
Chapter 7

Limit Theorems

Throughout this section we will assume a probability space (⌦,F ,P), in which
is defined an infinite sequence of random variables (Xn) and a random variable X.
The fact that for every infinite sequence of distributions it is possible to construct
a probability space with a corresponding sequence of random variables is a non-
trivial fact, whose proof is due to Kolmogorov (see for example Billingsley).

7.1 Convergence of sequences of random variables

For every point ! ∈ ⌦, (Xn(!)) is a number sequence and X(!) is a number. It
might be that ! is such that the sequence (Xn(!)) converges to X(!), but it might
also be that this sequence does not converge at all, or that it does not converge to
X(!). The set

�! ∈ ⌦ ∶ lim
n→∞Xn(!) = X(!)�

is an event; as such, it has a probability, which, in principle, could be either zero,
one or any intermediate number. The following definition provides a terminology
to one of those cases:

Definition 7.1 The sequence of random variable (Xn) is said to converge to the
random variable X almost-surely (�$*/; )3/,) (or, w.p. 1) if

P��! ∶ lim
n→∞Xn(!) = X(!)�� = 1.

We write Xn
a.s�→ X.
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We can write this mode of convergence in more explicit form. The limit of(Xn(!)) exists and equals X(!) if and only if

∀✏ > 0, ∃N ∈ N, ∀n > N, �Xn(!) − X(!)� < ✏.
Note that we can replace this condition by the equivalent condition

∀k ∈ N, ∃N ∈ N, ∀n > N, �Xn(!) − X(!)� ≤ 1
k
.

Equivalently, X(!) is not the limit of (Xn(!)) if and only if

∃k ∈ N, ∀N ∈ N, ∃n > N, �Xn(!) − X(!)� > 1
k
.

It follows that the condition Xn
a.s�→ X can be reformulated as

P��! ∶ ∃k ∈ N, ∀N ∈ N, ∃n > N, �Xn(!) − X(!)� > 1
k
�� = 0,

or equivalently,

P�∞�
k=1

∞�
N=1

∞�
n=N+1

{! ∶ �Xn(!) − X(!)� > 1�k}� = 0.

This can further be written as

P�∞�
k=1

lim sup
n→∞ {! ∶ �Xn(!) − X(!)� > 1�k}� = 0.

Note that the sequence of events {! ∶ �Xn(!) − X(!)� > 1�k} is increasing as a
function of k, hence also their lim-sups. Thus, this equality is equal to

lim
k→∞P�lim sup

n→∞ {! ∶ �Xn(!) − X(!)� > 1�k}� = 0.

But if the limit of an increasing non-negative sequence tends to zero, it must be
that the sequence is identically zero, namely Xn

a.s�→ X if and only if

P�lim sup
n→∞ {! ∶ �Xn(!) − X(!)� > 1�k}� = 0 ∀k ∈ N.

In words, Xn
a.s�→ X if for every k, the probability that Xn(!) deviates from X(!)

by more than 1�k for infinitely many n’s is zero.
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Just like sequences of functions can converge to a limiting functions in more than
one way (e.g., pointwise versus uniformly), so a sequence of random variables
can converge to a limiting random variable in many di↵erent ways. Saying that
Xn converges to X is like saying that the sequence of random variables (Xn −
X) converges to the (constant) random variable zero. The zero random variable
has the property that its second moment is zero. This leads us to the following
definition:

Definition 7.2 The sequence (Xn) is said to converge to X in the mean-square
(�;-(&;") if

lim
n→∞E ��Xn − X�2� = 0.

We write Xn
m.s�→ X.

In words: the sequence (Xn−X) converges to zero in the mean-square if its second
moments converge to zero.
A third mode of convergence hinges of the fact that we would relate the fact that(Xn) converges to X with the fact that for every ✏ > 0, the probability that �Xn−X� >
✏ should tends to zero as n→∞:

Definition 7.3 The sequence of random variables (Xn) is said to converge to the
random variable X in probability (�;&9";2%") if for every ✏ > 0,

lim
n→∞P({! ∶ �Xn(!) − X(!)� > ✏}) = 0.

We write Xn
Pr�→ X.

You might think that this coincides with the mode of convergence we have already
defined—almost-sure convergence. We will see that this is not the case. Conver-
gence in probability di↵ers substantially from almost-sure convergence. Also,
here too, we might replace ✏ > 0 by 1�k for k ∈ N.
Finally, we might say that the sequence (Xn) converges to X is the distribution
of Xn converges to the distribution of X. In this case, we don’t even need all the
random variables to be defined on the same probability space; each variable could,
in principle, belong to a “separate world”.

Definition 7.4 The sequence of random variables (Xn) is said to converge to the
random variable X in distribution (�;&#-5;%") if for every continuity point a ∈ R of
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FX,
lim
n→∞FXn(a) = FX(a),

i.e., if the sequence of distribution functions of the Xn converges point-wise to the
distribution function of X at all points where FX is continuous. We write Xn

D�→ X.

The first question to be addressed is whether there exists a hierarchy of modes of
convergence. We want to know which modes of convergence imply which. The
answer is that both almost-sure and mean-square convergence imply convergence
in probability, which in turn implies convergence in distribution. On the other
hand, almost-sure and mean-square convergence do not imply each other.

Proposition 7.1 Almost-sure convergence implies convergence in probability.

Proof : If Xn
a.s�→ X, then

P�lim sup
n→∞ {! ∶ �Xn(!) − X(!)� > ✏}� = 0 ∀✏ > 0.

By the Fatou lemma,

lim sup
n→∞ P (An) ≤ P�lim sup

n→∞ An� ,
hence

lim sup
n→∞ P ({! ∶ �Xn(!) − X(!)� > ✏}) ≤ 0 ∀✏ > 0.

Since the sequence P ({! ∶ �Xn(!) − X(!)� > ✏}) is non-negative, it follows as
once that

lim
n→∞P ({! ∶ �Xn(!) − X(!)� > ✏}) = 0 ∀✏ > 0,

i.e., Xn
Pr�→ X. n

Proposition 7.2 Mean-square convergence implies convergence in probability.
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Proof : This is an immediate consequence of the Markov inequality. Let Xn
m.s�→ X,

then for every ✏ > 0,

P({! ∶ �Xn(!) − X(!)� > ✏}) = P({! ∶ �Xn(!) − X(!)�2 > ✏2}) ≤ E�Xn − X�2
✏2

,

i.e.,
lim
n→∞P({! ∶ �Xn(!) − X(!)� > ✏}) = 0,

which implies that Xn
Pr�→ X. n

Proposition 7.3 Mean-square convergence does not imply almost-sure conver-
gence.

Proof : All we need is a counter example. Consider a family of independent
Bernoulli variables Xn with atomistic distributions,

pXn(x) =
�������

1�n x = 1
1 − 1�n x = 0.

The larger n, the more it is likely that X(!) = 0. Thus, it seems sensible to guess
that the sequence of random variables (Xn) converges to the (constant) random
variable X = 0. The question is in what sense does this convergence occur.

First, we show that Xn
m.s�→ X. Indeed,

E[�Xn − X�2] = E[X2
n] = 1

n
→ 0.

On the other hand, (Xn) does not converge to X almost-surely. Since for ✏ = 1�2,
∞�

n=1
P({! ∶ �Xn(!) − X(w)� > 1�2}) = ∞�

n=1

1
n
=∞,

it follows from the second lemma of Borel-Cantelli that

P�lim sup
n→∞ ({! ∶ �Xn(!) − X(w)� > 1�2}� = 1.

n
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Proposition 7.4 Almost-sure convergence does not imply mean-square conver-
gence.

Proof : Again, we construct a counter example, this time taking

pXn(x) =
�������

1�n2 x = n3

1 − 1�n2 x = 0.
,

Once again, the larger n, the more it is likely that X(!) = 0.
We immediately see that Xn does not converge to X in the mean-square, since

E�Xn − X�2 = E[X2
n] = n6

n2 →∞.
Yet, Xn

a.s�→ X. For every ✏ > 0,

∞�
n=1

P({! ∶ �Xn(!) − X(!)� > ✏}) = ∞�
n=1

1
n2 <∞,

hence by the first lemma of Borel-Cantelli,

P�lim sup
n→∞ ({! ∶ �Xn(!) − X(!)� > ✏}� = 0.

n

Corollary 7.1 Convergence in probability does not imply neither almost-sure con-
vergence not convergence in the mean-square.

Proof : Suppose, for example, that convergence in probability implies almost-
sure convergence. This would mean that convergence in the mean-square implies
almost-sure convergence, which contradicts the last proposition. n

Finally, we show that convergence in probability implies convergence in distri-
bution, hence both almost-sure convergence and convergence in the mean-square
imply convergence in distribution.
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Proposition 7.5 Convergence in probability implies convergence in distribution.

Proof : Let a ∈ R be given, and set ✏ > 0. On the one hand

FXn(a) = P (Xn ≤ a)
+ P (Xn ≤ a,X ≤ a + ✏) + P (Xn ≤ a,X > a + ✏)
= P (Xn ≤ a�X ≤ a + ✏)P (X ≤ a + ✏) + P (Xn ≤ a,X > a + ✏)
≤ P (X ≤ a + ✏) + P (Xn < X − ✏)
≤ FX(a + ✏) + P (�Xn − X� > ✏) ,

where we have used the fact that if A ⊂ B then P(A) ≤ P(B). By a similar
argument

FX(a − ✏) = P (X ≤ a − ✏,Xn ≤ a) + P (X ≤ a − ✏,Xn > a)
= P (X ≤ a − ✏�Xn ≤ a)P (Xn ≤ a) + P (X ≤ a − ✏,Xn > a)
≤ P (Xn ≤ a) + P (X < Xn − ✏)≤ FXn(a) + P (�Xn − X� > ✏) ,

Thus, we have obtained that

FX(a − ✏) − P (�Xn − X� > ✏) ≤ FXn(a) ≤ FX(a + ✏) + P (�Xn − X� > ✏) .
Taking now n→∞ we have

FX(a − ✏) ≤ lim inf
n→∞ FXn(a) ≤ lim sup

n→∞ FXn(a) ≤ FX(a + ✏).
Finally, since this inequality holds for any ✏ > 0 we conclude that provided that a
is a continuity point of FX,

lim
n→∞FXn(a) = FX(a).

n

To conclude, the various modes of convergence satisfy the following scheme:



170 Chapter 7

almost surely

in probability

in distribution

in the mean square

. Exercise 7.1 Prove that if Xn converges in distribution to a constant c, then Xn

converges in probability to c.

. Exercise 7.2 Prove that if Xn converges to X in probability then it has a sub-
sequence that converges to X almost-surely.

7.2 The weak law of large numbers

Theorem 7.1 (Weak law of large numbers (�.*-&$#% .*952/% -: :-(% 8&(%))
Let Xn be a sequence of independent identically-distributed random variables on
a probability space (⌦,F ,P) and let µ = E[Xi]. Define the sequence of running
averages,

S n = X1 + ⋅ ⋅ ⋅ + Xn

n
.

Then, S n converges to µ in probability, i.e., for every ✏ > 0,

lim
n→∞P ({! ∶ �S n(!) − µ� > ✏}) = 0.

Comment: Take the particular case where X1,X2, . . . are i.i.d., A ⊂ R and

Yi = IXi∈A =
�������

1 Xi(!) ∈ A
0 Xi(!) �∈ A

.

Then,

S n = 1
n

n�
i=1

Yi = fraction of times Xi(!) ∈ A for 1 ≤ i ≤ n.
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The weak law of large numbers states that the fraction of times the outcome is in
a given set converges in probability to E[Y1], which is the probability of this set,
PX1(A), namely, for every ✏ > 0,

lim
n→∞P({! ∶ �S n(!) − PX1(A)� > ✏}) = 0.

Proof : We will prove the weak law under the additional assumption that the ran-
dom variables have finite variance �2 = Var[Xi]. Then, the weak law of large
numbers is an immediate consequence of the Chebyshev inequality: by the addi-
tivity of the expectation and the variance (for independent random variables),

E[S n] = µ and Var[S n] = �2

n
.

Then,

P ({! ∶ �S n(!) − µ� > ✏}) ≤ Var[S n]
✏2

= �2

n✏2
,

which tends to zero as n→∞. n

Comment: the first proof is due to Jacob Bernoulli (1713), who proved it for the
particular case of binomial variables.

7.3 The strong law of large numbers

Our next limit theorem is the strong law of large number, which states that the
running average of a sequence of i.i.d. variables converges to the mean almost-
surely (thus strengthening the weak law of large numbers, which only provides
convergence in probability).

Theorem 7.2 (Strong law of large numbers (�.*-&$#% .*952/% -: 8'(% 8&(%))
Let Xn be a sequence of independent, identically distributed random variables
with finite expectation µ = E[Xi]. Define the sequence of running averages,

S n = X1 + ⋅ ⋅ ⋅ + Xn

n
.

Then, S n converges to µ almost-surely, i.e., for every ✏ > 0,

P({! ∶ lim
n→∞S n(!) = µ}) = 1.
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Proof : We have to prove that for every ✏ > 0,

P�lim sup
n→∞ {! ∶ �S n(!) − µ� > ✏}� = 0,

which by the lemma of first Borel-Cantelli lemma holds if
∞�

n=1
P ({! ∶ �S n(!) − µ� > ✏}) <∞.

We will prove the theorem under the additional assumption that the random vari-
ables are bounded, i.e., there is M <∞ such that �Xi� ≤ M.
Set

Yk = Xk − µ
2M

,

The reverse relation is Xk = 2MYk + µ. Clearly E[Yk] = 0, and by the boundedness
assumption, �Yk� ≤ 1. Hence, we can use Hoe↵ding’s inequality and get that for
every n and a

P� n�
k=1

Yk ≥ a� ≤ exp�− a2

2n
�

By our definition of Yk,

{! ∶ �S n(!) − µ� > ✏} = �! ∶ �1n
n�

k=1
Xk − µ� > ✏�

= �! ∶ �1
n

n�
k=1
(Xk − µ)� > ✏�

= �! ∶ �2M
n

n�
k=1

Yk� > ✏�
⊂ �! ∶ 2M

n

n�
k=1

Yk ≥ ✏� ∪ �! ∶ 2M
n

n�
k=1

Yk ≤ −✏�
= �! ∶ n�

k=1
Yk ≥ n✏

2M
� ∪ �! ∶ − n�

k=1
Yk ≥ − n✏

2M
� .

By Hoe↵ding’s inequality (once for (Yk) and once for (−Yk)),
P ({! ∶ �S n(!) − µ� > ✏}) ≤ 2 exp�− n✏2

8M2� ,
which is indeed summable.

n
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7.4 The central limit theorem

Theorem 7.3 (Central limit theorem (�*',9/% -&"#% )5:/)) Let (Xn) be a se-
quence of i.i.d. random variables with E[Xi] = 0 and Var[Xi] = 1. Then, the
sequence of random variables

S n = X1 + ⋅ ⋅ ⋅ + Xn√
n

converges in distribution to a random variable X ∼ N (0,1). That is, for every
a ∈ R,

lim
n→∞P (S n ≤ a) = 1√

2⇡ �
a

−∞ e−y2�2 dy.

Comments:

¿ If E[Xi] = µ and Var[Xi] = �2 then the same applies for

S n = X1 + ⋅ ⋅ ⋅ + Xn − nµ
�
√

n
= 1√

n

n�
i=1

Xi − µ
�
.

¡ The central limit theorem (CLT) is about a running average rescaled by a
factor of

√
n. If we denote by Yn the running average,

Yn = X1 + ⋅ ⋅ ⋅ + Xn

n
,

then the CLT states that

P�Yn ≤ a√
n
� ∼ �(a),

i.e., it provides an estimate of the distribution of Yn at distances O(n−1�2)
from its mean. It is a theorem about small deviations from the mean. There
exist more sophisticated theorems about the distribution of Yn far from the
mean, part of the so-called theory of large deviations.

¬ There are many variants of this theorem.



174 Chapter 7

Proof : We will use the following fact, which we won’t prove: if the sequence of
moment generating functions MXn(t) of a sequence of random variables (Xn) con-
verges for every t to the moment generating function MX(t) of a random variable
X, then Xn converges to X in distribution. In other words,

MXn(t)→ MX(t) for all t implies that Xn
D�→ X.

Thus, we need to show that the moment generating functions of the S n’s tends
as n → ∞ to exp(t2�2), which is the moment generating function of a standard
normal variable.
Recall that the pdf of a sum of two random variables is the convolution of their
pdf, but the moment generating function of their sum is the product of the their
moment generating function. Inductively,

MX1+X2+...,+Xn(t) = n�
i=1

MXi(t) = [MX1(t)]n,
where we have used the fact that they are i.i.d., Now, if a random variable Y has a
moment generating function MY , then

MY�a(t) = �
R

ety fY�a(y)dy,

but since fY�a(y) = a fY(ay) we get that

MY�a(t) = a �
R

ety fY(ay)dy = �
R

eaty�a fY(ay)d(ay) = MY(t�a),
from which we deduce that

MS n(t) = �MX1 � t√
n
��n

.

Take the logarithm of both sides, and write the left hand side explicitly,

log MS n(t) = n log�
R

etx�√n fX1(x)dx.

Taylor expanding the exponential about t = 0 we have,

log MS n(t) = n log�
R
�1 + tx√

n
+ t2x2

2n
+ t3x3

6n3�2 e⇠x�√n� fX1(x)dx

= n log�1 + 0 + t2

2n
+O(n−3�2)�

= n � t2

2n
+O(n−3�2)�→ t2

2
.
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n

Example: Suppose that an experimentalist wants to measure some quantity. He
knows that due to various sources of errors, the result of every single measurement
is a random variable, whose mean µ is the correct answer, and the variance of
his measurement is �2. He therefore performs independent measurements and
averages the results. How many such measurements does he need to perform to
be sure, within 95% certainty, that his estimate does not deviate from the true
result by ��4?
The question we’re asking is how large should n be in order for the inequality

P�µ − �
4
≤ 1

n

n�
k=1

Xk ≤ µ + �4 � ≥ 0.95

to hold. This is equivalent to asking what should n be for

P�−
√

n
4
≤ 1√

n

n�
k=1

Xk − µ
�
≤
√

n
4
� ≥ 0.95.

By the central limit theorem the right hand side is, for large n, approximately

2√
2⇡ �

√
n�4

0
e−y2�2 dy,

which turns out to be larger than 0.95 for ≥ 62.
The problem with this argument that it uses the assumption that “n is large”, but
it is not clear what large is. Is n = 62 su�ciently large for this argument to hold?
This problem could have been solved without this di�culty but resorting instead
to the Chebyshev inequality:

P�−
√

n
4
≤ 1√

n

n�
k=1

Xk − µ
�
≤
√

n
4
� = 1 − P�� 1√

n

n�
k=1

Xk − µ
�
� ≥
√

n
4
�

≥ 1 − 16
n
,

and the right hand side is larger than 0.95 if

n ≥ 16
0.05

= 320.

▲▲▲
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Example: The number of students X who are going to fail in the exam is a Poisson
variable with mean 100, i.e, X ∼ Poi(100). I am going to admit that the exam was
too hard if more than 120 student fail. What is the probability for it to happen?
We know the exact answer,

P (X ≥ 120) = e−100
∞�

k=120

100k

k!
,

which is a quite useless expression. Let’s base our estimate on the central limit
theorem as follows: a Poisson variable with mean 100 can be expressed as the
sum of one hundred independent variables Xk ∼ Poi(1) (the sum of independent
Poisson variables is again a Poisson variable), that is X = ∑100

k=1 Xk. Now,

P (X ≥ 120) = P� 1√
100

100�
k=1

Xk − 1
1
≥ 20

10
� ,

which by the central limit theorem equals approximately,

P (X ≥ 120) ≈ 1√
2⇡ �

∞
2

e−y2�2 dy ≈ 0.228.

▲▲▲
Example: Let us examine numerically a particular example. Let Xi ∼ Exp (1) be
independent exponential variable and set

S n = 1√
n

n�
i=1
(Xi − 1).

A sum of n independent exponential variables has distribution Gamma (n,1), i.e.,
its pdf is

xn−1e−x

�(n) .
The density for this sum shifted by n is

(x + n)n−1e−(x+n)
�(n) ,

with x > −n and after dividing by
√

n,

fS n(x) = √n
(√nx + n)n−1e−(√nx+n)

�(n) ,
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Figure 7.1: The approach of a normalized sum of 1,2,4 and 16 exponential ran-
dom variables to the normal distribution.



178 Chapter 7

with x > −√n. See Figure 7.1 for a visualization of the approach of the distribu-
tion of S n toward the standard normal distribution.

▲▲▲


