x0 ∈ K, the sequence (xn) generated by Φ converges to ζ.

Proof : Since Φ(K) ⊆ K, x0 ∈ K implies that xn ∈ K for all n. From the contractive
property of Φ we have

‖xn − xn−1‖ ≤ C‖xn−1 − xn−2‖ ≤ Cn−1‖x1 − x0‖.
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Now, write xn as

xn = x0 +

n∑
j=1

(x j − x j−1).

For any m < n,

‖xn − xm‖ ≤

n∑
j=m+1

‖x j − x j−1‖ ≤

n∑
j=m+1

C j−1‖x1 − x0‖

≤

∞∑
j=m+1

C j−1‖x1 − x0‖ ≤
Cm

1 −C
‖x1 − x0‖,

which converges to zero as m, n→ ∞. Thus (xn) is a Cauchy sequence, and since
X is complete it converges to a limit ζ, which must reside in K since K is closed.
The limit point must on the other hand be a fixed point of Φ.

Uniqueness is immediate for if ζ, ξ are distinct fixed point in K, then

‖ζ − ξ‖ = ‖Φ(ζ) − Φ(ξ)‖ ≤ C‖ζ − ξ‖ < ‖ζ − ξ‖,

which is a contradiction. n

Example 2.8 Consider for example the mapping

xn+1 = 3 −
1
2
|xn|

on R. Then,

|xn+1 − xn| =
1
2
||xn| − |xn−1|| ≤

1
2
|xn − xn−1|.

Hence, for every x0 the sequence (xn) converges to the unique fixed point ζ = 2.

. Exercise 2.6 Let p be a positive number. What is the value of the following
expression:

x =

√
p +

√
p +
√

p + · · ·.

By that, I mean the sequence x0 = p, xk+1 =
√

p + xk. (Interpret this as a fixed-
point problem.)
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. Exercise 2.7 Show that the function

F(x) = 2 + x − tan−1 x

satisfies |F′(x)| < 1. Show then that F(x) doesn’t have fixed points. Why doesn’t
this contradict the contractive mapping theorem?

. Exercise 2.8 Bailey’s iteration for calculating
√

a is obtained by the iterative
scheme:

xn+1 = g(xn) g(x) =
x(x2 + 3a)

3x2 + a
.

Show that this iteration is of order at least three.

. Exercise 2.9 (Here is an exercise which tests whether you really understand
what root finding is about.) One wants to solve the equation x + ln x = 0, whose
root is x ∼ 0.5, using one or more of the following iterative methods:

(i) xk+1 = − ln xk (ii) xk+1 = e−xk (iii) xk+1 =
xk + e−xk

2
.

À Which of the three methods can be used?
Á Which method should be used?
Â Give an even better iterative formula; explain.

2.3 Newton’s method in R

We have already seen that Newton’s method is of order two, provided that f ′(ζ) ,
0, therefore locally convergent. Let’s first formulate the algorithm

Algorithm 2.3.1: N(x0,M, ε)

y← f (x0)
if |y| < ε return (x0)
for k ← 1 to M

do


x← x0 − f (x0)/ f ′(x0)
y← f (x0)
if |y| < ε return (x)
x0 ← x

return (error)
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Note that in every iteration we need to evaluate both f and f ′.

Newton’s method does not, in general, converge globally [show graphically the
example of f (x) = x − tan−1.] The following theorem characterizes a class of
functions f for which Newton’s method converges globally:

Theorem 2.4 Let f ∈ C2(R) be monotonic, convex and assume it has a root. Then
the root is unique and Newton’s method converges globally.

Proof : The uniqueness of the root is obvious. It is given that f ′′(x) > 0, and
assume, without loss of generality, that f ′(x) > 0. If en = xn − ζ, then

0 = f (ζ) = f (xn) − en f ′(xn) +
1
2

e2
n f ′′(xn − θen),

hence

en+1 = en −
f (xn)
f ′(xn)

=
1
2

f ′′(xn − θen)
f ′(xn)

e2
n > 0.

Thus, the iterates starting from e1 are always to the right of the root. On the other
hand, since

xn+1 − xn = −
f (xn)
f ′(xn)

< 0,

it follows that (xn) is a monotonically decreasing sequence bounded below by ζ
hence it converges. The limit must coincide with ζ by continuity. n

Newton’s method when f has a double root We now examine the local con-
vergence of Newton’s method when ζ is a double root, i.e., f (ζ) = f ′(ζ) = 0. We
assume that f ′′(ζ) , 0, so that there exists a neighbourhood of ζ where f ′(x) , 0.
As above, we start with the relation

en+1 = en −
f (xn)
f ′(xn)

.

Using Taylor’s expansion we have

0 = f (ζ) = f (xn) − en f ′(xn) +
1
2

e2
n f ′′(xn − θen),
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from which we extract f (xn) and substitute above to get

en+1 =
1
2

e2
n

f ′′(xn − θen)
f ′(xn)

.

The problem is that the denominator is not bounded away from zero. We use
Taylor’s expansion for f ′:

0 = f ′(ζ) = f ′(xn) − en f ′′(xn − θ1en),

from which we extract f ′(xn) and finally obtain

en+1 =
1
2

en
f ′′(xn − θen)
f ′′(xn − θ1en)

.

Thus, Newton’s method is locally convergent, but the order of convergence re-
duces to first order. In particular, if the sequence (xn) converges then

lim
n→∞

en+1

en
=

1
2
.

The same result can be derived from an examination of the iteration function Φ.
The method is at least second order if Φ′(ζ) = 0 and at least first order if |Φ′(ζ)| <
1. Now,

Φ′(x) =
f (x) f ′′(x)
[ f ′(x)]2 .

In the limit x→ ζ we have, by our assumptions, f (x) ∼ a(x − ζ)2, to that

lim
x→ζ

Φ′(x) =
1
2
.

How can second order convergence be restored? The iteration method has to be
modified into

xn+1 = xn − 2
f (xn)
f ′(xn)

.

If is easily verified then that
lim
x→ζ

Φ′(x) = 0.

. Exercise 2.10 Your dog chewed your calculator and damaged the division
key! To compute reciprocals (i.e., one-over a given number R) without division,
we can solve x = 1/R by finding a root of a certain function f with Newton’s
method. Design such an algorithm (that, of course, does not rely on division).
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. Exercise 2.11 Prove that if r is a root of multiplicity k (i.e., f (r) = f ′(r) =

· · · = f (k−1)(r) = 0 but f (k)(r) , 0), then the quadratic convergence of Newton’s
method will be restored by making the following modification to the method:

xn+1 = xn − k
f (xn)
f ′(xn)

.

. Exercise 2.12 Similarly to Newton’s method (in one variable), derive a method
for solving f (x) given the functions f (x), f ′(x) and f ′′(x). What is the rate of con-
vergence?

. Exercise 2.13 What special properties must a function f have if Newton’s
method applied to f converges cubically?

2.4 The secant method in R

Error analysis The secant method is

xn+1 = xn − (xn − xn−1)
f (xn)

f (xn) − f (xn−1)
.

If we want to analyze this method within our formalism of iterative methods we
have to consider an iteration of a couple of numbers. To obtain the local conver-
gence properties of the secant method we can resort to an explicit calculation.

Subtracting ζ from both side we get

en+1 = en − (en − en−1)
f (xn)

f (xn) − f (xn−1)

= −
f (xn−1)

f (xn) − f (xn−1)
en +

f (xn)
f (xn) − f (xn−1)

en−1

=
f (xn)/en − f (xn−1)/en−1

f (xn) − f (xn−1)
en−1en

=
xn − xn−1

f (xn) − f (xn−1)
f (xn)/en − f (xn−1)/en−1

xn − xn−1
en−1en

The first term can be written as

xn − xn−1

f (xn) − f (xn−1)
=

1
f ′(xn−1 + θ(xn − xn−1))

.
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The second term can be written as

g(xn) − g(xn−1)
xn − xn−1

= g′(xn−1 + θ1(xn − xn−1)),

where
g(x) =

f (x)
x − ζ

=
f (x) − f (ζ)

x − ζ
.

Here comes a useful trick. We can write

f (x) − f (ζ) =

∫ x

ζ

f ′(s) ds = (x − ζ)
∫ 1

0
f ′(sζ + (1 − s)x) ds,

so that

g(x) =

∫ 1

0
f ′(sζ + (1 − s)x) ds.

We can then differentiate under the integral sign so get

g′(x) =

∫ 1

0
(1 − s) f ′′(sζ + (1 − s)x) ds,

and by the integral mean value theorem, there exists a point ξ between x and ζ
such that

g′(x) = f ′′(ξ)
∫ 1

0
(1 − s) ds =

1
2

f ′′(ξ).

Combining together, there are two intermediate points so that

en+1 =
f ′′(ξ)

2 f ′(ξ1)
enen−1,

and sufficiently close to the root,

en+1 ≈ C en−1en.

What is then the order of convergence? Guess the ansatz en = a eαn−1, then

a eαn = C (a−1en)1/αen,

which implies that α2 = α + 1, or α = 1
2 (1 +

√
5) ≈ 1.62 (the golden ratio). Thus,

the order of convergence is super-linear but less that second order. On the other
hand, each iteration require only one function evaluation (compared to two for
Newton)!
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. Exercise 2.14 The method of “false position” for solving f (x) = 0 starts with
two initial values, x0 and x1, chosen such that f (x0) and f (x1) have opposite signs.
The next guess is then calculated by

x2 =
x1 f (x0) − x0 f (x1)

f (x0) − f (x1)
.

Interpret this method geometrically in terms of the graph of f (x).

2.5 Newton’s method in Rn

In the first part of this section we establish the local convergence property of the
multi-dimensional Newton method.

Definition 2.3 (Differentiability) Let f : Rn → Rn. f is said to be differentiable
at the point x ∈ Rn, if there exists a linear operator on Rn (i.e., an n× n matrix) A,
such that

lim
y→x

‖ f (y) − f (x) − A(y − x)‖
‖y − x‖

= 0.

We call the matrix A the differential of f at the point x and denote it by d f (x).

Comment: While the choice of norm of Rn is not unique, convergence in one norm
implies convergence in all norm for finite dimensional spaces. We will typically
use here the Euclidean norm.

Definition 2.4 (Norm of an operator) Let (X, ‖ · ‖) be a normed linear space and
B(X) be the space of continuous linear transformations on X. Then, B(X) is a
linear space which can be endowed with a norm,

‖A‖ = sup
‖x‖,0

‖Ax‖
‖x‖

, A ∈ B(X).

In particular, every vector norm induces a subordinate matrix norm.

Comments:

À By definition, for all x ∈ X and A ∈ B(X),

‖Ax‖ ≤ ‖A‖‖x‖.
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Á We will return to subordinate matrix norms in depth in the next chapter.

Lemma 2.1 Suppose that d f (x) exists in a convex set K, and there exists a con-
stant C > 0, such that

‖d f (x) − d f (y)‖ ≤ C‖x − y‖ ∀x, y ∈ K,

then
‖ f (x) − f (y) − d f (y)(x − y)‖ ≤

C
2
‖x − y‖2 ∀x, y ∈ K.

Proof : Consider the function

ϕ(t) = f (y + t(x − y))

defined on t ∈ [0, 1]. Since K is convex then ϕ(t) is differentiable on the unit
segment, with

ϕ′(t) = d f (y + t(x − y)) · (x − y),

and

‖ϕ′(t) − ϕ′(0)‖ ≤ ‖d f (y + t(x − y)) − d f (y)‖‖x − y‖ ≤ Ct‖x − y‖2. (2.1)

On the other hand,

∆ ≡ f (x) − f (y) − d f (y)(x − y) = ϕ(1) − ϕ(0) − ϕ′(0)

=

∫ 1

0
[ϕ′(t) − ϕ′(0)] dt,

from which follows, upon substitution of (2.1),

‖∆‖ ≤

∫ 1

0
‖ϕ′(t) − ϕ′(0)‖ dt ≤

C
2
‖x − y‖2.

n

With this lemma, we are in measure to prove the local quadratic convergence of
Newton’s method.
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Theorem 2.5 Let K ⊆ Rn be an open set, and K0 be a convex set, K0 ⊂ K. Suppose
that f : K → Rn is differentiable in K0 and continuous in K. Let x0 ∈ K0, and
assume the existence of positive constants α, β, γ so that

À ‖d f (x) − d f (y)‖ ≤ γ‖x − y‖ in K0.
Á [d f (x)]−1 exists and ‖[d f (x)]−1‖ ≤ β in K0.
Â ‖d f (x0)]−1 f (x0)‖ ≤ α,

with
h ≡

αβγ

2
< 1,

and
Br(x0) ⊆ K0,

where
r =

α

1 − h
.

Then,

À The Newton sequence (xn) defined by

xn+1 = xn − [d f (xn)]−1 f (xn)

is well defined and contained in Br(x0).
Á The sequence (xn) converges in the closure of Br(x0) to a root ζ of f .
Â For all n,

‖xn − ζ‖ ≤ α
h2n−1

1 − h2n ,

i.e., the convergence is at least quadratic.

Proof : We first show that the sequence remains in Br(x0). The third assumption
implies

‖x1 − x0‖ = ‖d f (x0)]−1 f (x0)‖ ≤ α < r,
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i.e., x1 ∈ Br(x0). Suppose that the sequence remains in Br(x0) up to the k-th
element. Then xk+1 is well defined (by the second assumption), and

‖xk+1 − xk‖ = ‖[d f (xk)]−1 f (xk)‖ ≤ β‖ f (xk)‖
= β‖ f (xk) − f (xk−1) − d f (xk−1)(xk − xk−1)‖,

where we have used the fact that f (xk−1) + d f (xk−1)(xk − xk−1) = 0. Now, by the
first assumption and the previous lemma,

‖xk+1 − xk‖ ≤
βγ

2
‖xk − xk−1‖

2.

From this, we can show inductively that

‖xk+1 − xk‖ ≤ αh2k−1, (2.2)

since it is true for k = 0 and if it is true up to k, then

‖xk+1 − xk‖ ≤
βγ

2
α2(h2k−1−1)2 = α

αβγ

2
h2k−2 < αh2k−1.

From this we have

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ α(1 + h + h3 + · + h2k−1) <
α

1 − h
= r,

i.e., xk+1 ∈ Br(x0), hence the entire sequence.

Inequality (2.2) implies also that (xn) is a Cauchy sequence, for

‖xn+1 − xm‖ ≤ ‖xn+1 − xn‖ + · · · + ‖xm+1 − xm‖

≤ α
(
h2m−1 + · · · + h2n−1

)
< αh2m−1

(
1 + h2m

+ (h2m
)3 + . . .

)
< α

h2m−1

1 − h2m .

which tends to zero as m, n → ∞. Thus the sequence (xn) converges to a limit
ζ ∈ Br(x0). As a side results we obtain that

‖ζ − xm‖ ≤ α
h2m−1

1 − h2m .

It remains to show that ζ is indeed a root of f . The first condition implies the
continuity of the differential of f , so that taking limits:

ζ = ζ − [d f (ζ)]−1 f (ζ),

and since by assumption, d f is invertible, it follows that f (ζ) = 0. n
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vComputer exercise 2.2 Use Newton’s method to solve the system of equations

xy2 + x2y + x4 = 3

x3y5 − 2x5y − x2 = −2.

Start with various initial values and try to characterize the “basin of convergence”
(the set of initial conditions for which the iterations converge).

Now, Matlab has a built-in root finder fsolve(). Try to solve the same problem
using this functions, and evaluate whether it performs better or worse than your
own program in terms of both speed and robustness.

. Exercise 2.15 Go the the following site and enjoy the nice pictures:

http://aleph0.clarku.edu/˜djoyce/newton/newton.html

(Read the explanations, of course....)

2.6 A modified Newton’s method in Rn

Newton’s method is of the form

xk+1 = xk − dk,

where
dk = [d f (xk)]−1 f (xk).

When this method converges, it does so quadratically, however, the convergence
is only guaranteed locally. A modification to Newton’s method, which converges
under much wider conditions is of the following form:

xk+1 = xk − λkdk,

where the coefficients λk are chosen such that the sequence (h(xk)), where

h(x) = f T (x) f (x) = ‖ f (x)‖2,

is strictly monotonically decreasing (here ‖ · ‖ stands for the Euclidean norm in
Rn). Clearly, h(xk) ≥ 0, and if the sequence (xk) converges to a point ζ, where
h(ζ) = 0 (i.e., a global minimum of h(x)), then f (ζ) = 0. The modified Newton
method aims to minimize h(x) rather than finding a root of f (x).
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Definition 2.5 Let h : Rn → R and ‖ · ‖ be the Euclidean norm in Rn. For
0 < γ ≤ 1 we define

D(γ, x) =

{
s ∈ Rn : ‖s‖ = 1,

Dh(x)
‖Dh(x)‖

· s ≥ γ
}
,

which is the set of all directions s which form with the gradient of h a not-too-
accute angle.

Lemma 2.2 Let h : Rn → R be in C1 in a neighbourhood V(ζ) of a point ζ.
Suppose that Dh(ζ) , 0 and let 0 < γ ≤ 1. Then there exist a neighbourhood
U(ζ) ⊆ V(ζ) and a number λ > 0, such that

h(x − µs) ≤ h(x) −
µγ

4
‖Dh(ζ)‖

for all x ∈ U(ζ), s ∈ D(γ, x), and 0 ≤ µ ≤ λ.

Proof : Consider first the set

U1(ζ) =

{
x ∈ V(ζ) : ‖Dh(x) − Dh(ζ)‖ ≤

γ

4
‖Dh(ζ)‖

}
,

which by the continuity of Dh and the non-vanishing of Dh(ζ) is a non-empty set
and a neighbourhood of ζ. Let also

U2(ζ) =
{
x ∈ V(ζ) : D(γ, x) ⊆ D(γ2 , ζ)

}
,

which again is a non-empty neighbourhood of ζ. Indeed, it consists of all x ∈ V(ζ)
for which {

s :
Dh(x)
‖Dh(x)‖

· s ≥ γ
}
⊆

{
s :

Dh(ζ)
‖Dh(ζ)‖

· s ≥
γ

2

}
.

Choose now a λ such that

B2λ(ζ) ⊆ U1(ζ) ∩ U2(ζ),

and finally set
U(ζ) = Bλ(ζ).

Now, for all x ∈ U(ζ), s ∈ D(γ, x) and 0 ≤ µ ≤ λ, there exists a θ ∈ (0, 1) such that

h(x) − h(x − µs) = µDh(x − θµs) · s
= µ {(Dh(x − θµs) − Dh(ζ)) · s + Dh(ζ) · s} .
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Now x ∈ Bλ(ζ) and µ ≤ λ implies that

x − µs, x − θµs ∈ B2λ(ζ) ⊆ U1(ζ) ∩ U2(ζ),

and by the membership in U1(ζ),

(Dh(x − θµs) − Dh(ζ)) · s ≥ −‖Dh(x − θµs) − Dh(ζ)‖ ≥ −
γ

4
‖Dh(ζ)‖,

whereas by the membership in U2(ζ), s ∈ D(γ2 , ζ), hence

Dh(ζ) · s ≥
γ

2
‖Dh(ζ)‖,

and combining the two,

h(x) − h(x − µs) ≥ −µ
γ

4
‖Dh(ζ)‖ + µ

γ

2
‖Dh(ζ)‖ =

µγ

4
‖Dh(ζ)‖.

This completes the proof. n

Minimization algorithm Next, we describe an algorithm for the minimization
of a function h(x) via the construction of a sequence (xk).

À Choose sequences (γk), (σk), satisfying the constraints

sup
k
γk ≤ 1, γ ≡ inf

k
γk > 0, σ ≡ inf

k
σk > 0,

as well as a starting point x0.
Á For every k, choose a search direction sk ∈ D(γk, xk) and set

xk+1 = xk − λksk,

where λk ∈ [0, σk‖Dh(xk)‖] is chosen such to minimize h(xk − λksk).

Theorem 2.6 Let h : Rn → R and x0 ∈ R
n be such that

À The set K = {x : h(x) ≤ h(x0)} is compact.
Á h ∈ C1 in an open set containing K.

Then,
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À The sequence (xk) is in K and has at least one accumulation point ζ.

Á Each accumulation point ζ is a critical point of h, Dh(ζ) = 0.

Proof : Since, by construction, the sequence (h(xk)) is monotonically decreasing
then the {h(xk)} are all in K. Since K is compact, then the set {xk} has at least one
accumulation point ζ.

Without loss of generality we can assume that xk → ζ, otherwise we consider a
converging sub-sequence. Assume that ζ is not a critical point, Dh(ζ) , 0. From
the previous lemma, we know that there exist a neighbourhood U(ζ) and a number
λ > 0, such that

h(x − µs) ≤ h(x) −
µγ

4
‖Dh(ζ)‖ (2.3)

for all x ∈ U(ζ), s ∈ D(γ, x), and 0 ≤ µ ≤ λ. Since xk → ζ and because Dh is
continuous, it follows that for sufficiently large k,

À xk ∈ U(ζ).

Á ‖Dh(xk)‖ ≥ 1
2‖Dh(ζ)‖.

Set now

Λ = min
(
λ,

1
2
σ‖Dh(ζ)‖

)
, ε = Λ

γ

4
‖Dh(ζ)‖ > 0.

Since σk ≥ σ it follows that for sufficiently large k,

[0,Λ] ⊆ [0, σk
1
2
‖Dh(ζ)‖] ⊆ [0, σk‖Dh(xk)‖],

the latter being the set containing λk in the minimization algorithm. Thus, by the
definition of xk+1,

h(xk+1) ≤ h(xk − µsk),

for every 0 ≤ µ ≤ Λ. Since Λ ≤ λ, xk ∈ U(ζ), and sk ∈ D(γk, xk) ⊆ D(γ, xk), it
follows from (2.3) that

h(xk+1) ≤ h(xk) −
Λγ

4
‖Dh(ζ)‖ = h(xh) − ε.

This means that h(xk)→ −∞ which contradicts its lower-boundedness by h(ζ). n
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The modified Newton algorithm The modified Newton algorithm works as
follows: at each step

xk+1 = xk − λkdk, dk = [d f (xk)]−1 f (xk),

where λk ∈ (0, 1] is chosen such to minimize h(xk−λkdk), where h(x) = f T (x) f (x).

Theorem 2.7 Let f : Rn → Rn and x0 ∈ R
n satisfy the following properties:

À The set K = {x : h(x) ≤ h(x0)} with h(x) = f T (x) f (x) is compact.
Á f ∈ C1 in some open set containing K.
Â [d f (x)]−1 exists in K.

Then, the sequence xk defined by the modified Newton method is well-defined, and

À The sequence (xk) is in K and has at least one accumulation point.
Á Every such accumulation point is a zero of f .
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Chapter 3

Numerical linear algebra

3.1 Motivation

In this chapter we will consider the two following problems:

À Solve linear systems Ax = b, where x, b ∈ Rn and A ∈ Rn×n.
Á Find x ∈ Rn that minimizes

m∑
i=1

(Ax − b)2
i ,

where b ∈ Rm and A ∈ Rm×n. When m > n there are more equations than
unknowns, so that in general, Ax = b cannot be solved.

Example 3.1 (Stokes flow in a cavity) Three equations,

∂p
∂x

=
∂2u
∂x2 +

∂2u
∂y2

∂p
∂y

=
∂2v
∂x2 +

∂2v
∂y2

∂u
∂x

+
∂u
∂y

= 0,

for the functions u(x, y), v(x, y), and p(x, y); (x, y) ∈ [0, 1]2. The boundary condi-
tions arem

u(0, y) = u(1, y) = u(x, 0) = 0, u(x, 1) = 1
v(0, y) = v(1, y) = v(x, 0) = v(x, 1) = 0.
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Solve with a staggered grid. A linear system in n2 + 2n(n− 1) unknowns. (And by
the way, it is singular).

Example 3.2 (Curve fitting) We are given a set of m points (ai, bi) in the plane,
and we want to find the best cubic polynomial through these points. I.e, we are
looking for the coefficients x1, x2, x3, x4, such that the polynomial

p(y) =

4∑
j=1

x jy j−1

minimizes
m∑

i=1

[
p(yi) − bi

]2 ,

where the vector p(yi) is of the form Ax, and

A =


1 y1 y2

1 y3
1

1 y2 y2
2 y3

2
...

...
...

...
1 ym y2

m y3
m


3.2 Vector and matrix norms

Definition 3.1 (Norm) Let X be a (real or complex) vector space. It is normed
if there exists a function ‖ · ‖ : X → R (the norm) with the following properties:

À ‖x‖ ≥ 0 with ‖x‖ = 0 iff x = 0.
Á ‖αx‖ = |α|‖x‖.
Â ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Example 3.3 The most common vector norms are the p-norms defined (on Cn)
by

‖x‖p =

 n∑
i=1

|xi|
p

1/p

,

which are norms for 1 ≤ p < ∞. Another common norm is the infinity-norm,

‖x‖∞ = max
1≤i≤n
|xi|.

It can be shown that ‖ · ‖∞ = limp→∞ ‖ · ‖p.
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. Exercise 3.1 Show that the p-norms do indeed satisfy the properties of a
norm.

Solution 3.1: The positivity and homogeneity are trivial. The triangle inequality is proved
below.

Lemma 3.1 (Hölder inequality) Let p, q > 1 with 1/p + 1/q = 1. Then,

|

n∑
k=1

xkyk| ≤

 n∑
k=1

|xk|
p

1/p  n∑
k=1

|xk|
q

1/q

.

Proof : From Young’s inequality 1

|ab| ≤
|a|p

p
+
|b|q

q
,

follows

|
∑n

k=1 xkyk|

‖x‖p‖y‖q
≤

n∑
k=1

|xk|

‖x‖p

|yk|

‖y‖q
≤

n∑
k=1

1
p
|xk|

p

‖x‖p
p

+

n∑
k=1

1
q
|yk|

q

‖y‖qq
≤

1
p

+
1
q

= 1.

n

Lemma 3.2 (Minkowski inequality) Let p, q > 1 with 1/p + 1/q = 1, then n∑
k=1

|xk + yk|
p

1/p

≤

 n∑
k=1

|xk|
p

1/p

+

 n∑
k=1

|yk|
p

1/p

.

1Since log x is a concave function, then for every a, b > 0,

log
(

1
p

a +
1
q

b
)
≥

1
p

log a +
1
q

log b,

i.e.,
a
p

+
b
q
≥ a1/pb1/q,

and it only remains to substitute a 7→ ap and b 7→ bq.
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Proof : We write

|xk + yk|
p ≤ |xk||xk + yk|

p−1 + |yk||xk + yk|
p−1.

Using Hölder’s inequality for the first term,

n∑
k=1

|xk||xk + yk|
p−1 ≤

 n∑
k=1

|xk|
p

1/p  n∑
k=1

|xk + yk|
q(p−1)

1/q

.

Note that q(p − 1) = p. Similarly, for the second term

n∑
k=1

|yk||xk + yk|
p−1 ≤

 n∑
k=1

|yk|
p

1/p  n∑
k=1

|xk + yk|
p

1/q

,

Summing up,

n∑
k=1

|xk + yk|
p ≤

 n∑
k=1

|xk + yk|
p

1/q (
‖x‖p + ‖y‖p

)
.

Dividing by the factor on the right-hand side, and using the fact that 1−1/q = 1/p
we get the required result. n

Definition 3.2 (Inner product space) Let X be a (complex) vector space. The
function (·, ·) : X × X → C is called an inner product if:

À (x, y) = (y, x).
Á (x, y + z) = (x, y) + (x, z) (bilinearity).
Â (αx, y) = α(x, y).
Ã (x, x) ≥ 0 with (x, x) = 0 iff x = 0.

Example 3.4 For X = Cn the form

(x, y) =

n∑
i=1

xiyi

is an inner product.
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Lemma 3.3 (Cauchy-Schwarz inequality) The following inequality holds in an
inner product space.

|(x, y)|2 ≤ (x, x)(y, y).

Proof : We have,

0 ≤ (x − αy, x − αy) = (x, x) − α(y, x) − α(x, y) + |α|2(y, y).

Suppose that (y, x) = r exp(ıθ), then take α = t exp(−ıθ). For every t,

(x, x) − 2rt + t2(y, y) ≥ 0.

Since we have a quadratic inequality valid for all t we must have

r2 − (x, x)(y, y) ≤ 0,

which completes the proof. n

Comments:

À The Cauchy-Schwarz inequality is a special case of Hölder’s inequality.
Á A third method of proof is from the inequality

0 ≤ ((y, y)x − (x, y)y, (y, y)x − (x, y)y) = (y, y)
[
(x, x)(y, y) − |(x, y)|2

]
.

Lemma 3.4 In an inner product space
√

(x, x) is a norm.

Proof : Let ‖x‖ =
√

(x, x). The positivity and the homogeneity are immediate. The
triangle inequality follows from the Cauchy-Schwarz inequality

‖x + y‖2 = (x + y, x + y) = ‖x‖2 + ‖y‖2 + (x, y) + (y, x)

≤ ‖x‖2 + ‖y‖2 + 2|(x, y)| ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖ + ‖y‖)2.

n
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Definition 3.3 An Hermitian matrix A is called positive definite (s.p.d) if

x†Ax > 0

for all x , 0.

Definition 3.4 (Convergence of sequences) Let (xn) be a sequence in a normed
vector space X. It is said to converge to a limit x if ‖xn − x‖ → 0.

In Rn convergence in norm always implies convergence of each of the component.

Lemma 3.5 The norm ‖ · ‖ is a continuous mapping from X to R.

Proof : This is an immediate consequence of the triangle inequality, for

‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖ + ‖y‖,

hence
|‖x‖ − ‖y‖| ≤ ‖x − y‖.

Take now y = xn and the limit n→ ∞. n

Definition 3.5 Let ‖ · ‖ and ‖ · ‖′ be two norms on X. They are called equivalent
if there exist constants c1, c2 > 0 such that

c1‖x‖ ≤ ‖x‖′ ≤ c2‖x‖

for all x ∈ X.

Theorem 3.1 All norms over a finite dimensional vector space are equivalent.

Proof : Let ‖ · ‖ and ‖ · ‖′ be two norms. It is sufficient to show the existence of a
constant c > 0 such that

‖x‖′ ≤ c‖x‖
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for all x. In fact, it is sufficient to restrict this on the unit ball of the norm ‖ · ‖2.
Thus, we need to show that for all x on the unit ball of ‖ · ‖, the norm ‖ · ‖′ is
bounded. This follows from the fact that the norm is a continuous function and
that the unit ball of a finite-dimensional vector space is compact. n

Lemma 3.6 In Rn the following inequalities hold:

‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞.

. Exercise 3.2 Prove the following inequalities for vector norms:

‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞.

Solution 3.2:

À On the one hand, ‖x‖22 =
∑
|xi|

2 ≤ (
∑

i |xi|)2 = ‖x‖21. On the other hand

‖x‖1 =
∑

i

|xi| =
∑

i

|xi| · 1 ≤

∑
i

x2
i

1/2 ∑
i

12

1/2

=
√

n‖x‖2,

which follows from the Cauchy-Schwarz inequality.
Á We have

‖x‖2∞ = max
i
|xi|

2 ≤
∑

i

|xi|
2 = ‖x‖22 =

∑
i

|xi|
2 ≤ n ×max

i
|xi|

2 = n ‖x‖2∞.

Â Similarly,

‖x‖∞ = max
i
|xi| ≤

∑
i

|xi| = ‖x‖1 =
∑

i

|xi| ≤ n ×max
i
|xi| = n ‖x‖∞.

2If this holds on the unit ball, then for arbitrary x ∈ X,

‖x‖′ = ‖x‖
∥∥∥∥∥ x
‖x‖

∥∥∥∥∥′ ≤ c‖x‖
∥∥∥∥∥ x
‖x‖

∥∥∥∥∥ = c‖x‖.
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Definition 3.6 (Subordinate matrix norm) Let ‖ · ‖ be a norm in X = Rn. For
every A : X → X (a linear operator on the space) we define the following function
‖ · ‖ : B(X, X)→ R,

‖A‖ = sup
0,x∈X

‖Ax‖
‖x‖

. (3.1)

Comments:

À By the homogeneity of the norm we have

‖A‖ = sup
0,x∈X

∥∥∥∥∥A
x
‖x‖

∥∥∥∥∥ = sup
‖x‖=1
‖Ax‖.

Á Since the norm is continuous and the unit ball is compact then,

‖A‖ = max
‖x‖=1
‖Ax‖,

and the latter is always finite.
Â By definition, for all A and x,

‖Ax‖ ≤ ‖A‖‖x‖.

Theorem 3.2 Eq. (3.1) defines a norm on the space of matrices Rn → Rn, which
we call the matrix norm subordinate to the vector norm ‖ · ‖.

Proof : The positivity and the homogeneity are immediate. It remains to show the
triangle inequality:

‖A + B‖ = sup
‖x‖=1
‖(A + B)x‖

≤ sup
‖x‖=1

(‖Ax‖ + ‖Bx‖)

≤ sup
‖x‖=1
‖Ax‖ + sup

‖x‖=1
‖Bx‖.

n
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Lemma 3.7 For every two matrices A, B and subordinate norm ‖ · ‖,

‖AB‖ ≤ ‖A‖‖B‖.

In particular,
‖Ak‖ ≤ ‖A‖k.

Proof : Obvious. n

. Exercise 3.3 Show that for every invertible matrix A and norm ‖ · ‖,

‖A‖‖A−1‖ ≥ 1.

Solution 3.3: Since the norm of the unit matrix is always one for a subordinate matrix norm,

1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖.

Example 3.5 (infinity-norm) Consider the infinity norm on vectors. The matrix
norm subordinate to the infinity norm is

‖A‖∞ = sup
‖x‖∞=1

max
i

∣∣∣∣∣∣∣∑j

ai, jx j

∣∣∣∣∣∣∣ = max
i

∑
j

|ai, j|.

. Exercise 3.4 Prove that the matrix norm subordinate to the vector norm ‖ · ‖1
is

‖A‖1 = max
1≤ j≤n

n∑
i=1

|ai j|.

Solution 3.4: Note that,

‖A‖1 = sup
‖x‖1=1

∑
i

∣∣∣∣∑
j

ai jx j

∣∣∣∣ ≤ sup
‖x‖1=1

∑
i

∑
j

|ai j||x j| = sup
‖x‖1=1

∑
j

|x j|
∑

i

|ai j|,

from which we get

‖A‖1 ≤ sup
‖x‖1=1

max
j

∑
i

|ai j|

∑
j

|x j| = max
j

∑
i

|ai j|.
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The equality is established by choosing x to be a unit vector with a non-zero component that
maximizes

∑
i |ai j|.

Example 3.6 (2-norm) Consider now the matrix 2-norm subordinate to the vector
2-norm

‖x‖2 =
√

(x, x).

By definition,
‖A‖22 = sup

‖x‖2=1
(Ax, Ax) = sup

‖x‖2=1
(A†Ax, x).

The matrix A†A is Hermitian, hence it can be diagonalized A†A = Q†ΛQ, where
Q is unitary. Then

‖A‖22 = sup
‖x‖2=1

(Q†ΛQx, x) = sup
‖x‖2=1

(ΛQx,Qx) = sup
‖y‖2=1

(Λy, y),

where we have used the fact that y = Q−1x has unit norm. This gives,

‖A‖22 = sup
‖y‖2=1

n∑
i=1

λi|yi|
2,

which is maximized by taking yi to choose the maximal eigenvalue. Thus,

‖A‖2 = max
λ∈Σ(A†A)

√
|λ|,

where we have used the fact that all the eigenvalue of an Hermitian matrix of the
form A†A are real and positive.

. Exercise 3.5 À Let ‖ · ‖ be a norm on Rn, and S be an n-by-n non-singular
matrix. Define ‖x‖′ = ‖S x‖, and prove that ‖ · ‖′ is a norm on Rn.

Á Let ‖ · ‖ be the matrix norm subordinate to the above vector norm. Define
‖A‖′ = ‖S AS −1‖, and prove that ‖ · ‖′ is the matrix norm subordinate to the
corresponding vector norm.

Solution 3.5:

À The homogeneity is trivial. For the positivity ‖0‖′ = 0 and ‖x‖′ = 0 only if S x = 0, but
since S is regular it follows that x = 0. It remains to verify the triangle inequality.

‖x + y‖′ = ‖S (x + y)‖ ≤ ‖S x‖ + ‖S y‖ = ‖x‖′ + ‖y‖′.
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Á By definition

‖A‖′ = sup
x,0

‖S Ax‖
‖S x‖

= sup
y,0

‖S AS −1y‖
‖S S −1y‖

= ‖S AS −1‖.

. Exercise 3.6 True or false: if ‖ · ‖ is a matrix norm subordinate to a vector
norm, so is ‖ · ‖′ = 1

2‖ · ‖ (the question is not just whether ‖ · ‖′ satisfies the
definition of a norm; the question is whether there exists a vector norm, for which
‖ · ‖′ is the subordinate matrix norm!).

Solution 3.6: False because the norm of the identity has to be one.

Neumann series Let A be an n-by-n matrix and consider the infinite series

∞∑
k=0

Ak,

where A0 = I. Like for numerical series, this series is said to converge to a limit
B, if the sequence of partial sums

Bn =

n∑
k=0

Ak

converges to B (in norm). Since all norms on finite dimensional spaces are equiva-
lent, convergence does not depend on the choice of norm. Thus, we may consider
any arbitrary norm ‖ · ‖.

Recall the root test for the convergence of numerical series. Since it only relies
on the completeness of the real numbers, it can be generalized as is for arbitrary
complete normed spaces. Thus, if the limit

L = lim
n→∞
‖An‖1/n

exists, then L < 1 implies the (absolute) convergence of the above series, and
L > 1 implies that the series does not converge.
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Proposition 3.1 If the series converges absolutely then

∞∑
k=0

Ak = (I − A)−1

(and the right hand side exists). It is called the Neumann series of (I − A)−1.

Proof : We may perform a term-by-term multiplication

(I − A)
∞∑

k=0

Ak =

∞∑
k=0

(Ak − Ak+1) = I − lim
k→∞

Ak,

but the limit must vanish (in norm) if the series converges. n

We still need to establish the conditions under which the Neumann series con-
verges. First, we show that the limit L always exists:

Proposition 3.2 The limit limn→∞ ‖An‖1/n exists and is independent of the choice
of norms. The limit is called the spectral radius of A and is denoted by spr(A).

Proof : Let an = log ‖An‖. Clearly,

an+m = log ‖An+m‖ ≤ log ‖An‖‖Am‖ = an + am,

i.e., the sequence (an) is sub-additive. Since the logarithm is a continuous func-
tion on the positive reals, we need to show that the limit

lim
n→∞

log ‖An‖1/n = lim
n→∞

an

n

exists. This follows directly from the sub-additivity (the Fekete lemma).

Indeed, set m. Then, any integer n can be written as n = mq + r, with 0 ≤ r < m.
We have,

an

n
=

amq+r

n
≤

q
n

am +
r
n

ar.
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Taking n→ ∞, the right hand side converges to am/m, hence,

lim sup
an

n
≤

am

m
.

Taking then m→ ∞ we have

lim sup
an

n
≤ lim inf

am

m

which proves the existence of the limit. The independence on the choice of norm
results from the equivalence of norms, as

c1/n‖An‖1/n ≤ (‖An‖′)1/n ≤ C1/n‖An‖1/n.

n

Corollary 3.1 The Neumann series
∑

k Ak converges if spr A < 1 and diverges if
spr A > 1.

Thus, the spectral radius of a matrix is always defined, and is a property that does
not depend on the choice of norm. We now relate the spectral radius with the
eigenvalues of A. First, a lemma:

Lemma 3.8 Let S be an invertible matrix.Then, spr S −1AS = spr A.

Proof : This is an immediate consequence of the fact that ‖S −1 · S ‖ is a matrix
norm and the independence of the spectral radius on the choice of norm. n

Proposition 3.3 Let Σ(A) be the set of eigenvalues of A (the spectrum). Then,

spr A = max
λ∈Σ(A)

|λ|.
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Proof : By the previous lemma it is sufficient to consider A in Jordan canonical
form. Furthermore, since all power of A remain block diagonal, and we are free
to choose, say, the infinity norm, we can consider the spectral radius of a single
Jordan block; the spectral radius of A is the maximum over the spectral radii of its
Jordan blocks.

Let then A be an m-by-m Jordan block with eigenvalue λ, i.e.,

A = λI + D,

where D has ones above its main diagonal, i.e., it is nil-potent with Dm = 0.
Raising this sum to the n-th power (n > m) we get

An = λnI + n λn−1D +

(
n
2

)
λn−2D2 + · · ·

(
n

m − 1

)
λn−m+1Dm−1.

Taking the infinity norm we have

|λ|n ≤ ‖An‖ ≤ m
(

n
m − 1

)
|λ|n−m+1 max

(
|λ|m−1, 1

)
.

Taking the n-th root and going to the limit we obtain that spr A = |λ|. n

Proposition 3.4 For every matrix A,

spr A ≤ inf
‖·‖
‖A‖,

where the infimum is over all choices of subordinate matrix norms.

Proof : For every eigenvalue λ with (normalized) eigenvector u, and every subor-
dinate matrix norm ‖ · ‖,

‖A‖ ≥ ‖Au‖ = |λ|‖u‖ = |λ|.

It remains to take the maximum over all λ ∈ Σ(A) and the infimum over all norms.
n

We will now prove that this inequality is in fact an identity. For that we need the
following lemma:
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Lemma 3.9 Every matrix A can be “almost” diagonalized in the following sense:
for every ε > 0 there exists a non-singular matrix S such that

A = S −1(Λ + T )S ,

where Λ is diagonal with its element coinciding with the eigenvalues of A, and T
is strictly upper triangular with ‖T‖∞ < ε.

Proof : There exists a trasformation into the Jordan canonical form:

A = P−1(Λ + D)P,

where D is nil-potent with ones above its main diagonal. Let now

E =


ε 0 · · · 0
0 ε2 · · · 0
...

...
. . .

...
0 · · · 0 εn

 .
and set E−1P = S . Then

A = S −1E−1(Λ + D)ES = S −1(Λ + E−1DE)S ,

where T = EDE−1 is given by

Ti, j =
∑
k,l

E−1
i,k Dk,lEl, j = ε j−iDi, j.

But since the only non-zero elements are Di,i+1 = 1, we have T i,i+1 = ε, and
‖T‖∞ = ε. n

Theorem 3.3 For every matrix A,

spr A = inf
‖·‖
‖A‖.
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Proof : We have already proved the less-or-equal relation. It remains to show that
for every ε > 0 there exists a subordinate matrix norm ‖ · ‖ such that

‖A‖ ≤ spr A + ε.

This follows from the fact that every matrix is similar to an almost diagonal matrix,
and that the spectral radius is invariant under similarity transformations. Thus, for
every ε we take S as in the lemma above, and set ‖ · ‖ = ‖S −1 · S ‖∞, hence

‖A‖ = ‖Λ + T‖∞ ≤ ‖Λ‖∞ + ‖T‖∞ = spr A + ε.

n

. Exercise 3.7 A matrix is called normal if it has a complete set of orthogonal
eigenvectors. Show that for normal matrices,

‖A‖2 = spr A.

Solution 3.7: If A has a complete set of orthogonal eigenvectors, then every vector x can be
written as x =

∑
i aiei, where Aui = λiui and (ui, u j) = δi j. For x =

∑
i aiei we have Ax =

∑
i λiaiei,

and
(Ax, Ax) =

∑
i

|λi|
2|ai|

2.

Now,

‖A‖22 = sup
x,0

(Ax, Ax)
(x, x)

= sup
x,0

∑
i |λi|

2|ai|
2∑

i |ai|
2 = max

i
|λi|

2 = (spr A)2.

. Exercise 3.8 Show that spr A < 1 if and only if

lim
k→∞

Akx = 0, ∀x.

Solution 3.8: If spr A < 1, then there exists a matrix norm for which ‖A‖ < 1, hence ‖Ak‖ ≤

‖A‖k → 0. Conversely, let Ak x → 0 for all x.By contradiction, suppose that spr A ≥ 1, which
implies the existence of an eigenvalue |λ| ≥ 1. Let u be the corresponding eigenvector, then

Aku = λku 6→ 0.
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. Exercise 3.9 True or false: the spectral radius spr A is a matrix norm.

Solution 3.9: False, because for non-zero nil-potent A, sprA = 0. In fact, the spectral radius is
a semi-norm.

. Exercise 3.10 Is the inequality spr AB ≤ spr A spr B true for all pairs of n-by-n
matrices? What about if A and B were upper-triangular? Hint: try to take B = AT

and

A =

(
0 1
2 0

)
.

Solution 3.10: The general assertion is false. Indeed, take A and B as suggested, then

AB =

(
1 0
0 4

)
.

Now, spr A = spr B =
√

2, but spr(AB) = 4. For upper-diagonal matrices we have an equality since
the eigenvalues are the diagonal values, and the diagonal elements of the product are the product
of the diagonal elements.

. Exercise 3.11 Can you use the Neumann series to approximate the inverse of
a matrix A? Under what conditions will this method converge?

Solution 3.11: Take,

A−1 = (I − (I − A))−1 =

∞∑
k=1

(I − A)k.

This method will converge if spr(I − A) < 1.

vComputer exercise 3.1 Construct a “random” 6-by-6 matrix A. Then plot the
1,2, and infinity norms of ‖An‖1/n as function of n with the maximum n large
enough so that the three curves are sufficiently close to the expected limit.

Normal operators

Definition 3.7 A matrix A is called normal if it commutes with its adjoint, A†A =

AA†.
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Lemma 3.10 A is a normal operator if and only if

‖Ax‖2 = ‖A†x‖2

for every x ∈ Rn.

Proof : Suppose first that A is normal, then for all x ∈ Rn,

‖Ax‖22 = (Ax, Ax) = (x, A†Ax) = (x, AA†x) = (A†x, A†x) = ‖A†x‖22.

Conversely, let ‖Ax‖2 = ‖A†x‖2. Then,

(x, AA†x) = (A†x, A†x) = (Ax, Ax) = (x, A†Ax),

from which follows that

(x, (AA† − A†A)x) = 0, ∀x ∈ Rn.

Since AA†−A†A is symmetric then it must be zero (e.g., because all its eigenvalues
are zero, and it cannot have any nilpotent part). n

Lemma 3.11 For every matrix A,

‖A†A‖2 = ‖A‖22.

Proof : Recall that the 2-norm of A is given by

‖A‖22 = spr A†A.

On the other hand, since A†A is Hermitian, its 2−norm coincides with its largest
eigenvalue. n

Theorem 3.4 If A is a normal operator then

‖An‖2 = ‖A‖n2,

and in particular spr A = ‖A‖2.
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Proof : Suppose first that A was Hermitian. Then, by the previous lemma

‖A2‖2 = ‖A†A‖2 = ‖A‖22.

Since A2 is also Hermitian we then have ‖A4‖2 = ‖A‖42, and so on for every n =

2m. Suppose then that A is normal (but no necessarily Hermitian), then for every
n = 2m,

‖An‖22 = ‖(A†)nAn‖2 = ‖(A†A)n‖2 = ‖(A†A)‖n2 = ‖A‖2n
2 ,

hence ‖An‖2 = ‖A‖n2. It remains to treat the case of general n. Write then n = 2m−r,
r ≥ 0. We then have

‖A‖n+r
2 = ‖An+r‖2 ≤ ‖An‖2‖A‖r2,

hence ‖A‖n2 ≤ ‖A
n‖2. The reverse inequality is of course trivial, which proves the

theorem. n

3.3 Perturbation theory and condition number

Consider the linear system
Ax = b,

and a “nearby” linear system

(A + δA)x̂ = (b + δb).

The question is under what conditions the smallness of δA, δb guarantees the
smallness of δx = x̂ − x. If δx is small the problem is well-conditioned, and it is
ill-conditioned otherwise.

Subtracting the two equations we have

A(x̂ − x) + δA x̂ = δb,

or,
δx = A−1 (−δA x̂ + δb) .

Taking norms we obtain an inequality

‖δx‖ ≤ ‖A−1‖ (‖δA‖ ‖x̂‖ + ‖δb‖) ,

which we further rearrange as follows,

‖δx‖
‖x̂‖
≤ ‖A−1‖‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖A‖‖x̂‖

)
.
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We have thus expressed the relative change in the output as the product of the
relative change in the input (we’ll look more carefully at the second term later)
and the number

κ(A) = ‖A−1‖‖A‖,

which is the (relative) condition number. When κ(A) is large a small perturbation
in the input can produce a large perturbation in the output.

In practice, x̂ will be the computed solution. Then, provided we have estimates
on the “errors” δA, and δb, we can estimate the relative error ‖δx‖/‖x̂‖. From a
theoretical point of view, however, it seems “cleaner” to obtain an error bound
which in independent of δx (via x̂). This can be achieved as follows. First from

(A + δA)(x + δx) = (b + δb) ⇒ (A + δA)δx = (−δA x + δb)

we extract

δx = (A + δA)−1(−δA x + δb)

= [A(I + A−1δA)]−1(−δA x + δb)

= (I + A−1δA)−1A−1(−δA x + δb).

Taking now norm and applying the standard inequalities we get

‖δx‖
‖x‖
≤ ‖(I + A−1δA)−1‖‖A−1‖

(
‖δA‖ +

‖δb‖
‖x‖

)
.

Now, if spr A−1δA < 1, we can use the Neumann series to get the following esti-
mate,

‖(I + A−1δA)−1‖ = ‖

∞∑
n=0

(−A−1δA)n‖ ≤

∞∑
n=0

‖A−1‖n‖δA‖n =
1

1 − ‖A−1‖‖δA‖
.

Combining with the above,

‖δx‖
‖x‖
≤

‖A−1‖

1 − ‖A−1‖‖δA‖

(
‖δA‖ +

‖δb‖
‖x‖

)
=

κ(A)

1 − κ(A) ‖δA‖
‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖A‖ ‖x‖

)
≤

κ(A)

1 − κ(A) ‖δA‖
‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
,
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where we have used the fact that ‖A‖‖x‖ ≥ ‖Ax‖ = ‖b‖. In this (cleaner) formula-
tion the condition number is

κ(A)

1 − κ(A) ‖δA‖
‖A‖

,

which is close to κ(A) provided that δA is sufficiently small, and more precisely,
that κ(A) ‖δA‖

‖A‖ = ‖A−1‖‖δA‖ < 1.

We conclude this section by establishing another meaning to the condition num-
ber. It is the reciprocal on the distance to the nearest ill-posed problem. A large
condition number means that the problem is close in a geometrical sense to a
singular problem.

Theorem 3.5 Let A be non-singular, then

1
κ(A)

= min
{
‖δA‖2
‖A‖2

: A + δA is singular
}
,

where κ(A) is expressed in terms of 2-norm (Euclidean).

Proof : Since κ(A) = ‖A‖2 ‖A−1‖2, we need to show that

1
‖A−1‖2

= min
{
‖δA‖2 : A + δA is singular

}
.

If ‖δA‖2 < 1
‖A−1‖2

, then ‖A−1‖2‖δA‖2 < 1, which implies the convergence of the
Neumann series

∞∑
n=0

(−A−1δA)n = (1 + A−1δA)−1 = A−1(A + δA)−1,

i.e.,

‖δA‖2 <
1

‖A−1‖2
⇒ A + δA is not singular,

or,

min
{
‖δA‖2 : A + δA is singular

}
≥

1
‖A−1‖2

.



62 Chapter 3

To show that this is an equality it is sufficient to construct a δA of norm 1
‖A−1‖2

so
that A + δA is singular. By definition, there exists an x ∈ Rn on the unit sphere for
which ‖A−1x‖2 = ‖A−1‖2. Let then y = A−1 x

‖A−1 x‖2
, be another unit vector and construct

δA = −
xyT

‖A−1‖2
.

First note that

‖δA‖2 =
1

‖A−1‖2
max
‖z‖2=1

‖xyT z‖2 =
1

‖A−1‖2
max
‖z‖2=1

|yT z| =
1

‖A−1‖2
,

where we have used the fact that ‖x‖2 = 1, and the fact that |yT z| is maximized for
z = y. Finally, A + δA is singular because

(A + δA)y =

(
A −

xyT

‖A−1‖2

)
y = Ay −

x
‖A−1‖2

= 0.

n

Comment: Note how the theorem relies on the use of the Euclidean norm.

. Exercise 3.12 The spectrum Σ(A) of a matrix A is the set of its eigenvalues.
The ε-pseudospectrum of A, which we denote by Σε(A), is defined as the set of
complex numbers z, for which there exists a matrix δA such that ‖δA‖2 ≤ ε and z
is an eigenvalue of A + δA. In mathematical notation,

Σε(A) = {z ∈ C : ∃ δA, ‖δA‖2 ≤ ε, z ∈ Σ(A + δA)} .

Show that
Σε(A) =

{
z ∈ C : ‖(zI − A)−1‖2 ≥ 1/ε

}
.

Solution 3.12: By definition, z ∈ Σε(A) if and only if

∃δA, ‖δA‖2 ≤ ε, z ∈ Σ(A + δA),

which in turn holds if and only if

∃δA, ‖δA‖2 ≤ ε, 0 ∈ Σ(A − zI + δA).

Now, we have shown that

1
‖(A − zI)−1‖2

= min {‖δA‖2 : 0 ∈ Σ(A − zI + δA)} .
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This means that there exists such a δA if and only if

ε ≥
1

‖(A − zI)−1‖2
.

I.e., z ∈ Σε(A) if and only if
‖(A − zI)−1‖2 ≥ 1/ε,

which completes the proof.

. Exercise 3.13 Let Ax = b and (A + δA)x̂ = (b + δb). We showed in class that
δx = x̂ − x satisfies the inequality,

‖δx‖2 ≤ ‖A−1‖2 (‖δA‖2‖x̂‖2 + ‖δb‖2) .

Show that this is not just an upper bound: that for sufficiently small ‖δA‖2 there
exist non-zero δA, δb such that the above in an equality. (Hint: follow the lines
of the proof that links the reciprocal of the condition number to the distance to the
nearest ill-posed problem.)

3.4 Direct methods for linear systems

Algorithms for solving the linear system Ax = b are divided into two sorts: direct
methods give, in the absence of roundoff errors, an exact solution after a finite
number of steps (of floating point operations); all direct methods are variations
of Gaussian elimination. In contrast, iterative methods compute a sequence
of iterates (xn), until xn is sufficiently close to satisfying the equation. Iterative
methods may be much more efficient in certain cases, notably when the matrix A
is sparse.

3.4.1 Matrix factorization

The basic direct method algorithm uses matrix factorization—the representation
of a matrix A as a product of “simpler” matrices. Suppose that A was lower-
triangular: 

a11

a21 a22
...

...
. . .

an1 an2 · · · ann



x1

x2
...

xn

 =


b1

b2
...

bn

 .
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Then the system can easily be solved using forward-substitution:

Algorithm 3.4.1: -(A, b)

for i = 1 to n
do xi =

(
bi −

∑i−1
k=1 aikxk

)
/aii

Similarly, if A was upper-diagonal,
a11 a12 · · · a1n

a22 · · · a2n
. . .

...
ann



x1

x2
...

xn

 =


b1

b2
...

bn

 .
Then the system can easily be solved using backward-substitution:

Algorithm 3.4.2: -(A, b)

for i = n downto 1
do xi =

(
bi −

∑n
k=i+1 aikxk

)
/aii

Finally, if A is a permutation matrix, i.e., an identity matrix with its rows per-
muted, then the system Ax = b only requires the permutation of the rows of b.

Matrix factorization consists of expressing any non-singular matrix A as a product
A = PLU, where P is a permutation matrix, L is non-singular lower-triangular and
U is non-singular upper-triangular. Then, the system Ax = b is solved as follows:

LUx = P−1b = PT b permute the entries of b

Ux = L−1(PT b) forward substitution

x = U−1(L−1PT b) backward substitution.

This is the general idea. We now review these steps is a systematic manner.

Lemma 3.12 Let P, P1, P2 be n-by-n permutation matrices and A be an n-by-n
matrix. Then,
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À PA is the same as A with its rows permuted and AP is the same as A with
its column permuted.

Á P−1 = PT .
Â det P = ±1.
Ã P1P2 is also a permutation matrix.

Proof : Let π : [1, n] → [1, n] be a permutation function (one-to-one and onto).
Then, the entries of the matrix P are of the form Pi j = δπ−1(i), j. Now,

(PA)i, j =

n∑
k=1

δπ−1(i),kak j = aπ−1(i), j

(AP)i, j =

n∑
k=1

aikδπ−1(k), j = ai,π( j),

which proves the first assertion. Next,

(PT P)i, j =

n∑
k=1

δπ−1(i),kδk,π−1( j) =

n∑
k=1

δi,π(k)δπ(k), j = δi, j,

which proves the second assertion. The determinant of a permutation matrix is
±1 because when two rows of a matrix are interchanged the determinant changes
sign. Finally, if P1 and P2 are permutation matrices with maps π1 and π2, then

(P1P2)i, j =

n∑
k=1

δπ−1
1 (i),kδπ−1

2 (k), j =

n∑
k=1

δπ−1
1 (i),kδk,π2( j)

= δπ−1
1 (i),π2( j) = δπ−1

2 (π−1
1 (i)), j.

n

Definition 3.8 The m-th principal sub-matrix of an n-by-n matrix A is the square
matrix with entries ai j, 1 ≤ i, j ≤ m.

Definition 3.9 A lower triangular matrix L is called unit lower triangular if its
diagonal entries are 1.
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Theorem 3.6 A matrix A has a unique decomposition A = LU with L unit lower
triangular and U non-singular upper triangular if and only if all its principal
sub-matrices are non-singular.

Proof : Suppose first that A = LU with the above properties. Then, for every
1 ≤ m ≤ n, (

A11 A12

A21 A22

)
=

(
L11

L21 L22

) (
U11 U12

U22

)
,

where A11 is the m-th principal sub-matrix, L11 and L22 are unit lower triangular
and U11 and U22 are upper triangular. Now,

A11 = L11U11

is non-singular because det A11 = det L11 det U11 =
∏m

i=1 uii , 0, where the last
step is a consequence of U being triangular and non-singular.

Conversely, suppose that all the principal sub-matrices of A are non-singular. We
will show the existence of L,U by induction on n. For n = 1, a = 1 · a. Suppose
that the decomposition holds all (n− 1)-by-(n− 1) matrices. Let A′ be of the form

A′ =

(
A b
cT d

)
where b, c are column vectors of length (n − 1) and d is a scalar. By assumption,
A = LU. Thus, we need to find vectors l, u ∈ Rn−1 and a scalar γ such that(

A b
cT d

)
=

(
L
lT 1

) (
U u

γ

)
.

Expanding we have
b = Lu

cT = lT U

d = lT u + γ.

The first and second equation for u, l can be solved because by assumption L and
U are invertible. Finally, γ is extracted from the third equation. It must be non-
zero otherwise A′ would be singular. n

A matrix A may be regular and yet the LU decomposition may fail. This is where
permutations are necessary.
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Theorem 3.7 Let A be a non-singular n-by-n matrix. Then there exist permutation
matrices P1, P2, a unit lower triangular matrix L and an upper triangular matrix
L, such that

P1AP2 = LU.

Either P1 or P2 can be taken to be a unit matrix.

Proof : The proof is by induction. The case n = 1 is trivial. Assume this is true for
dimension n − 1. Let then A be a non-singular matrix. Thus, every row and every
column has a non-zero element, and we can find permutation matrices P′1, P

′
2 such

that a11 = (P′1AP′2)11 , 0 (only one of them is necessary).

Now, we solve the block problem

P′1AP′2 =

(
a11 AT

12
A21 A22

)
=

(
1 0

L21 I

) (
u11 UT

12
0 Ã22

)
,

where A22, I and Ã22 are (n− 1)-by-(n− 1) matrices, and A12, A21 L21, U12 and are
(n − 1)-vectors; u11 is a scalar. Expanding, we get

u11 = a11, A12 = U12, A21 = L21u11, A22 = L21UT
12 + Ã22.

Since det A , 0 and multiplication by a permutation matrix can at most change
the sign of the determinant, we have

0 , det P′1AP′2 = 1 · u11 · det Ã22,

from which we deduce that Ã22 is non-singular. Applying the induction, there
exist permutation matrices P̃1, P̃2 and triangular matrices L̃22, Ũ22 such that

P̃1Ã22P̃2 = L̃22Ũ22.

Substituting we get

P′1AP′2 =

(
1 0

L21 I

) (
u11 UT

12
0 P̃T

1 L̃22Ũ22P̃T
2

)
=

(
1 0

L21 I

) (
1 0
0 P̃T

1 L̃22

) (
u11 UT

12
0 Ũ22P̃T

2

)
=

(
1 0

L21 P̃T
1 L̃22

) (
u11 UT

12
0 Ũ22P̃T

2

)
=

(
1 0
0 P̃T

1

) (
1 0

P̃1L21 L̃22

) (
u11 UT

12P̃2

0 Ũ22

) (
1 0
0 P̃T

2

)
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The two outer matrices are permutation matrices whereas the two middle matrices
satisfy the required conditions. This completes the proof. n

A practical choice of the permutation matrix, known as Gaussian elimination with
partial pivoting (GEPP) is given is the following corollary:

Corollary 3.2 It is possible to choose P′2 = I and P′1 so that a11 is the largest entry
in absolute value in its column.

The PLU with partial pivoting algorithm is implemented as follows:

Algorithm 3.4.3: LU (A)

for i = 1 to n − 1

/* permute only with rows under i */

permute the rows of A, L such that aii , 0
/* calculate L21 */

for j = i + 1 to n
do l ji = a ji/aii

/* calculate U12 */

for j = i to n
do ui j = ai j

/* change A22 into Ã22 */

for j = i + 1 to n
do for k = i + 1 to n
do a jk = a jk − l jiuik

Comments:

À It can be checked that once li j and ui j are computed, the corresponding en-
tries of A are not used anymore. This means that U, L can overwrite A. (No
need to keep the diagonal terms of L.)

Á Since the algorithm involves row permutation, the output must also provide
the permutation matrix, which can be represented by a vector.

Â In practice, there is no need to actually permute the entries of the matrix.
This can be done “logically” only.
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Operation count The number of operations needed for LU factorization can be
deduced directly from the algorithm:

n−1∑
i=1

 n∑
j=i+1

+

n∑
j=i+1

n∑
k=i+1

2

 =

n−1∑
i=1

[
(n − i) + 2(n − i)2

]
=

2
3

n3 + O(n2).

Since the forward and backward substitution require O(n2) operations, the number
of operations needed to solve the system Ax = b is roughly 2

3n3.

. Exercise 3.14 Show that every matrix of the form(
0 a
0 b

)
a, b,, 0, has an LU decomposition. Show that even if the diagonal elements of L
are 1 the decomposition is not unique.

Solution 3.14: Note that this matrix is singular, hence does not fit to the scope considered above.
Yet, setting (

1 0
l21 1

) (
u11 u12
0 u22

)
=

(
0 a
0 b

)
,

we get u11 = 0, l21u11 = 0 (which is redundant), u12 = a, and l21u12 + u22 = b. These constraints
can be solved for arbitrary l21.

. Exercise 3.15 Show that if A = LU is symmetric then the columns of L are
proportional to the rows of U.

Solution 3.15: From the symmetry of A follows that

LU = A = AT = UT LT .

Now UT LT is also an LU decomposition of A, except that the lower-triangular matrix is not nor-
malized. Let S = diag(u11, u22, . . . , ), then

LU = (UT S −1)(S LT ).

By the uniqueness of the LU decomposition (for regular matrices), it follows that L = UT S −1,
which is what we had to show.

. Exercise 3.16 Show that every symmetric positive-definite matrix has an LU-
decomposition.
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Solution 3.16: By a previous theorem, it is sufficient to show that all the principal submatrices
are regular. In fact, they are all s.p.d., which implies their regularity.

. Exercise 3.17 Suppose you want to solve the equation AX = B, where A is n-
by-n and X, B are n-by-m. One algorithm would factorize A = PLU and then solve
the system column after column using forward and backward substitution. The
other algorithm would compute A−1 using Gaussian elimination and then perform
matrix multiplication to get X = A−1B. Count the number of operations in each
algorithm and determine which is more efficient.

Solution 3.17: The first algorithm requires roughly 2
3 n3 operations. The second requires about

the same number for matrix inversion, but then, O(n3) more operations for matrix multiplication.

. Exercise 3.18 Determine the LU factorization of the matrix 6 10 0
12 26 4
0 9 12

 .
vComputer exercise 3.2 Construct in Matlab an n-by-n matrix A (its entries are
not important, but make sure it is non-singular), and verify how long its takes to
perform the operation B=inv(A);. Repeat the procedure for n = 10, 100, 1000, 2000.

3.4.2 Error analysis

The two-step approach for obtaining error bounds is as follows:

À Analyze the accumulation of roundoff errors to show that the algorithm
for solving Ax = b generates the exact solution x̂ of the nearby problem
(A + δA)x̂ = (b + δb), where δA, δb (the backward errors) are small.

Á Having obtained estimates for the backward errors, apply perturbation the-
ory to bound the error x̂ − x.

Note that perturbation theory assumes that δA, δb are given. In fact, these pertur-
bations are just “backward error estimates” of the roundoff errors present in the
computation.
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We start with backward error estimates, in the course of which we will get a better
understanding of the role of pivoting (row permutation). As a demonstration,
consider the matrix

A =

(
0.0001 1

1 1

)
with an arithmetic device accurate to three decimal digits. Note first that

κ(A) = ‖A‖∞‖A−1‖∞ ≈ 2 × 2,

so that the result is quite insensitive to perturbations in the input. Consider now
an LU decomposition, taking into account roundoff errors:(

0.0001 1
1 1

)
=

(
1 0
`21 1

) (
u11 u12

0 u22

)
.

Then,
u11 = fl(0.0001/1) = 0.0001
`21 = fl(1/u11) = 10000
u12 = 1
u22 = fl(1 − `21u12) = fl(1 − 10000 · 1) = −10000.

However, (
1 0

10000 1

) (
0.0001 1

0 −10000

)
=

(
0.0001 1

1 0

)
.

Thus, the a22 entry has been completely forgotten! In our terminology, the method
is not backward stable because

‖δA‖∞
‖A‖∞

=
‖A − LU‖∞
‖A‖∞

=
1
2
.

The relative backward error is large, and combined with the estimated condition
number, the relative error in x could be as large as 2.

Had we used GEPP, the order of the rows would have been reversed,(
1 1

0.0001 1

)
=

(
1 0
`21 1

) (
u11 u12

0 u22

)
,

yielding
u11 = fl(1/1) = 1
`21 = fl(0.0001/u11) = 0.0001
u12 = fl(1/1) = 1
u22 = fl(1 − `21u12) = fl(1 − 0.0001 · 1) = 1,
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which combined back gives(
1 0

0.0001 1

) (
1 1
0 1

)
=

(
1 1

0.0001 1.0001

)
,

and
‖δA‖∞
‖A‖∞

=
‖A − LU‖∞
‖A‖∞

=
0.0001

2
.

3.5 Iterative methods

3.5.1 Iterative refinement

Let’s start with a complementation of direct methods. Suppose we want to solve
the system Ax = b, i.e., we want to find the vector x = A−1b, but due to roundoff

errors (and possible other sources of errors), we obtain instead a vector

x0 = Ã−1b.

Clearly, we can substitute the computed solution back into the linear system, and
find out that the residual,

b − Ax0
def
= r0

differs from zero. Let e0 = x0 − x be the error. Subtracting b − Ax = 0 from the
residual equation, we obtain

Ae0 = r0.

That is, the error satisfies a linear equation with the same matrix A and the resid-
ual vector on its right hand side.

Thus, we will solve the equation for e0, but again we can only do it approximately.
The next approximation we get for the solution is

x1 = x0 + Ã−1r0 = x0 + Ã−1(b − Ax0).

Once more, we define the residual,

r1 = b − Ax1,

and notice that the error satisfies once again a linear system, Ae1 = r1, thus the
next correction is x2 = x1 + Ã−1(b − Ax1), and inductively, we get

xn+1 = xn + Ã−1(b − Axn). (3.2)
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The algorithm for iterative refinement is given by

Algorithm 3.5.1: I (A, b, ε)

x = 0
for i = 1 to n

do


r = b − Ax
if ‖r‖ < ε

then break
Solve Ae = r
x = x + e

return (x)

Of course, if the solver is exact, the refinement procedure ends after one cycle.

Theorem 3.8 If Ã−1 is sufficiently close to A−1 in the sense that spr(I − AÃ−1) < 1,
then the iterative refinement procedure converges to the solution x of the system
Ax = b. (Note that equivalently, we need ‖I − AÃ−1‖ in any subordinate matrix
norm.)

Proof : We start by showing that

xn = Ã−1
n∑

k=0

(I − AÃ−1)kb.

We do it inductively. For n = 0 we have x0 = Ã−1b. Suppose this was correct for
n − 1, then

xn = xn−1 + Ã−1(b − Axn−1)

= Ã−1
n−1∑
k=0

(I − AÃ−1)kb + Ã−1b − Ã−1AÃ−1
n−1∑
k=0

(I − AÃ−1)kb

= Ã−1

 n−1∑
k=0

(I − AÃ−1)k + I − AÃ−1
n−1∑
k=0

(I − AÃ−1)k

 b

= Ã−1

I + (I − AÃ−1)
n−1∑
k=0

(I − AÃ−1)k

 b

= Ã−1
n∑

k=0

(I − AÃ−1)kb.
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We have a Neumann series which converges if and only if spr(I − AÃ−1) < 1,
giving in the limit

lim
n→∞

xn = Ã−1(AÃ−1)−1b = A−1b = x.

n

3.5.2 Analysis of iterative methods

Example 3.7 (Jacobi iterations) Consider the following example

7x1 − 6x2 = 3
−8x1 + 9x2 = −4,

whose solution is x = (1/5,−4/15). We may try to solve this system by the
following iterative procedure:

x(n+1)
1 =

3 + 6 x(n)
2

7

x(n+1)
2 =

−4 + 8 x(n)
1

9
.

From a matrix point of view this is equivalent to taking the system(
7 −6
−8 9

) (
x1

x2

)
=

(
3
−4

)
,

and splitting it as follows,(
7 0
0 9

) (
x1

x2

)(n+1)

= −

(
0 −6
−8 0

) (
x1

x2

)(n)

+

(
3
−4

)
.

This iterative methods, based on a splitting of the matrix A into its diagonal part
and its off-diagonal part is called Jacobi’s method.

The following table gives a number of iterates:

n x(n)
1 x(n)

2
1 0.4286 −0.4444

10 0.1487 −0.1982
20 0.1868 −0.2491
40 0.1991 −0.2655
80 0.2000 −0.2667
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Example 3.8 (Gauss-Seidel iterations) Consider now the same system, but with
a slightly different iterative method:

x(n+1)
1 =

3 + 6 x(n)
2

7

x(n+1)
2 =

−4 + 8 x(n+1)
1

9
.

The idea here is to use the entries which have already been computed in the present
iteration. In matrix notation we have(

7 0
−8 9

) (
x1

x2

)(n+1)

= −

(
0 −6
0 0

) (
x1

x2

)(n)

+

(
3
−4

)
.

This iterative method, based on a splitting of the matrix A into its lower-triangular
part and the remainder is called the Gauss-Seidel method.

The following table gives a number of iterates:

n x(n)
1 x(n)

2
1 0.4286 −0.0635

10 0.2198 −0.2491
20 0.2013 −0.2655
40 0.2000 −0.2667
80 0.2000 −0.2667

. Exercise 3.19 Write an algorithm (i.e., a list of intructions in some pseudo-
code) that calculates the solution to the linear system, Ax = b, by Gauss-Seidel’s
iterative procedure. The algorithm receives as input the matrix A and the vector b,
and returns the solution x. Try to make the algorithm efficient.

Solution 3.19:

Algorithm 3.5.2: G-S(A, b, ε,M)

x = 0
for i = 1 to M

do


r = b − Ax
if ‖r‖ < ε

then break
for j = 1 to n

do x j = (b j −
∑

k, j a jk xk)/a j j

return (x)
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vComputer exercise 3.3 Solve the system
−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2




x1

x2

x3

x4

x5

 =


1
0
0
0
0


using both the Jacobi and the Gauss-Seidel iterations. Plot a graph of the norm
of the errors as function of the number of iterations. Use the same graph for both
methods for comparison.

We are now ready for a general analysis of iterative methods. Suppose we want
to solve the system Ax = b. For any non-singular matrix Q we can equivalently
write Qx = (Q − A)x + b, which leads to the iterative method

Qxn+1 = (Q − A)xn + b.

Definition 3.10 An iterative method is said to be convergent if it converges for
any initial vector x0.

The goal is to choose a splitting matrix Q such that (1) Q is easy to invert, and
(2) the iterations converge fast.

Theorem 3.9 Let A be a non-singular matrix, and Q be such that spr(I −Q−1A) <
1. Then the iterative method is convergent.

Proof : We have
xn+1 = (I − Q−1A)xn + Q−1b.

It is easy to see by induction that

xn = (I − Q−1A)nx0 +

n−1∑
k=0

(I − Q−1A)kQ−1b,

and as we’ve already seen, the Neumann series converges iff spr(I − Q−1A) <
1. If it converges, the first term also converges to zero (the initial condition is
forgotten). The limit is

lim
n→∞

xn = (Q−1A)−1Q−1b = A−1b = x.
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n

Definition 3.11 A matrix A is called diagonally dominant if for any row i,

|aii| >
∑
j,i

|ai j|.

Proposition 3.5 If A is diagonally dominant then Jacobi’s method converges.

Proof : For Jacobi’s method the matrix Q comprises the diagonal of A, therefore,
Q−1A consists of the rows of A divided by the diagonal term, and

(I − Q−1A)i j =

0 i = j
−

ai j

aii
i , j

.

Because A is diagonally dominant,

‖I − Q−1A‖∞ = max
i

∑
j

|(I − Q−1A)i j| = max
i

1
|aii|

∑
j,i

|ai j| < 1.

n

. Exercise 3.20 Show that the Jacobi iteration converges for 2-by-2 symmetric
positive-definite systems.

Hint Suppose that the matrix to be inverted is

A =

(
a b
b c

)
.

First, express the positive-definiteness of A as a condition on a, b, c. Then, proceed
to write the matrix (I − Q−1A), where Q is the splitting matrix corresponding to
the Jacobi iterative procedure. It remains to find a norm in which ‖I − Q−1A‖ < 1
or compute the spectral radius.

Solution 3.20: If A of this form is positive definite, then for every x, y,

p(x, y) = ax2 + 2bxy + cy2 ≥ 0,

For the point (0, 0) to be a minimum of p(x, y) we need a, c > 0 and ac > b2. Now,

I − Q−1A = I −
(
a 0
0 c

)−1 (
a b
b c

)
=

(
1 0
0 1

)
−

(
1 b/a

b/c 1

)
Thus, spr(I − Q−1A) =

√
b2/ac < 1, which proves the convergence of the method.



78 Chapter 3

. Exercise 3.21 Will Jacobi’s iterative method converge for10 2 3
4 50 6
7 8 90

 .

Solution 3.21: Yes, because the matrix is diagonally dominant.

. Exercise 3.22 Explain why at least one eigenvalue of the Gauss-Seidel itera-
tive matrix must be zero.

Solution 3.22: Because the last row of Q − A is zero.

. Exercise 3.23 Show that if A is strictly diagonally dominant then the Gauss-
Seidel iteration converges.

Solution 3.23: The method of Gauss-Seidel reads as follows

x(k+1)
i = −

∑
j<i

ai j

aii
x(k+1)

j −
∑
j>i

ai j

aii
x(k)

j +
bi

aii
.

If x is the solution to this system and e(k) = x(k) − x, then

e(k+1)
i = −

∑
j<i

ai j

aii
e(k+1)

j −
∑
j>i

ai j

aii
e(k)

j .

Let r = maxi
∑

j,i |ai j|/|aii|, which by assumption is less than 1. It can be shown, by induction on
the rows of e(k), that ‖e(k+1)‖∞ ≤ r‖e(k)‖∞, which implies convergence. Indeed, for i = 1,

|e(k+1)
1 | ≤

∑
j>i

|ai j|

|aii|
|e(k)

j | ≤ r‖e(k)‖∞ ≤ ‖e(k)‖∞.

Suppose this is true up to row i − 1, then,

|e(k+1)
i | =

∑
j<i

|ai j|

|aii|
‖e(k)‖∞ +

∑
j>i

|ai j|

|aii|
‖e(k)‖∞ ≤ r‖e(k)‖∞.
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. Exercise 3.24 What is the explicit form of the iteration matrix G = (I−Q−1A)
in the Gauss-Seidel method when

A =



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


Solution 3.24: Do it by inspection:

2x(n+1)
1 = x(n)

2 + b1

2x(n+1)
2 = x(n+1)

1 + x(n+1)
3 + b2

2x(n+1)
3 = x(n+1)

2 + x(n+1)
4 + b3,

from which we extract,

x(n+1)
1 =

1
2

x(n)
2 + · · ·

x(n+1)
2 =

1
4

x(n)
2 +

1
2

x(n)
3 + · · ·

x(n+1)
3 =

1
8

x(n)
2 +

1
4

x(n)
3 +

1
2

x(n)
4 + · · · ,

etc. Thus,

I − Q−1A =


0 1

2
0 1

4
1
2

0 1
8

1
4

1
2

. . .
. . .

. . .



3.6 Acceleration methods

3.6.1 The extrapolation method

Consider a general iterative method for linear systems

xn+1 = Gxn + c.
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For the system Ax = b we had G = (I − Q−1A) and c = Q−1b, but for now this
does not matter. We know that the iteration will converge if spr G < 1.

Consider now the one-parameter family of methods,

xn+1 = γ(Gxn + c) + (1 − γ)xn

= [γG + (1 − γ)I]xn + γc def
= Gγxn + γc,

γ ∈ R. Can we choose γ such to optimize the rate of convergence, i.e., such to
minimize the spectral radius of Gγ? Note that (1) if the method converges then it
converges to the desired solution, and (2) γ = 1 reduces to the original procedure.

Recall that (1) the spectral radius is the largest eigenvalue (in absolute value),
and that (2) if λ ∈ Σ(A) and p(λ) ∈ Σ(p(A)) for any polynomial p. Suppose that
we even don’t really know the eigenvalues of the original matrix G, but we only
know that they are real (true for symmetric or Hermitian matrices) and within the
segment [a, b]. Then, the spectrum of Gγ lies within

Σ(Gγ) ⊆ {γz + (1 − γ) : z ∈ [a, b]} .

This means that
spr Gγ ≤ max

a≤λ≤b
|γλ + (1 − γ)|.

The expression on the right-hand side is the quantity we want to minimize,

γ∗ = arg min
γ∈R

max
a≤z≤b

|γz + (1 − γ)|.

Problems of this type are call min-max problems. They are very common in
optimization.

Theorem 3.10 If 1 < [a, b], then

γ∗ =
2

2 − a − b
,

and
spr G∗γ ≤ 1 − |γ∗|d,

where d = dist(1, [a, b]).

Proof : Since 1 < [a, b], then we either have b < 1 or a > 1. Let’s focus on the
first case; the second case is treated the same way. The solution to this problem is
best viewed graphically:
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1

a b 1 z

From the figure we see that the optimal γ is when the absolute values of the two
extreme cases coincide, i.e., when

γ(a − 1) + 1 = −γ(b − 1) − 1,

from which we readily obtain 2 = (2 − a − b)γ∗. Substituting the value of γ∗ into

max
a≤z≤b

|γz + (1 − γ)|,

whose maximum is attained at either z = a, b, we get

spr Gγ∗ ≤ γ
∗(b − 1) + 1 = 1 − |γ∗|d,

since γ∗ is positive and d = 1 − b. n

Example 3.9 The method of extrapolation can be of use even if the original
method does not converge, i.e., even if spr G > 1. Consider for example the
following iterative method for solving the linear systems Ax = b,

xn+1 = (I − A)xn + b.

It is known as Richardson’s method. If we know that A has real eigenvalues
ranging between λmin and λmax, then in the above notation

a = 1 − λmax and b = 1 − λmin.

If 1 < [a, b], i.e, all the eigenvalues of A have the same sign, then This means that
the optimal extrapolation method is

xn+1 =
[
γ∗(I − A) + (1 − γ∗)I

]
xn + γ∗b,
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where
γ∗ =

2
λmax + λmin

.

Suppose that λmin > 0, then the spectral radius of the resulting iteration matrix is
bounded by

spr Gγ∗ ≤ 1 −
2λmin

λmax + λmin
=
λmax − λmin

λmax + λmin
.

It is easy to see that the bounds remains unchanged if λmax < 0.

3.6.2 Chebyshev acceleration

Chebyshev’s acceleration method takes the idea even further. Suppose we have an
iterative method,

xn+1 = Gxn + c,

and that we have used it to generate the sequence x0, x1, . . . , xn. Can we use this
existing sequence to get even closer to the solution? Specifically, consider a linear
combination,

un =

n∑
k=0

an,kxk.

We want to optimize this expression, with respect to the coefficients an,k such that
un is as close as possible to the fixed point x = Gx + c. Assume that for all n,

n∑
k=0

an,k = 1.

Then,

un − x =

n∑
k=0

an,kxk − x =

n∑
k=0

an,k(xk − x).

Now, since (xk − x) = (Gxk−1 + c) − (Gx + c) = G(xk−1 − x), repeated application
of this recursion gives

un − x =

n∑
k=0

an,kGk(x0 − x) def
= pn(G)(x0 − x),

where pn(z) =
∑n

k=0 an,kzk. Optimality will be achieved if we take the coefficients
an,k such to minimize the norm of pn(G), or instead, its spectral radius. Note that

spr pn(G) = max
z∈Σ(pn(G))

|z| = max
z∈Σ(G)

|pn(z)|.
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Suppose all we knew was that the eigenvalues of G lie in a set S . Then, our goal
is to find a polynomial of degree n, satisfying pn(1) = 1, which minimizes

max
z∈S
|pn(z)|.

That is, we are facing another min-max problem,

p∗n = arg min
pn

max
z∈S
|pn(z)|.

This can be quite a challenging problem. We will solve it again for the case where
the spectrum of G is real, and confined to the set S = [a, b].

Definition 3.12 (Chebyshev polynomials) The Chebyshev polynomials, Tk(x), k =

0, 1, . . . , are a family of polynomials defined recursively by

T0(x) = 1
T1(x) = x

Tn+1(x) = 2x Tn(x) − Tn−1(x).

Applying the iterative relation we have

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1.

Note that for y ∈ [−1, 1], we can express y as cos x, in which case

T2(y) = T2(cos x) = 2 cos2 x − 1 = cos 2x = cos(2 cos−1 y)

T3(y) = T3(cos x) = 4 cos3 x − 3 cos x = cos 3x = cos(3 cos−1 y),

and so on. This suggests the following relation:

Lemma 3.13 For x ∈ [−1, 1] the Chebyshev polynomials have the following ex-
plicit representation:

Tn(x) = cos(n cos−1 x).

Proof : We have the following relations,

cos[(n + 1)θ] = cos θ cos nθ − sin θ sin nθ
cos[(n − 1)θ] = cos θ cos nθ + sin θ sin nθ,
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which upon addition gives

cos[(n + 1)θ] = 2 cos θ cos nθ − cos[(n − 1)θ].

Set now x = cos θ, we get

cos[(n + 1) cos−1 x] = 2 x cos[n cos−1 x] − cos[(n − 1) cos−1 x],

i.e., the functions cos[n cos−1 x] satisfy the same recursion relations as the Cheby-
shev polynomials. It only remains to verify that they are identical for n = 0, 1.
n

Properties of the Chebyshev polynomials

À Tn(x) is a polynomial of degree n.
Á |Tn(x)| ≤ 1 for x ∈ [−1, 1].
Â For j = 0, 1, . . . , n,

Tn

(
cos

jπ
n

)
= cos( jπ) = (−1) j.

These are the extrema of Tn(x).
Ã For j = 1, 2, . . . , n,

Tn

cos
( j − 1

2 )π
n

 = cos
(
( j −

1
2

)π
)

= 0.

That is, the n-th Chebyshev polynomial has n real-valued roots and all re-
side within the segment [−1, 1].

Proposition 3.6 Let pn(z) be a polynomial of degree n with p(z̃) = 1, z̃ < [−1, 1].
Then

max
−1≤z≤1

|pn(z)| ≥
1
|Tn(z̃)|

.

Equality is satisfied for pn(z) = Tn(z)/Tn(z̃).

This proposition states that given that pn equals one at a point zn, there is a limit
on how small it can be in the interval [−1, 1]. The Chebyshev polynomials are
optimal, within the class of polynomials of the same degree, in that they can fit
within a strip of minimal width.
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11−th Chebyshev polynomial

Figure 3.1: The functions T4(x), T5(x), T10(x), and T11(x).
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Proof : Consider the n + 1 points zi = cos(iπ/n) ∈ [−1, 1], i = 0, 1, . . . , n. Recall
that these are the extrema of the Chebyshev polynomials, Tn(zi) = (−1)i.

We now proceed by contradiction, and assume that

max
−1≤z≤1

|pn(z)| <
1
|Tn(z̃)|

.

If this holds, then a-forteriori,

|pn(zi)| −
1
|Tn(z̃)|

< 0, i = 0, 1, . . . , n.

This can be re-arranged as follows

sgn[Tn(z̃)](−1)i pn(zi) −
(−1)iTn(zi)

sgn[Tn(z̃)] Tn(z̃)
< 0,

or,

sgn[Tn(z̃)](−1)i

[
pn(zi) −

Tn(zi)
Tn(z̃)

]
< 0.

Consider now the function

f (z) = pn(z) −
Tn(z)
Tn(z̃)

.

It is a polynomial of degree at most n; its sign alternates at the zi, implying the
presence of n roots on the interval [−1, 1]; it has a root at z = z̃. This is impossible,
contradicting the assumption. n

Proposition 3.7 Let pn(z) be a polynomial of degree n, pn(1) = 1, and let a, b be
real numbers such that 1 < [a, b]. Then,

max
a≤z≤b

|pn(z)| ≥
1

|Tn(w(1))|
,

where
w(z) =

2z − b − a
b − a

.

Equality is obtained for pn(z) = Tn(w(z))/Tn(w(1)).

Note that a polynomial of degree n composed with a linear function is still a
polynomial of degree n,
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Proof : Take the case a < b < 1. Then,

w(1) =
2 − b − a

b − a
= 1 + 2

1 − b
b − a

def
= w̃ > 1.

The converse relation is

z(w) =
1
2

[(b − a)w + a + b],

and z(w̃) = 1.

Let pn we a polynomial of degree n satisfying pn(1) = 1, and define qn(w) =

pn(z(w)). We have qn(w̃) = pn(1) = 1, hence, by the previous proposition,

max
−1≤w≤1

|qn(w)| ≥
1

|Tn(w̃)|
,

Substituting the definition of qn, this is equivalent to

max
−1≤w≤1

|pn(z(w))| = max
a≤z≤b

|pn(z)| ≥
1

|Tn(w̃)|
.

n

We have thus shown that among all polynomials of degree n satisfying pn(1) = 1,
the one that minimizes its maximum norm in the interval [a, b] is

pn(z) =
Tn(w(z))
Tn(w(1))

, with w(z) =
2z − b − a

b − a
.

What does this have to do with acceleration methods? Recall that we assume the
existence of an iterative procedure,

xn+1 = Gxn + c,

where ΣG ∈ [a, b], and we want to improve it by taking instead

un =

n∑
k=0

an,kxk,

where
∑n

k=0 an,k = 1. We’ve seen that this amounts to an iterative method with
iteration matrix pn(G), where pn is the polynomial with coefficients an,k. Thus,
what we want is to find the polynomial that minimizes

max
a≤z≤b

|pn(z)|,
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and now we know which it is. This will ensure that

error(n) ≤
error(0)
|Tn(w(1))|

,

and the right hand side decays exponentially fast in n. We are still facing a practi-
cal problem of implementation. This will be dealt with now.

Lemma 3.14 The family of polynomials pn(z) =
Tn(w(z))
Tn(w(1)) can be constructed recur-

sively as follows:

p0(z) = 1

p1(z) =
2z − b − a
2 − b − a

pn(z) = σn p1(z)pn−1(z) + (1 − σn)pn−2,

where the constants σn are defined by

σ1 = 2 σn =

(
1 −

σn−1

2[w(1)]2

)−1

.

Proof : By the recursive property of the Chebyshev polynomials,

Tn(w(z)) = 2w(z) Tn−1(w(z)) − Tn−2(w(z)).

Dividing by Tn(w(1)), and converting Tk’s into pk’s:

pn(z) =
2w(1) Tn−1(w(1))

Tn(w(1))
p(z)pn−1(w(z)) −

Tn−2(w(1))
Tn(w(1))

Tn−2(w(z)).

It remains to show that

ρn
def
=

2w(1) Tn−1(w(1))
Tn(w(1))

= σn and −
Tn−2(w(1))
Tn(w(1))

= 1 − σn.

That their sum is indeed one follows from the Chebyshev recursion relation. It is
also obvious that ρ1 = 2. Finally,

ρn−1 =
2w(1) Tn−2(w(1))

Tn−1(w(1))

=
2w(1) Tn−2(w(1))

Tn(w(1)) Tn(w(1))
2w(1)Tn−1(w(1))

Tn(w(1))
Tn(w(1))

2w(1)

= −[2w(1)]2 1 − ρn

ρn
.

It only remains to invert this relation. n
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Theorem 3.11 The sequence (un) of Chebyshev’s acceleration’s method can be
constructed as follows:

u1 = γ (Gx0 + c) + (1 − γ)x0

un = σn
[
γ (Gun−1 + c) + (1 − γ)un−1

]
+ (1 − σn)un−2,

where γ = 2/(2 − b − a) and the σn are as above.

Comments:

À The (un) are constructed directly without generating the (xn).
Á The first step is extrapolation, and the next ones are “weighted extrapola-

tions”.
Â The Chebyshev polynomials are not apparent (they are hiding...).

Proof : Start with n = 1,

u1 = a1,1x1 + a1,0x0 = a1,1(Gx0 + c) + a1,0x0.

The coefficients a1,0 and a1,1 are the coefficients of the polynomial p1(z). By
Lemma 3.14,

a1,1 =
2

2 − b − a
= γ a1,0 = −

a + b
2 − b − a

= 1 − γ.

Now to the n-th iterate. Recall that

un =

n∑
k=0

an,kxk = x +

n∑
k=0

an,k(xk − x) = x + pn(G)(x0 − x).

By Lemma 3.14,

pn(G) = σn p1(G)pn−1(G) + (1 − σn)pn−2(G),

and p1(G) = γG + (1 − γ)I. Applying this on x0 − x we get

un − x = σn
[
γG + (1 − γ)I

]
(un−1 − x) + (1 − σn)(un−2 − x)

= σn
[
γGun−1 + (1 − γ)un−1

]
− σn

[
γGx + (1 − γ)x

]
+ (1 − σn)un−2 − (1 − σn)x.

It remains to gather the terms multiplying x. Since x = Gx + c is a fixed point,

−σn
[
γGx + (1 − γ)x

]
− (1 − σn)x = σnγc − x.

Substituting into the above we get the desired result. n
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vComputer exercise 3.4 The goal is to solve the system of equations:
4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4



x1

x2

x3

x4

 =


−4

0
4
−4

.


À Write explicitly the Jacobi iterative procedure,

xk+1 = Gxk + c.

Á What is is range of eigenvalues of the matrix G?
Â Is the Jacobi iterative procedure convergent?
Ã Write an algorithm for the Chebyshev acceleration method based on Jacobi

iterations.
Ä Implement both procedures and compare their performance.

3.7 The singular value decomposition (SVD)

Relevant, among other things, to the mean-square minimization: find x ∈ Rn that
minimizes ‖Ax − b‖2, where A ∈ Rm×n, and b ∈ Rm, with m > n (more equations
than unknowns). It has many other uses.

Since we are going to consider vectors in Rm and Rn, and operators between these
two spaces, we will use the notation ‖ · ‖m and ‖ · ‖n for the corresponding vector
2-norms. Similarly, we will use ‖ · ‖m×n, etc., for the operator 2-norms. We will
also use Im, In to denote the identity operators in the two spaces.

Recall that the norm of an m-by-n matrix (it will always be assumed that m ≥ n)
is defined by

‖A‖m×n = sup
‖x‖n=1

‖Ax‖m = sup
(x,x)n=1

√
(Ax, Ax)m.

A matrix Q is called orthogonal if its columns form an orthonormal set. If the
matrix is n-by-n, then its columns form a basis in Rn, and QT Q = In. Since Q is
invertible, it immediately follows that QT = Q−1, hence QQT = In as well. If Q is
an m-by-n orthogonal matrix, then QT Q = In, but the m-by-m matrix QQT is not
an identity.
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Lemma 3.15 Let x ∈ Rn, and Q be an orthogonal m-by-n matrix, m ≥ n, then
‖Qx‖m = ‖x‖2n.

Proof : This is immediate by

‖Qx‖2m = (Qx,Qx)m = (x,QT Qx)n = (x, x)n = ‖x‖n.

n

Lemma 3.16 Let A be an n-by-n matrix, V be an orthogonal n-by-n matrix, and
U be an orthogonal m-by-n matrix. Then,

‖UAVT ‖m×n = ‖A‖n×n.

Proof : By definition,

‖UAVT ‖2m×n = sup
(x,x)n=1

(UAVT x,UAVT x)m

= sup
(x,x)n=1

(AVT x, AVT x)n

= sup
(y,y)n=1

(Ay, Ay)n

= ‖A‖2n×n,

where we have used the previous lemma in the passage from the first to the second
line, and the fact that and x on the unit sphere can be expressed as Vy, with y on
the unit sphere. n

Theorem 3.12 (SVD decomposition) Let A be an m-by-n matrix, m ≥ n. Then, A
can be decomposed as

A = UΣVT ,

where U is an m-by-n orthogonal matrix, V is an n-by-n orthogonal matrix, and
Σ is an n-by-n diagonal matrix with entries σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The columns of U, ui, are called the left singular vectors, the columns of V , vi,
are called the right singular vectors, and the σi are called the singular values.
This theorem states that in some sense “every matrix is diagonal”. Indeed, for
every right singular vector vi,

Avi = UΣVT vi = UΣei = σiUei = σiui.

Thus, it is always possible to find an orthogonal basis {vi} in Rn, and an orthogonal
set {ui} in Rm, such that any x =

∑n
i=1 aivi is mapped into Ax =

∑n
i=1 σiaiui.
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Proof : The proof goes by induction, assuming this can be done for an (m− 1)-by-
(n − 1) matrix. The basis of induction is a column vector, which can always be
represented as a normalized column vector, times its norm, times one.

Let then A be given, and set v to be a vector on the unit sphere, ‖v‖n = 1, such
that ‖Av‖m = ‖A‖m×n (such a vector necessarily exists). Set then u = Av/‖Av‖m,
which is a unit vector in Rm. We have one vector u ∈ Rm, which we complete (by
Gram-Schmidt orthonormalization) into an orthogonal basis U = (u, Ũ) ∈ Rm×m,
UT U = UUT = Im. Similarly, we complete v ∈ Rn into an orthonormal basis
V = (v, Ṽ) ∈ Rn×n. Consider the m-by-n matrix

UT AV =

(
uT

ŨT

)
A

(
v Ṽ

)
=

(
uT Av uT AṼ
ŨT Av ŨT AṼ

)
.

Note that u ∈ Rm, Ũ ∈ Rm×(m−1), v ∈ Rn and Ṽ ∈ Rn×(n−1). Hence, uT Av ∈ R,
uT AṼ ∈ R1×(n−1), ŨT Av ∈ R(m−1)×1, and ŨT AṼ ∈ R(m−1)×(n−1).

Now,
uT Av = ‖Av‖muT u = ‖A‖m×n

def
= σ,

and
ŨT Av = ‖Av‖m ŨT u = 0,

due to the orthogonality of u and each of the rows of Ũ. Thus,

UT AV =

(
σ wT

0 A1

)
,

where wT = uT AṼ and A1 = ŨT AṼ . We are going to prove that w = 0 as well. On
the one hand we have∥∥∥∥∥∥UT AV

(
σ
w

)∥∥∥∥∥∥2

m

=

∥∥∥∥∥∥
(
σ2 + wT w

A1w

)∥∥∥∥∥∥2

m

≥ (σ2 + wT w)2.

On the other hand∥∥∥∥∥∥UT AV
(
σ
w

)∥∥∥∥∥∥2

m

≤
∥∥∥UT AV

∥∥∥2

m×n

∥∥∥∥∥∥
(
σ
w

)∥∥∥∥∥∥2

m

= ‖A‖2m×n (σ2 + wT w),

where we have used the above lemma for
∥∥∥UT AV

∥∥∥2

m×n
= ‖A‖2m×n. Since ‖A‖2m×n =

σ2, it follows from these two inequalities that

(σ2 + wT w)2 ≤ σ2(σ2 + wT w) → wT w(σ2 + wT w) ≤ 0,
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i.e., w = 0 as claimed.

Thus,

UT AV =

(
σ 0
0 A1

)
,

At this stage, we use the inductive hypothesis for matrices of size (m−1)× (n−1),
and write A1 = U1Σ1VT

1 , which gives,

UT AV =

(
σ 0
0 U1Σ1VT

1

)
=

(
1 0
0 U1

) (
σ 0
0 Σ1

) (
1 0
0 V1

)T

,

hence

A =

[
U

(
1 0
0 U1

)] (
σ 0
0 Σ1

) [
V

(
1 0
0 V1

)]T

.

It remains to show that σ is larger or equal to all the diagonal entries of Σ, but this
follows at once from the fact that

σ = ‖A‖m×n =

∥∥∥∥∥∥
(
σ 0
0 Σ1

)∥∥∥∥∥∥
n×n

=

∣∣∣∣∣∣max
i

(
σ 0
0 Σ1

)
ii

∣∣∣∣∣∣ .
This concludes the proof. n

Comment: SVD provides an interpretation of the action of A on a vector x:

À Rotate (by VT ).
Á Stretch along axes by σi.
Â Pad the vector with m − n zeros.
Ã Rotate (by U).

Having proved the existence of such a decomposition, we turn to prove a number
of algebraic properties of SVD.

Theorem 3.13 Let A = UΣVT be an SVD of the m-by-n matrix A. Then,

À If A is square symmetric with eigenvalues λi, and orthogonal diagonalizing
transformation U = (u1, . . . , un), i.e., A = UΛUT , then an SVD of A is with
σi = |λi|, the same U, and V with columns vi = sgn(λi)ui.

Á The eigenvalues of the n-by-n (symmetric) matrix AT A are σ2
i , and the cor-

responding eigenvectors are the right singular vectors vi.
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Â The eigenvalues of the m-by-m (symmetric) matrix AAT are σ2
i and m − n

zeros. The corresponding eigenvectors are the left singular vectors supple-
mented with a set of m − n orthogonal vectors.

Ã If A has full rank (its columns are independent), then the vector x ∈ Rn that
minimizes ‖Ax − b‖m is x = VΣ−1UT b. The matrix

VΣ−1UT

is called the pseudo-inverse of A.
Ä ‖A‖m×n = σ1. If, furthermore, A is square and non-singular then ‖A−1‖n×n =

1/σn, hence the condition number is σ1/σn.
Å Suppose that σ1 ≥ σn ≥ · · · ≥ σr > σr+1 = · · · = σn = 0. Then the rank of

A is r, and
null A = span(vr+1, . . . , vn)

range A = span(u1, . . . , ur).

Æ Write V = (v1, . . . , vn) and U = (u1, . . . , un). Then,

A =

n∑
i=1

σiuivT
i ,

i.e., it is a sum of rank-1 matrices. The matrix of rank k < n that is closest
(in norm) to A is

Ak =

k∑
i=1

σiuivT
i ,

and ‖A − Ak‖2 = σk+1. That is, the dyads uivT
i are ranked in “order of

importance”. Ak can also be written as

Ak = UΣkVT ,

where Σk = diag(σ1, . . . , σk, 0, . . . , 0).

Proof :

À This is obvious.
Á We have

AT A = VΣT UT UΣVT = VΣ2VT ,

where we have used the fact that UT U = Im. This is an eigen-decomposition
of AT A.
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Â First,
AAT = UΣVT VΣUT = UΣT UT .

Take an m-by-(m − n) matrix Ũ such that (U, Ũ) is orthogonal (use Gram-
Schmidt). Then, we can also write

AAT = (U, Ũ)
(
ΣT Σ 0

0 0

) (
UT

ŨT

)
.

This is precisely an eigen-decomposition of AAT .
Ã We need to minimize ‖Ax − b‖2 = ‖UΣVT x − b‖2. Since A has full rank, so

does Σ, hence it is invertible. Let (U, Ũ) ∈ Rm×m be as above, then

‖UΣVT x − b‖m2 =

∥∥∥∥∥∥
(
UT

ŨT

)
(UΣVT x − b)

∥∥∥∥∥∥2

m

=

∥∥∥∥∥∥
(
ΣVT x − UT b
−ŨT b

)∥∥∥∥∥∥2

m

= ‖ΣVT x − UT b‖2n + ‖ŨT b‖2m−n.

The second term does not depend on x, and the first can be made zero by
choosing

x = VΣ−1UT b.

Ä Since ‖A‖m×n = ‖Σ‖n×n, the first statement is obvious. If A is invertible, then
A−1 = VΣ−1UT , hence ‖A−1‖n×n = ‖Σ−1‖n×n, and the second statement is
equally obvious.

Å Recall that
A :

∑
i

aivi 7→
∑

i

aiσiui.

Then, clearly the range of A is the span of all those ui for which σi > 0 and
its null space is the span of all those vi for which σi = 0.

Æ Ak has rank k because it is a sum of k rank-1 matrices, and

‖A−Ak‖m×n = ‖

n∑
i=k+1

σiuivT
i ‖m×n =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
U



0
. . .

σk+1
. . .

σn


VT

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
m×n

= σk+1.
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We need to show that there is no closer matrix of rank k. Let B be any rank-
k matrix, so that its null space has dimension n − k. The space spanned by
(v1, . . . , vk+1) has dimension k+1, hence it must have a non-zero intersection
with the null space of B. Let x be a unit vector in this intersection,

x ∈ null B ∩ span(v1, . . . , vk+1), ‖x‖n = 1.

Then,

‖A − B‖2m×n ≥ ‖(A − B)x‖2m = ‖Ax‖2m = ‖UΣVT x‖2m
= ‖ΣVT x‖2n ≥ σ

2
k+1‖V

T x‖2n = σ2
k+1,

where we have used the fact that (VT x) has its last n − k − 1 entries zero.

n

. Exercise 3.25 Let A = UΣVT be an SVD for the m-by-n matrix A. What are
the SVDs for the following matrices:

À (AT A)−1.
Á (AT A)−1AT .
Â A(AT A)−1.
Ã A(AT A)−1AT .

Solution 3.25:

À The matrix AT A is n-by-n, and has an SVD of the form AT A = VΣ2VT . Its inverse is
(AT A)−1 = VΣ−2VT , which is almost an SVD, except for the singular values being in
increasing order. Let P be a permutation matrix that switches the first row with the last, the
second with the (n − 1)-st, etc. It is a symmetric matrix, i.e, PT = P = P−1. Then,

(AT A)−1 = (VP)(PΣ−2P)(VP)T

is an SVD.
Á The matrix (AT A)−1AT is n-by-m. For such matrices, we SVD its transpose,

A(AT A)−T = UΣVT VΣ−2VT = (UP)(PΣ−1P)(VP)T .

Â Same as the previous example.
Ã The matrix A(AT A)−1AT is m-by-m:

A(AT A)−1AT = UΣVT VΣ−2VT VΣUT = UImUT .
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Figure 3.2: (a) Full 320 × 200 image, (b) k = 1, (c) k = 3, (d) k = 10, (e) k = 20,
(f) k = 50.
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. Exercise 3.26 Decompose the following matrix 2 6 −4
6 17 −17
−4 −17 −20


into a product of the form LDLT , where D is diagonal.

. Exercise 3.27 Write an algorithm for Cholesky factorization (that is, an algo-
rithm that calculates L, so that LLT = A, where A is symmetric, positive-definite).

. Exercise 3.28 Let A = I−L−U where the matrices L and U are strictly lower
and upper diagonal, respectively. Consider the following iterative procedure for
solving the linear system Ax = b:

xk+1 = b̄ + xk − (I − U)−1(I − L)−1Axk,

where
b̄ = (I − U)−1(I − L)−1b.

(i) Prove that if the procedure converges it converges to the right solution.
(ii) Explain why this scheme does not require the inversion of (I −U) and (I − L).

. Exercise 3.29 Prove that if Bn is an approximation to the matrix A−1, i.e.,
Bn = A−1(I − En) and ‖En‖ is “small”, then

Bn+1 = Bn(2I − ABn)

is an even better approximation. How small should ‖E0‖ be for the sequence to
converge?
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Interpolation

In this chapter we will consider the following question. What is the polynomial of
lowest degree that agrees with certain data on its value and the values of its deriva-
tives at given points. Viewing this polynomial as an approximation of a function
satisfying the same constraints, we will estimate the error of this approximation.

4.1 Newton’s representation of the interpolating poly-
nomial

Suppose we are given n + 1 set of points in the plane,

x0 x1 · · · xn

y0 y1 · · · yn

The goal is to find a polynomial of least degree which agrees with this data.
Henceforth we will denote the set of polynomials of degree n or less by Πn.

Theorem 4.1 Let x0, x1, . . . , xn be n + 1 distinct points. For every set of values
y0, y1, . . . , yn, there exists a unique pn ∈ Πn such that p(xi) = yi, i = 0, 1, . . . , n.

Proof : We start by proving uniqueness. Suppose that there exists pn, qn ∈ Πn

satisfying
pn(xi) = qn(xi) = yi, i = 0, . . . , n.
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Then the polynomial rn = pn − qn is in Πn and satisfies

rn(xi) = 0, i = 0, . . . , n,

hence it must be identically zero.

We then prove existence using induction on n. For n = 0 we choose

p0(x) = y0.

Suppose then the existence of a polynomial pn−1 ∈ Πn−1 that interpolates the func-
tion at the points (x0, . . . , xn−1) We take then

pn(x) = pn−1(x) + c (x − x0)(x − x1) . . . (x − xn−1).

This polynomial is in Πn, it agrees with pn−1) on the first n points. It only remains
to require that

yn = pn−1(xn) + c (xn − x0)(xn − x1) . . . (xn − xn−1),

i.e., take

c =
yn − pn−1(xn)∏n−1

j=0(xn − x j)
.

n

This proof is in fact constructive. Given n + 1 points (xi, yi)n
i=0, we construct a

sequence of interpolating polynomials:

p0(x) = c0

p1(x) = c0 + c1(x − x0)
p2(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1),

and in general,

pn(x) =

n∑
i=0

ci

i−1∏
j=0

(x − x j),

where the coefficients ci are given by

ci =
yi − pi−1(xi)∏i−1

j=1(xi − x j)
.

This representation of the (unique!) interpolating polynomials is known as New-
ton’s representation.

The following example is only presented for didactic reasons since we will learn
a much more efficient way to calculate the interpolating polynomial.
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Example 4.1 Find the interpolating polynomial for the following data:

x 5 −7 −6 0
y 1 −23 −54 −954

4.2 Lagrange’s representation

4.3 Divided differences

Recall how we construct Newton’s interpolating polynomial: once we have a poly-
nomial pk−1 ∈ Πk−1 interpolating through the points (x0, . . . , xk−1) we proceed to
construct pk ∈ Πk by finding a constant ck such that

y(xk) = pk−1(xk) + ck(xk − xk−1) · · · (xk − x0).

The constant ck is the coefficient of xk in pk(x), which is the interpolating poly-
nomial through the points (x0, . . . , xk). Note that by construction, the constant ck

only depend on the choice of points (x0, . . . , xk) and the values of y(x) at these
points. We denote this constant by

y[x0, . . . , xk] ≡ the coefficient of xk in the interpolating polynomial,

hence Newton’s interpolation formula can be written as

pn(x) =

n∑
k=1

y[x0, . . . , xk]

 k−1∏
j=0

(x − x j)

 .
The coefficients y[x0, . . . , xk] are called the divided differences of y(x). The rea-
son for this name will be seen shortly.

Our goal in this section is to show a simple way of calculating the divided differ-
ences. Let us start with k = 0. In this case the coefficient of x0 in the zeroth-order
polynomial passing through (x0, y(x0)) is y(x0), i.e.,

y[x0] = y(x0).

Now to k = 1. The coefficient of x1 is

y[x0, x1] =
y(x1) − y(x0)

x1 − x0
=

y[x1] − y[x0]
x1 − x0

.
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Next to k = 2,

y[x2] = y[x0] + y[x0, x1](x2 − x0) + y[x0, x1, x2](x2 − x0)(x2 − x1),

which we rearrange as

y[x0, x1, x2] =
y[x2] − y[x0] − y[x0, x1](x2 − x0)

(x2 − x0)(x2 − x1)

=
y[x2] − y[x1] + y[x1] − y[x0] − y[x0, x1](x2 − x0)

(x2 − x0)(x2 − x1)

=
y[x1, x2](x2 − x1) + y[x0, x1](x1 − x0) − y[x0, x1](x2 − x0)

(x2 − x0)(x2 − x1)

=
y[x1, x2] − y[x0, x1]

(x2 − x0)
.

This is generalized into the following theorem:

Theorem 4.2 Divided differences satisfy the following recursive formula,

y[x0, . . . , xk] =
y[x1, . . . , xk] − y[x0, . . . , xk−1]

xk − x0
.

Proof : We know that y[x1, . . . , xk] is the coefficient of xk−1 in qk−1, which is the
interpolating polynomial through (x1, . . . , xk) whereas y[x0, . . . , xk−1] is the coeffi-
cient of xk−1 in pk−1, which is the interpolating polynomial through (x0, . . . , xk−1).
Now, it is easily verified that

pk(x) = qk−1(x) +
x − xk

xk − x0
[qk−1(x) − pk−1(x)].

This completes the proof. n

AND NOW SHOW HOW TO CALCULATE.

Example 4.2 Find the interpolating polynomial for the following data

x 5 −7 −6 0
y 1 −23 −54 −954

using divided differences.
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4.4 Error estimates

4.5 Hermite interpolation

. Exercise 4.1 Write an algorithm that gets two vectors, (x0, x1, . . . , xn) and
(y0, y1, . . . , yn), and a number x, and returns p(x), where p is the interpolating
polynomials through the n + 1 points (xi, yi).

Solution 4.1: The first step is to compute the coefficients Ci of Newton’s representation. The
most efficient way is to use divided differences:

Algorithm 4.5.1: -(X,Y)

for i = 0 to n
do Mi,0 = Yi

for j = 1 to n
do for i = 0 to n − j
do Mi j = (Mi+1, j−1 − Mi, j−1)/(Xi+ j − Xi)

for i = 0 to n
do Ci = M0,i

return (C)

Once that the coefficients are known, we use nested multiplication to evaluate p(x):

Algorithm 4.5.2: -(x, X,C)

p = Cn

for i = n − 1 downto 0
do p = (x − Xi)p + Ci

return (p)

. Exercise 4.2 Apply Lagrange’s interpolation formula to the set of equally
spaced pairs:

x h 2h 3h
y y0 y1 y2

to obtain an approximation for y(x) at x = 0.
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Solution 4.2: The Lagrange interpolation formula in this case is

p(x) = y0
(x − 2h)(x − 3h)

2h2 − y1
(x − h)(x − 3h)

h2 + y2
(x − h)(x − 2h)

2h2 .

Substituting x = 0 we get
p(0) = 3y0 − 3y1 + y2.

. Exercise 4.3 Let `i(x) be the Lagrange polynomials for the set of point x0, . . . , xn,
and let Ci = `i(0). Show that

n∑
i=0

Cix
j
i =


1 j = 0
0 j = 1, . . . , n
(−1)nx0x1 · · · xn j = n + 1,

and that
n∑

i=0

`i(x) = 1.

Solution 4.3: Each of the polynomials x j, j = 0, 1, . . . , n, coincides (by uniqueness) with its
interpolating polynomial through the n + 1 given points. Thus,

x j =

n∑
i=0

`i(x)x j
i .

Substituting x = 0 we get the first two lines. For the third line, we note that

xn+1 − (x − x0)(x − x0) . . . (x − xn)

is a polynomial of degree n, hence it coincides with its interpolating polynomial:

xn+1 − (x − x0)(x − x0) . . . (x − xn) =

n∑
i=0

`i(x)xn+1
i .

Substituting x = 0 we get the desired result.

. Exercise 4.4 Suppose that p(x) is the interpolation polynomial of the data:

x 3 7 1 2
y 10 146 2 1
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Find a simple expression, in terms of p(x), for the interpolation polynomial of the
data:

x 3 7 1 2
y 12 146 2 1

Solution 4.4: Since the only difference is in the first data point, we use the Lagrange represen-
tation to write

p(x) + (12 − 10)`0(x).

. Exercise 4.5 Show that the divided differences are linear maps on functions.
That is, prove the equation

(α f + βg)[x0, x1, . . . , xn] = α f [x0, x1, . . . , xn] + βg[x0, x1, . . . , xn].

Solution 4.5: This is immediate by induction.

. Exercise 4.6 The divided difference f [x0, x1] is analogous to a first derivative.
Does it have a property analogous to ( f g)′ = f ′g + f g′?

Solution 4.6: By definition

( f g)[x1, x2] =
f [x2]g[x2] − f [x1]g[x1]

x2 − x1

=
f [x2]g[x2] − f [x1]g[x2]

x2 − x1
+

f [x1]g[x2] − f [x1]g[x1]
x2 − x1

= f [x1, x2]g[x2] + f [x1]g[x1, x2].

. Exercise 4.7 Prove the Leibnitz formula:

( f g)[x0, x1, . . . , xn] =

n∑
k=0

f [x0, x1, . . . , xk]g[xk, xk+1, . . . , xn].
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Solution 4.7: We use induction on n. We have seen this to be correct for n = 1. Suppose this is
correct for any n interpolation points. Then,

( f g)[x0, x1, . . . , xn] =
( f g)[x1, . . . , xn] − ( f g)[x0, . . . , xn−1]

xn − x0

=
1

xn − x0

n∑
k=1

f [x1, . . . , xk]g[xk, . . . , xn]

−
1

xn − x0

n−1∑
k=0

f [x0, . . . , xk]g[xk, . . . , xn−1]

=
1

xn − x0

n−1∑
k=0

f [x1, . . . , xk+1]g[xk+1, . . . , xn]

−
1

xn − x0

n−1∑
k=0

f [x0, . . . , xk]g[xk, . . . , xn−1]

±
1

xn − x0

n−1∑
k=0

f [x0, . . . , xk]g[xk+1, . . . , xn]

=
1

xn − x0

n−1∑
k=0

(xk+1 − x0) f [x0, . . . , xk+1]g[xk+1, . . . , xn]

+
1

xn − x0

n−1∑
k=0

(xn − xk) f [x0, . . . , xk]g[xk, . . . , xn]

=

n∑
k=0

f [x0, . . . , xk]g[xk, . . . , xn].

. Exercise 4.8 Compare the efficiency of the divided difference algorithm to the
original procedure we learned in class for computing the coefficients of a Newton
interpolating polynomial.

. Exercise 4.9 Find Newton’s interpolating polynomial for the following data:

x 1 3/2 0 2
f (x) 3 13/4 3 5/3

Use divided differences to calculate the coefficients.

. Exercise 4.10 Find an explicit form of the Hermite interpolating polynomial
for k = 2 (two interpolation points) and m1 = m2 = m (p(k)(xi) = f (k)(xi) for
k = 0, 1, 2, . . . ,m − 1).
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Solution 4.10: There are two interpolation points, in each of which we have m pieces of data.
By the Lagrange approach, let’s solve the problem for homogeneous data at the point x2, i.e.,
p(k)(x2) = 0. The interpolating polynomials can be written in the form

p(x) = `m
1 (x)

[
c0 + c1`2(x) + · · · + cm−1`

m−1
2 (x)

]
,

where `i(x) are the Lagrange basis polynomials. In the presence of just two points,

`1(x) =
x − x2

x1 − x2
`2(x) =

x − x1

x2 − x1
,

and
`′1(x) =

1
x1 − x2

≡ α = −`′2(x).

Now,
p(x1) = c0

p′(x1) = α(mc0 − c1)

p′′(x1) = α2(m(m − 1)c0 − 2mc1 + 2c2),

ad so on.

. Exercise 4.11 Find the Hermite interpolating polynomial in the case m1 =

m2 =, · · · = mk = 2.
Hint: try

p(x) =

k∑
i=1

hi(x) f (xi) +

k∑
i=1

gi(x) f ′(xi)

with hi and gi polynomial of degrees up to 2k − 1 which satisfy:

hi(x j) = δi, j gi(x j) = 0
h′i(x j) = 0 g′i(x j) = δi, j.

Solution 4.11: The proposed polynomial satisfies the requirement, but we need to construct
the polynomials h, g. The g’s are easy,

gi(x) = (x − xi)`2
i (x),

where the `i(x) are the Lagrange basis polynomials. For the h’s we look for

hi(x) = `2
i (x)(1 + b(x − xi)).

Differentiating and substituting x = xi we get

hi(xi) = 2`i(xi)`′i (xi) + b`i(xi) = 0,
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hence b = −2`′i (xi), and
hi(x) = `2

i (x)
[
1 − 2`′i (xi)(x − xi)

]
.

. Exercise 4.12 Suppose that a function f (x) is interpolated on the interval
[a, b] by a polynomial Pn(x) whose degree does not exceed n. Suppose further
that f (x) is arbitrarily often differentiable on [a, b] and that there exists an M such
that | f (i)(x)| ≤ M for i = 0, 1, . . . and for any x ∈ [a, b]. Can it be shown without
further hypotheses that Pn(x) converges uniformly on [a, b] to f (x) as n→ ∞?

. Exercise 4.13 Assume a set of n + 1 equidistant interpolation points, xi =

x0 + i h, i = 1 . . . , n. Prove that the divided difference, f [x0, . . . , xn], reduces to

f [x0, . . . , xn] =
1

hn n!

n∑
k=0

(−1)n−k

(
n
k

)
f (xk).

Hint: you may have to use the identity(
m

j − 1

)
+

(
m
j

)
=

(
m + 1

j

)
. Exercise 4.14 Prove that if f is a polynomial of degree k then for n > k the
divided difference f [x0, . . . , xn] vanishes identically for all choices of interpolation
points, (x0, . . . , xn).
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Approximation theory

5.1 Weierstrass’ approximation theorem

Theorem 5.1 Let [a, b] be a bounded domain. For every continuous function f (x)
on [a, b] and ε > 0 there exists a polynomial p(x) such that

‖ f − p‖∞ = sup
a≤x≤b

| f (x) − p(x)| ≤ ε.

This theorem states that continuous functions on bounded domains can be uni-
formly approximated by polynomials. Equivalently, it states that the space of
polynomials is dense in the space of continuous functions in the topology induced
by the sup-norm. Note that the theorem says nothing about the degree of the poly-
nomial. Since polynomials depend continuously on their coefficients, this theorem
remains valid if we restrict the polynomials to rational coefficients. This means
that the space C[a, b] as a dense subspace which is countable; we say then that the
space of continuous functions endowed with the sup-norm topology is separable.

Proof : It is sufficient to restrict the discussion to functions on [0, 1], for polyno-
mials of linear transformations remain polynomials. Thus, we need to prove that
for any function f ∈ C[0, 1] and ε > 0 we can find a polynomial p such that

‖ f − p‖∞ ≤ ε.

Equivalently, that we can construct a sequence of polynomials pn such that

lim
n→∞
‖ f − pn‖∞ = 0.
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We introduce now a operator Bn which maps functions in f ∈ C[0, 1] into polyno-
mials Bn f ∈ Πn:

Bn f (x) =

n∑
k=0

(
n
k

)
f
(

k
n

)
xk(1 − x)n−k.

We note the following properties of Bn:

À Linearity:
Bn(α f + βg) = α Bng + β Bng.

Á Positivity: if f (x) ≥ 0 then Bn f (x) ≥ 0.

Â For f (x) = 1,

Bn f (x) =

n∑
k=0

(
n
k

)
xk(1 − x)n−k = (x + 1 − x)n = 1,

i.e., Bn f (x) = f (x).

Ã For f (x) = x,

Bn f (x) =

n∑
k=0

(
n
k

)
k
n

xk(1 − x)n−k

=

n∑
k=1

(
n − 1
k − 1

)
xk(1 − x)n−k

=

n−1∑
k=0

(
n − 1

k

)
xk+1(1 − x)n−1−k

= x,

so that again Bn f (x) = f (x).

Ä For f (x) = x2,

Bn f (x) =

n∑
k=0

(
n
k

)
k2

n2 xk(1 − x)n−k

=
n − 1

n
x2 +

1
n

x,

so that ‖Bn f (x) − f (x)‖∞ → 0.
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We claim that this is sufficient to conclude that for any continuous f , the sequence
of polynomials Bn f converges uniformly to f . This is established in the next
theorem. n

Theorem 5.2 (Bohman-Korovkin) Let Ln be a sequence of operators in C[a, b]
that are linear, positive, and satisfy

lim
n→∞
‖Ln f − f ‖∞ = 0 for f = 1, x, x2.

Then ‖Ln f − f ‖∞ → 0 for all f ∈ C[a, b].

Proof : The operators Ln are linear and positive. Therefore, if f (x) ≥ g(x) for all
x, then

Ln f (x) − Lng(x) = Ln( f − g)(x) ≥ 0,

i.e., Ln f (x) ≥ Lng(x) for all x. In particular, since ± f (x) ≤ | f (x)| it follows that
±Ln f (x) ≤ Ln| f |(x), or

|Ln f (x)| ≤ Ln| f |(x). (5.1)

Let f ∈ C[a, b] be given as well as ε > 0. Since f is continuous on a bounded
domain, it is uniformly continuous: there exists a δ > 0 such that for every x, y
such that |x − y| ≤ δ, | f (x) − f (y)| ≤ ε. On the other hand, if |x − y| > δ then
| f (x) − f (y)| ≤ 2‖ f ‖∞ ≤ 2‖ f ‖∞(x − y)2/δ2. In either case, there exists a constant
C, which depends on f and ε, such that

| f (x) − f (y)| ≤ Cε(x − y)2 + ε.

View now this inequality as an inequality between functions of y with x being a
parameter. By (5.1),

|Ln( f (x) − f )(y)| = | f (x)Ln1(y) − Ln f (y)|
≤ Ln| f (x) − f |(y)

≤ Cε(x2 − 2xLny + Lny2) + εLn1(y).

In particular, this should hold for y = x, hence

| f (x)Ln1(x) − Ln f (x)| ≤ Cε(x2 − 2xLnx + Lnx2) + εLn1(x).

Since we eventually want to bound f (x) − Ln f (x), we write

| f (x) − Ln f (x)| ≤ | f (x)Ln1(x) − Ln f (x)| + | f (x) − f (x)Ln1(x)|

≤ Cε(x2 − 2xLnx + Lnx2) + εLn1(x) + ‖ f ‖∞|1 − Ln1(x)|.
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Since the assumptions of this theorem are that for every η > 0 there exists an N
such that for every n > N

|Ln1 − 1|∞ ≤ η |Lnx − x|∞ ≤ η |Lnx2 − x2|∞ ≤ η,

it follows that

| f (x) − Ln f (x)| ≤ Cε(2|x|η + η) + ε(1 + η) + ‖ f ‖∞η.

By taking η sufficiently small we can make the right hand side smaller than, say,
2ε, which concludes the proof. n

5.2 Existence of best approximation

Consider the following general problem. We are given a function f on some in-
terval [a, b]. The function could be continuous, differentiable, piecewise-smooth,
square-integrable, or belong to any other family of functions. For given n ∈ N,
we would like to find the polynomial pn ∈ Πn that best approximates f , i.e., that
minimizes the difference ‖ f − pn‖:

pn = arg min
g
‖ f − g‖.

Three questions arise:

À Which norm should be used?

Á Does a best approximation exist? Is it unique? Does the existence and
uniqueness depend on the choice of norms.

Â If it does. how to find it?

The answer to the first question is that the choice is arbitrary, or more precisely,
depends on one’s needs. The answer to the second question is “yes”, indepen-
dently of the choice of norms. There is no general answer to the third question.
We will see below how to find the best approximation for a specific norm, the L2

norm.

But first, the existence of a best approximation follows from the following theo-
rem:



Approximation theory 113

Theorem 5.3 Let (X, ‖·‖) be a normed space, and let G ⊂ X be a finite-dimensional
subspace. For every f ∈ X there exists at least one best approximation within G.
That is, there exist a g ∈ G, such that

‖ f − g‖ ≤ ‖ f − h‖

for all h ∈ G.

Proof : Let f ∈ X be given, and look at the subset of G:

K = {g ∈ G : ‖ f − g‖ ≤ ‖ f ‖} .

This set is non-empty (since it contains the zero vector), bounded, since every
g ∈ K satisfies,

‖g‖ ≤ ‖g − f ‖ + ‖ f ‖ ≤ 2‖ f ‖,

and closed, i.e., K is compact with respect to the norm topology. Consider now
the real-valued function a : K 7→ R+:

a(g) = ‖ f − g‖.

It is continuous (by the continuity of the norm), and therefore reaches its minimum
in K. n

5.3 Approximation in inner-product spaces

We are now going to examine the problem of determining the best approximation
in inner-product spaces. To avoid measure-theoretic issues, we will consider the
space of continuous functions X = C[a, b] endowed with an inner product:

( f , g) =

∫ b

a
f (x)g(x)w(x) dx,

where w(x) is called a weight function, and must be strictly positive everywhere
in [a, b]. The corresponding norm is the weighted-L2 norm:

‖ f ‖ =
√

( f , f ).

For f ∈ C[a, b], we will be looking for g ∈ Πn that minimized the difference:

‖ f − g‖2 =

∫
( f (x) − g(x))w(x) dx.
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The choice w(x) = 1 reduces to the standard L2 norm.

Recall also the Cauchy-Schwarz inequality, valid for all inner-product spaces,

( f , g) ≤ ‖ f ‖‖g‖,

and the parallelepiped identity:

‖ f + g‖ + ‖ f − g‖ = 2‖ f ‖2 + 2‖g‖2.

Definition 5.1 The vectors f , g are called orthogonal (denoted f ⊥ g) if ( f , g) =

0. f is called orthogonal to the set G ⊂ X if f ⊥ g for all g ∈ G.

The theory of best approximation in inner-product spaces hinges on the following
theorem:

Theorem 5.4 Let X be an inner-product space and G ⊂ X a finite-dimensional
subspace. Let f ∈ X. Then g ∈ G is the best approximation of f in G iff f −g ⊥ G.

Proof : Suppose first that f − g ⊥ G. We need to show that g is a best approxima-
tion in the sense that

‖ f − g‖ ≤ ‖ f − h‖

for all h ∈ G. Now,

‖ f − h‖2 = ‖ f − g + g − h‖2 = ‖ f − g‖2 + ‖g − h‖2 ≥ ‖ f − g‖2,

where we have used the assumption that f − g ⊥ g − h.

Conversely, suppose that g is a best approximation and let h ∈ G. For all α > 0,

0 ≤ ‖ f − g + αh‖2 − ‖ f − g‖2 = α( f − g, h) + α2‖h‖2.

Dividing by α:
( f − g, h) + α‖h‖2 ≤ 0,

and taking α→ 0 we get that f − g ⊥ h. Since this holds for all h ∈ G, this proves
the claim. n

Corollary 5.1 There exists a unique best approximation.
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Proof : Let g, h ∈ G be best approximations, then

(g − h, g − h) = ( f − h, g − h) − ( f − g, g − h) = 0,

since g − h ∈ G. n

Example 5.1 Let X = C[−1, 1] with the standard inner product, and G = span {g1, g2, g3} =

span
{
x, x3, x5

}
. Take f = sin x. The best approximation in G is of the form

g(x) = c1g1(x) + c2g2(x) + c3g3(x).

The best approximation is set by the orthogonality conditions,

( f − g, gi) = 0 or (g, gi) = ( f , gi), i = 1, 2, 3.

This results in the following linear system(g1, g1) (g2, g1) (g3, g1)
(g1, g2) (g2, g2) (g3, g2)
(g1, g3) (g2, g3) (g3, g3)


c1

c2

c3

 =

( f , g1)
( f , g2)
( f , g3)

 .
The matrix of coefficients is called the Gram matrix. Computing these integrals
we get 

2
3

2
5

2
7

2
5

2
7

2
9

2
7

2
9

2
11


c1

c2

c3

 =

 sin 1 − cos 1
−3 sin 1 + 5 cos 1

65 sin 1 − 101 cos 1

 .
Orthonormal systems Life becomes even simpler if we span the subspace G
with an orthonormal basis {gi}

n
i=1. Then, every g ∈ G has a representation

g =

n∑
i=1

αigi, (gi, g j) = δi j.

Theorem 5.5 Let G = span {g1, . . . , gn} ⊂ X. The best approximation g ∈ G of a
vector f ∈ X is

g =

n∑
i=1

( f , gi)gi.
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Proof : For all j = 1, . . . , n,

( f − g, g j) = ( f , gi) −
n∑

i=1

( f , gi)(g j, gi) = 0,

hence f − g ⊥ G. n

Example 5.2 Let’s return to the previous example of X = C[−1, 1] and G span x, x3, x5.
It can be checked that the following vectors,

g1(x) =

√
3
2

x

g2(x) =

√
7
2

(5x3 − 3x)

g3(x) =

√
11
2

(63x5 − 70x3 + 15x)

form an orthonormal basis in G (the Legendre polynomials). Then, for f (x) =

sin x,
g(x) = c1g1(x) + c2g2(x) + c3g3(x),

with

c1 =

√
3
2

∫
x sin x dx

c2 =

√
7
2

∫
(5x3 − 3x) sin x dx

c3 =

√
11
2

∫
(63x5 − 70x3 + 15x) sin x dx.

Lemma 5.1 (Generalized Pythagoras lemma) Let {gi}
n
i=1 be an orthonormal set,

then

‖

n∑
i=1

αigi‖
2 =

n∑
i=1

α2
i .

Proof : By induction on n. n

Lemma 5.2 (Bessel inequality) Let {gi}
n
i=1 be an orthonormal set then for every

f ∈ X:
n∑

i=1

|( f , gi)|2 ≤ ‖ f ‖2.
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Proof : Set

h =

n∑
i=1

( f , gi)gi,

which is the best approximation of f within the span of the gi’s. Now,

‖ f ‖2 = ‖ f − h + h‖2 = ‖ f − h‖2 + ‖h‖2 ≥ ‖h2‖ =

n∑
i=1

|( f , gi)|2,

where we have used the fact that f − h ⊥ h. n

. Exercise 5.1 Show that the set of polynomials,

φ0(x) =
1
√
π

φk(x) =
2
√
π

Tk(x), k = 1, 2, . . . ,

where Tk(x) are the Chebyshev polynomials, form an orthonormal basis on the
segment [−1, 1] with respect to the inner product,

( f , g) =

∫ 1

−1
f (x) g(x)

dx
√

1 − x2
.

Derive an expression for the best approximation of continuous functions in the
interval [−1, 1] with respect to the norm

‖ f ‖2 =

∫ 1

−1

f 2(x)
√

1 − x2
dx,

where the approximating function is a polynomial of degree less or equal n.

. Exercise 5.2 Consider the space C[−1, 1] endowed with inner product

( f , g) =

∫ i

−1
f (x)g(x) dx.

Use the Gram-Schmidt orthonormalization procedure to construct a basis for span
{
1, x, x2, x3

}
.

. Exercise 5.3 Let X be an inner product space, and G a subspace spanned by
the orthonormal vectors {g1, g2, . . . , gn}. For every f ∈ X denote by P f the best
L2-approximation of f by an element of G. Find an explicit formula for ‖ f − P f ‖.
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. Exercise 5.4 Suppose that we want to approximate an even function f by a
polynomial pn ∈ Πn, using the norm

‖ f ‖ =

(∫ 1

−1
f 2(x) dx

)1/2

.

Prove that pn is also even.

. Exercise 5.5 Let {pn(x)} be a sequence of polynomials that are orthonormal
with respect to the weight function w(x) in [a, b], i.e.,∫ b

a
pn(x)pm(x)w(x) dx = δm,n.

Let Pn−1(x) be the Lagrange interpolation polynomial agreeing with f (x) at the
zeros of pn. Show that

lim
n→∞

∫ b

a
w(x)

[
Pn−1(x) − f (x)

]2 dx = 0.

Hint: Let Bn−1 be the Bernstein polynomial of degree n − 1 for f (x). Estimate the
right-hand side of the inequality∫

w
[
Pn−1 − f

]2 dx ≤ 2
∫

w [Pn−1 − Bn−1]2 dx + 2
∫

w
[
Bn−1 − f

]2 dx.

. Exercise 5.6 Find the Bernsteins polynomials, B1(x) and B2(x) for the func-
tion f (x) = x3. Use this result to obtain the Weierstrass polynomials of first and
second degree for f (y) = 1

8 (y + 1)3 on the interval −1 ≤ y ≤ 1.
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Numerical integration

. Exercise 6.1 Approximate ∫ 1

0
e−x2

dx

to three decimal places.

. Exercise 6.2 Prove that if f ∈ C2[a, b] then there exists an x̄ ∈ (a, b) such that
the error of the trapezoidal rule is∫ b

a
f (x) dx −

1
2

(b − a)( f (a) + f (b)) = −
1

12
(b − a)3 f ′′(x̄).

. Exercise 6.3 Determine the interval width h and the number m so that Simp-
son’s rule for 2m intervals can be used to compute the approximate numerical
value of the integral

∫ π

0
cos x dx with an accuracy of ±5 · 10−8.

. Exercise 6.4 By construction, the n’th Newton-Cotes formula yields the exact
value of the integral for integrands which are polynomials of degree at most n.
Show that for even values of n, polynomials of degree n + 1 are also integrated
exactly. Hint: consider the integral of xn+1 in the interval [−k, k], with n = 2k + 1.

. Exercise 6.5 Derive the Newton-Cotes formula for
∫ 1

0
f (x) dx based on the

nodes 0, 1
3 , 2

3 and 1.
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. Exercise 6.6 Approximate the following integral:∫ 2

−2

dx
1 + x2

using Gaussian quadrature with n = 2.
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More questions

7.1 Preliminaries

. Exercise 7.1 What is the rate of convergence of the sequence

an =
1

n 2n .

What is the rate of convergence of the sequence

bn = e−3n
.

7.2 Nonlinear equations

. Exercise 7.2 Let f (x) be a continuous differentiable function on the line, which
has a root at the point x̂. Consider the following iterative procedure:

xn+1 = xn − f (xn),

Determine conditions on f and on the initial point x0 that guarantee the conver-
gence of the sequence (xn) to x̂.

. Exercise 7.3 Let Φ : R5 7→ R5 be an iteration function with fixed point ζ.
Suppose that there exists a neighborhood of ζ in which

‖Φ(x) − x‖ ≤ 45‖x − ζ‖7/3,
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and the norm is the infinity-norm for vectors. Prove or disprove: there exists a
neighborhood of ζ such that for every x0 in this neighborhood the sequence (xn)
converges to ζ.

. Exercise 7.4 Let f be twice differentiable with f (zeta) = 0 and f ′(ζ) , 0.
Prove that Newton’s method for root finding is locally second order.

. Exercise 7.5 True or false: the iteration

xn+1 = 1 + xn −
1
4

x2
n

converges to the fixed point x = 2 for all x0 ∈ [1, 3].

7.3 Linear algebra

. Exercise 7.6 Let ‖ · ‖ be a vector norm in Rn, and let ‖ · ‖ denote also the
subordinate matrix norm.

À For x ∈ Rn define ‖x‖′ = 1
2‖x‖. Is ‖ · ‖′ a vector norm?

Á For A ∈ Rn×n define ‖A‖′ = 1
2‖A‖. Is ‖ · ‖′ a matrix norm subordinate to some

vector norm?

. Exercise 7.7 À Prove that all the diagonal terms of a symmetric positive
definite matrix are positive.

Á Prove that all the principal submatrices of an spd matrix are spd.

. Exercise 7.8 Prove by an explicit calculation that the 1- and 2-norms in Rn

are equivalent: find constants c1, c2, such that

c1‖x‖2 ≤ ‖x‖1 ≤ c2‖x‖2

for all x ∈ Rn.

. Exercise 7.9 Let ‖ · ‖ be a vector norm in Rn. Prove that the real-valued func-
tion on matrices A ∈ Rn×n,

‖A‖ = sup
x,0

‖Ax‖
‖x‖

satisfies the properties of a norm.
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. Exercise 7.10 Let ‖ · ‖ denote a vector norm in Rn and its subordinate matrix
norm.

À Let x = (1, 0, 0, . . . , 0)T . Is it necessarily true that ‖x‖ = 1?

Á Let I be the unit n-by-n matrix. Is it necessarily true that ‖I‖ = 1?

. Exercise 7.11 Derive an explicit expression for the matrix norm subordinate
to the 1-norm for vectors.

. Exercise 7.12 Prove that the spectral radius, which can be defined by

spr A = max
λ∈Σ(A)

|λ|,

satisfies
spr A = inf

‖·‖
‖A‖.

. Exercise 7.13 What is the spectral radius of an upper triangular matrix?

. Exercise 7.14 Can you use the Neumann series to approximate the inverse of
a matrix A? Under what conditions will this method converge?

. Exercise 7.15 Let A be a non-singular matrix, and let B satisfy

‖B‖2 <
1

‖A−1‖2
.

Prove that the matrix A + B is not singular.

. Exercise 7.16 Show that every symmetric positive-definite matrix has an LU-
decomposition. Justify every step in the proof.

. Exercise 7.17 Consider the iterative method

xn+1 = xn + B(b − Axn),

with x1 = 0. Show that if spr(I − AB) < 1, then the method converges to the
solution of the linear system Ax = b.
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7.4 Interpolation

. Exercise 7.18 Consider the function

f (x) =
1

1 + x

on the interval [0, 1]. Let pn be its interpolating polynomial with uniformly spaced
interpolation points xi = i/n, i = 0, 1, . . . , n. Prove or disprove:

lim
n→∞
‖pn − f ‖∞ = 0.

. Exercise 7.19 Let f be interpolated on [a, b] by a polynomial pn ∈ Πn. Sup-
pose that f is infinitely differentiable and that | f (k)(x)|leM for all x ∈ [a, b]. Can
we conclude, without further information, that

lim
n→∞
‖pn − f ‖∞ = 0.

. Exercise 7.20 Compute the Hermite interpolating polynomial for the data f (0) =

f ′(0) = f ′′(0) = 0 and f (1) = 1.

7.5 Approximation theory



Index

backward-substitution, 57

Cauchy-Schwarz inequality, 41
Chebyshev

acceleration, 74
polynomials, 75

forward-substitution, 57
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