
4. Functions of one variable

These lecture notes present my interpretation of Ruth Lawrence’s lec-
ture notes (in Hebrew)
1

In this chapter we are going to meet one of the most important concepts in mathe-
matics: functions.

4.1 Functions: definition and notations

What is a function? It is “something" that relates two sets, a first set called the
domain ( �.&(;) and a second set called the range (�(&&)). Crudely speaking, we can
think of a function as a “machine" that when fed with an element of the domain
returns an element of the range. Such a machine acts consistently: if the same
element is inserted again the same element will come out—the input determines the
output.

� Example 4.1 Consider the following two sets,

A = {Zambia, Uruguay, Kosovo}
and

B = {Pristina, Lusaka, Ramla, Paris, Montevideo}.
The function “Capital City" can be “fed" with any of the element of its domain, A,
and “returns" an element of B. Feeding it with Zambia we get for output Lusaka.
Feeding it with Uruguay we get for output Montevideo. Note that there are elements
in B that are never returned (Paris and Ramla). �

1Image of Sir Isaac Newton, 1642–1726
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� Example 4.2 Take for domain the vector space R2. The function, which we
denote by g, returns the size of the vector. The range is therefore the real numbers,
R. The action of the function is

g�a
b
� =√a2+b2.

�

In this chapter the domain and range will always be the set of real numbers, R, or
subsets of it. But keep in mind: functions can be defined for much more intricate
domains and ranges.

Notations

To state that a function denoted by f has domain A and range B we write

f ∶ A→ B

(in words: f acts from A to B, or f takes for input an element of A and returns for
output an element of B). This notation tells us what are the elements that go into the
function and what values may come out, but it gives no information as to what is the
relation between the input and the output. The value returned by the function f if
the input is a is denoted by

f (a).
Thus,

For all a ∈ A the function f defines a corresponding f (a) ∈ B

To specify the values returned by f for all inputs, we have several alternatives. If the
domain is a finite set we can prescribe all outputs using a table. In certain cases, we
can specify the action of a function using a formula. Take for example a function f
whose domain is R that returns the square of its input. We may denote the action of
f either by

f (x) = x2,

or by2

f ∶ x� x2

(in words: f maps x into x2). Note that not all functions can be specified using
formula!

� Example 4.3 Consider the function h ∶N→N (a function defined on the set of
natural numbers),

h ∶ n� the n-th decimal digit of p .

2We can as well write f ∶ s� s2 or f ∶ x � x

2.
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Thus,

h(1) = 3 h(2) = 1 h(3) = 4 h(4) = 1 etc.

�
Comment 4.1 Important! A function f ∶ A→ B returns a value for every input in
A, but not every element of B is required to be returned for some input in A.

Definition 4.1 Let f ∶ A→ B. The set of values returned by f is called the image

( �%1&/;) of f . It is denoted by

Image( f ) = {y ∈ B � ∃x ∈ A ∶ f (x) = y}.
(The set of all elements y ∈ B for which there exists an element x ∈ A for which
y = f (x).) When we know the image of a function we can limit its range to be its
image.

� Example 4.4 You are acquainted with the following functions:

sin ∶R→ [−1,1]
cos ∶R→ [−1,1]
exp ∶R→ (0,∞)
tan ∶R�{p�2+kp � k ∈Z}→R.

In all these examples the range of the function coincides with its image. �
� Example 4.5 A function you’ll encounter later in the year (as a source of many
counter examples) is known as the Dirichlet function, D ∶R→ {0,1},

D ∶ x� �������
1 x ∈Q
0 x �∈Q .

Note that we could have defined the range of this function to be R, but once we
know its image is the set {0,1} we can limit to range to coincide with the image. �

Definition 4.2 A function f ∶ A→ B is called one-to-one ( �;*,93 $( $() if x ≠ y
implies that f (x) ≠ f (y), or equivalently if

f (x) = f (y)
implies that x = y. It is called onto (�-3) if its image and range coincide. That is,

∀b ∈ B ∃a ∈ A ∶ f (a) = b.
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4.2 The graph of a function

In mathematics you don’t define new concepts as “machines". Thus, we need a
“serious" definition of what a function is. A primitive notion to build upon is that
of a set (�%7&"8). It turns out that a function from A to B can be defined as a set.
How? You actually know how. In high school you used to draw functions as graphs.
While you may think of a graph as a “drawing" (i.e., a piece of art), a graph is a
well-defined entity. The graph of a function from A to B is a subset of the plane, and
more precisely, a subset of the Cartesian product (�;*')98 %-5,/)

A×B = {(a,b) � a ∈ A,b ∈ B}.
� Example 4.6 Consider the function

f ∶ [0,2]→R f ∶ t � 0.5t3+1.

The Cartesian product of the domain and range of a is

[0,2]×R = {(x,y) � 0 ≤ x ≤ 2}.
The graph of f is a subset of the Cartesian product of its domain and range,

Graph( f ) = {(t,0.5t3+1) � t ∈ [0,2]} ⊂ [0,2]×R.

�

In other words:

The graph of a function f is the set of all ordered pairs (x, f (x)).
A function f ∶ A→ B can be identified with a set Graph( f ) ⊂ A×B provided that

∀a ∈ A ∃!b ∈ B ∶ (a,b) ∈Graph( f ).
(The exclamation mark following the “exists" symbols means that there exists a
unique b with the desired property.) The function f is one-to-one if

(a1,b) ∈Graph( f ) and (a2,b) ∈Graph( f ) implies a1 = a2.

The function f is onto if

∀b ∈ B ∃a ∈ A ∶ (a,b) ∈Graph( f ).
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4.3 Inverse functions

Suppose that f ∶ A→ B is both one-to-one and onto. This means that for every b ∈ B
there exists a unique a ∈ A such that f (a) = b. Then we can define a function

g ∶ B→ A

satisfying
g(b) = a if and only if f (a) = b.

The function g is called the inverse function (�;*,5&% %*781&5) of f and it is denoted
by f −1.3 By definition,

f −1( f (x)) = x and f ( f −1(y)) = y.

The relation between the graph of a function and the graph of its inverse is quite
simple:

(a,b) ∈Graph( f ) if and only if (b,a) ∈Graph( f −1).
Geometrically, the graph of f −1 is obtained by reflecting the graph of f about the
line y = x.

� Example 4.7 The exponential function

exp ∶R→ (0,∞)
is one-to-one and onto. Therefore it has an inverse

exp−1 ∶ (0,∞)→R,

which is known as the natural logarithm, and denoted ln. �
� Example 4.8 The function sin ∶R→ [−1,1] is onto but not one-to-one (for exam-
ple sin(0) = sin(p)). On the other hand, if we restrict the domain,

sin ∶ [−p�2,p�2]→ [−1,1]
we obtain a function that is both one-to-one and onto. Therefore it has an inverse
function, the arcsine,

sin−1 ∶ [−1,1]→ [−p�2,p�2],
whose graph we plot below.

3Do not confuse f−1 with 1� f .
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�
� Example 4.9 Similarly,

cos ∶ [0,p]→ [−1,1]
is one-to-one and onto. Therefore it has an inverse function, the arccosine,

cos−1 ∶ [−1,1]→ [0,p],
whose graph we plot below:

�
� Example 4.10 The function

tan ∶ (−p�2,p�2)→R

is one-to-one and onto. Therefore it has an inverse function, the arctangent,

tan−1 ∶R→ (−p�2,p�2),
whose graph we plot below.
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�

4.4 The hyperbolic functions

In analogy with the trigonometric functions, we introduce the hyperbolic functions,

sinhx = ex−e−x

2
and coshx = ex+e−x

2
.

And then,

tanhx = sinhx
coshx

cothx = coshx
sinhx

sech x = 1
coshx

cosech x = 1
sinhx

.

Recall the relation between the trigonometric function and complex exponentials,

sinx = eıx−e−ıx

2
and cosx = eıx+e−ıx

2
,

hence we can relate the hyperbolic function to the trigonometric functions,

sinh(ıx) = ısinx and cosh(ıx) = cosx.

4.4.1 The origin of the name

What is hyperbolic about the hyperbolic functions? Consider first the unit circle,

x2+y2 = 1,

and a radius vector that rotates. If the radius sweeps an area of t�2 then the corre-
sponding point on the circle has coordinates (cost,sint).
Similarly, consider the unit hyperbola,

x2−y2 = 1,
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and a segment that points from the origin to a moving point on the hyperbola. If the
segment sweeps an area of t�2 then the corresponding point on the hyperbola has
coordinates (cosht,sinht). By the way, there also exist elliptic functions, but they
are way more complicated.

(cost,sint) (cosht,sinht)

4.4.2 Properties

The relations satisfied by the hyperbolic functions are strongly reminiscent of the
relations satisfied by the trigonometric functions. All the properties of the hyperbolic
functions follow directly from their definition. It is easy to see that,

cosh2 x− sinh2 x = 1.

Then,

1− tanh2 x = cosh2 x− sinh2 x
cosh2 x

= 1
cosh2 x

coth2 x−1 = cosh2 x− sinh2 x
sinh2 x

= 1
sinh2 x

.

Further,
cosh(x+y) = coshx coshy+ sinhx sinhy

sinh(x+y) = sinhx coshy+coshx sinhy,

which can all be verified by direct substitution.

4.4.3 Inverse hyperbolic functions

The function sinh is anti-symmetric and monotonically increasing. It is a one-to-one
and onto function R→R. Thus, we can define its inverse,

sinh−1 ∶R→R,

whose graph is displayed below:
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x

sinhx

x

sinh−1 x

The function cosh on the other hand is symmetric and its image is [1,∞). A
symmetric function cannot be one-to-one (because f (x) = f (−x)). The function
cosh becomes one-to-one and onto if we restrict its domain as follows,

cosh ∶ [0,∞)→ [1,∞).
Then, we can define its inverse,

cosh−1 ∶ [1,∞)→ [0,∞).

x

coshx

x

cosh−1 x

The inverse hyperbolic functions can be expressed in terms of simpler functions.
Since they are defined using the exponential, it shouldn’t surprise you that their
inverse involves the logarithm.

Start with,
y = sinhx,

i.e.,
2y = ex−e−x.

Multiply both sides by ex,
e2x−2yex−1 = 0.

This is a quadratic equation for ex, whose solution is

ex = y±�y2+1.
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Since ex is positive, only the plus sign remains, and we get that

x = ln�y+�y2+1� ,
which is the inverse relation sought.

Acting similarly with the hyperbolic cosine we obtain

sinh−1 u = ln�u+√u2+1�
cosh−1 u = ln�u+√u2−1� .

(Verify that the right-hand sides are indeed defined for any value in the domains of
sinh and cosh.)

4.5 The power functions

For any n ∈N define
fn ∶R→R fn ∶ s� sn.

The graphs of the first few such functions are displayed below:

x

x

x
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x
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x

x4
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For n odd the function fn ∶ t � tn is anti-symmetric and monotonically increasing.
We can define its inverse as a function R→R,

n
√ ∶R→R.

For n even the function fn ∶ t � tn is symmetric. To make it one-to-one we have to
restrict its domain to the non-negative numbers. Then its inverse is a function,

n
√ ∶ [0,∞)→ [0,∞).

The power functions satisfy the following algebraic properties,

xm ⋅xn = xm+n (xm)n = xmn.

These definitions call for the extension of the power function for n that is not a
natural number. First, we extend it for any integer power,

x−n = 1
xn and x0 = 1.

Then, we identify unit fraction powers as roots,

x1�n = n
√

x.

Next, for every rational number of the form p�q,

xp�q = � q
√

x�p
.

(Note that we have to show that this definition does not depend on the representation
of the rational number.) It only remains to define irrational powers. This is more
delicate and requires a notion of limit, which is outside the scope of the present
course.

4.6 The algebra of functions

Given two functions f ∶A→R and g ∶A→R, we can form new functions by applying
on f and g algebraic operations. We define

f +g ∶ A→R f +g ∶ x� f (x)+g(x)
f ⋅g ∶ A→R f ⋅g ∶ x� f (x) ⋅g(x)

a f ∶ A→R a f ∶ x� a f (x).
The set of functions A→ R form a vector space, and in addition have a product
operation (both addition and multiplication make this set of functions an algebra).

There exists an additional way of creating new functions from existing ones. Suppose
we have two functions,

f ∶ A→ B and g ∶ B→C.
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We can create a new function, which given x will first generates f (x), which in turn
is fed to the function g, yielding g( f (x)). This operation is called composition

( �%",9%), and is denoted,

g○ f ∶ A→C g○ f ∶ s� g( f (s)).
� Example 4.11 Let

f ∶R→R f ∶ x→ x2

g ∶R→R g ∶ z→ sinz,

then (g○ f )(x) = sin(x2) and ( f ○g)(x) = (sinx)2.
This example shows that composition in non-commutative. �
� Example 4.12 Let

f ∶ (0,∞)→R f ∶ x→ lnx

g ∶R→R g ∶ z→ z+1,
then

g○ f ∶ (0,∞)→R (g○ f )(x) = 1+ lnx

f ○g ∶ (−1,∞)→R ( f ○g)(x) = ln(x+1).
�

4.7 Continuity

4.7.1 Definition

The notion of continuity is a central concept in the theory of functions. You will
encounter it in depth in the next semester. Here we will make do with an intuitive
interpretation of this concept.

Let f ∶ A→R and a ∈ A an internal point. f is said to be continuous

at a if we can make f (x) deviates from f (a) by an arbitrarily small
amount by limiting x to a small enough neighborhood of a. We say
that f is continuous everywhere if it is continuous at all points in its
domain.

� Example 4.13 Take the function f ∶ x� x2. Is it continuous at a = 3? If we believe
so, we have to show, for example, that there exists a small enough neighborhood of
3, such that for all x in that neighborhood,

� f (x)−9� < 0.000001.

Such a neighborhood does exist, for example, the segment (2.9999999,3.0000001).
But that’s not enough: we also have to show that there exists a small enough
neighborhood of 3, such that for all x in that neighborhood,

� f (x)−9� < 10−31 .
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Here again such a neighborhood exists. Since we can find such a neighborhood for
all deviations of f (x) from 9, no matter how small the deviation is, f is continuous
at 3. �
� Example 4.14 All the elementary functions, sin, cos, tan, exp, log, sinh, etc. are
continuous everywhere they are defined. So is also the function

x� �x�.
�

� Example 4.15 An important function which is continuous everywhere except at
a single point is the heaviside function,

H(x) = �������
0 x < 0
1 x ≥ 1.

�
� Example 4.16 A pathological function which is nowhere continuous is the Dirich-

let function,

D(x) = �������
0 x ∈Q
1 x �∈Q.

�
� Example 4.17 The function

f (x) = sin�1
x
�

is continuous everywhere except at the origin, and we can’t “fix it", no matter how
we define its value at zero.

x

y

�
� Example 4.18 The function

f (x) = sinx
x
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is continuous everywhere except at the origin, but we can “fix it" into an everywhere
continuous function by defining

f (x) = �������
sinx

x x ≠ 0
1 x = 0.

x

y

�

4.7.2 Properties of continuous functions

Continuous functions satisfy properties which you will prove in 80177. For example:

1. If f and g are continuous at a so is f +g.
2. If f and g are continuous at a so is f ⋅g.
3. If f is continuous at a and f (a) ≠ 0 then 1� f is continuous at a.
4. If f is continuous at a and g is continuous at f (a) then g○ f is continuous at

a.

Theorem 4.1 — Mean value theorem. If f ∶ [a,b]→R is continuous and a is
some number between f (a) and f (b) then there exists an x ∈ [a,b] such that

f (x) = a.

� Example 4.19 Consider the function

f (x) = sinx− x
2
.

Using a calculator you find that

f (1.8) = 0.0738... and f (1.9) = −0.0036...
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Since f is continuous in [1.8,1.9] there is a point x in this interval for which

sinx = x
2
.

�

Definition 4.3 Consider a function f ∶ A → R. A point a ∈ A is said to be a
maximum point of f if

∀x ∈ A f (x) ≤ f (a).
A point b is said to be a minimum point of f if

∀x ∈ A f (x) ≥ f (b).
We denote the minimum and maximum values assumed by f in the set A by

min
x∈A f (x) and max

x∈A f (x).
It is important to mention that a function does not necessarily have minima and
maxima, however:

Theorem 4.2 — Weierstrass. If f ∶ [a,b] → R is continuous then there exist
points x1 and x2 such that

∀x ∈ [a,b] f (x1) ≤ f (x) ≤ f (x2).
Note that the last statement is not trivial. Consider the functions:

f ∶ (0,1)→R f ∶ x� x2

g ∶R→R g ∶ x� �������
1�x x ≠ 0
2 x = 0

Both don’t have points of minima and maxima.

Comment 4.2 At this stage, the notion of minimum and maximum makes no
mention of a vanishing derivative.


