6. Taylor polynomials and Taylor series

These lecture notes present my interpretation of Ruth Lawrence's lecture notes (in Hebrew)

6.1 Preliminaries

6.1.1 Polynomials

1

A *polynomial of degree n* (פולינום) is a function of the form

$$p(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0,$$

where $b_n \neq 0$. It is customary to denote

$$\Pi_n = \{\text{all polynomials of degree up to } n\}.$$

This is a set of functions closed under addition and scalar multiplication (in fact, it is a vector space), but it is not closed under multiplication, as the product of two polynomials of degree n is a polynomial of degree 2n (but the set of all polynomials of any degree is closed under multiplication).

Let's calculate all the derivatives of p. First,

$$p'(x) = nb_n x^{n-1} + (n-1)b_{n-1} x^{n-2} + \dots + 2b_2 x + b_1,$$

so that the derivative of a polynomial of degree n is a polynomial of degree n-1. Then,

$$p''(x) = n(n-1)b_n x^{n-2} + (n-1)(n-2)b_{n-1} x^{n-3} + \dots + 3 \cdot 2b_3 x + 2b_2$$

$$p'''(x) = n(n-1)(n-2)b_n x^{n-3} + (n-1)(n-2)(n-3)b_{n-1} x^{n-4} + \dots + 3 \cdot 2b_3.$$

¹Image of Brook Taylor, 1685–1731

Finally,

$$p^{(n)}(x) = n(n-1)(n-2) \cdot 3 \cdot 2 \cdot b_n$$

which is a constant function, and then $p^{(n+1)}(x) = 0$, as well as all higher derivatives.

We then evaluate p and all its derivatives at the origin:

$$p(0) = b_0$$
 $p'(0) = b_1$ $p''(0) = 2b_2$ $p'''(0) = 3 \cdot 2b_3$ ··· $p^{(n)}(0) = n!b_n$

i.e.,

$$p^{(k)}(0) = \begin{cases} k! b_k & k \le n \\ 0 & k > n. \end{cases}$$

Let a be an arbitrary number and consider the function

$$q(x) = b_n(x-a)^n + b_{n-1}(x-a)^{n-1} + \dots + b_1(x-a) + b_0.$$

We first argue that q is a polynomial of degree n (just open the brackets). In fact, it is identical to p up to a translation of x by a. Hence, the derivatives of q at a must be identical to the derivatives of p at zero,

$$q^{(k)}(a) = \begin{cases} k! b_k & k \le n \\ 0 & k > n, \end{cases}$$

which you can also check by a direct calculation. We can invert this relation,

$$b_k = \frac{q^{(k)}(a)}{k!}, \qquad k \le n.$$

6.1.2 Linear approximation revisited

Let f be a function differentiable at a. Recall that the **linear approximation** of f about a is a polynomial of degree one,

$$p(x) = f(a) + f'(a)(x-a).$$

The values of p and its first derivative at a are

$$p(a) = f(a)$$
 and $p'(a) = f'(a)$.

That is, the linear approximation of f at a is a polynomial of degree one that has the same value as well as the same first derivative as f at a (but only there). It is easy to see that it is the *only* polynomial of degree up to one that satisfies this property.

In what sense is p an approximation to f in the vicinity a? Clearly, if we look at the difference between f and p (the **remainder** (שארית)),

$$R(x) = f(x) - p(x) = f(x) - f(a) - f'(a)(x - a),$$

then

$$\lim_{x\to a} R(x) = 0.$$

But the extent to which p approximates f near a is even stronger. Consider the ratio

$$\frac{R(x)}{x-a} = \frac{f(x) - f(a) - f'(a)(x-a)}{x-a} = \Delta_{f,a}(x) - f'(a).$$

Even though the denominator tends to zero as $x \rightarrow a$, we nevertheless get that

$$\lim_{x \to a} \frac{R(x)}{x - a} = \lim_{x \to a} \Delta_{f,a}(x) - f'(a) = 0.$$

Definition 6.1 Let g and h be two functions. We say that

$$g(x) = o(h(x))$$
 as $x \to 0$

if

$$\lim_{x\to 0}\frac{g(x)}{h(x)}=0.$$

How is this definition relevant to the notion of a linear approximation? We have just shown that

$$R(x) = f(x) - f(a) - f'(a)(x-a) = o(|x-a|),$$

or,

$$f(x) = f(a) + f'(a)(x-a) + o(|x-a|)$$
 as $x \to a$

Example 6.1 Consider the function $f(x) = e^x$. Its linear approximation about 1 is

$$p(x) = e + e(x-1)$$
.

Then,

$$e^x = e + e(x-1) + o(|x-1|)$$
 as $x \to 1$,

which means that

$$\lim_{x \to 1} \frac{e^x - (e + e(x - 1))}{x - 1} = 0.$$

6.2 Taylor polynomials

The idea of approximating a function by a polynomial of degree one calls for a generalization. Suppose that f were twice differentiable at a. Can we find a polynomial that has the same value as f at a, as well as the same first two derivatives?

We can find plenty of such polynomials, but there is only one of *minimal* degree. By Section 6.1.1, the polynomial

$$p(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$$

satisfies,

$$p(a) = f(a)$$
 $p'(a) = f'(a)$ and $p''(a) = f''(a)$.

If f were differentiable three times at a we could construct a polynomial of degree three that has the same value as f at a, as well as the same first three derivatives. More generally:

Definition 6.2 Suppose that f is n-times differentiable at a. Its **Taylor polynomial** (פולינום שיילור) of degree n about a is given by

$$P_{f,n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

The short-hand notation is

$$P_{f,n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$$

where, by convention, $f^{(0)} = f$. This polynomial is the only one of degree (up to) n that agrees with the value of f and with the value of its first n derivatives at the point a. But please note: unless f was a polynomial to start with, $f(x) \neq P_{f,n,a}(x)$.

■ **Example 6.2** Consider the Taylor polynomial of degree n of the function exp about the point a = 0. Since for all k, $\exp^{(k)} = \exp$ it follows that $\exp^{(k)}(0) = 1$. Then,

$$P_{\exp,n,0}(x) = \sum_{k=0}^{n} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!}.$$

■ **Example 6.3** Consider the Taylor polynomial of degree n of the sine function about the point a = 0. Since $\sin' = \cos$, $\sin'' = -\sin$, $\sin''' = -\cos$ and $\sin'''' = \sin$ we have a periodic pattern,

$$\sin^{(k)}(0) = \begin{cases} 0 & k = 2j \\ (-1)^{j-1} & k = 2j+1. \end{cases}$$

It follows that the Taylor polynomial of degree n includes only odd terms. We have

$$P_{\sin,2n+1,0}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{n-1} \frac{x^{2n+1}}{(2n+1)!} = \sum_{k=0}^{n} (-1)^{k-1} \frac{x^{2k+1}}{(2k+1)!}.$$

■ Example 6.4 Consider the Taylor polynomial of degree n of the cosine function about the point a = 0. Since $\cos' = -\sin$, $\cos'' = -\cos$, $\cos''' = \sin$ and $\cos'''' = \cos$ we have a periodic pattern,

$$\cos^{(k)}(0) = \begin{cases} 0 & k = 2j+1\\ (-1)^j & k = 2j. \end{cases}$$

It follows that the Taylor polynomial of degree n includes only even terms,

$$P_{\cos,2n,0}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!}.$$

Example 6.5 Consider the Taylor polynomial of degree n of the natural logarithm about the point a = 1. We have

$$\ln'(x) = \frac{1}{x}$$
 $\ln''(x) = -\frac{1}{x^2}$ $\ln'''(x) = \frac{2}{x^3}$ $\ln''''(x) = -\frac{3!}{x^4}$

so that ln(1) = 0 and

$$\ln^{(k)}(1) = (-1)^{k-1}(k-1)!.$$

Hence,

$$P_{\ln,n,1}(x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{(k-1)!(x-1)^k}{k!} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n}.$$

Equivalently, the Taylor polynomial of degree n of the function

$$f(x) = \ln(x+1)$$

about a = 0 is

$$P_{f,n,0}(x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n}$$

Example 6.6 Consider now the function

$$f(x) = \frac{1}{1+x}$$

and its Taylor polynomial about the point a = 0 (note that this is the derivative of the previous example!). We have

$$f'(x) = -\frac{1}{(1+x)^2}$$
 $f''(x) = \frac{2}{(1+x)^3}$

and generally,

$$f^{(k)}(0) = (-1)^k k!$$

Then,

$$P_{f,n,0}(x) = \sum_{k=0}^{n} (-1)^k x^k = 1 - x + x^2 - x^3 + \dots + (-1)^k x^n.$$

Like for differentiation, we can make the calculation of Taylor polynomials easier by showing that they satisfy certain algebraic properties:

Proposition 6.1 Let f,g be n-times differentiable at a. Then,

$$P_{f+g,n,a} = P_{f,n,a} + P_{g,n,a}$$
.

Proposition 6.2 Let f, g be n-times differentiable at a. Then,

$$P_{fg,n,a} = [P_{f,n,a}P_{g,n,a}]_n$$

where the notation $[]_n$ stands for truncation at the n-th degree.

■ Example 6.7 Consider the Taylor polynomial of degree four of the function

$$f(x) = \sin x \ln(1+x).$$

about a = 0. Since

$$P_{\sin,4,0}(x) = x - \frac{x^3}{6}$$
 and $P_{\ln(1+\cdot),4,0}(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$.

Then,

$$P_{f,4,0}(x) = \left[\left(x - \frac{x^3}{6} \right) \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \right) \right]_4$$
$$= x \left(x - \frac{x^2}{2} + \frac{x^3}{3} \right) - \frac{x^3}{6} x = x^2 - \frac{x^3}{2} + \frac{x^4}{6}.$$

And finally the composition rule:

Proposition 6.3 Let f be n-times differentiable at a and let g be n times differentiable at f(a). Then,

$$P_{g\circ f,n,a}=\big[P_{g,n,f(a)}\circ P_{f,n,a}\big]_n.$$

■ Example 6.8 Consider the function

$$f(x) = \ln(\cos(x)).$$

We want to calculate its Taylor polynomial of degree 4 about the point 0. Recall that

$$P_{\cos,4,0}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!},$$

and

$$P_{\ln,4,1}(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4}.$$

Then,

$$\begin{split} P_{f,4,0}(x) &= \left[P_{\ln,4,1}(P_{\cos,4,0}(x)) \right]_4 \\ &= \left[\left(P_{\cos,4,0}(x) - 1 \right) - \frac{\left(P_{\cos,4,0}(x) - 1 \right)^2}{2} + \frac{\left(P_{\cos,4,0}(x) - 1 \right)^3}{3} - \frac{\left(P_{\cos,4,0}(x) - 1 \right)^4}{4} \right]_4 \\ &= \left[\left(P_{\cos,4,0}(x) - 1 \right) - \frac{\left(P_{\cos,4,0}(x) - 1 \right)^2}{2} \right]_4 \\ &= -\frac{x^2}{2} + \frac{x^4}{4!} - \frac{\left(-x^2/2 \right)^2}{2} = -\frac{x^2}{2} - \frac{x^4}{12}. \end{split}$$

We will need below the following straightforward fact:

Lemma 6.4 Let f be n times differentiable at a. The Taylor polynomial of degree n of f about a satisfies the following property,

$$P'_{f,n,a} = P_{f',n-1,a}. (6.1)$$

Proof. This is immediate as

$$P_{f,n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k},$$

hence

$$P'_{f,n,a}(x) = \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} k(x-a)^{k-1} = \sum_{k=1}^{n} \frac{f^{(k)}(a)}{(k-1)!} (x-a)^{k-1}$$
$$= \sum_{j=0}^{n-1} \frac{f'^{(j)}(a)}{j!} (x-a)^{j} = P_{f',n-1,a}(x).$$

6.3 Properties of Taylor polynomials

The first questions to be asked about the Taylor polynomial $P_{f,n,a}$ are:

1. How well does the polynomial approximate the function in the vicinity of a? In particular, how does the quality of this approximation depend on n?

- 2. How well does the polynomial approximate the function away from a? In particular, how does the quality of this approximation depend on n?
- 3. What happens as we let $n \to \infty$?

Before we answer those questions, let us learn a useful theorem. Suppose that f and g both vanish at a and have continuous derivatives in a neighborhood of a; moreover, assume that g' does not vanish in this neighborhood. Fix a point b in this neighborhood and consider the function

$$h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a)).$$

This function satisfies h(a) = h(b). By the mean-value theorem there exists a point x between a and b where h'(x) = 0, i.e.,

$$f'(x)g(b) - g'(x)f(b) = 0,$$

or

$$\frac{f(b)}{g(b)} = \frac{f'(x)}{g'(x)}.$$

What happens as $b \rightarrow a$? Then, also $x \rightarrow a$. One can then show that:

Theorem 6.5 — l'Hopital's rule (הכלל של לופישל). Suppose that f and g both vanish at a and have continuous derivatives in a neighborhood of a; moreover, assume that neither g nor g' vanish in this neighborhood. If

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} \qquad \text{exists},$$

then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

■ Example 6.9 Consider the function

$$h(x) = \frac{1 - \cos x}{\sin x}.$$

Does this function have a limit as $x \to 0$ (note the zero divided by zero)? L'Hopital's rule tell us that

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{(1 - \cos)'(x)}{\sin' x} = \lim_{x \to 0} \frac{\sin x}{\cos x},$$

provided that the right-hand side exists. In the present case,

$$\lim_{x\to 0}h(x)=0.$$

L'Hopital's rule is a useful tool for calculating limits. In the present context, it is helpful in the following sense. Consider the difference between a function and its linear approximation divided by the distance of the point of evaluation from the point of expansion:

$$\frac{f(x)-P_{f,1,a}(x)}{x-a}.$$

L'Hopital's rule tells us that the limit as $x \to a$ exists is the limit of the ratios of the derivatives does. The latter is equal to

$$\frac{f'(x)-P_{f',0,a}(x)}{1},$$

which tends to zero as $x \to 0$. Thus, we recover once again the property of the linear approximation,

$$\lim_{x \to a} \frac{f(x) - P_{f,1,a}(x)}{x - a} = 0.$$

Consider now the Taylor polynomial of degree 2, and consider the ratio

$$\frac{f(x)-P_{f,2,a}(x)}{(x-a)^2}.$$

By l'Hopital's rule,

$$\lim_{x \to a} \frac{f(x) - P_{f,2,a}(x)}{(x-a)^2} = \lim_{x \to a} \frac{f'(x) - P_{f',1,a}(x)}{2(x-a)}$$

provided that the right-hand side exists, but by the very same rule,

$$\lim_{x \to a} \frac{f'(x) - P_{f',1,a}(x)}{2(x-a)} = \lim_{x \to a} \frac{f''(x) - P_{f'',0,a}(x)}{2}$$

provided that the right-hand side exists. It does; it is zero. Hence,

$$\lim_{x \to a} \frac{f(x) - P_{f,2,a}(x)}{(x-a)^2} = 0.$$

Equivalently, we an use the "little o" notation,

$$f(x) = P_{f,2,a}(x) + o((x-a)^2)$$
 as $x \to a$.

Proceeding inductively we obtain the following important characterization of the Taylor polynomial:

Theorem 6.6 — Taylor. Let f be n times differentiable at a. Then

$$\lim_{x \to a} \frac{f(x) - P_{f,n,a}(x)}{(x - a)^n} = 0,$$

or using the "little o" notation,

$$f(x) = P_{f,n,a}(x) + o((x-a)^n)$$
 as $x \to a$

Taylor's theorem states that the difference between $P_{f,n,a}(x)$ and f(x) tends to zero as $x \to a$ "faster" than $(x-a)^n$. Important: in Taylor's theorem n is fixed and we consider the limit $x \to a$. This is in contrast with the next section, where we keep x fixed and let $n \to \infty$.

Can we be more explicit about the deviation of $P_{f,n,a}(x)$ from f(x)? It turns out that by a generalization of the mean-value theorem, the following can be proved:

Theorem 6.7 — Remainder of Taylor's polynomial. Suppose that f is differentiable (n+1) times in a neighborhood of a. Then for every x in this neighborhood there exists a point c between a and x such that

$$f(x) - P_{f,n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

(This expression is known as Lagrange's form of the remainder).

■ **Example 6.10** Consider the sine function. Its Taylor polynomial of degree 2 about zero is

$$P_{\sin,2.0}(x) = x$$
.

By the remainder theorem, there exists for every x a point c (that depends on x), such that

$$\sin x - x = \frac{-\cos c}{3!} x^3.$$

Thus,

$$|\sin x - x| \le \frac{|x|^3}{6}.$$

For example,

$$|\sin(0.1) - 0.1| \le \frac{0.001}{6}$$
.

The Taylor polynomial of degree four is

$$P_{\sin,4,0}(x) = x - \frac{x^3}{6}$$
.

There exists for every x a point c (that depends on x), such that

$$\sin x - (x - x^3/6) = \frac{\cos c}{5!}x^5.$$

For example,

$$|\sin(0.1) - (0.1 - 0.001/6)| \le \frac{0.00001}{120} < 10^{-7}.$$

The formula for the remainder gives us a practical tool for estimating the difference between a function and its approximation by a Taylor polynomial.

A comparison between the sine function and its first few Taylor polynomials about x = 0 is displayed below:

6.4 Taylor series

In the previous section we characterized the Taylor polynomial for n fixed and $x \to a$. Now we ask a totally different question: for fixed x, how does $P_{f,n,a}(x)$ behave as $n \to \infty$ (assuming, of course, that f is differentiable at a infinitely many times, without which the question is meaningless). There are different possible scenarios:

- 1. The limit of $P_{f,n,a}(x)$ as $n \to \infty$ does not exist.
- 2. The limit of $P_{f,n,a}(x)$ as $n \to \infty$ exists and equals f(x).
- 3. The limit of $P_{f,n,a}(x)$ as $n \to \infty$ exists but does not equals f(x).

If the second or third scenario occurs, we denote

$$\lim_{n \to \infty} P_{f,n,a}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

This infinite sum is called a **Taylor series** (טור טיילור).

Example 6.11 Consider the sine function. We know that for every x and n,

$$|\sin x - P_{\sin,2n,0}(x)| \le \frac{|x|^{2n+1}}{(2n+1)!}.$$

For fixed x and $n \to \infty$ the right-hand side vanishes. Hence, the Taylor series of the sine function exists everywhere, and

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

Definition 6.3 Let f be infinitely many times differentiable at a. A number R, which is the largest number for which

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(x)$$

for every $x \in (x-R,x+R)$ is called the **radius of convergence** of the Taylor series. A function that has an infinite radius of convergence is called **real** analytic (אגליטית).

■ **Example 6.12** The classical example of a function that has a zero radius of convergence is the following:

$$f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

It can be shown that all the derivative of f vanish at zero. As a result, its Taylor polynomial of any degree about zero is identically zero,

$$P_{f,n,0}(x)=0.$$

It follows that,

$$\lim_{n\to\infty} P_{f,n,0}(x) = 0 \neq f(x),$$

no matter has close x is to zero. Please note that this does not contradict Theorem 6.6 which states that for every n,

$$\lim_{x \to 0} \frac{f(x) - P_{f,n,0}(x)}{x^n} = 0.$$