
6. Taylor polynomials and Taylor series

These lecture notes present my interpretation of Ruth Lawrence’s lec-
ture notes (in Hebrew)
1

6.1 Preliminaries

6.1.1 Polynomials

A polynomial of degree n ( �.&1*-&5) is a function of the form

p(x) = b

n

x

n+b

n−1x

n−1+ ⋅ ⋅ ⋅+b1x+b0,

where b

n

≠ 0. It is customary to denote

P
n

= {all polynomials of degree up to n}.
This is a set of functions closed under addition and scalar multiplication (in fact, it
is a vector space), but it is not closed under multiplication, as the product of two
polynomials of degree n is a polynomial of degree 2n (but the set of all polynomials
of any degree is closed under multiplication).

Let’s calculate all the derivatives of p. First,

p

′(x) = nb

n

x

n−1+(n−1)b
n−1 x

n−2+ ⋅ ⋅ ⋅+2b2 x+b1,

so that the derivative of a polynomial of degree n is a polynomial of degree n−1.
Then,

p

′′(x) = n(n−1)b
n

x

n−2+(n−1)(n−2)b
n−1 x

n−3+ ⋅ ⋅ ⋅+3 ⋅2b3 x+2b2

p

′′′(x) = n(n−1)(n−2)b
n

x

n−3+(n−1)(n−2)(n−3)b
n−1x

n−4+ ⋅ ⋅ ⋅+3 ⋅2b3.

1Image of Brook Taylor, 1685–1731
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Finally,
p

(n)(x) = n(n−1)(n−2) ⋅3 ⋅2 ⋅b
n

,

which is a constant function, and then p

(n+1)(x) = 0, as well as all higher derivatives.

We then evaluate p and all its derivatives at the origin:

p(0) = b0 p

′(0) = b1 p

′′(0) = 2b2 p

′′′(0) = 3 ⋅2b3 � p

(n)(0) = n!b

n

,

i.e.,

p

(k)(0) = �������
k!b

k

k ≤ n

0 k > n.

Let a be an arbitrary number and consider the function

q(x) = b

n

(x−a)n+b

n−1(x−a)n−1+ ⋅ ⋅ ⋅+b1(x−a)+b0.

We first argue that q is a polynomial of degree n (just open the brackets). In fact, it
is identical to p up to a translation of x by a. Hence, the derivatives of q at a must
be identical to the derivatives of p at zero,

q

(k)(a) = �������
k!b

k

k ≤ n

0 k > n,

which you can also check by a direct calculation. We can invert this relation,

b

k

= q

(k)(a)
k!

, k ≤ n.

6.1.2 Linear approximation revisited

Let f be a function differentiable at a. Recall that the linear approximation of f

about a is a polynomial of degree one,

p(x) = f (a)+ f

′(a)(x−a).
The values of p and its first derivative at a are

p(a) = f (a) and p

′(a) = f

′(a).
That is, the linear approximation of f at a is a polynomial of degree one that has the
same value as well as the same first derivative as f at a (but only there). It is easy to
see that it is the only polynomial of degree up to one that satisfies this property.

In what sense is p an approximation to f in the vicinity a? Clearly, if we look at the
difference between f and p (the remainder (�;*9!:)),

R(x) = f (x)− p(x) = f (x)− f (a)− f

′(a)(x−a),
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then
lim
x→a

R(x) = 0.

But the extent to which p approximates f near a is even stronger. Consider the ratio

R(x)
x−a

= f (x)− f (a)− f

′(a)(x−a)
x−a

= D
f ,a(x)− f

′(a).
Even though the denominator tends to zero as x→ a, we nevertheless get that

lim
x→a

R(x)
x−a

= lim
x→a

D
f ,a(x)− f

′(a) = 0.

Definition 6.1 Let g and h be two functions. We say that

g(x) = o(h(x)) as x→ 0

if
lim
x→0

g(x)
h(x) = 0.

How is this definition relevant to the notion of a linear approximation? We have just
shown that

R(x) = f (x)− f (a)− f

′(a)(x−a) = o(�x−a�),
or,

f (x) = f (a)+ f

′(a)(x−a)+o(�x−a�) as x→ a

� Example 6.1 Consider the function f (x) = e

x. Its linear approximation about 1 is

p(x) = e+e(x−1).
Then,

e

x = e+e(x−1)+o(�x−1�) as x→ 1,

which means that

lim
x→1

e

x−(e+e(x−1))
x−1

= 0.

�

6.2 Taylor polynomials

The idea of approximating a function by a polynomial of degree one calls for
a generalization. Suppose that f were twice differentiable at a. Can we find a
polynomial that has the same value as f at a, as well as the same first two derivatives?
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We can find plenty of such polynomials, but there is only one of minimal degree. By
Section 6.1.1, the polynomial

p(x) = f (a)+ f

′(a)(x−a)+ f

′′(a)
2
(x−a)2

satisfies,

p(a) = f (a) p

′(a) = f

′(a) and p

′′(a) = f

′′(a).
If f were differentiable three times at a we could construct a polynomial of degree
three that has the same value as f at a, as well as the same first three derivatives.
More generally:

Definition 6.2 Suppose that f is n-times differentiable at a. Its Taylor polyno-

mial ( �9&-**) .&1*-&5) of degree n about a is given by

P

f ,n,a(x) = f (a)+ f

′(a)(x−a)+ f

′′(a)
2
(x−a)2+ ⋅ ⋅ ⋅+ f

(n)(a)
n!

(x−a)n.
The short-hand notation is

P

f ,n,a(x) = n�
k=0

f

(k)(a)
k!

(x−a)k

where, by convention, f

(0) = f . This polynomial is the only one of degree (up to)
n that agrees with the value of f and with the value of its first n derivatives at the
point a. But please note: unless f was a polynomial to start with, f (x) ≠ P

f ,n,a(x).
� Example 6.2 Consider the Taylor polynomial of degree n of the function exp
about the point a = 0. Since for all k, exp(k) = exp it follows that exp(k)(0) = 1. Then,

Pexp,n,0(x) = n�
k=0

x

k

k!
= 1+x+ x

2

2
+ ⋅ ⋅ ⋅+ x

n

n!
.

�
� Example 6.3 Consider the Taylor polynomial of degree n of the sine function
about the point a = 0. Since sin′ = cos, sin′′ = −sin, sin′′′ = −cos and sin′′′′ = sin we
have a periodic pattern,

sin(k)(0) = �������
0 k = 2 j

(−1) j−1
k = 2 j+1.

It follows that the Taylor polynomial of degree n includes only odd terms. We have

Psin,2n+1,0(x) = x− x

3

3!
+ x

5

5!
+ ⋅ ⋅ ⋅+(−1)n−1 x

2n+1

(2n+1)! =
n�

k=0
(−1)k−1 x

2k+1

(2k+1)! .
�
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� Example 6.4 Consider the Taylor polynomial of degree n of the cosine function
about the point a = 0. Since cos′ = −sin, cos′′ = −cos, cos′′′ = sin and cos′′′′ = cos
we have a periodic pattern,

cos(k)(0) = �������
0 k = 2 j+1
(−1) j

k = 2 j.

It follows that the Taylor polynomial of degree n includes only even terms,

Pcos,2n,0(x) = 1− x

2

2!
+ x

4

4!
+ ⋅ ⋅ ⋅+(−1)n x

2n

(2n)! =
n�

k=0
(−1)k x

2k

(2k)! .
�

� Example 6.5 Consider the Taylor polynomial of degree n of the natural logarithm
about the point a = 1. We have

ln′(x) = 1
x

ln′′(x) = − 1
x

2 ln′′′(x) = 2
x

3 ln′′′′(x) = −3!
x

4 ,

so that ln(1) = 0 and
ln(k)(1) = (−1)k−1(k−1)!.

Hence,

Pln,n,1(x)= n�
k=1
(−1)k−1 (k−1)!(x−1)k

k!
= (x−1)− (x−1)2

2
+ (x−1)3

3
+ ⋅ ⋅ ⋅+(−1)n−1 (x−1)n

n

.

Equivalently, the Taylor polynomial of degree n of the function

f (x) = ln(x+1)
about a = 0 is

P

f ,n,0(x) = x− x

2

2
+ x

3

3
+ ⋅ ⋅ ⋅+(−1)n−1 x

n

n

�
� Example 6.6 Consider now the function

f (x) = 1
1+x

and its Taylor polynomial about the point a = 0 (note that this is the derivative of the
previous example!). We have

f

′(x) = − 1
(1+x)2 f

′′(x) = 2
(1+x)3 ,

and generally,
f

(k)(0) = (−1)k k!.

Then,

P

f ,n,0(x) = n�
k=0
(−1)kx

k = 1−x+x

2−x

3+ ⋅ ⋅ ⋅+(−1)kx

n.

�
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Like for differentiation, we can make the calculation of Taylor polynomials easier
by showing that they satisfy certain algebraic properties:

Proposition 6.1 Let f ,g be n-times differentiable at a. Then,

P

f+g,n,a = P

f ,n,a+P

g,n,a.

Proposition 6.2 Let f ,g be n-times differentiable at a. Then,

P

f g,n,a = [Pf ,n,aP

g,n,a]n,
where the notation []

n

stands for truncation at the n-th degree.

� Example 6.7 Consider the Taylor polynomial of degree four of the function

f (x) = sinx ln(1+x).
about a = 0. Since

Psin,4,0(x) = x− x

3

6
and Pln(1+⋅),4,0(x) = x− x

2

2
+ x

3

3
− x

4

4
.

Then,

P

f ,4,0(x) = ��x− x

3

6
��x− x

2

2
+ x

3

3
− x

4

4
��

4

= x�x− x

2

2
+ x

3

3
�− x

3

6
x = x

2− x

3

2
+ x

4

6
.

�

And finally the composition rule:

Proposition 6.3 Let f be n-times differentiable at a and let g be n times differen-
tiable at f (a). Then,

P

g○ f ,n,a = [P
g,n, f (a) ○P

f ,n,a]n.
� Example 6.8 Consider the function

f (x) = ln(cos(x)).
We want to calculate its Taylor polynomial of degree 4 about the point 0. Recall that

Pcos,4,0(x) = 1− x

2

2
+ x

4

4!
,
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and

Pln,4,1(x) = (x−1)− (x−1)2
2

+ (x−1)3
3

− (x−1)4
4

.

Then,

P

f ,4,0(x) = [Pln,4,1(Pcos,4,0(x))]4
= �(Pcos,4,0(x)−1)− (Pcos,4,0(x)−1)2

2
+ (Pcos,4,0(x)−1)3

3
− (Pcos,4,0(x)−1)4

4
�

4

= �(Pcos,4,0(x)−1)− (Pcos,4,0(x)−1)2
2

�
4

= −x

2

2
+ x

4

4!
− (−x

2�2)2
2

= −x

2

2
− x

4

12
.

�

We will need below the following straightforward fact:

Lemma 6.4 Let f be n times differentiable at a. The Taylor polynomial of degree
n of f about a satisfies the following property,

P

′
f ,n,a = P

f

′,n−1,a. (6.1)

Proof. This is immediate as

P

f ,n,a(x) = n�
k=0

f

(k)(a)
k!

(x−a)k,
hence

P

′
f ,n,a(x) = n�

k=1

f

(k)(a)
k!

k(x−a)k−1 = n�
k=1

f

(k)(a)
(k−1)!(x−a)k−1

= n−1�
j=0

f

′( j)(a)
j!
(x−a) j = P

f

′,n−1,a(x).
�

6.3 Properties of Taylor polynomials

The first questions to be asked about the Taylor polynomial P

f ,n,a are:

1. How well does the polynomial approximate the function in the vicinity of a?
In particular, how does the quality of this approximation depend on n?
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2. How well does the polynomial approximate the function away from a? In
particular, how does the quality of this approximation depend on n?

3. What happens as we let n→∞?

Before we answer those questions, let us learn a useful theorem. Suppose that f

and g both vanish at a and have continuous derivatives in a neighborhood of a;
moreover, assume that g

′ does not vanish in this neighborhood. Fix a point b in this
neighborhood and consider the function

h(x) = f (x)(g(b)−g(a))−g(x)( f (b)− f (a)).
This function satisfies h(a) = h(b). By the mean-value theorem there exists a point
x between a and b where h

′(x) = 0, i.e.,

f

′(x)g(b)−g

′(x) f (b) = 0,

or
f (b)
g(b) =

f

′(x)
g

′(x) .
What happens as b→ a? Then, also x→ a. One can then show that:

Theorem 6.5 — l’Hopital’s rule (�-)*5&- -: --,%). Suppose that f and g both
vanish at a and have continuous derivatives in a neighborhood of a; moreover,
assume that neither g nor g

′ vanish in this neighborhood. If

lim
x→a

f

′(x)
g

′(x) exists,

then
lim
x→a

f (x)
g(x) = lim

x→a

f

′(x)
g

′(x) .
� Example 6.9 Consider the function

h(x) = 1−cosx

sinx

.

Does this function have a limit as x→ 0 (note the zero divided by zero)? L’Hopital’s
rule tell us that

lim
x→0

h(x) = lim
x→0

(1−cos)′(x)
sin′ x = lim

x→0

sinx

cosx

,

provided that the right-hand side exists. In the present case,

lim
x→0

h(x) = 0.

�
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L’Hopital’s rule is a useful tool for calculating limits. In the present context, it is
helpful in the following sense. Consider the difference between a function and its
linear approximation divided by the distance of the point of evaluation from the
point of expansion:

f (x)−P

f ,1,a(x)
x−a

.

L’Hopital’s rule tells us that the limit as x→ a exists is the limit of the ratios of the
derivatives does. The latter is equal to

f

′(x)−P

f

′,0,a(x)
1

,

which tends to zero as x→ 0. Thus, we recover once again the property of the linear
approximation,

lim
x→a

f (x)−P

f ,1,a(x)
x−a

= 0.

Consider now the Taylor polynomial of degree 2, and consider the ratio

f (x)−P

f ,2,a(x)(x−a)2 .

By l’Hopital’s rule,

lim
x→a

f (x)−P

f ,2,a(x)(x−a)2 = lim
x→a

f

′(x)−P

f

′,1,a(x)
2(x−a)

provided that the right-hand side exists, but by the very same rule,

lim
x→a

f

′(x)−P

f

′,1,a(x)
2(x−a) = lim

x→a

f

′′(x)−P

f

′′,0,a(x)
2

provided that the right-hand side exists. It does; it is zero. Hence,

lim
x→a

f (x)−P

f ,2,a(x)(x−a)2 = 0.

Equivalently, we an use the “little o" notation,

f (x) = P

f ,2,a(x)+o((x−a)2) as x→ a.

Proceeding inductively we obtain the following important characterization of the
Taylor polynomial:
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Theorem 6.6 — Taylor. Let f be n times differentiable at a. Then

lim
x→a

f (x)−P

f ,n,a(x)(x−a)n = 0,

or using the “little o" notation,

f (x) = P

f ,n,a(x)+o((x−a)n) as x→ a.

Taylor’s theorem states that the difference between P

f ,n,a(x) and f (x) tends to zero
as x→ a “faster" than (x−a)n. Important: in Taylor’s theorem n is fixed and we
consider the limit x→ a. This is in contrast with the next section, where we keep x

fixed and let n→∞.

Can we be more explicit about the deviation of P

f ,n,a(x) from f (x)? It turns out that
by a generalization of the mean-value theorem, the following can be proved:

Theorem 6.7 — Remainder of Taylor’s polynomial. Suppose that f is differen-
tiable (n+1) times in a neighborhood of a. Then for every x in this neighborhood
there exists a point c between a and x such that

f (x)−P

f ,n,a(x) = f

(n+1)(c)
(n+1)! (x−a)n+1.

(This expression is known as Lagrange’s form of the remainder).

� Example 6.10 Consider the sine function. Its Taylor polynomial of degree 2
about zero is

Psin,2,0(x) = x.

By the remainder theorem, there exists for every x a point c (that depends on x),
such that

sinx−x = −cosc

3!
x

3.

Thus,

�sinx−x� ≤ �x�3
6

.

For example,

�sin(0.1)−0.1� ≤ 0.001
6

.

The Taylor polynomial of degree four is

Psin,4,0(x) = x− x

3

6
.
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There exists for every x a point c (that depends on x), such that

sinx−�x−x

3�6� = cosc

5!
x

5.

For example,

�sin(0.1)−(0.1−0.001�6)� ≤ 0.00001
120

< 10−7.

The formula for the remainder gives us a practical tool for estimating the difference
between a function and its approximation by a Taylor polynomial. �

A comparison between the sine function and its first few Taylor polynomials about
x = 0 is displayed below:

6.4 Taylor series

In the previous section we characterized the Taylor polynomial for n fixed and x→ a.
Now we ask a totally different question: for fixed x, how does P

f ,n,a(x) behave
as n→∞ (assuming, of course, that f is differentiable at a infinitely many times,
without which the question is meaningless). There are different possible scenarios:

1. The limit of P

f ,n,a(x) as n→∞ does not exist.
2. The limit of P

f ,n,a(x) as n→∞ exists and equals f (x).
3. The limit of P

f ,n,a(x) as n→∞ exists but does not equals f (x).
If the second or third scenario occurs, we denote

lim
n→∞P

f ,n,a(x) = ∞�
n=0

f

(n)(a)
n!

(x−a)n.
This infinite sum is called a Taylor series ( �9&-**) 9&)).
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� Example 6.11 Consider the sine function. We know that for every x and n,

�sinx−Psin,2n,0(x)� ≤ �x�2n+1

(2n+1)! .
For fixed x and n→∞ the right-hand side vanishes. Hence, the Taylor series of the
sine function exists everywhere, and

sinx = ∞�
n=0

(−1)n
(2n+1)!x

2n+1.

�

Definition 6.3 Let f be infinitely many times differentiable at a. A number R,
which is the largest number for which

∞�
n=0

f

(n)(a)
n!

(x−a)n = f (x)
for every x ∈ (x−R,x+R) is called the radius of convergence of the Taylor
series. A function that has an infinite radius of convergence is called real

analytic (�;*)*-1!).

� Example 6.12 The classical example of a function that has a zero radius of
convergence is the following:

f (x) = �������
e

−1�x2
x ≠ 0

0 x = 0.

It can be shown that all the derivative of f vanish at zero. As a result, its Taylor
polynomial of any degree about zero is identically zero,

P

f ,n,0(x) = 0.

It follows that,
lim

n→∞P

f ,n,0(x) = 0 ≠ f (x),
no matter has close x is to zero. Please note that this does not contradict Theorem 6.6
which states that for every n,

lim
x→0

f (x)−P

f ,n,0(x)
x

n

= 0.

�


