
9. Functions of several variables

These lecture notes present my interpretation of Ruth Lawrence’s lec-
ture notes (in Hebrew)
1

9.1 Definition

In the previous chapter we studied paths (�;&-*2/), which are functions R→Rn. We
saw a path in Rn can be represented by a vector of n real-valued functions. In this
chapter we consider functions Rn→R, i.e., functions whose input is an ordered set
of n numbers and whose output is a single real number. In the next chapter we will
generalize both topics and consider functions that take a vector with n components
and return a vector with m components.

� Example 9.1 Consider the function f ∶R2→R defined by

f (x,y) = x2+y sinx.

We may as well write
f ∶ (s,t)� s2+ t sins,

but since the number of arguments can be larger, it is more systematic to use the
vector notation,

f (x) = f (x1,x2) = x2
1+x2 sinx1.

�
1Image of Joseph-Louis Lagrange, 1736–1813
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� Example 9.2 Like for the case n = 1, the domain of a function may be a subset of
Rn. For example, let

D = {(x,y,z) ∈R3 � x2+y2+ z2 < 1} ⊂R3,

or in vector notation,
D = {x ∈R3 � �x� < 1} ⊂R3.

Define g ∶D→R by

g(x) = ln(1− �x�2) or g(x,y,z) = ln(1−x2−y2− z2).
Then, for example, (1�2,1�2,1�2) ∈D and

g(1�2,1�2,1�2) = ln
1
4
.

�
Comment 9.1 It is very common to denote the arguments of a bi-variate function
by (x,y) and of a tri-variate function by (x,y,z). We will often do so, but remember
that there is nothing special about these choices.

� Example 9.3 Important example! Recall that if V and W are vector spaces,
we denote by L(V,W) the space of linear functions V →W . Let a ∈Rn. Then the
function,

f ∶Rn→R defined by f ∶ x� a ⋅x
is linear, i.e., belongs to L(Rn,R), in the sense that for every x,y ∈Rn and a,b ∈R,

f (ax+by) = a f (x)+b f (y).
For example, taking n = 3 and a = (1,2,3),

f (x,y,z) = (1,2,3) ⋅(x,y,z) = x+2y+3z

is a linear function. In fact, all linear functions in L(Rn,R) are of this form. They
are characterized by a vector a that (scalar)-multiplies their argument. �
� Example 9.4 The function

f (x,y) = tan−1�y
x
�

can be defined everywhere where x ≠ 0, i.e., its maximal domain is

{(x,y) ∈R2 � x ≠ 0}.
�
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� Example 9.5 The maximal domain of the function

f (x,y) = ln(x−y) is {(x,y) ∈R2 � x > y}.
�

� Example 9.6 The maximal domain of the function

f (x,y) = ln �x−y� is {(x,y) ∈R2 � x ≠ y}.
�

� Example 9.7 The maximal domain of the function

f (x,y) = cos−1 y+x is {(x,y) ∈R2 � −1 ≤ y ≤ 1}.
�

� Example 9.8 The maximal domain of the function

f (x,y) = ln(sin(x2+y2)) is
∞�

n=0
{(x,y) ∈R2 � 2np < x2+y2 < (2n+1)p}.

�

9.2 The graph of a function Rn→R

9.2.1 Definition

Recall that for every two sets A and B, the graph Graph( f ) of a function f ∶ A→ B
is a subset of the Cartesian product A×B, with the condition that

∀a ∈ A ∃!b ∈ B such that (a,b) ∈Graph( f ).
The value returned by f , f (a), is the unique b ∈ B that pairs with a in the graph set.
In other words,

Graph( f ) = {(a,b) ∈ A×B � b = f (a)}.
Thus, if D ⊂Rn and f ∶D→R, the graph of f is a subset of D×R ⊂Rn×R =Rn+1,

Graph( f ) = {(x1,x2, . . . ,xn,z) � (x1, . . . ,xn) ∈D, z = f (x1, . . . ,xn)}.
For the particular case of n = 2,

Graph( f ) = {(x,y,z) � (x,y) ∈D, z = f (x,y)},
which is a surface in R3.
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� Example 9.9 The graph of the function f (x,y) = x2+y2 whose domain of defini-
tion is the whole plane is a paraboloid,

Graph( f ) = {(x,y,z) ∈R3 � z = x2+y2)}.
�

� Example 9.10 The graph of any function of the form

f (x,y) = h(x2+y2),
where h ∶R→R, is a surface of revolution. �

9.2.2 Slices of graphs

Consider a function f ∶R2→R, whose graph is

Graph( f ) = {(x,y,z) � z = f (x,y)} ⊂R3.

We obtain slices (�.*,;() of the graph by intersecting it with planes. For example,
the intersection of this graph with the plane

“{x = x0}" = {(x,y,z) ∈R3 � x = x0}
is {(x0,y,z) � z = f (x0,y)},
which is the graph of a function of one variable (z as function of y for fixed x = x0).
Similarly, the intersection of the graph of f with the plane y = y0 is

{(x,y0,z) � z = f (x,y0)},
which is also the graph of a function of one variable (z as function of x for fixed
y = y0). Thus, the fact that f is a function implies that both

y� f (x0,y) and x� f (x,y0)
are also functions (of one variable).

Finally, the intersection of the graph of f with the plane

“{z = z0}" = {(x,y,z) ∈R3 � z = z0}
is the set {(x,y,z0) � z0 = f (x,y)}.
This set is called a contour line (�%"&# &8) of f . It is a subset of space parallel to
the xy-plane; it could be empty, it could be a closed curve, or a more complicated
domain (even the whole of R2). The important observation is that in general a
contour line is not the graph of a function.
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� Example 9.11 Consider the function f ∶R2→R,

f (x,y) = x2+y2.

Its graph is
Graph( f ) = {(x,y,z) � z = x2+y2}.

(It is a paraboloid.)
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f (x,y) = x2+y2

The intersection of its graph with the plane x = a is

{(a,y,z) � z = a+y2},
which is a parabola on a plane parallel to the yz-plane. The intersection of its graph
with the plane z = R is {(x,y,R) � R = x2+y2},
which is empty for R < 0, a point for R = 0 and a circle in a plane parallel to the
xy-plane for R > 0.

�
� Example 9.12 Consider a linear function f ∶R2→R,

f (x,y) = ax+by.

Its graph is a plane in R3,

Graph( f ) = {(x,y,z) � z = ax+by}.
All its slices are lines, e.g.,

{(x,y,z0) � z0 = ax+by}.
�
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9.3 Continuity

Let f ∶ D→ R, where D ⊂ Rn. Loosely speaking, f is continuous at a point a =(a1, . . . ,an) if small deviations of x = (x1, . . . ,xn) about a imply small changes in f .
More formally, f is continuous at a if for every e > 0 there exists a neighborhood of
a, such that for every x is that neighborhood,

� f (x)− f (a)� < e.

All the functions that we will meet in this chapter will be continuous in their domains
of definition, but be aware that there are many non-continuous functions.

� Example 9.13 The function

f (x) = x2
1+x2

2

is continuous at a = (1,2), because for every e > 0 we can find a neighborhood of(1,2), say,
D = {x ∈R2 � (x1−1)2+(x2−2)2 < d},

such that
for all x ∈D � f (x)−5� < e.

�

9.4 Directional derivatives

Consider a function f ∶ R2 → R in the vicinity of a point a = (a1,a2). Like for
functions in R, we often ask at what rate does f change when we slightly modify
its argument. The difference is that here, it has two arguments that can be modified
independently.

One possibility is to keep, say, the second argument, x2 fixed at a2, and evaluate f
as we vary the first argument, x1, from the value a1. By fixing the value x2 = a2, we
are in fact considering a function of one variable,

x� f (x,a2).
We could ask then about the rate of change of f as we vary x1 near a1 with x2 = a2
fixed,

lim
x1→a1

f (x1,a2)− f (a1,a2)
x1−a1

.

If this limit exists, we call it the partial derivative ( �;*8-( ;9'#1) of f along its first
argument (or in the x-direction) at the point a. We may denote it by the following
alternative notations,

D1 f (a) ∂ f
∂x1
(a) or

∂ f
∂x
(a).
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Equivalently,
∂ f
∂x1
(a) = lim

h→0

f (a1+h,a2)− f (a1,a2)
h

.

Similarly, if the limit

lim
x2→a2

f (a1,x2)− f (a1,a2)
x2−a2

= lim
h→0

f (a1,a2+h)− f (a1,a2)
h

.

exists, we call it the partial derivative of f along the second coordinate (or in the
y-direction) and denote it by

D2 f (a) ∂ f
∂x2
(a) or

∂ f
∂y
(a)

More generally, if f ∶Rn→R and a ∈Rn, then (assuming that the limit exists)

D j f (a) = ∂ f
∂x j
(a) = lim

h→0

f (a+h ê j)− f (a)
h

,

where ê j is the j-th unit vector in Rn.

Comment 9.2 The symbol ∂ for partial derivatives is due to the Marquis de Con-
dorcet in 1770 (a French philosopher, mathematician, and political scientist).

Partial derivatives quantify the rate at which a function changes when moving away
from a point in very specific directions (along the unit vectors ê j). More generally,
we could evaluate the rate of change of a function along any unit vector v̂ in Rn,

Dv̂ f (a) = ∂ f
∂ v̂
(a) = lim

h→0

f (a+h v̂)− f (a)
h

.

Such a derivative is called a directional derivative (�;*1&&*, ;9'#1). It is the rate of
change of f at a along the direction v̂. Note that Dv̂ f (a) is the derivative of the
function

t � f (a+ t v̂)
at the point t = 0. Partial derivatives are particular cases of directional derivatives
with the choice v̂ = ê j.

� Example 9.14 Consider the function f ∶R2→R,

f (x,y) = x2y
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f (x,y) = x2y

The partial derivative of f in the x-direction at a point (x0,y0) is the derivative of
the function

x� x2y0

at x = x0 namely,

D1 f (x0,y0) = ∂ f
∂x
(x0,y0) = 2x0y0.

The partial derivative of f in the y-direction at a point (x0,y0) is the derivative of
the function

y� x2
0y

at y = y0, namely,

D2 f (x0,y0) = ∂ f
∂y
(x0,y0) = x2

0.

Take now any unit vector v̂ = (cosq ,sinq). The directional derivative of f in this
direction at a point (x0,y0) is the derivative of the function

t � f (x0+ t cosq ,y0+ t sinq) = (x0+ t cosq)2(y0+ t sinq)
at t = 0, i.e.,

Dv̂ f (x0,y0) = 2x0y0 cosq +x2
0 sinq .

This means that

Dv̂ f (x0,y0) = cosq ∂ f
∂x
(x0,y0)+ sinq ∂ f

∂y
(x0,y0).

We will soon see that this is a general result. The derivative of f along any direction
can be inferred from its partial derivatives (this is not a trivial statement). �
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� Example 9.15 Consider the function

f (x,y) =�x2+y2,

whose graph is a cone. Its partial derivatives at (x,y) are

∂ f
∂x
(x,y) = x�

x2+y2
and

∂ f
∂y
(x,y) = y�

x2+y2
,

which holds everywhere except for the origin where the function is continuous but
not differentiable.

Taking an arbitrary direction, v̂ = (cosq ,sinq)
Dv̂ f (x,y) = F ′(0),

where

F(t) = f (x+ t cosq ,y+ t sinq) =�(x+ t cosq)2+(y+ t sinq)2.
Thus,

Dv̂ f (x,y) = x cosq +y sinq�
x2+y2

= cosq ∂ f
∂x
(x,y)+ sinq ∂ f

∂y
(x,y).
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f (x,y) =�x2+y2

�

9.5 Differentiability

We have defined so far directional derivatives of functions Rn→R, but we haven’t
yet defined what is a differentiable function, nor we defined what is the derivative of
a multivariate function. Naively, one could define f ∶Rn →R to be differentiable
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if all its partial derivatives exist. This requirement turns out not to be sufficiently
stringent.

The differentiability of a function Rn→R generalizes the particular of case n = 1.
For n = 1 there are several equivalent definitions of differentiability: f ∶R→R is
differentiable at a if

lim
h→0

f (a+h)− f (a)
h

exists.

Let’s try to generalize this definition. Since f takes for input a vector, it would be
differentiable at a if

lim
h→0

f (a+h)− f (a)
h

exists ?

The numerator is well-defined; the limit h→ 0 means that every component of h
tends to zero; but division by h is not defined. The fraction we’re trying to evaluate
the limit of is

f (a1+h1, . . . ,an+hn)− f (a1, . . . ,an)(h1, . . . ,h2) ,

and this is not a well-formed expression.

The differentiability of a function f ∶R→R can also be defined in an alternative way:
f is differentiable at a if when x is close to a, D f = f (x)− f (a) is approximately a
linear function of Dx = x−a. That is, there exists a number L, such that

f (x)− f (a) ≈ L(x−a),
in the sense that

f (x)− f (a) = L(x−a)+o(�x−a�),
i.e.,

lim
x→a

f (x)− f (a)−L(x−a)
x−a

= 0.

If this is the case, we call the number L the derivative of f at a, and write f ′(a) = L.

The latter characterization of the derivative turns out to be the one we can generalize
to multivariate functions. Let f ∶ Rn → R. Recall that linear functions Rn → R
can be represented by a scalar multiplication by a constant vector. Thus, f is
differentiable at a if when x is close to a, i.e., when �x−a� is small, D f = f (x)− f (a)
is approximately a linear function of Dx = x−a.

Definition 9.1 f ∶Rn→R is differentiable at a if there exists a vector L such that

f (x)− f (a) =L ⋅(x−a)+o(�x−a�).
In other words,

lim�x−a�→0

f (x)− f (a)−L ⋅(x−a)
�x−a� = 0.
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We call the vector L the derivative of f at a, or the gradient (�)1**$9#) of f at a,
and denote

D f (a) =L,

or ∇ f (a) =L.

Comment 9.3 Note that the derivative of a multivariate function at a point is a
vector. If we turn now the point a into a variable, the gradient ∇ f is a function that
takes a vector Rn (a point in the domain of f ) and returns a vector in Rn (the value
of the gradient at that point), namely,

For f ∶Rn→R ∇ f ∶Rn→Rn

Comment 9.4 The limit x→ a requires some clarification. It is required to exist
regardless of how x approaches a. For any sequence xk satisfying �xk −a�→ 0 we
want the above ratio to tend to zero.

Comment 9.5 The fact that f (x)− f (a) is approximated by a linear function of(x−x) means that

f (a+Dx)− f (a) = (∇ f (a))1 Dx1+ ⋅ ⋅ ⋅+(∇ f (a))n Dxn+o(�Dx�).
The immediate question is what is the relation between the derivative (or gradient)
of a multivariate function and its partial derivatives. The answer is the following:

Proposition 9.1 Suppose that f ∶Rn→R is differentiable at a with ∇ f (a). Then
all its partial derivatives exist and

∂ f
∂x j
(a) = (∇ f (a)) j.

In other words,

∇ f (a) = ����
∂ f
∂x1
(a)⋮

∂ f
∂xn
(a)
���� .

Proof. By definition,

lim�x−a�→0

f (x)− f (a)−∇ f (a) ⋅(x−a)
�x−a� = 0,

regardless of how x tends to a. Set now x = a+h ê j and let h→ 0. Since

�x−a� = �h�→ 0,
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it follows that
lim
h→0

f (a+h ê j)− f (a)−h(∇ f (a)) j

h
= 0.

By definition, this means that the j-th partial derivative of f at a exists and is equal
to (∇ f (a)) j. �
� Example 9.16 Consider the function f ∶R2→R,

f (x,y) =√1+x siny.

Take a = (0,0). Then,

∂ f
∂x
(0,0) = siny

2
√

1+x
�
(0,0)
= 0 and

∂ f
∂y
(0,0) = √1+x cosy�(0,0) = 1.

By Proposition 9.1, if f is differentiable at (0,0) then its gradient at (0,0) is a vector
whose entries are the partial derivatives of f at that point,

∇ f (0,0) = �01� .
To determine whether f is differentiable at (0,0) we have to check whether

lim�(x,y)�→0

f (x,y)− f (0,0)−∇ f (0,0) ⋅(x,y)
�(x.y)� = 0,

i.e., whether

lim�(x,y)�→0

√
1+x siny−y�

x2+y2
= 0.

You can use, say, Taylor’s expansions to verify that this is indeed the case. �
Comment 9.6 Most functions that you will encounter are differentiable. In partic-
ular, sums, products and compositions of differentiable functions are differentiable.

� Example 9.17 Consider again the function r ∶Rn→R,

r(x) = �x�.
Then,

∇ f (x) = ���
x1��x�⋮
xn��x�

��� = x̂.

Thus, the gradient of the function that measures the length of a vector is the unit
vector of that vector. (We will discuss the meaning of the gradient more in depth
below.) �

It remains to establish the relation between the gradient and directional derivatives.
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Proposition 9.2 Suppose that f ∶Rn→R is differentiable at a and let v̂ be a unit
vector. Then

∂ f
∂ v̂
(a) =∇ f (a) ⋅ v̂.

That is,
∂ f
∂ v̂
(a) = n�

j=1

∂ f
∂x j
(a)v̂ j.

Proof. By definition, since f is differentiable at a,

lim�x−a�→0

f (x)− f (a)−∇ f (a) ⋅(x−a)
�x−a� = 0.

Set now x = a+h v̂ and let h→ 0. Then,

�x−a� = �h�→ 0,

hence
lim
h→0

f (a+h v̂)− f (a)−h∇ f (a) ⋅ v̂
�h� = 0.

This precisely means that the directional derivative of f at a exists and is equal to∇ f (a) ⋅ v̂. �
Remains the following question: is it possible that a function has all its directional
derivatives at a point, and yet fails to be differentiable at that point? The following
example shows that the answer is positive, proving that differentiability is more
stringent than the mere existence of directional derivatives.

� Example 9.18 Consider the function

f (x,y) = (x2y)1�3
For every direction v̂ = (cosq ,sinq),

∂ f
∂v
(0,0) = lim

h→0

f (h cosq ,h sinq)− f (0,0)
h

= cos2�3 q sin1�3 q ,

so that all the directional derivatives exist. In particular, setting q = 0,p�2,

∂ f
∂x
(0,0) = 0 and

∂ f
∂y
(0,0) = 0.

Is f differentiable at (0,0)? If it were, then by Proposition 9.2

∂ f
∂v
(0,0) = cosq ∂ f

∂x
(0,0)+ sinq ∂ f

∂y
(0,0),

which is not the case. Hence, we deduce that f is not differentiable at (0,0).
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Comment 9.7 If the partial derivatives are continuous in a neighborhood of a point,
then f is differentiable at that point.

9.6 Composition of multivariate functions with paths

Consider a function f ∶Rn→R (representing, for example, temperature as a function
of position). Let x ∶R→Rn be a path in Rn (representing, for example, the position
of a fly as a function of time). If we compose these two functions,

f ○x,

we get a function R→R (the temperature measured by the fly as function of time).
Indeed,

t � x(t)� f (x(t)) is a mapping R→Rn→R.

In component notation,

f ○x(t) = f (x(t)) = f (x1(t),x2(t), . . . ,xn(t))
(recall that a path can be identified with n real-valued functions).

� Example 9.19 The trajectory of a fly in R2 is

x(t) = �x(t)
y(t)� = � t

t2� ,
and the temperature as function of position on the plane is

f (x,y) = y sinx+cosx.
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Then the temperature measured by the fly as function of time is

f ○x(t) = f (x(t)) = t2 sint +cost.

�

The question is the following: suppose that we know the derivative of x at t (i.e.,
we know the velocity of the path) and we know the derivative of f at x(t) (i.e., we
know how the temperature changes in response to small changes in position at the
current location). Can we deduce the derivative of f ○x at t (i.e., can we deduce the
rate of change of the temperature measured by the fly)?

Let’s try to guess the answer. For univariate functions the derivative of a composition
is the product of the derivatives (the chain rule), so we would guess,

d( f ○x)
dt

(t) = f ′(x(t)) ẋ(t).
This expression is meaningless. The derivative of f is a vector and so is x′(t). The
left-hand side is a scalar, hence an educated guess would be:

Proposition 9.3 — Chain rule. Let x ∶R→Rn and f ∶Rn→R be differentiable
at t0 and at x(t0), respectively. Then f ○x is differentiable at t0 and

d( f ○x)
dt

(t0) =∇ f (x(t0)) ⋅ ẋ(t0).
� Example 9.20 Let’s examine the above example, in which

∇ f (x) = �y cosx− sinx
sinx

� and ẋ(t) = � 1
2t
� ,

so that

∇ f (x(t)) ⋅ ẋ(t) = �t2 cost − sint
sint

� ⋅� 1
2t
� = t2 cost − sint +2t sint.

On the other hand,

d( f ○x)
dt

(t) = t2 cost +2t sint − sint,

i.e., Proposition 9.3 seems correct. �

Proof. Since x is differentiable at t0 it follows that

x(t) = x(t0)+ ẋ(t0)(t − t0)+o(�t − t0�),
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which we may also write as

Dx = ẋ(t0)Dt +o(�Dt �).
Since f is differentiable at x(t0) it follows that

f (x(t)) = f (x(t0))+∇ f (x(t0)) ⋅Dx+o(�Dx�).
Putting things together,

f (x(t)) = f (x(t0))+∇ f (x(t0)) ⋅ ẋ(t0)Dt +o(�Dt �),
which by definition, implies the desired result. �

9.7 Differentiability and implicit functions

Recall that a function x� f (x) may be defined implicitly via a relation of the form

G(x, f (x)) = 0,

where G ∶R2→R. Another way to state it is that f is defined via its graph

Graph( f ) = {(x,y) � G(x,y) = 0}.
Suppose that (x0,y0) ∈ Graph( f ), i.e., y0 = f (x0). Consider now the directional
derivatives of G along v̂ = (cosq ,sinq) at (x0,y0),

∂G
∂ v̂
(x0,y0) = v̂ ⋅∇G(x0,y0) = cosq ∂G

∂x
(x0,y0)+ sinq ∂G

∂y
(x0,y0).

The line tangent to the graph of f at (x0,y0) is along the direction in which the
directional derivative of G vanishes, i.e.,

∂G
∂ v̂
(x0,y0) = cosq �∂G

∂x
(x0,y0)+ tanq ∂G

∂y
(x0,y0)� = 0.

Thus,

f ′(x0) = tanq = − ∂G
∂x (x0,y0)
∂G
∂y (x0,y0) .

� Example 9.21 Let G(x,y) = x2+y2−16 and (x0,y0) = (2,√12). Then,

∂G
∂x
(2,√12) = 4 and

∂G
∂y
(2,√12) = 2

√
12,

so that
f ′(2) = − 4

2
√

12
= − 1√

3
.

�
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9.8 Interpretation of the gradient

We saw that for every function f ∶Rn→R and unit vector v̂,

∂ f
∂ v̂
(a) = v̂ ⋅∇ f (a).

∇ f (a) is a vector in Rn. What is its direction? What is its magnitude.

If q is the angle between the gradient of f at a and v̂, then

∂ f
∂ v̂
(a) = �∇ f (a)� cosq .

The directional derivative is maximal when q = 0, which means that the gradient
points to the direction in which the function changes the fastest. The magnitude of
the gradient is this maximal directional derivative.

Likewise,
∂ f
∂ v̂
(a) = 0 when ∇ f (a) ⊥ v̂,

i.e., ∇ f (a) is perpendicular to the contour line of f at a.

� Example 9.22 Consider once again the distance function

f (x) = �x�.
We saw that ∇ f (x) = x̂,

i.e., the gradient points along the radius vector (the direction in which the radius
vector changes the fastest) and its magnitude is one, as

∂ f
∂ x̂
= lim

h→0

f (x+hx̂)− f (x)
h

= lim
h→0

�x+hx̂�− �x�
h

= 1.

�

Definition 9.2 Let f ∶Rn→R. A point a ∈Rn at which

∇ f (a) = 0

is called a stationary point, or a critical point ( �;*)*98 %$&81).

What is the meaning of a point being stationary? That in any direction the pointwise
rate of change of the function is zero. Like for univariate functions, stationary points
of multivariate functions can be classified:

1. Local maxima: For every v̂ ∈Rn, the function

g(t) = f (x0+ t v̂)
has a local maximum at t = 0. Example, f (x,y) = −x2−y2.
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2. Local minima: For every v̂ ∈Rn, the function

g(t) = f (x0+ t v̂)
has a local minimum at t = 0. Example, f (x,y) = x2+y2.

3. Saddle points (�4,&! ;&$&81): A stationary point that’s neither a local mini-
mum nor a local maximum. Typically,

g(t) = f (x0+ t v̂)
may have a local minimum, a local maximum or an inflection point at t = 0,
depending on the direction v̂. Example, f (x,y) = x2−y2.

−1 −0.5 0 0.5 1 −1

0

1−1

0

1

f (x,y) = x2−y2

� Example 9.23 Consider the function

f (x,y) = x3+y3−3x−3y.

−1 0
1 −1

0
1−4

−2

0

2

4

f (x,y) = x3+y3−3x−3y
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Its gradient is

∇ f (x,y) = �3x2−3
3y2−3� ,

hence its stationary points are (±1,±1).
Take first the point a = (1,1). For v̂ = (cosq ,sinq),

f (a+ t v̂) = (1+ t cosq)3+(1+ t sinq)3−3(1+ t cosq)−3(1+ t sinq).
Expanding, we find

f (a+ t v̂) = −4+3t2 cos2 q +3t2 sin2 q +o(t2) = −4+3t2+o(t2),
hence in every direction v̂, f (a+ t v̂) has a local minimum at t = 0. That is, a is a
local minimum of f .

Take next the point b = (1,−1). For v̂ = (cosq ,sinq),
f (b+ t v̂) = (1+ t cosq)3+(−1+ t sinq)3−3(1+ t cosq)−3(−1+ t sinq).

Expanding, we find,

f (b+ t v̂) = 3t2 cos2 q −3t2 sin2 q +o(t2),
For q = 0, f (b+ t v̂) has a local minimum at t = 0, whereas for q = p�2, f (b+ t v̂)
has a local maximum at t = 0. Thus, b is a saddle point of f .

�

9.9 Higher derivatives and multivariate Taylor theorem

Let f ∶R2→R. If f is differentiable in a certain domain, then it has partial deriva-
tives,

∂ f
∂x

and
∂ f
∂y

,

which both are also functions R2 →R (recall the the gradient is a function R2 →
R2). If the partial derivatives are differentiable, then they have their own partial
derivatives, which we denote by

∂
∂x

∂ f
∂x
= ∂ 2 f

∂x2
∂
∂y

∂ f
∂x
= ∂ 2 f

∂x∂y
∂
∂y

∂ f
∂y
= ∂ 2 f

∂y2
∂
∂x

∂ f
∂y
= ∂ 2 f

∂y∂x
.

More generally, for functions f ∶Rn→R, we have an n-by-n matrix of partial second
derivatives (called the Hessian),

∂ 2 f
∂xi ∂x j

i, j = 1, . . . ,n.
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Each such partial second derivative is a function Rn→R, which may be differentiated
along any direction. A function Rn→R that can be differentiated infinitely many
times along any combination of directions is called smooth ( �%8-().

Theorem 9.4 — Clairaut. If f ∶Rn→R has continuous second partial derivatives
then

∂ 2 f
∂xi ∂x j

= ∂ 2 f
∂x j ∂xi

.

That is, the matrix of second derivatives is symmetric.

Comment 9.8 This is not a trivial statement. One has to show that

lim
h→0

∂ f
∂xi
(x+h ê j)− ∂ f

∂xi
(x)

h
= lim

h→0

∂ f
∂x j
(x+h êi)− ∂ f

∂x j
(x)

h
.

� Example 9.24 Consider the function,

f (x,y) = yx3+xy4−3x−3y.

Then,
∂ f
∂x
= 3x2y+y4−3

∂ f
∂y
= x3+4y3x−3,

and

∂ 2 f
∂x2 = 6xy

∂ 2 f
∂y∂x

= 3x2+4y3 ∂ 2 f
∂y2 = 12y2x

∂ 2 f
∂x∂y

= 3x2+4y3.

We may calculate higher derivatives. For example,

∂ 3 f
∂x∂y∂x

= 6x.

�

Suppose we know f ∶R2 →R and its derivatives at a point (x0,y0). What can we
say about its values in the vicinity of that point, i.e., at a point (x0+Dx,y0+Dy)? It
turns out that the concept of a Taylor polynomial can be generalized to multivariate
function.
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Definition 9.3 Let f ∶R2→R be n-times differentiable at x0 = (x0,y0). Then, its
Taylor polynomial of degree n about the point x0 is

Pf ,n,x0
(x) = f (x0)
+ ∂ f

∂x
(x0)(x−x0)+ ∂ f

∂y
(x0)(y−y0)

+ 1
2
�∂ 2 f

∂x2 (x0)(x−x0)2+2
∂ 2 f

∂x∂y
(x0)(x−x0)(y−y0)+ ∂ 2 f

∂y2 (x0)(y−y0)2�
+ ⋅ ⋅ ⋅+ n�

k=0
�n

k
� ∂ n f

∂xk ∂yn−x (x0)(x−x0)k(y−y0)n−k.

Theorem 9.5 Let f ∶R2→R be n-times differentiable at x0 = (x0,y0). Then,

lim�x−x0�→0

f (x)−Pf ,n,x0
(x)

�x−x0�n = 0,

or using the equivalent notation,

f (x) = Pf ,n,x0
(x)+o(�x−x0�n).

� Example 9.25 Calculate the Taylor polynomial of degree 3 of the function

f (x,y) = x3 lny+xy4

Then,
∂ f
∂x
(x,y) = 3x2 lny+y4 ∂ f

∂y
(x,y) = x3

y
+4xy3,

∂ 2 f
∂x2 (x,y) = 6x lny

∂ 2 f
∂x∂y

(x,y) = 3x2

y
+4y3 ∂ 2 f

∂y2 (x,y) = −x3

y2 +12xy2,

and

∂ 3 f
∂x3 (x,y)=6lny

∂ 3 f
∂x2 ∂y

(x,y)= 6x
y

∂ 3 f
∂x∂y2 (x,y)=−3x2

y2 +12y2 ∂ 3 f
∂y3 (x,y)= 2x3

y3 +24xy.

At the point (1,1),
Pf ,3,(1,1)(1+Dx,1+Dy) = 1+(Dx+5Dy)+ 1

2
�14DxDy+11Dy2�

+ 1
6
�18Dx2 Dy+27DxDy2+26Dy3� .

�



140 Functions of several variables

9.10 Classification of stationary points

Taylor’s theorem for functions of two variables can be used to classify stationary
points. If a is a stationary point of f ∶R2→R and f is twice differentiable at that
point, then by Taylor’s theorem

f (a+Dx) = f (a)+ 1
2
�∂ 2 f

∂x2 (a)Dx2+2
∂ 2 f

∂x∂y
(a)DxDy+ ∂ 2 f

∂y2 (a)Dy2�+o(�Dx�2).
Near stationary points, f − f (a) is dominated by the quadratic terms (unless they
vanish, in which case we have to look at higher-order terms). To shorten notations
let’s write,

∂ 2 f
∂x2 (a) = A

∂ 2 f
∂x∂y

(a) = B and
∂ 2 f
∂y2 (a) =C,

i.e.,

f (a+Dx) = f (a)+ 1
2
�ADx2+2BDxDy+CDy2���������������������������������������������������������������������������������������������������������������������������������������������������������

M(Dx)
+o(�Dx�2).

Consider the quadratic term M(Dx):
1. If it is positive for all Dx ≠ 0, then a is a local minimum.
2. If it is negative for all Dx ≠ 0, then a is a local maximum.
3. If it changes sign for different Dx, then a is a saddle point.

We now characterize under what conditions on A,B,C each case occurs:

1. M(Dx) > 0 for all Dx ≠ 0 if A,C > 0, i.e., if

∂ 2 f
∂x2 (a), ∂ 2 f

∂y2 (a) > 0.

This is still not sufficient. Writing,

M(x) = �√ADx+ B√
A

Dy�2+�C− B2

A
�Dy2,

we obtain that AC > B2, i.e.,

∂ 2 f
∂x2 (a)∂

2 f
∂y2 (a) > � ∂ 2 f

∂x∂y
(a)�2

.
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2. M(Dx) < 0 for all Dx ≠ 0 if A,C < 0, i.e., if

∂ 2 f
∂x2 (a), ∂ 2 f

∂y2 (a) < 0.

This is still not sufficient. Writing,

M(x)=−(�A�Dx2−2BDxDy+ �C�Dy2)=−��
��A�Dx− B��A�Dy

�
�

2

−�B2

�A� − �C��Dy2,

we obtain once again that AC > B2, i.e.,

∂ 2 f
∂x2 (a)∂

2 f
∂y2 (a) > � ∂ 2 f

∂x∂y
(a)�2

.

3. A saddle point occurs if

∂ 2 f
∂x2 (a)∂

2 f
∂y2 (a) < � ∂ 2 f

∂x∂y
(a)�2

.

We can see it by setting Dx = 1, in which case

M(1,Dy) = A+2BDy+CDy2,

which changes sign if the discriminant if positive.

To conclude:

Type Conditions

Local minimum ∂ 2 f
∂x2 > 0 ∂ 2 f

∂y2 > 0 ∂ 2 f
∂x2 ⋅ ∂ 2 f

∂y2 > � ∂ 2 f
∂x∂y�2

Local maximum ∂ 2 f
∂x2 < 0 ∂ 2 f

∂y2 < 0 ∂ 2 f
∂x2 ⋅ ∂ 2 f

∂y2 > � ∂ 2 f
∂x∂y�2

Saddle ∂ 2 f
∂x2 ⋅ ∂ 2 f

∂y2 < � ∂ 2 f
∂x∂y�2

� Example 9.26 Analyze the stationary points (±1�√3,0) of the function

f (x,y) = x3−x−y2.

�

9.11 Extremal values in a compact domain
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Definition 9.4 A domain D ⊂Rn is called bounded if there exists a number R
such that ∀x ∈D �x� < R.

Comment 9.9 In other words, a domain is bounded if it can be enclosed in a ball.

Definition 9.5 A domain D ⊂Rn is called open if any point x ∈D has a neigh-
borhood {y ∈Rn � �y−x� < d}
contained in D. It is called closed if its complement is open, i.e., if any point
x �∈D has a neighborhood

{y ∈Rn � �y−x� < d}
disjoint from in D. This means that if x ∈Rn is a point that has the property that
every ball around x intersects D, then x ∈D.

In this section we discuss extremal points of continuous functions defined on a
bounded and closed domain D ⊂Rn. Such domains are called compact ( �*)85/&8).
Why are closedness and boundedness important? Recall that every for univariate
function, a function continuous may fail to have extrema if its domain is not closed
or unbounded. Like for univariate functions we have the following results:

Theorem 9.6 Let f ∶D→R be continuous with D ⊂Rn compact. Then f assumes
in D both minima and maxima, i.e., where exist a,b ∈D such that

∀x ∈D f (a) ≤ f (x) ≤ f (b).
Furthermore, if f assumes a local extremum at an internal point of D and f is
differentiable at that point then its gradient at that point vanishes.

� Example 9.27 Consider the function

f (x,y) = x4+y4−2x2+4xy−2y2

in the domain

D = {(x,y) � −2 ≤ x,y ≤ 2}.
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−2 −1 0 1 2 −2

0

20

20

f (x,y) = x4+y4−2x2+4xy−2y2

We start by looking for stationary points inside the domain. The gradient is

∇ f (x,y) = �4x3−4x+4y
4y3+4x−4y

� ,
which vanishes for

y = x−x3 and x = y−y3,

i.e.,
y = y−y3−(y−y3)3,

from gives y3 = y3(1−y2)3, i.e., y = 0 or y = ±√2, i.e., the stationary points are

a = (0,0) b = (−√2,
√

2) and c = (√2,−√2).
To determine the types of the stationary points we calculate the Hessian,

∂ 2 f
∂x2 (x,y) = 12x2−4

∂ 2 f
∂x∂y

(x,y) = 4 and
∂ 2 f
∂y2 (x,y) = 12y2−4.

I.e.,

H(a) = �0 4
4 0� H(b) =H(c) = �20 4

4 20� ,
from which we deduce that a is a saddle point and b and c are local minima, with

f (b) = f (c) = −8.

We now turn to consider the boundaries, which comprise of four segments. Since f
is symmetric,

f (x,y) = f (y,x) = f (−x,−y),
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it suffices to check one segment, say, the segment {−2}× [−2,2], where f takes the
form

y� 16+y4−8−8y−2y2.

This is a univariate function whose derivative is

y� 4y3−8−4y.

The derivative vanishes at y ≈ 1.5214. The second derivative is

y� 12y2−2.

Since it is positive at that point, the point is a local minimum. The function at that
point equals approximately 20.9.

Finally, we need to verify the values of f at the four corners:

f (2,2) = f (−2,−2) = 32 and f (2,−2) = f (−2,2) = 0.

To conclude f assumes its minimal value, (−8) at (−√2,
√

2) and (√2,−√2), and
its maximal value, 32, at (2,2) and (−2,−2). �

9.12 Extrema in the presence of constraints

9.12.1 Problem statement

The general problem: Let f ∶Rn→R and let also

g1,g2, . . . ,gm ∶Rn→R.

We are looking for a point x ∈Rn that minimizes or maximizes f under the constraint
that

g1(x) = g2(x) = ⋅ ⋅ ⋅ = gm(x) = 0.

That is, the set of interest is

{x ∈Rn � g1(x) = g2(x) = ⋅ ⋅ ⋅ = gm(x) = 0}.
Without the constraints, we know that the extremal point must be a critical point of
x. In the presence of constraints, it may be that the extremal point is not stationary
since the directions in which it changes violate the constraints.

� Example 9.28 Find the extremal points of

f (x,y) = 2x2+4y2

under the constraint
g(x,y) = x2+y2−1 = 0.

Note that f by itself does not have a maximum in Rn since it grows unbounded as�x�→∞. However, under the constraint that �x� = 1 it has a maximum. �
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9.12.2 A single constraint

Let’s start with a single constraint. We are looking for extremal points of f ∶Rn→R
under the constraint

g(x) = 0.

One approach could be the following: since the constraint is of the form

g(x1, . . . ,xn) = 0,

invert it to get a relation,
xn = h(x1, . . . ,xn−1),

substitute it in f to get a new function

F(x1, . . . ,xn−1) = f (x1, . . . ,xn−1,h(x1, . . . ,xn−1)),
which we then minimize without having to deal with constraints. The problem with
this approach is that it is often impractical to invert the constraint. Moreover, the
constraint may fail to define an implicit function (like in Example 9.28, where the
constraint is an ellipse).

The constrained optimization problem can also be approached as follows: the set

D = {x ∈Rn � g(x) = 0}
over which we extremize f is in general an (n−1)-dimensional hyper-surface (a
curve in Example 9.28). The gradient of g in D points to the direction in which g
changes the fastest. The plane perpendicular to this direction spans the directions
along which g remains constant. f has an extremal point in D if the gradient of f is
perpendicular to the hyperplane along which g remains constant. In other words, f
has an extremal point at x ∈D if the gradient of f is parallel to the gradient of g, i.e.,
there exists a scalar l such that

∇ f (x) = l∇g(x).
A equivalent explanation is the following: let x(t) be a general path in Rn satisfying

x(0) = x0.

The paths along which g does not change satisfy

g(x(t)) = 0.

For all such path, (g○x)′(0) =∇g(x(t)) ⋅x′(0) = 0.

x0 is a solution to our problem it for all such paths,

f (x(t)) has an extremum at t = 0,
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i.e., ( f ○x)′(0) =∇ f (x0) ⋅x′(0) = 0.

This condition holds if ∇ f (x0) and ∇g(x0) are parallel.

Comment 9.10 Note that ∇ f (x0) and ∇g(x0) are parallel if and only if there
exists a number l such that x0 is a stationary point of the function

F(x) = f (x)−l g(x).
In this context the number l is called a Lagrange multiplier ( �'19#- -5&,).

� Example 9.29 Let’s return to Example 9.28. Then, x = (x,y) is an extremal point
if there exists a constant l such that x is a critical point of

F(x,y) = �2x2+4y2�−l �x2+y2−1�
Note,

∇F(x,y) = �4x−2lx
8y−2ly

� ,
i.e., either x = 0 (in which case y = ±1) and l = 4 or y = 0 (in which case x = ±1) and
l = 2. To find which point is a minimum/maximum we have to substitute in f . �

9.12.3 Multiple constraints

For simplicity, let’s assume that there are just two constraints,

D = {x ∈Rn � g1(x) = g2(x) = 0}.
let x(t) be a general path in Rn satisfying

x(0) = x0.

The paths along which g1 and g2 do not change satisfy

g1(x(t)) = g2(x(t)) = 0.

For all such path, (g1 ○x)′(0) =∇g1(x(t)) ⋅x′(0) = 0
(g2 ○x)′(0) =∇g2(x(t)) ⋅x′(0) = 0.

x0 is a solution to our problem it for all such paths,

f (x(t)) has an extremum at t = 0,

i.e., ( f ○x)′(0) =∇ f (x0) ⋅x′(0) = 0.
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This condition holds if ∇ f (x0) is any linear combination of ∇g1(x0) and ∇g1(x0),
i.e., there exists two constants, l and µ such that

∇ f (x0) = l∇g1(x0)+µ∇g2(x0),
or equivalently, x0 is a stationary point of the function

F(x) = f (x)−l g1(x)−l g2(x).
� Example 9.30 Find a minimum point of

f (x,y,z) = x2+2y2+3z2

under the constraints
g1(x,y,z) = x+y+ z−1 = 0

g2(x,y,z) = x2+y2+ z2−1 = 0.

For the function,

F(x,y,z) = �x2+2y2+3z2�−l (x+y+ z−1)−µ �x2+y2+ z2−1� .
Then,

∇F(x,y,z) = ���
2x−l −2µx
4y−l −2µy
6z−l −2µz

��� .
The condition that x be a stationary point of F imposes three conditions on five
unknowns. The constrains provide the two missing conditions. We may first get rid
of z = 1−x−y, i.e.,

2(1−µ)x = l 2(2−µ)y = l 2(3−µ)(1−x−y) = l

and
x2+y2+(1−x−y)2 = 1.

We can then get rid of l ,

(1−µ)x= (2−µ)y (3−µ)(1−x−y)= (1−µ)x and x2+y2+(1−x−y)2 =1.

Finally, we may eliminate µ ,

µ = x−2y
x−y

,

and remain with two equation for two unknowns. �


