5.1

5.1.1

These lecture notes present my interpretation of Ruth Lawrence’s lec-
ture notes (in Hebrew)

1

The derivative of a function
Definition

A function defined on the real line, or on a segment, contains an infinite amount
of information. Consider a function f : R — R. We can evaluate it at a number of
points,

f(al)vf(a2)7" '7f(an)a

but this information does not reveal the values returned by f for other inputs.

A function represents a relation between two quantities—an input and an output.
The domain may represent, for example, time in hours taking values between 0 and
24, and the range may represent temperature in Celsius assuming values greater
than —273. Very often one is interested in knowing how the output changes upon a
change in the input.

Take a function f:A — B and let a € A be a number in its domain. Let x € A be
another point in the domain of f. The change in the value returned by f due to the
input changing from a to x is

f(x)=f(a).
How can we quantify whether this change is large or small? This seems a meaning-
less question, until we realize that the change in the output can be measured with

1Image of Gottfried Wilhelm Leibniz, 1646-1716
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respect to the change in the input. The mean rate of change (Y301 "Wl 23p)
in the value of f due to modifying the input from a to x is

f()-fla) s

f(x)-f(a)

4
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Comments 5.1

1. The ratio (5.1) is not defined for x = a.

2. If this ratio is positive then either x > a and f(x) > f(a), or x<a and f(x) <
f(a). In either case, the output and the input change in the same direction.

3. If this ratio is negative then either x > a and f(x) < f(a), or x<a and f(x) >
f(a). In either case, the output and the input change in opposite directions.

4. Suppose that x represents time in hours and f(x) represents position in kms
along a straight road. Then this ratio is what we call the mean velocity in
km/h between time a and time x.

Consider the mean change of f between a and x. If we assume that f and a are
given, then it is only a function of x, which we denote by

f() - fla)

—a

Afa(x) = (5.2)
Think now what happens as we change x and make it closer and closer to a. The
dominator becomes smaller and smaller (in absolute value). The behavior of the
numerator depends on the function f, but if f is continuous the numerator decreases
as well (in absolute value). If the function Ay, has a limit as x tends to a, this limit
represent an instantaneous rate of range ("DTP1 "M 13p) of f at a. If this limit
exists (and note this important “if"), we call it the derivative (N712) of f at a, and
denote it by

£(a) = limAy a(x) = lim LS9,
= x>a  x—a

We also say that f is differentiable (7717"1) at a.
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It is often more convenient to express x as a+h (h is then the deviation from a), in

which case
f(a+h)-f(a)
- .

'(a) =limA h)=1
f'(@) = limAr(a+h) = lim

Comments 5.2

1. We haven’t defined what we mean by “limit". We will leave this notion fuzzy
for the moment and assume you understand it intuitively. You’ll spend most
of 80177 understanding what a limit is.

2. When we write x - a or h — 0, the tendency is both from above and below; /
may approach O from above, from below, or oscillate in sign.

3. Another common notation for the derivative of f at a is

df
—(a).
)
This notation, due to Leibniz, is less “clean" that f’(a). What does x represent
in this notation?
» Example 5.1 Let f:x+ x> and a = 3. Then,

(3+h)*?-3% 9+6h+h*-9
h - h

As h — 0 this expression has a limit—®6, hence

Ara(3+h)= =6+h.

£'(3) =limAyo(3+h) =6.

= Example 5.2 Let f:x+ |x| and a = 0. Then,

10+ h|~[0] @_{1 h>0

Aralath)==—=—===7"=1 |,

This expression does not have a limit as # — O (it only has one-sided limits) hence
f is not differentiable at zero,

£'(0)  does not exist.

» Example 5.3 Consider the Heaviside function

0 x<0
X =
! {1 x>0.
Let a =2. Then,
-1/h h<-=2
Arr(2+h) =
r2( ){0 .y
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Since we’re interested in the limit of this function as # - 0 we may well ignore
values of / less than —2. Close enough to =0, Af ,(a+h) is identically zero, hence

f(2) = %ir%Af72(2+h) =0.
On the other hand, take a = 0. Then,

~1/h h<0

Aro(0O+h) =
£0(0+h) {0 hs0.

and the limit 4 — 0 does not exist, i.e.,

£'(0)  does not exist.

In fact we may state something more general:

Theorem 5.1 Let f:R — R. If f is not continuous at a then it is neither differ-
entiable at a. (Equivalently, if f is differentiable at a then it is necessarily also
continuous at that point.)

Proof. 1t is always true that for x # q,
709 = 1)+ PO () = pay e apae)(e-a).

If f is differentiable at a then Ay ,(x) tends to f'(a) as x — a, and since (x—a) - 0
it follows that

lim £(x) = f(a),

i.e., f is continuous at a. [

Graphical representation

The derivative of a function at a point has an intuitive geometric interpretation based
on the graph representation of a function. The ratio

WOR0)

Arq(x
fal T

is the slope of the chord (7n"») that connects the points (a, f(a)) and (x, f(x)):
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A

As x — a this chord converges to a line tangent (p*@n) to the graph of f at a.

The derivative function

If a function f:A — B is differentiable on a subset A c A of its domain, then we
can define a new function f’:A — R—the derivative function (0717 n3pnD).
The derivative function can now be analyzed in its turn. For example, we may ask
whether it is continuous, whether it is differentiable, and so on. The derivative of
f" is called the second derivative of f, and it denoted f”'. The derivative of f” is
denoted 7" or ). The n-th derivative of f (if it exists) is denoted f(").

=« Example 5.4 Consider the function f: x ~ x?. For every a € R,

(a+h)?-d*

=2a+h,
h

Af'ﬂ(a + h) =
hence, letting & — O,
f'(a) =2a,

1e.,
ffR-R,  flrym2y

To find the second derivative of f we set

2(a+h)-2
Agra(ashy - 2o =20
’ h
and letting h — 0,
f"(a) =2,

ie.,
f”:R—)R, f”:y’_>2.
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The laws of differentiation

Given a function f: A — B, how do we find its derivative? We saw specific examples
in which we found the derivative by applying the definition and calculating the limit
of the mean rate of change. If our goal is to calculate the derivatives of a large
collection of functions, this is not efficient. In this section we will review the laws of
differentiation that enable us to calculate the derivatives of any function composed
of functions whose derivatives are known.

Sums, products, ratios and compositions

Proposition 5.2 If the functions f and g are differentiable at a then so is the
function f + g and

(f+8)'(a) = f'(a) +g'(a).

Proof. Consider the identity,

x)+g(x))-(f(a)+g(a
ipal = T CO8@) s )
Letting x — a we recover the desired result. [

Proposition 5.3 — Leibniz rule. If the functions f and g are differentiable at a
then so is the function f-g and

(f8)(a) = f'(a)g(a) + f(a)g(a).

Proof. Consider the identity,

Aggal) = 80 S (@)

_f()g(x) - f(a)g(x) + f(a)g(x) - f(a)g(a)

=Ar.a(x)g(x) + f(a)Aga ().

Letting x - a we recover the desired result. [
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Proposition 5.4 If the function f is differentiable at @ and f(a) #0, then 1/f is
differentiable at a and
_f(a)

(1/£)"(a) = @)

Proof. Consider the identity,
i -1/fle) _ fla)-f&x)
Ai/f.a(x) = x—a f(x)f(a)(x-a) Bralx )f(a)f(X)

Letting x — a we recover the desired result. ]

Corollary 5.5 If the functions f and g are differentiable at a and g(a) + 0, then
the function f/g is differentiable at a and

([)'(a) f'(a)g(a) - f(a)g'(a)
g g%(a)

Proof. Apply the last two rules,

(f/8) (a) = (1/g) (a)f(a)+ Lf'(a) =
g(a)

g'(a)
g*(a)

ﬂf()

Proposition 5.6 — Chain rule (0w 552). If f is differentiable at a and g is
differentiable at f(a) then go f is differentiable at @ and

(0)'(a) =g'(f(a)) f'(a).

Proof. Consider the identity,

Apopal) = S =8U()

_8(f(x))-g(f(a)) f(x)-f(a)
f(x)-f(a) x-a
= _Ag,f(a) (f(x))Af:a (X)

Letting x — a, we also have f(x) — f(a), since f is continuous. Thus the first term
on the right-hand side converges to g’(f(a)), whereas the second term converges to

f'(a). n
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Thus, we can create a list of functions whose derivatives we find directly from the
definition, and then enlarge this collection using the laws of differentiation. Below
is a list of elementary functions whose derivative we must know by heart:

LSO [ f() ]
x"* nx !
e’ e
Inx 1/x

sinx | cosx
cosx | —sinx

= Example 5.5
, cos’x  sinx
seC x=———>—=——-.
cos?x  cos?x

= Example 5.6
cosxsin’ x —sinxcos’ x 1

tan’x = 5 =—.
cos2x cos2x

= Example 5.7 Consider the function
f(x) =x*sinx.

By the Leibniz rule,
f(x) = 2x sinx+x* cosx.

Note that it is very common to write

2

d, . d , . ,d .
— ( smx) = d—x sSinx +x d_ sinx = etc.
X

dx x

= Example 5.8 Consider the function
h(x) = sin(x?).
It is the composition go f of g = sin and f: x — x>. Using the chain rule

W (x) = ¢/ (F(x)) £'(x) = cos () 2x.

= Example 5.9 Consider the function
h(x) =sin(xInx).

It is the composition go f of g =sin and f : x — x Inx. By the chain rule,

B (x) = sin’ (F(x)) £ (x) = cos(x Inx) - (x- % +lnx) |
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= Example 5.10 Consider the function

e +e*

coshx =

Its derivative is given by

ef—e*

cosh’x = = sinhx.

Similarly, you may find that
sinh’x = cosh.x.

The derivative of inverse functions

What is the derivative of arcsin? Does knowing the derivative of sin help up in
finding the derivative of its inverse? Recall that the inverse f~! of a function f is
defined by

@) =x
This is an identity between two functions, which we may also write as
flof=id.

Differentiating both sides, using the chain rule on the left-hand side,

YU F =1,

ey L
00) = Sy

Substituting f(x) = u, i.e., x= £~ (u) we get the following formula for the derivative
of an inverse function,

o
S (W)

This formula is easy to understand by considering the graphs of a function and its
inverse:

SV () = (5.3)
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= Example 5.11 Let f =sin: [-7/2, /2] — [-1,1] then by (5.3)

1 1

arcsin’(u) = sin’(arcsin(u)) ) cos(arcsin(u))’

By the properties of the trigonometric functions,

cos(arcsin(u)) = \/1 —sin?(arcsin(u)) = V1 -u?,

hence,
1

arcsin’(x) =
1-x

> .
n

= Example 5.12 Suppose the only information we had on the function exp: R —
(0,00) was that exp’ = exp. Denote its inverse by In = exp~!. Then, by (5.3)

1 1

O expinGe) "

The derivative of implicit functions

Recall that a function A — B may be defined by means of its graph, i.e., a set of points
(x,y) € AxB. So far we only considered functions defined explicitly (MwmBn),

Graph(f) ={(x,y) |y=/f(x)},

which means that we have an expression that tells us the value of y given x. Functions
can also be defined implicitly (2100 }9R2) as in the following example,

= Example 5.13 Consider a function f given by the following graph,

Graph(f) = {(x,y) | xy’ +x’y = 10}.

In what sense this is a function? To every x corresponds a y, which we denote by
f(x), satisfying that (x, f(x)) € Graph(f). Thus,

xf3(x) +x° f(x) = 10. (5.4)
What is the derivative of f at x? Equation (5.4) is an identity between two functions,
G(x) =H(x),

where
G(x) =xf3(x) +x° f(x) and H(x) = 10.

Their derivatives must also be equal,

G'(x) =H'(x),
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namely,
P @) +3x 2 (0) f1(x) 4327 f(x) + f(x) = 0,
or 3 2
oy ST () +3x7 f(x)
fx)= 3xf2(x)+x3

Given x, if we know f(x) then we can evaluate f’(x) as well. For example, you
may verify that (1,2) € Graph(f), i.e., f(1) =2, and therefore

, 14
f (X)Z—E~

Linear approximation

Definition 5.1 Let V and W be vector spaces. A function f:V — W is called
linear if for all x,y €V and o, B € R,

flax+By)=af(x)+Bf(y).

The space of linear functions V — W is denoted by L(V,W).

The real number are a vector space hence function f: R — R are functions between
two vector spaces. The space of linear functions L(IR,R) consists of all the functions
that multiply their input by a constant number,

X = ax.

How do linear function relate to derivatives? The value of a function f at a point a
is a crude information about f(x) in the vicinity of a. If f is continuous at a then
when x is “very close" to a, f(x) also is “very close" to f(a),

f(x)» f(a) when x » a,

which is a quantitatively meaningless statement. If we know in addition the derivative
of f at a, then we know that

()~ fla)

f'(a) when x ~ a,
1.e.,

f(x)=f(a) = f'(x)(x—a) when x » a. (5.5)
Again, we have no control on what ~ means.

Equation (5.5) states that when x is close to a, the deviation of f(x) from f(a) is
approximately a linear function of (x—a) (the constant of proportionality is precisely
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the derivative of f at a). The approximation of a function using its value and the
value of its derivative at a point is called a linear approximation. Graphically, it
amounts to approximating the graph of a function by its tangent line at a.

= Example 5.14 The linear approximation of In using its value and the value of its
derivative at 1 is

1
lnxmln1+I-(x—1),

i.e.,
Inx~x-1,

or,
In(1+x)~x.

Derivative and exirema

Recall that a continuous function defined on a closed interval [a,b] has both minima
and maxima in that interval. These extrema may be the points a,b or internal points
(@m® nmpn).

Definition 5.2 A point x is called a local minimum of f is there exists a neigh-
borhood of x in which f assume its minimum at x. Similarly, x is called a
local maximum of f is there exists a neighborhood of x in which f assume its
maximum at x

The figure below shows a function that has two local minima, one of which is a
global minimum, and one local maximum, which is not a global maximum.
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Theorem 5.7 — Fermat. If a is a local maximum (resp. minimum) of f and f is
differentiable at a, then f'(a) = 0.

Proof. Since there exists a neighborhood of @ in which

for all x fa) > f(x),

it follows that
<0 h>0
>0 h<O.

Ay ala = L@ 1@ {

Since f is differentiable at a, the limit of Af,(a+h) as h — 0 exists. Because the

sign of As ,(a+h) is non-negative on one side and non-positive on the other side,
the limit must be zero. ]

Comment 5.1 Fermat’s theorem does not state that f’(a) = 0 implies that f is a
local extremum.

The mean-value theorem

Theorem 5.8 — Rolle. Let f: [a,b] — R be continuous in [a,b] and differen-
tiable in (a,b), and

fla)=1(b),

then there exists a point ¢ € (a,b) such that

f'(c)=0.

Proof. We know that f must have both minima and maxima. If both are end points
then f is constant and its derivative vanishes identically. If, otherwise, there is an
internal point ¢ which is extremal, then by Fermat’s theorem f’(c) =0. ]

Theorem 5.9 — mean-value (vxmna 77wa). Let f: [a,b] - R be continuous
in [a,b] and differentiable in (a,b), then there exists a point ¢ € (a,b) such that

f(b)-f(@)

=52
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Proof. Consider the function

EEOREA IO A

and apply Rolle’s theorem. [

Comment 5.2 The mean-value theorem implies that if you drive 60 km in 1 hour,
then at some time your speed must have been 60 km/h.

Corollary 5.10 If f: [a,b] — R is continuous in [a,b] and differentiable in (a,b)
and furthermore
for all x € (a,b) f'(x)>0,

then f is (strictly) monotonically increasing in [a,b].

Proof. If ¢ <d are in [a,b], then there exists a point e such that

f(d)-f(c)

21D ey >0,

from which follows that f(d) > f(c). ]

Corollary 5.11 If f:[a,b] — R is continuous in [a,b] and differentiable in (a,b)
and furthermore
for all x € (a,b) f(x) =0,

then f constant in [a,b].

Proof. For every x in (a,b) there exists a point e such that

f(x) - f(a)

X—a

= f'(e) =0,
from which follows that f(x) = f(a). ]

Comment 5.3 Proving that the derivative of a constant function is zero is straight-
forward. Proving the other direction requires the mean-value theorem.



5.6

5.6.1

5.6 The definite integral 81

The definite integral

Definition of the integral

Analytic geometry provides us with a tool for reasoning about geometry using
analytic methods. In particular, it provides us with tools for dealing with the notion
of area (which is a measure of magnitude of a two-dimensional figure).

Like in any measurement, when it comes to measuring area one need a unit of
measurement (771 D7M). The standard choice is a square of unit side length. The
area of a figure is then the number of such unit squares needed to cover that figure
(of course, a unit square can be partitioned into smaller parts, like any other unit of
measurement).

Let f be a “nice enough" function (we’ll be slightly more precise below). Suppose
for the moment that it is non-negative. Let a,b € R, a <b. The area between the
graph of the function, the x-axis, and the vertical lines x = a and x = b is called the
integral of f between a and b. 1 will denote it by

L

The more standard notation is

fabf(x)dx or fabf(t)dt or /abf(g)dg.

I will comment about it below.

What is actually the meaning of the area when the shape is not a rectangle? Let’s
start by considering a piecewise constant function (rnmpn’a Tnap T3pnd). Let

a=x9<x]<xp<-<x,=b

be n+ 1 points that partition the segment [a,b] into n sub-segments, and consider a
function of the form

a; xo<x<xp

f =17

X1 £x<x

ap  Xp-1 <x<xy,.

Since the area under the graph of f is a union of rectangles it is given by

b n
f f=ai1(x1—x0)+az(xp—x1) +-+an(xy,—xp-1) = Zak(xk—xk_l).
a k=1



82 Derivatives and integrals

y
as —
a — l !
| | | |
| | | |
az | — l
| | | | |
| | | | |
az ¢ 1 - - !
| | | | |
_O_M—®—°—>
X
X0 X1 X2 X3 X4

Take now a general (nice) function. We can partition the interval [a,b] into sub-
intervals by selecting a set of points

a=x9<x1<Xp<-+<X,=b,

which may, but don’t have to be equi-distanced.

In each sub-interval [x;_1,x] denote by my the minimum of the function and by M
its maximum (they are guaranteed to exist only if the function is continuous and the
interval is closed; otherwise there is a close notion of infimum and supremum). It
is guaranteed that

n b n
ka(xk—xk_l)sf f< ZMk(xk—xk_l).
k=1 a k=1

If, as the partition becomes finer and finer, the two sides of this inequality tend to
each other (and both tend to a limit), we say that f is integrable and identify this
limit as the integral of f between a and b (in fact, when we say that a function is
“nice" in this context we mean that it is integrable).

y y
f(x6) t ************* f(x6) I —————————————

f(xs) f(xs)
f(xa) f(xa)
f(x3) f(x3)
e e

X0 X1 X2 X3 X4 X5 X6 X0 X1 X3 X3 X4 X5 Xg
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y
f(x6) 1 fffffffffffff

f(xs)

f(xa)
f(x3)

fed

X0 X1 X3 X3 X4 X5 Xg

= Example 5.15 Archimedes’ method for calculating the area under a parabola. =

5.6.2 The fundamental theorem of calculus

Having defined the notions of area and integral, there remains a practical question:
how to calculate the area under the graph of a given function f?

First note that by the very definition of the integral as an area, for a < b < ¢ we have

fabf+fbcf=facf-

Given a function f and an interval (in its domain) [a,b], define a new function,

F:[a,b] >R, by .
F(x):fa 7.

What can we say about this new function F'?

1. F(a)=0.
2. The mean rate of change of F between x and x + 4 is

Apx(x+h) = F(x+h)-F(x)

h
:%(Lx+hf_£xf)
x+h
AL

As h tends to zero, assuming that f is continuous at x, the integral becomes
close to i f(x), hence

F'(x)= }li_r)l(l)AF7x(x+h) = f(x).
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Thus, assuming that f is continuous, the function F satisfies the following two
properties:

F'=f and F(a)=0.
The first property is that F is an anti-derivative of f (a function whose derivative is
f, more commonly known as its primitive function (77217 1°3pnD)). Recall that

if the anti-derivative of f is F then so is the derivative of any function of the form
F +C. The anti-derivative we’re looking for is one that vanishes at a.

Suppose that G is some anti-derivative of f, i.e., G’ = f. Then,
F(x) =G(x)-G(a)

is the function we are looking for. In particular,

| "= F(b) = G(b) - G(a) (5.6)

The relation between the integral and the derivative is known as the fundamental
theorem of calculus. Formula (5.6) that expresses the integral of a function f
between two points a and b in terms of some anti-derivative G, is known as the
Newton-Leibniz formula.

» Example 5.16 Let f(x) = x>. What is

fore

The function G(x) = x*/3 + 19 is an anti-derivative of f. Thus,

]25f=G(5)—G(2) - (125/3+19) - (8/3 +19) = 39.

Comment 5.4 For a function f and points a,b we denote

flb =) - f(a).

Thus the Newton-Leibniz formula takes the form

[Cr=at

Finding anti-derivatives (also called indefinite integrals) turns out to be a very
useful thing. It is however much harder than finding a derivative, and we will devote
a whole chapter for that purpose.
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Comment 5.5 A few words about standard notations: the derivative of f between

a and b is approximated by an expression of the type

zn:f(xk)(xk_xk—l) = zn:f(xk)Axka
k=1 k=1

where x;, is a point in the k-th interval and Ax; is that width of that interval; such
sum are known as Riemann sums. As the partition becomes denser and denser the
sum contains more and more terms. The integral sign | represents the summation
sign Y. as the number of summands tends to infinity. The symbol dx represents Ax;

as it gets smaller and smaller.
More about integrals and their derivatives

I

assuming that a < b. For a < b < ¢ we have

IR
IRERA

then the summation rule (5.7) remains valid for any a,b,c.

We have defined the integral

If we define fora < b

Let f be integrable and let g be differentiable. Consider the function

6= [,

which you’re more likely to see written as
g(x)
G(x) = f F(1)dr.
a

What is the derivative of G? If we denote as before

Fe = 1.

then G = F o g, hence by the chain rule,
G'(x) = F'(g(x))g'(x) = f(g(x)) g ().

Similarly, if % is some other differentiable function and

Hx) = [ (:f=— A Wy

(5.7)
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then

H'(x) = =f(h(x)) W' (x).

Finally, if
J() g(X)f
X)= ,
h(x)

then as for every constant a,

s- [ e [

T'(x) = f(8(x)) &' (x) = f(h(x)) I (x).

s Example 5.17 Consider the function

it follows that

N
J(x)= sin.

Inx

Then,
1

2Vx

1
—sin(Inx) - —.
x

J7'(x) = sin(+/x):



