1.1 Definitions

1.1.1 Vector spaces

Definition 1.1 — Vector space (-mep1 anan). A vector space over a field .7
is a set ¥ that has the structure of an additive group. Moreover, a product
F x¥V —¥, denoted (o,x) — oux, is defined, satisfying:

@ Distributivity in ¥ a(x+y) = ax+ay.
@ Distributivity in .#: (ot +)x = ox + fx.
® Homogeneity in .%: a(Bx) = (aff)x.

@ Scalar unit element: 1-x=ux.

The elements of ¥ are called vectors; the elements of .# are called scalars.
Throughout this course the field .# will be either the field of complex numbers C
(7 is a complex vector space) or the field of reals R (¥ is a real vector space).

Definition 1.2 Let ¥ be a vector space. A (finite) set of vectors {xj,...,x,} ¢ ¥
is called linearly independent (015> ™50 *n52) if the identity

n
Z Oy Xy = 0
k=1

implies that og = O for all k. Otherwise, this set of elements is said to be linearly
dependent.
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Definition 1.3 If a vector space ¥ contains n linearly independent vectors and
every n+ 1 vectors are linearly dependent, then we say that " has dimension n:

dim¥ =n.

If dim#" # n for every n € N (for every n there exist n linearly independent vectors)
then we say that # has infinite dimension.

Proposition 1.1 Let ¥ be a vector space. Suppose that dim? = n and let
(x1,...,x,) be linearly independent (a basis). Then, every y € ¥ has a unique
representation

n
y= Z Ol X -
k=1

Proof. Obvious. u

Definition 1.4 Let 7 be a vector space. A subset % c ¥ is called a vector
subspace (*p1 219N NN) (or a linear subspace) if it is a vector space with
respect to the same addition and scalar multiplication operations (the vector space
structure on ¢/ is inherited from the vector space structure on 7).

Proposition 1.2 Let ¥ be a vector space. A subset % c ¥ is a vector subspace
if and only if 0 € # and for all y;,y, € % and o, 0 € .7,

oy +0y, €,

i.e., the subset % is closed under linear combinations.

Proof. Easy. [

Comment 1.1 By definition, every linear subspace is closed under vector space
operations (it is algebraically closed). This should not be confused with the topo-
logical notion of closedness, which is defined once we endow the vector space with
a topology. A linear subspace may not be closed in the topological sense.

Definition 1.5 Let ¥ and % be vector spaces over the same field .%; let ¥ ¢ ¥
be a vector subspace. A mapping 7 : ¥ — % is said to be a linear transforma-
tion (N RS Apnw) if for all x1,x2 € Z and oo € F:

T(OC1X1 + OCQ)Cz) =0 T(X1)+062T(x2).
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The set Z is called the domain (2110) of 7. The set
Image(T)={T(x): xe D} c¥

is called the image (;(1mN) of 7. If 2 =¥ =% we call T a linear transformation
on V. If % = .F we call T alinear functional ("1 5mepnp).

Comment 1.2 Linear transformations preserve the vector space operations, and
are therefore the natural isomorphisms in the category of vector spaces. This should
be kept in mind, as the natural isomorphisms may change as we endow the vector
space with additional structure’.

Inverse transformation

If T : Domain(7T) — Image(T') is one-to-one (injective) then we can define an
inverse transformation

77! :Image(T) - Domain(T),

such that
T (Tx)=x and T(T'y)=y

for all x e Domain(7") and y € Image(7T').

Notation 1.1 In these notes we will use A — B to denote injections, A - B to denote
surjections, and A < B to denote bijections.

Proposition 1.3 Let 7 be a vector space and & c ¥ a linear subspace. Let
T : 2 — % be alinear transformation. Then, Image(T) is a linear subspace of %'.

Proof. Since 0€ 9,
Image(7)>T(0)=0.

Let x,y € Image(7'). By definition, there exist u,v € Z such that
x=T(u) and y=T(v).
By the linearity of T, for every , 8 € .#:
Image(7T) > T (au+ Bv) = ax+Py.

Thus, Image(7') is closed under linear combinations. ]

'A digression on categories: A category is an algebraic structure that comprises objects that are
linked by morphisms. A category has two basic properties: the ability to compose the morphisms
associatively and the existence of an identity morphism for each object.

A simple example is the category of sets, whose morphisms are functions. Another example is
the category of groups, whose morphisms are homomorphisms. A third example is the category
of topological spaces, whose morphisms are the continuous functions. As you can see, the chosen
morphisms are not just arbitrary associative maps. They are maps that preserve a certain structure in
each class of objects.
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Normed spaces

A vector space is a set endowed with an algebraic structure. We now endow vector
spaces with additional structures — all of them involving topologies. Thus, the vector
space is endowed with a notion of convergence.

Definition 1.6 — Metric space. A metric space (™t 21M) is a set 2,
endowed with a function d : 2" x 2~ — R, such that

@ Positivity: d(x,y) >0 with equality iff x = y.
@ Symmetry: d(x,y) =d(y,x).
® Triangle inequality: d(x,y) <d(x,z)+d(z,y).

Please note that a metric space does not need to be a vector space. On the other
hand, a metric defines a topology on 2" generated by open balls,

B(x,r)={ye 2 | d(x,y)<r}.

As topological spaces, metric spaces are paracompact (every open cover has an open
refinement that is locally finite), Hausdorff spaces, and hence normal (given any
disjoint closed sets E and F, there are open neighborhoods U of E and V of F that
are also disjoint). Metric spaces are first countable (each point has a countable
neighborhood base) since one can use balls with rational radius as a neighborhood
base.

Definition 1.7 — Norm. A norm (71271) over a vector space 7 is a mapping
|-]:% — R such that

@ Positivity: |x| >0 with equality iff x = 0.
@ Homogeneity: ||ax| = |a||x].
® Triangle inequality: |x+y| < |x| + ||

A normed space ("7 21M) is a pair (7, ||-
|- | is @ norm over ¥'.

), where ¥ is a vector space and

A norm is a function that assigns a size to vectors. Any norm on a vector space
induces a metric:

Proposition 1.4 Let (¥, |-|) be a normed space. Then

d(x,y) = |x=y|
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‘ is a metric on ¥'. ‘

Proof. Obvious. [

The converse is not necessarily true unless certain conditions hold:

Proposition 1.5 Let ¥ be a vector space endowed with a metric d. If the follow-
ing two conditions hold:

@ Translation invariance: d(x+z,y+2z) =d(x,y)
@ Homogeneity: d(ox,ay) = |a|d(x,y),

then
%[ = d(x,0)

isanormon V.

I Exercise 1.1 Prove Prop. 1.5. =

1.1.3 Inner-product spaces

Vector spaces are a very useful construct (e.g., in physics). But to be even more
useful, we often need to endow them with structure beyond the notion of a size.

Definition 1.8 — Inner product space. A complex vector field ¥ is called
an inner-product space (N"%9 75001 217M) if there exists a product (-,-) :
¥V x ¥V — C, satisfying:

® Symmetry: (x,y) = (y,x).

@ Bilinearity: (x+y,z) = (x,2) + (,2)-

® Homogeneity: (ax,y) = a(x,y).

@ Positivity: (x,x) >0 with equality iff x = 0.

An inner-product space is also called a pre-Hilbert space.

Proposiftion 1.6 An inner-product (H, (-,-)) space satisfies:



12 Hilbert spaces

@ (x,y+z) = (x,y) + (x,2).
@ (x,ay)=a(x,y).

Proof. Obvious. u

Proposition 1.7 — Cauchy-Schwarz inequality. Let (H,(,-)) be an inner-
product space. Define || = (-,-)'/2. Then, for every x,y ¢ H,

|G < Iyl

Proof. There are many different proofs to this proposition?. For x,y € H define
u =x/|x|| and v =y/|y|. Using the positivity, symmetry, and bilinearity of the
inner-product:

0< (u—(u,v)v,u—(u,v)v)

= 14| () P =] () P = | (e, 0) P

=1 _|(u7v)‘2'
That is,
[P
<l 1y
Equality holds if and only if # and v are co-linear, i.e., if and only if x and y are
co-linear. ]

Corollary 1.8 — Triangle inequality. In every inner product space H,

e+l < flxf + {1y

Proof. Applying the Cauchy-Schwarz inequality

x+y]? = Cetyxty) = [x]% + Iy[* +2Re(x,y)
< [x]? + y[? +21e, )
<l + I+ 20l [yl = (el + 1)

2There is a book called The Cauchy-Schwarz Master Class which presents more proofs that you
want.
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Corollary 1.9 An inner-product space is a normed space with respect to the
norm:

%1 = (%)%,

Proof. Obvious. [

Thus, every inner-product space is automatically a normed space and consequently
a metric space. The (default) topology associated with an inner-product space is that
induced by the metric (i..e, the open sets are generated by open metric balls).

Exercise 1.2 Show that the inner product (H, (-,-)) is continuous with respect
to each of its arguments:

(Vx,ye H)(Ve>0)(36 >0): (VzeH | |z—x]| < 8)(|(z,y) - (x,y)| < €).

Exercise 1.3 Let (H,(+,-)) be a complex inner-product space. Define

{x,y) =Re(x,y).

Show that (H,(-,-)) is a real inner-product space. .

inner-product space are mutually orthogonal then they are linearly independent.

‘ Exercise 1.4 Prove that if a collection of non-zero vectors {xj,...,x,} in an
I Exercise 1.5 Prove that in an inner-product space x = 0 iff (x,y) =0 forall y. =

Exercise 1.6 Let (H,(+,-)) be an inner-product space. Show that the following
conditions are equivalent:

@ (x,y)=0.
@ |x+Ay| =|x-Ay]| forall A €C.
® ||x| < |x+Ay]| forall A € C.
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Exercise 1.7 Consider the vector space ¥ = C'[0,1] (continuously-
differentiable functions over the unit interval) and define the product (-,-):

VYV x¥ - C: 1 -
(fag)=/0 F(x)g(x)dx.

@ Is (+,-) an inner-product?
@ Set % ={fe? | f(0)=0}.1Is (¥, (:,+)) an inner-product?

Proposition 1.10 — Parallelogram identity (n*";*:pr:n jrw). In every inner-
product space (H, (-,-)):

2 2 2 2
e+ 317 + e =y1% = 2 ([l + Iy1%).

(This equation is called the parallelogram identity because it asserts that in a
parallelogram the sum of the squares of the sides equals to the sum of the squares
of the diagonals.)

Proof. For every x,y € H:

£ y]* = x[® + [y[* £2 Re(x, ).
The identity follows from adding both equations. ]
An inner product defines a norm. What about a converse? Suppose we are given

the the norm induced by an inner product. Can we recover the inner product? The
answer is positive, as shown by the following proposition:
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Proposition 1.11 — Polarization identity (722517 mar). In an inner-product
space (Hv ('?'))’

(Bl = e =y + e+ 2y = e =ay]?)

FN.

(x,y) =

Proof. 1t is easy to see that
-+ 3[* = | =y]* = 4 Re(x,y).
Setting y > 1y,
|+ ey[? = |x=1y]? = =4 Reu(x,y) =4 Im(x, y).

Multiplying the second equation by i and adding it to the first equation we obtain
the desired result. n

Comment 1.3 In a real inner-product space:

1
(r.y) = 7 (b yl? = Je=y1%).

Definition 1.9 Let (H, (-,-)) be an inner-product space. x,y € H are said to be
orthogonal (2°2%%) if (x,y) = 0; we denote x L y.

Proposition 1.12 Orthogonal vectors in an inner-product space satisfy Pytago-
ras’ law:
2 2 2
e+ 17 = ™ + [~

Proof. Obvious. [

Exercise 1.8 Show that a norm || - | over a real vector space 7 is induced from
an inner-product over ¥ if and only if the parallelogram law holds. Hint: set

1
(6.3) = 5 (e y1* = el = 1)

and show that it is an inner product and that the induced norm is indeed ||-||. =
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Exercise 1.9 Show that the /7 spaces (the spaces of sequences with the appro-
priate norms) can be turned into an inner-product space (i.e., the norm can be
induced from an inner-product) only for p = 2. .

Hilbert spaces

Definition 1.10 — Hilbert space. A complete inner-product space is called a
Hilbert space. (Recall: a space is complete (85) if every Cauchy sequence
converges.)

Comment 1.4 An inner-product space (H, (+,-)) is a Hilbert space if it is complete
with respect to the metric

d(X,y) = (x_yvx_y)l/z‘

Completeness is a property of metric spaces. A sequence (x,) c H is a Cauchy
sequence if for all € > 0 there exists an N € N such that for every m,n > N:

|20 — xm || < €.

Exercise 1.10 Let Hy,...,H, be a finite collection of inner-product spaces.
Define the space
H:Hl x...an’

along with coordinate-wise vector space operations. Define a product (-,-)y :
HxH - C:

I AN Ié(xk,yk)m.

@ Show that (-,-)y is an inner-product on H.

@ Show that convergence in H is equivalent to component-wise convergence
in each of the H.

® Show that H is complete if and only if all the Hl; are complete.

We mentioned the fact that an inner-product space is also called a pre-Hilbert space.
The reason for this nomenclature is the following theorem: any inner-product space
can be completed canonically into a Hilbert space. This completion is analogous to
the completion of the field of rationals into the field of reals.
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Theorem 1.13 — Completion. Let (¢, (-, )« ) be an inner-product space. Then,
there exists a Hilbert space (47, (-,-) »), such that:

@ There exists a linear injection T : 4 — J2, that preserves the inner-product,
(x,y)9 = (Tx,Ty) 5 for all x,y € ¥ (i.e., elements in ¢ can be identified
with elements in 7).

@ Image(T) is dense in S (i.e., ¥ is identified with “almost all of" .77).

Moreover, the inclusion of ¢ in 7 is unique: For any linear inner-product
preserving injection 7; : 4 — % where 7] is a Hilbert space and Image(7}) is
dense in 777, there is a linear isomorphism S : 77 < ¢, such that T} = So T (i.e.,
J¢ and ] are isomorphic in the category of inner-product spaces). In other
words, the completion ¢ is unique modulo isomorphisms.

Proof. We start by defining the space #. Consider the set of Cauchy sequences
(x,) in 4. Two Cauchy sequences (x,) and (y,) are defined to be equivalent
(denoted (x,) ~ (yn)) if

lim ||x, —y,| = 0.
n—oo

It is easy to see that this establishes an equivalence relation among all Cauchy
sequences in 4. We denote the equivalence class of a Cauchy sequence (x,,) by [x,]
and define .77 as the set of equivalence classes.

We endow .77 with a vector space structure by defining

a[xn] + B [Yn] = [len + an]'

(It is easy to see that this definition is independent of representing elements.)

Let (x,) and (y,) be Cauchy sequence in . Consider the series
Jim (xn, )
This limit exists because

| (s ) = Coms ym) | = | (Xns )5 = (X, Ym ) + (Xns Y ) = (X Ym )|
(triangle ineq.) < |(xn,yn —ym)g| + |(xn —xm,ym)g|
(Cauchy-Schwarz) < ||, | [y =y | & + %0 = X | [y ]|
Since Cauchy sequences are bounded (easy!), there exists an M > 0 such that for all
m,n,
|6 yn)eg = (Xms ym )| < M ([[yn =y + X0 —xm ) -

It follows that (x,,y, )« is a Cauchy sequence in .#, hence converges (because .7 is
complete).
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Moreover, if (u,) ~ (x,) and (v,) ~ (y,) then,

|(xnayn).‘f - (“n7vn)‘£| = |(xnayn)% - (xmvn)‘f + (xmvn)‘f - (unyvn)g|
< |(xn7yn _Vn)éf‘ + |(xn_unavn)<f‘

<xallg [yn=vallg +[xn=valy [valle,

from which follows that

lim (x,,yn)e = lim (u,,vn)g.

n—oo n—oo
Thus, we can define unambiguously a product (-,-) s : H — F;

(Ixa], o)) 2 = nlg?o (XnsYn) -
It remains to show that (-,-) ,» is indeed an inner product (do it).
The next step is to define the inclusion 7' : ¥ — 7. For x € ¢ let

Tx=[(xx,...)],

namely, it maps every vector in ¢ into the equivalence class of a constant sequence.
By the definition of the linear structure on ¢, T is linear. It is preserves the
inner-product as

(Tx,Ty).r = im ((Tx)n, (Ty)a)g = lim (x,)g = (x,y)g-
The next step is to show that Image(7') is dense in 7. Let h € .7 and let (x,) be a
representative of 4. Since (x,) is a Cauchy sequence in ¢,
lim 7, ~ Al = lim 1im [, —x¢[ = 0.
n—oo n—>00 g— 00
which proves that Tx,, — h, and therefore Image(7') is dense in .77

The next step is to show that % is complete. Let (%,) be a Cauchy sequence in
€. For every n let (x,) be a Cauchy sequence in ¢ in the equivalence class of ,,.
Since Image(T') is dense in .77, there exists for every n a y, € ¢, such that

) 1
HTyn_hn”%” = lim Hyn_xn,kH% <-—.
k—o0 n
It follows that

”yn_))m“% = “TYn_Tym“Jf
< ”TYn _hanf + th —hy, H,}’f + ”hm - Tym”ff

1 1
<N hn = bl e+ =+ —,
n m

i.e., (y) is a Cauchy sequence in ¢ and therefore h = [y, ] is an element of /7.
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We will show that
lim | A, —h| » =0,
n—oo

which will prove that any Cauchy sequence in 5Z converges.

By definition,
lim [, = h| 5 = lim lim |x, - yi|lo-
n—00 n—090 k— o0
Now
[k = Vel < %0k = ynllg + |yn =il
and
N 1 N
lim lim ||x, 4 —yn|¢ < lim —=0 and lim lim |y, -y« = 0.
n—00 k—oco n—oon n—00 k— o0

The last step is to show the uniqueness of the completion modulo isomorphisms. Let
he . Since Image(T) is dense in .77, there exists a sequence (y,) c ¢, such that

lim Ty, - h|
n—o00

=0

It follows that (7y,) is a Cauchy sequence in %7, and because T preserves the
inner-product, (y,) is a Cauchy sequence in ¢. It follows that (7}y,) is a Cauchy
sequence in 4], and because the latter is complete (7}y,) has a limit in .. This
limit is independent of the choice of the sequence (y,), hence it is a function of A,
which we denote by

S(h) = ;}EEO IY,.

We leave it as an exercise to show that S satisfies the required properties. ]
I Exercise 1.11 Complete the missing details in the above proof. .

1.1.5 Examples of Hilbert spaces

1. The space R" is a real vector space. The mapping
n
(x,y) = D xiyi
i=1

is an inner product. The induced metric

. 12
d(ny) - (;(xi—yoz)

is called the Euclidean metric. It is known that R” is complete with respect to
this metric, hence it is a Hilbert space (in fact, any finite-dimensional normed
space is complete, so that the notion of completeness is only of interest in
infinite-dimensional spaces).
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2. The space C" is a complex vector space. The mapping

n
(x’y) = in)Ti
i=1

as an inner product. C" endowed with this metric is a Hilbert space.

. Consider the space of square summable sequences:

ézz{xe(CN| Z|xn|2<oo}.

n=1

It is a complex vector space with respect to pointwise operations. We define
oo
(x,y) = in)Ti'
i=1

This series converges absolutely as for every finite n, the Cauchy-Schwarz
inequality implies:

n n 1/2 n 1/2
Z|xlﬁ|s(z|xl~|2) (w) |
i=1 i=1 i=1

and the right hand side is uniformly bounded. It can be shown that ¢2 is
complete. Moreover, it is easy to show that the subset of rational-valued
sequences that have a finite number of non-zero terms is dense in 2 ie., (% is
a separable ("5"10) Hilbert space (has a countable dense subset).

I Exercise 1.12 Prove (“by hand") that /2 is complete. n

. Let Q be a bounded set in R” and let C(Q) be the set of continuous complex-

valued functions on its closure®. This space is made into a complex vector
space by pointwise addition and scalar multiplication:

(f+e)(x)=f(x)+g(x)  and  (af)(x) = f(x).

We define on C(Q) an inner product

(f.9)= [ F0EEax,

with the corresponding norm:

ir1=( [ ireoras) ™

3The fact that the domain is compact is crucial; we shall see later in this course that such a structure

cannot be applied for continuous functions over open domains.
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This space is not complete and hence not a Hilbert space. To show that, let
xp € Q and r > 0 be such that B(xo,2r) c Q. Define the sequence of functions,

1 lx—xo| <7
fa(x)=X1+n(r-|x-xo|) r<le—xo|<r+1/n
0 |x—xo| > 1+1/n,

which are defined for sufficiently large n.

The functions f;, are continuous and converge pointwise to the discontinuous
function
1 |x—xo|<r
fx) =
0 |x—xo|>r

The sequence ( f,) is a Cauchy sequence as for n > m,

| foo= fonll < (1B(x0, 7+ 1/m) ~ B(xo,)]) 2,

which tends to zero as m,n — oo. Suppose that the space was complete. It
would imply the existence of a function g € C(Q), such that

12
tim =] = Jim ( [ 15,0 -5P) " -0.

By Lebesgue’s bounded convergence (7210177 D01dNAT wBwn) theorem

1/2
tim 1=l = fim ([ 170 -g@P) " =0,

i.e., g = f a.e., which is a contradiction.
The completion of C() with respect to this metric is isomorphic to the
Hilbert space L?(Q) of square integrable functions.

Comment 1.5 The construction provided by the completion theorem is not conve-
nient to work with. We prefer to work with functions rather than with equivalence
classes of Cauchy sequences of functions.

TA material 1.1 — Hilbert-Schmidt matrices. Let.# be a collection of all infinite
matrices over C that only have a finite number of non-zero elements. For A € .Z
we denote by n(A) the smallest number for which A;; = 0 for all i,j > n(A). (i)
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Show that .# is a vector space over C with respect to matrix addition and scalar
multiplication. (ii) Define
(A,B) =Tr(AB")

and show that it is an inner-product. (iii) Show that .# is not complete. (iv) Show
that it is possible to identify the completion 7 of .# with the set

%”={A=(aij)§'} a1 Z Jai <°°}

i,j=1

along with the inner-product

(A,B) = ) Ai;Bjj.
i,j=1

This space is known as the space of Hilbert-Schmidt matrices.

Exercise 1.13 Prove that every finite-dimensional inner product space is com-
plete (and hence a Hilbert space). 0

TA material 1.2 — Sobolev spaces. Endow the space C*(R) with the inner-

product
difdyg

(f:8)= Z[ dx; dx,

i<k

Its completion is denoted H*(R) (or W*2(R)). Define the notion of a weak deriva-
tive and show that if it exists, then it is unique. Show how to identify H*(R) with
the space of functions that have square-integrable k weak derivatives.

Convexity and projection

Orthogonality is one of the central concepts in the theory of Hilbert spaces. Another
concept, intimately related to orthogonality, is orthogonal projection (N2 5a:).
Before getting to projections we need to develop the notion of a convex set. Convex-
ity, is a purely algebraic concept, but as we will see, it interacts with the topology
induced by the inner-product.

Convexity

Definition 1.11 — Convex set. Let ¥ be a vector space. A subset 6 c ¥ is
called convex (mp) if

Vx,ye¢ and VO<r<I tx+(1-t)ye®.
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(The segment that connects any two points in % is in ¥). Differently stated, for
allt€[0,1]:
t€+(1-1)€ cE.

\B
16

Lemma 1.14 For any collection of sets {% } and Z,, and every 7 € R:

tmcgaz mt(fa,
oA

aeA

and

NG+ () Dac OA(%XJF@OC)'

aeA aecA

Proof. First,
aeA

aeA

Second, if

xe(ba+ () Za,

oeA acA

then there is a ¢ € ¢, for all o and a d € &g for all B, such that x = c+d. Now
c+d =%+ Y, forall o, hence

xe () (Ca+%Za).
oeA

Proposition 1.15 — Convexity is closed under intersections. Let ¥ be a
vector space. Let {% c ¥ | a €A} be a collection of convex sets (not necessarily
countable). Then

%: m(ga

aeA

1S convex.
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Proof. An “obscure" proof relies on Lemma 1.14. For all t € [0, 1]:

1€+(1-1)6 =t Ca+(1-1) () Cu

aeA aeA
= m tsyﬂa‘l‘ m (1 _t)cga
aeA aeA
oeA
C m Cga = Cg
oeA

Now for a more transparent proof: let x,y € 4. By definition:
(VaeA)(x,yeCy).
Since all the &, are convex:
(VaeA)(VO<t <) (tx+(1-1)yeCy).
Interchanging the order of the quantifiers,
(VO<t<1)(VaeA) (tx+(1-1)ye%y),

which implies that
(VO<t<)(tx+(1-1)ye¥?).

Proposition 1.16 — Convex sets are closed under convex linear combina-
tions. Let ¥ be a vector space. Let ¥ c ¥ be a convex set. Then for every
(x1,-..,X,) € € and every non-negative (71,...,f,) real numbers that sum up to 1,

Zt,-x,-e‘f. (1.1)

i=1

Proof. Equation (1.1) holds for n =2 by the very definition of convexity. Suppose
(1.1) were true for n = k. Given

k+1
(xl,...,xk”)ccf and (tl,‘..,l‘k_,_])ZO, Zlizl,
i=1

define = Y | #;. Then,

k+1 k k t
Yolixi = Y X+l Xep1 =1 ;xi+(1 —1) X1
i=1 i=1 i=1
—_——
¢

54
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Proposition 1.17 Let (47, ]-|) be a normed space and ¢’ c 2" a convex subset.
Then,

® The closure € is convex.
® The interior €° is convex.

Comment 1.6 Interior and closure are topological concepts, whereas convexity is
a vector space concept. The connection between the two stems from the fact that a
normed space has both a topology and a vector space structure.

Proof. @ Let x,y € €. For every € > 0 there are points X, ye € € with
|x—xe| <€ and ly—vel < €.
Let 0<7< 1. Then, txe+ (1 —1)ye € ¢ and
[(tx+ (X =1)y) = (txe + (1 =1)ye) | S tlx—xe ||+ (1=1) [y —ye| <&,

which implies that tx+ (1 1)y € €, hence € is convex.

@ Let x,y € €°. By definition of the interior there exists an r > 0 such that
B(x,r)c® and B(y,r)c%.
Since ¥ is convex,
Vi e[0,1] tB(x,r)+(1-1)B(y,r)c ¥,

but
B(tx+(1-t)y,r) ctB(x,r)+(1-1)B(y,r),

which proves that tx+ (1-¢)y € €°. Hence, €° is convex.

X tx+(1-t)y Y

= Examples 1.1

* Every open ball 8(a,r) in a normed vector space is convex, for if x,y €
B(a,r), then forall 0 <7< 1:

[ex+(1=t)y=al = [t(x=a)+ (1-1)(y=a)| <t|x-a|+(1-1) [y-a] <~
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* Every linear subspace of a vector space is convex, because it is closed under
any linear combinations and in particular, convex ones. For example, let
¥ =L*[0,1] and let % be the subset of polynomials. % is a linear subspace
of ¥, hence it is convex.

* Let Q c R”" be a domain and consider the Hilbert space L>(). The subset of
functions that are non-negative (up to a set of measure zero) is convex (but it
is not a linear subspace).

Exercise 1.14 Let 7 be a vector space and C c #'. The convex hull (9p) of
C is defined by

Conv(C) ={xe ¥ | xis a convex combinations of elements in C} .

Show that Conv(C) is the smallest convex set that contains C. .

Exercise 1.15

@ Prove Carathéodory’s theorem: let A c R” and let x € Conv(A). Then x
is a convex combination of n+ 1 points in A or less. (Hint: suppose that
x is a convex combination of xi,...,x, € A, where p >n+1. Use the fact
that {x; —x; }\_, are linearly dependent to show that x can be written as a
convex sum of p— 1 points).

@ Show that Carathéodory’s theorem may fail if the dimension of the vector
space is infinite.

1.2.2 Orthogonal projection

Definition 1.12 Let (H, (-,-)) be an inner-product space, and let S c H (it can
be any subset; not necessarily a vector subspace). We denote by S* the set of
vectors that are perpendicular to all the elements in S,

St={xeH| (x,y)=0 VyeS}.
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Proposiftion 1.18 Let (H, (-,-)) be an inner-product space. Let S c H. The set
S* is a closed linear subspace of H, and

SnS* c{0},

Proof. We start by showing that S* is a linear subspace. Let x,y € S*, i.e.,
VzeS (x,2) = (»,2) =0.
For all a, B € &%,
VzeS  (ox+Byz) =a(x,z)+B(yz)=0,

which implies that ox + By € S*, i.e., S* is a linear subspace.

We next show that S* is closed. Let (x,) be a sequence in S* that converges to
x € H. By the continuity of the inner product,

VzeS (x,2) = nlirglo(x,,,z) =0,

ie.,xeS*.

Suppose x € SNS*. As an element in S*, x is orthogonal to all the elements in S,
and in particular to itself, hence (x,x) = 0, which by the defining property of the
inner-product implies that x = 0. ]

Exercise 1.16 Show that

S+ = M

xeS

Exercise 1.17

@ Show that if M and N are closed subspaces of a Hilbert space ¢, and N
is finite dimensional, then M + N is a closed subspace (hint: induction on
the dimension of V).

@ Show that M + N may not be closed if N is infinite dimensional.
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The following theorem states that given a closed convex set € in a Hilbert space 77,
every point in .7 has a unique point in ¢’ that is the closest to it among all points in

€

Theorem 1.19 Let (47, (-,-)) be a Hilbert space and %" c .7 closed and convex.
Then,
Vxes/  3lye€ suchthat |x-y|=d(x,%),

where

=inf |x-y|.
d(x.6) = inf [~

The mapping x > y is called the projection (7521) of x onto the set % and it is
denoted by Pg.

Comment 1.7 Note the conditions of this theorem. The space must be complete
and the subset must be convex and closed. We will see how these conditions are
needed in the proof. A very important point is that the space must be an inner-product
space. Projections do not generally exist in (complete) normed spaces.

Proof. We start by showing the existence of a distance minimizer. By the definition
of the infimum, there exists a sequence (y,) c ¢ satisfying,

lim d(x,y,) =d(x,%).
Since % is convex, %(yn +Ym) € € for all m,n, and therefore,

1+ ym) x| 2 d(x,6).
By the parallelogram identity (which is where the inner-product property enters),
la=b]=2(]al*+2[b]*) - |a+b]?, and so
1= 10 =2) = (=)
= 2lyn =] + 2] ym = x| = |yn +ym — 2x|?

0< Hyn —Ym

m,n— oo

<2y —x[?+2|ym—x|*-2d(x,€) "— 0.

It follows that (y,) is a Cauchy sequence and hence converges to a limit y (which is
where completeness is essential). Since % is closed, y € €. Finally, by the continuity
of the norm,

o=yl = lim fx=ya = d(x,%),

which completes the existence proof of a distance minimizer.

Next, we show the uniqueness of the distance minimizer. Suppose that y,z € € both
satisfy
[y =2l = lz=x] = d(x,%).
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By the parallelogram identity,
2
[y+2=2x]" + ly=z]* = 2y ~x]* + 2]z —xJ?,

i.e.,
2
|52 x| =d*(x,€) - ly-z.

If y # z then (y+z)/2, which belongs to % is closer to x than the distance of x from
¢, which is a contradiction.

TA material 1.3 — Projections in Banach spaces. The existence of a unique
projection does not hold in general in complete normed spaces (i.e., Banach spaces).
A distance minimizer does exist in finite-dimensional normed spaces, but it may not
be unique)=. In infinite-dimensional Banach spaces distance minimizers may fail to
exist.

TA material 1.4 — Conditional expectations. The following is an important ap-
plication of orthogonal projections. Let (2,.#,P) be a probability space, and let
o/ c F be a sub-c-algebra. Let X : Q — C be a random variable (i.e., a measurable
function) satisfying |X||; < co. The random variable Y : Q — C is called the condi-
tional expectation of X with respect to the o-algebra <7 if (i) Y is ./ -measurable,

and (ii) for every A € &7,
/YdP:[XdP.
A A

Prove that the conditional expectation exists and is unique in L' (Q,.%, P). (Note
that L' is not a Hilbert space, so that the construction has to start with the subspace
L*(Q,.#,P), and end up with a density argument.)

Proposition 1.20 Let .7 be a Hilbert space. Let % be a closed convex set. The
mapping Py : 77 — € is idempotent, Py o Py = Py

Proof. Obvious, since Py =1d on %. ]
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Exercise 1.18 Let (7, (:,-)) be a Hilbert space and let P4 and Pz be orthogonal
projections on closed subspaces A and B.

@® Show that if P4[Pp is an orthogonal projection then it projects on AN B.
@ Show that P4Pp is an orthogonal projection if and only if P4IPg = PgP4.

® Show that if P4IPp is an orthogonal projection then P4 + Pg — P4Pp is an
orthogonal projection on A + B.

@ Find an example in which P4Pg + PglP4.

The next proposition has a geometric interpretation: the segment connecting a
point x ¢ ¥’ with its projection P -x makes an obtuse angle with any segment con-
necting P, x with another point in €. The proposition states that this is in fact a
characterization of the projection.

Proposition 1.21 Let ¢ be a closed convex set in a Hilbert space (J7,(:,-)).
Then for every x € JZ,
= }P’%x

if and only if

7€€ and Vye® Re(x-z,y-z)<0.

Proof. Suppose first that z = Pxx. By definition z€ €. Let y € €. Since ¥ is convex
then ty+ (1—1)z>% forall ¢ € [0, 1], and since z is the unique distance minimizer
from x in €
0> =z~ = (ty+ (1-1)2) |
= [x=z? - |(x-2) -t (y-2)|?
= ~1*|y~z|* +2t Re(x~2,y~2).
Thus, forall0<zt<1,
1 2
Re(x-z,y-2) < 3ty-z|"
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Letting t — 0 we get that Re(x—z,y—z) <0.
Conversely, suppose that z € € and that for every y € €,
Re(x-z,y-z) <0.
For every ye €,
lx=y1% = |x=2)? = [ (x=2) + (z=)[* = |x=2]?
=|y-z|*-2Re(x-z,y-2) 20,

which implies that z is the distance minimizer, hence z = Pyx. ]

Corollary 1.22 — Projections are distance reducing. Let % be a closed con-
vex set in a Hilbert space (7, (+,-)). Then for all x,y € 7,

Re(Pyx—Pyy,x—y) > |Pyx—Pgy|?

and
|Pgx—Pgy|* < |x—y>.

y x
Pyy) s Pox

Proof. By Proposition 1.21, with Py as an arbitrary point in ¢,
Re(x—Pyx,Pyy—Pyx) <0.
Similarly, with P4x as an arbitrary point in ¢’
Re(y—Pyy,Pyx—Pyy) <0.
Adding up both inequalities:
Re((x-y) — (Pgx—Pyy),Pex—Pgy) >0,
which proves the first assertion.
Next, using the first assertion and the Cauchy-Schwarz inequality,
> <Re(Pyx—Pyy,x—y)
<|(Pgx—Pgy,x—y)|
< [Pgx—Pey| [x -y,

[Pgx—Pgy

and it remains to divide by |Pyx—Pyy|. |
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The next corollary characterizes the projection in the case of a closed linear subspace
(which is a particular case of a closed convex set).

Corollary 1.23 Let .# by a closed linear subspace of a Hilbert space (47, (-,-))
Then,

y=P yx
if and only if

ve# and x-ye.H*.

Proof. Lety € ./ and suppose that x—y € .Z*. Then, for all me .4

(x-y,m—y) =0<0,
——
e

hence y =P_,x by Proposition 1.21.

Conversely, suppose that y=P_,x and let m € .# . By Proposition 1.21,
Re(y—x,y—m) <0.
We may replace m by y—m e ., hence for all me .4 :
Re(y-x,m) <0.
Since we may replace m by (—m), it follows that for all me .#:
Re(y—x,m) =0.
Replacing m by im we obtain Im(y—x,m) = 0. ]

Finite dimensional case

This last characterization of the projection provides a constructive way to calculate
the projection when . is a finite-dimensional subspace (hence a closed subspace).
Let n=dim.# and let

(e1,.-.,en)
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be a set of linearly independent vectors in .# (i.e., a basis for .#). Let x € 7. Then,
x—P_,x is orthogonal to each of the basis vectors:
(x=P_yx,e/)=0 fort=1,...,n.

Expanding P_,x with respect to the given basis:

n
Pyx=) oyer,
k=1

we obtain,

(x,e0) = > o (ex,er) =0 for¢=1,...,n.
k=1

The matrix G whose entries are G;; = (e, e;) is known as the Gram matrix. Because
the ¢;’s are linearly independent, this matrix is non-singular, and

n
Q= ZGEKI (X,eg),
(=1

i.e., we have an explicit expression for the projection of any vector:

n n

P yx= Z Z G,;ZI (x,ep)ex.
k=10=1

Exercise 1.19 Let # = L?>(R) and set
M={feA | f(t)=f(-1)ae}.

@® Show that ./ is a closed subspace.
@ Express the projection P, explicitly.
® Find .Z*.

Exercise 1.20 What is the orthogonal complement of the following sets of
L2[0,1]?

@ The set of polynomials.
@ The set of polynomials in x°.
® The set of polynomials with ag = 0.

@ The set of polynomials with coefficients summing up to zero.
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Theorem 1.24 — Projection theorem (75umn wawn). Let .# be a closed linear
subspace of a Hilbert space (7, (+,-)). Then every vector x € 5 has a unique
decomposition

X=m+n meM,ne H*.

Furthermore, m =P, x. In other words,

=M M

Proof. Letxe s#. By Corollary 1.23
x-P yxe ",

hence
x=Pyx+(x-P 4x)

satisfies the required properties of the decomposition.

Next, we show that the decomposition is unique. Assume
X=mp+ny=my+ny,
where my,my € .# and ny,n, € .#*. Then,
MoImi—-my=ny—ny e M*.

Uniqueness follows from the fact that .# n.Z* = {0}.

TA material 1.5 Show that the projection theorem does not holds when the condi-
tions are not satisfied. Take for example .7 = ¢2, with the linear subspace

M ={(ay)€l* | IN:Yn>N a,=0}.
This linear subspace it not closed, and its orthogonal complement is {0}, i.e.,

MOMT =M + .

Corollary 1.25 For every linear subspace .# of a Hilbert space 77,

(M) =7
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Proof. Let me ./ . By the definition of .Z*:
Vne H* (m,n) =0,
which implies that me (.Z*)*, i.e.,
M (M)

By Proposition 1.18 any orthogonal complement is closed. If a set is contained in a
closed set, so is its closure (prove it!),

M (M)

Let x € (.#*)*. Since .# is a closed linear subspace, there exists a (unique)
decomposition

xX=m+n, medl ne(M)* .

Taking an inner product with 7, using the fact that m 1 n:

[n[? = (x,n).

Since .# c .4, then L

(M) > (M)
(the smaller the set, the larger its orthogonal complement). Thus

ne ()",

and therefore n 1 x. It follows that n = 0, which means that x € ./, i.e.,

(M) c. .
This completes the proof. ]

Corollary 1.26 Let .# be a closed linear subspace of a Hilbert space (77, (-,-)).
Then, every x € 7 has a decomposition

X = P{///x+P///¢x,

and
1 = |Pgx]|* + |P.gox|>.

Proof. As a consequence of the projection theorem, using the fact that both .# and
M+ are closed and the fact that (Z*)* = .4

x=P yx+(x-P 4x)
N ~—
el et
x=(x-Px)+P 4ix.
—_—  —
e eMt
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By the uniqueness of the decomposition, both decompositions are identical, which
proves the first part. The second identity follows from Pythagoras’ law. ]

Corollary 1.27 — A projection is linear, norm-reducing and idempotent.
Let .# be a closed linear subspace of a Hilbert space (%7, (-,-)). Then the
projection P, is a linear operator satisfying ]P’i/[ =P 4, and

Vxe IPzx| < |x].

Proof. @ We have already seen that P , is idempotent.

@ The norm reducing property follows from

%1% = P[> + [P.rax]* 2 [P ex.

® It remains to show that P is linear. Let x,y € 5. It follows from Corollary 1.26
that
X = P(%X+P(%lx

y=P.ay+P 4y,
hence
x+y=(Psx+P 4y)+(P y:x+P 41y).
el e+

On the other hand, it also follows from Corollary 1.26 that

x+y=P ,(x+y)+P 4 (x+y).
eM et

By the uniqueness of the decomposition,

]PL//()C+y) = P///x+IP’///y.

Similarly,
ax=alP yx+alP ,ix,

but also
ox=P 4(ax)+P 4. (ax),

and from the uniqueness of the decomposition,

IP’,//[(OCX) =aP 4x.
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The next theorem shows that the last corollary is in fact a characterization of
projections: there is a one-to-one correspondence between closed subspaces of .77
and orthogonal projections.

Theorem 1.28 — Every linear, norm-reducing, idempotent operator is a
projection. Let (7, (-,-)) be a Hilbert space and let P: .7 — J# be a linear,
norm reducing, idempotent operator. Then P is a projection on a closed linear
subspace of 2.

Proof. The first step is to identify the closed subspace of .77 that P projects onto.

Define
M ={xeH | Px=x}

N ={yes: | Py=0}.
Both .# and ./ are linear subspaces of 7. If x € .# n.# then x = Px = 0, namely,

M N ={0},
Both .# and ./ are closed because for every x,y € ¢
|Px—Py| = [P(x-y)| < |x-y],
from which follows that if x, € .# is a sequence with limit x € 7, then
Jx=Px| = lim [, ~Px] = lim [P, ~Px| < lim [, ~x] =0,

i.e., Px =x, hence x € .#. By a similar argument ee show that ./ is closed.

Let x € 7. We write
x =Px+ (Id-P)x.

By the idempotence of P,

Pxe.# and (Id-P)xe.t.

To prove that P =P, it remains to show that .4” = .#Z* (because of the uniqueness
of the decomposition). Let

xe N+ and y=Px—x.
Obviously, y € .47, hence (x,y) =0, and
2 2 2 2 2 2
™ > [Px|” = o+ [ = |x]* + [y~ > fx]~
ie.,y=0,1ie., x=Px, ie., xe.#. We have just shown that

NteA.
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Take now x € .. By the projection theorem, there exists a unique decomposition,

X =u-+ v .
-~ = =~

el eN eNt

But since A4t ¢ .#, it follows that u is both in .# and in ./, i.e., it is zero and
x €./, namely
M N

Thus A"+ = .# and further .4 = (A*)* = #*. This concludes the proof. ]

Linear functionals

Among all linear maps between normed spaces stand out the linear maps into the
field of scalars. The study of linear functionals is a central theme in functional
analysis.

Boundedness and continuity

Definition 1.13 Let (27, |-]1) and (23, | -|2) be normed spaces and let 7 ¢ 2}
be a linear subspace. A linear transformation T : & — 2 is said to be continuous
if
Vxe P lim | Ty-Tx|, - 0.
y=x
It is said to be bounded if there exists a constant C > 0 such that

Vxe9 [Tx[2<Clx];:-

If T is bounded, then the lowest bound C is called the norm of 7':

_ |Tx[>
IT] = sup =
0£xe2 ”x“ 1 0#xe9

= sup [Tx]a.
¢l

2 k=t

(Recall that if 2/ =R then we call T a linear functional.)

Comments 1.1

@® We are dealing here with normed spaces; no inner-product is needed.

@ As for now, we call |T'|| a norm, but we need to show that it is indeed a norm
on a vector space.

® If T is bounded then
Vxez  |Tx| <|T]]x].

@ All linear operators between finite-dimensional normed spaces are bounded.
This notion is therefore only relevant to infinite-dimensional cases.
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is bounded if and only if it is continuous.

Proposition 1.29 — Boundedness and continuity are equivalent. Let
(Z21,]-1l1) and (23, |- |2) be normed spaces. A linear operator T : ¥ € 2 — 2>

Proof. © Suppose T is bounded. Then,
|Tx=Tyl2 = T (x=y) |2 <[ T] |x=l1,

and y — x implies Ty — Tx.

@ Suppose that T is continuous at 0 € . Then there exists a 6 > 0 such that
VyeB(0,5)  |Ty-0f2<1.

Using the homogeneity of the norm and the linearity of 7':

T(éi )
2 /1l

which implies that 7 is bounded, |T| <2/8.

2 2
Vxe9D Tx|r=—= <= )
xe?  |Tal=lxl; =

Comment 1.8 We have only used the continuity of T at zero. This means that if T

is continuous at zero, then it is bounded, and hence continuous everywhere.
= Examples 1.2
1. An orthogonal projection in a Hilbert space is bounded, since
I < [1x],

ie., |P | <1. Since P _,x =x for x € 4, it follows that

Pz = sup [Pgx|> sup [Pyx|= sup |x]=1,
[[x]|=1 xe |x|=1 xe |x|=1
IPzll=1.
2. Let s = L*[0,1] and let 2 = C[0,1] c L?[0, 1]. Define the linear functional

T:9—R,

Tf=1(0).
This operator is unbounded (and hence not-continuous), for take the sequence
of functions,

l-nx O<x<l

X)= o
Ja®) {0 otherwise
Then | f,| = 0, whereas |T f,|| = [f,(0)| =1, i.e.,
T

noo | full
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3. Consider the Hilbert space % = L*[0, 1] with & the subspace of differentiable
functions with derivatives in 7. Define the linear operator 7' : ¥ — S,

(Tf)(x)=f'(x).

This operator is unbounded. Take for example the sequence of functions,

1 2/2 1/2
f"“):(me ) |

Then | f,|| = 1 and lim,,—o0 | T fr| = o0.
4. Important example! Let .77 be a Hilbert space. Set y € 5 and define the

functional:
731:(‘7}})'
This functional is linear, and it is bounded as
(»y) (x,y) vl
Iyt = 02 g g ] ¢ PRy
Iyl = 0 Ixl " w0 ]
hence |T( )|
(x
|T|| = sup—=—= =]
w0 ]

In other words, to every y € 7 corresponds a bounded linear functional 7.

1.3.2 Extension of bounded linear functionals

Lemma 1.30 Given a bounded linear functional 7 defined on a dense linear
subspace Z of a Hilbert space (7, (-,-)), it has a unique extension T over .
Moreover, ||T| = |T].

Proof. We start by defining 7. For x € 27, take a sequence (x,) c Z that converges
to x. Consider the sequence Tx,. Since T is linear and bounded,

(T = Ttm| < [T (0 =) < [T |60 =2,

which implies that (7'x,) is a scalar-valued Cauchy sequence. The limit does not
depend on the chosen sequence: if (y,) ¢ & converges to x as well, then

,}Lnolo |Txn = Tyn| < nlinolo |7 262 =yull = 0.
Thus, we can define unambiguously

Tx=lim Tx,.

n—>oo
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For x € Z we can take the constant sequence x;, = x, hence

Tx=lim Tx, =Tx,

n—oo

which shows that T is indeed an extension of T: T|g =T.

Next, we show that T is linear. Let x,y € Z. Let x,,,y, € & converge to x, y, respec-
tively, then:

T(ax+By) = Jim T (ox, +Byn) = o Jim T, + lim Ty, = aTx+BTy.

It remains to calculate the norm of T':

17| _ dimioo [T |7 timys 0 0] _

|7 =sup = <sup =[],
20 X[ w0 [l x20 <]
and since ||T|| is an extension of T: ||T|| = |T|. u

The following theorem is an instance of the Hahn-Banach theorem, which we will
meet when we study Banach spaces:

Theorem 1.31 — Extension theorem. Given a bounded linear functional T
defined on a linear subspace Z of a Hilbert space (.77, (-,-)), it can be extended
into a linear functional over all 7#, without changing its norm. That is, there
exists a linear functional 7 on J#, such that | =T and ||T| = ||T|.

Proof. By the previous lemma we may assume without loss of generality that & is
a closed linear subspace of 7#. We define

T =ToPy.
Since T is a composition of two linear operators, it is linear. Also, 7|4 = T. Finally,
IT| =T oPgy| < |T|[Pg] = |T].
Since T is an extension of T it follows that |T| = |T]|. [

TA material 1.6 — Hamel basis.

Definition 1.14 Let ¥ be a vector space. A set of vectors {vq | ¢ €A} c ¥ is
called a Hamel basis (or algebraic basis) if every v € ¥ has a unique representa-
tion as a linear combination of a finite number of vectors from {vy | 0 € A}.
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Proposition 1.32 Every vector space 7 has a Hamel basis.

I Exercise 1.21 Prove it. Hint: use the axiom of choice. "

Proposifion 1.33 Let (47, -|) be an infinite-dimensional normed space. Then,
there exists an unbounded linear functional on .2".

Proof. Let {xy | @ € A} be a Hamel basis. Since 2" is infinite-dimensional there is
a sequence (xg, ) such that
{xq, | neN}

is linearly independent.
For x =Y yeataXo define
q)('x) = Z n”xan ||tan °
n=1

It is easy to see that this is a linear functional. However, it is not continuous. Define
Xa,

1

Yn = )
nxq, |

Then, y, — 0 by ®(y,) =1 for all n. ]

The Riesz representation theorem

The next (very important) theorem asserts that all bounded linear functionals on a
Hilbert space can be represented as an inner-product with a fixed element of 7

Theorem 1.34 — Riesz representation theorem, 1907. Let .57 be a Hilbert
space and T a bounded linear functional on .7#. Then,

(Alyr e ) T =(,yr),

and moreover ||T|| = |yr].

Comment 1.9 The representation theorem was proved by Frigyes Riesz (1880-
1956), a Hungarian mathematician, and brother of the mathematician Marcel Riesz
(1886-1969).

Proof. We start by proving the uniqueness of the representation. If y and z satisfy
T=(,y)=(z), then

ly-z|>=(y-2.y-2) = (y-2.9) - (y-2,2) =T(y-2) - T(y-2) =0,
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which implies that y = z.

Next, we show the existence of yr. Since T is linear it follows that ker T is a linear
subspace of 7. Since T is moreover continuous it follows that ker7 is closed, as
(x) c kerT with limit x € #, implies that

Tx=1im Tx, =0,

n—o00o

ie.,xekerT.
If kerT = 27, then

VxeH Tx=0=(x,0),
and the theorem is proved with y7 = 0.

If kerT + 77, then we will show that dim(ker7)* = 1. Let y;,y; € (kerT)*, and set

y=T(2)y1—=T(1)y2 € (kerT)*.

By the linearity of 7, T(y) =0, i.e., y e kerT, but since ker7T n (kerT)* = {0}, it
follows that

T(y2)y1=T(y1)y2,
i.e., every two vectors (ker7)* are co-linear.

Take yg € (kerT')* with ||yo|| = 1. Then,
(kerT)* = Span{yo}.

Then, set

yr =T (o) o

By the projection theorem, for every x € 7,

X = (X,yo)yo+ [x_ (xvyO)yO]v
e(kerT)* ekerT

and applying T,
T(x) = (x,50)T (yo) = (x,y7)-

Finally, we have already seen that |T| = ||yz|. ]

The space dual to a Hilbert space

Consider the set of all bounded linear functionals on a Hilbert space. These form a
vector space by the pointwise operations,

(aT+BS)(x)=aT(x)+BS(x).
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We denote this vector space by .77 *; it is called the space dual ("5R1T 2mn) to 7.
The Riesz representation theorem states that there is a bijection " < 7, T ~ yr.
J€* is made into a Hilbert space by defining the inner-product

(T,8) = (y1,Ys),

and the corresponding norm over J¢* is

17 = lyr|

coincides with the previously-defined “norm" (we never showed it was indeed a
norm)*.

The following theorem (the Radon-Nikodym theorem restricted to finite measure
spaces) is an application of the Riesz representation theorem:

Theorem 1.35 — Radon-Nikodym. Let (Q, %, 1) be a finite measure space. If
Vv is a finite measure on (€, %) that is absolutely continuous with respect to u

(i.e., every zero set of U is also a zero set of V), then there exists a non-negative
function f € L' (Q), such that

VBe B v(B):fodu.

(The function f is called the density of v with respect to (.)

Proof. Let A = u+v. Every zero set of u is also a zero set of A. Define the
functional F : L>(1) - C:

F(g)= [ gav.

F is a linear functional; it is bounded as

Pl [lave( [leav) " ( Lav)" <leli @)™

(This is where the finiteness of the measure is crucial; otherwise an L? functions
is not necessarily in L'.) By the Riesz representation theorem there is a unique
function /2 € L?(A.), such that

fggdv:fghgcm. (12)

We now show that £ satisfies the following properties:

*Our definition of a genuine norm over J#~ is somewhat awkward. When we get to Banach spaces
it will be made clear that we do not need inner-products and representation theorems in order to show
that the operator norm is indeed a norm.
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1. h>0 A-a.e: Because the measures are finite, indicator functions are integrable.
Then, setting g = I,

0<Vv(B)= [Bhd/l,

which implies that 2 >0 A-a.e.
2. h<1 A-a.e: Setting,
B={xeQ | h(x)>1},

we get
v(B) = fhd/l > A(B) = v(B) + u(B),
B
which implies that 4 (B) =v(B) =A(B) =0,i.e.,h<1 A-ae.

Since 0 < 7 < 1, we may represent £ as

where f is A-a.e. non-negative.

Back to Eq. (1.2),
_ f f
fggdv_fg(1+f)gdv+fg(1+f)gd”’

fﬂ(ﬁ)g”’“fg(%)gdu-

Let now k: Q — R be non-negative and bounded. Define

hence

By ={xeQ: k(x)(1+f(x)) <m},

and g =k(1+ f)I,.