
3. Sequences

3.1 Basic definitions
Definition 3.1 An (infinite) sequence is a function from the naturals to the real
numbers. That is, it is an assignment of a real number to every natural number.

Comment 3.1 This is the first time we meet the notion of a function, which will
be the central concept of the next chapter. As for now, we take this (very nontrivial)
notion as evident.

Notation: Sequences, like any other functions, are labeled by letters. We may refer,
for example, to the sequence a. The value that a returns for, say, the input 3 is
denoted by a3, rather than a(3). More generally, we denote by a

n

the value that the
function a returns for the input n. The subscript n in a

n

is called the index ( �28$1*!)
of that element.
But sequences are very special functions as their domain of definition (�%9$#% .&(;)
is an inductive set. Thus, we can refer to the first element and to a successor or a
predecessor of a certain element.
A more common notation for the sequence a is as follows,

(a
n

)∞
n=1.

Note, however, that the index n in this notation is a dummy variable (�892 %1;:/).
We could have as well written (a

k

)∞
k=1.

When there is no risk of confusion, we will denote the sequence simply by (a
n

)
(which should not be confused with its n-th element a

n

).
Sequences can be defined in various ways. The most common way of defining a
function is by providing a formula for the n-th element of that sequence (i.e., a
rule for calculating a

n

given n). Another way of defining a function is based on the
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inductive property of N: the first element is specified along with the formula for
calculating a

n+1 given a

n

(or, more generally, given a1,a2, . . . ,an

). Such a definition
is called recursive.

� Examples 3.1

(a) The constant sequence: a

n

= 5.
(b) The sequence of naturals: a

n

= n.
(c) An alternating sequence: b

n

= (−1)n.
(d) The harmonic sequence: c

n

= 1�n.
(e) The sequence of primes (d

n

) = (2,3,5,7,11, . . .). Note that we do not have
an explicit formula for d

n

.
(f) The sequence of digits of p: (e

n

) = (3,1,4,1,5,9, . . .).
(g) The Fibonacci sequence: f1 = 1, f2 = 1, f

n+1 = f

n

+ f

n−1.

�
Comment 3.2 It is very common to refer, say, to the harmonic sequence as “the
sequence 1�n". While very intuitive, this way of reference is problematic. How does
it differ, for example, from the sequence 1�k or the sequence 1�m? On the other
hand, the notation (1�n)∞

n=1

is unambiguous (here n is again a dummy variable).

Comment 3.3 We have to distinguish a sequence (a
n

)∞
n=1 from the set of values

that the sequence assumes, {a
n

∶ n ∈N}.
For the example, if

(a
n

)∞
n=1 = (0,1,0,0,1,1,0,0,0,1,1,1, . . .),

then the set of values it assumes is

{a
n

∶ n ∈N} = {0,1}.
In a set, every element appears once and there is no order among elements.

3.2 Limits of sequences

Consider the harmonic sequence,

a

n

= 1�n.
Its elements are positive and decreasing (every element is smaller than its successor).
While no element equals zero, we understand on an intuitive level that “the sequence
tends toward zero". In this section we will define formally what it means for a
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sequence to tend to some real number (there is nothing special about tending to
zero).
Let’s start to construct a definition to the statement “the sequence (a

n

) tends to the
real number a". Very informally, we would say that this means that “when n is very
large, a

n

is very close to a". This is, of course, not a mathematical statement. What
does “n very large" mean? And what does “very close to a" mean?
Let’s start by making the “very close to a" clause more rigorous. How can we
measure a distance from a? The distance of a number x from a is the absolute value�x−a �. When we say that the distance of x from a is less than some r > 0, we mean
that �x−a � < r.

Definition 3.2 Given a ∈R and r > 0, we define the open ball (�(&;5 9&$,) of
radius r about a by

B(a,r) = {x ∈R ∶ �x−a � < r}.
The term “ball" is natural when we think about the same definition in three-
dimensional space.

Equipped with this new definition, we will try to refine our definition of a sequence
tending to a number. (a

n

) tends to a if for every r > 0 and sufficiently large n,
a

n

∈ B(a,r). This is still not good enough. What do we mean now by sufficiently
large n? Think of the harmonic sequence: no matter how small r is, from some n

onwards, all the elements of the sequence are in B(0,r).
This observation motivates the following definition:

Definition 3.3 Let P

n

be a sequence of logical propositions, which can be either
True or False. We say that the propositions hold for sufficiently large n, if there
exists an index N ∈N such that for all n >N, P

n

= True. In formal notation,

(∃N ∈N)(∀n >N)(P
n

= True).
With that we can finally define what it means for a sequence to tend to a number:

Definition 3.4 A sequence (a
n

) converges (�;21,;/) to a ∈R if for every e > 0,
the elements of the sequence are in B(a,e) for sufficiently large n. Formally,

(∀e > 0)(∃N ∈N)(∀n >N)(a
n

∈ B(a,e)),
or (∀e > 0)(∃N ∈N)(∀n >N)(�a

n

−a � < e).
We call the real number a a limit (�-&"#) of the sequence, and denote the fact that
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a is a limit of the sequence (a
n

) by

lim
n→∞a

n

= a.

Other popular notation are

a

n

→ a or a

n

n→∞�→ a.

Comment 3.4 Note the a limit rather than the limit. We don’t yet know that a limit
of a sequence, if it exists, is unique.

Definition 3.5 A sequence is called convergent (�;21,;/) if it has a limit; other-
wise it is called divergent (�;9$";/).

� Example 3.1 The simplest example to start with is the constant sequence

a

n

= a.

It seems obvious that this sequence tends to a . We have to be careful, and make
sure that a is the limit according to the definition.
That is, we have to prove that

(∀e > 0)(∃N ∈N)(∀n >N)(�a
n

−a � < e).
Substituting the value of a

n

, we have to prove that

(∀e > 0)(∃N ∈N)(∀n >N)(� a −a�
0

� < e).
This is trivially true. Given any e > 0 we may take N = 1. Indeed, for every n >N,�a

n

−a � = 0 < e . �
� Example 3.2 Consider next the harmonic sequence a

n

= 1�n. We want to show
that

lim
n→∞a

n

= 0,

namely that (∀e > 0)(∃N ∈N)(∀n >N)(1�n < e).
Take for example e = 0.01. All the elements a

n

of the sequence are in B(0,0.01)
from n = 101. More generally, let e > 0 be given. Take N = �1�e�. Then, for all
n >N,

�a
n

= 0� = 1
n

< 1
N

= 1
�1�e� < e,

which completes the proof. �
� Example 3.3 Let a

n

=√n+1−√n, or

(a
n

) = (√2−√1,
√

3−√2,
√

4−√3, . . .).
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If you evaluate the elements of this sequence you’ll quickly guess that

lim
n→∞a

n

= 0.

The question is whether we can prove that

(∀e > 0)(∃N ∈N)(∀n >N)(√n+1−√n < e) ?

We will use the following algebraic trick,

a

n

= (
√

n+1−√n)(√n+1+√n)√
n+1+√n

= 1√
n+1+√n

< 1
2
√

n

.

In order to have �a
n

−0� < e we can take n to be greater than (1�2e)2. Therefore,
given e > 0, we take

N = �� 1
2e

�2� .
Then for all n >N,

�a
n

−0� < 1
2
√

n

< 2e

2
= e,

which completes the proof. �
� Example 3.4 Consider next the sequence

a

n

= 3n

3+7n

2+1
4n

3−8n+63
.

Start with intuition. As n becomes very large, the numerator is dominated by the
3n

3 term, whereas the denominator is dominated by the 4n

3 term. It makes sense to
guess that as n becomes larger and larger, the sequence approaches a constant,

lim
n→∞a

n

= 3
4
.

To prove it we need to show that

(∀e > 0)(∃N ∈N)(∀n >N)(�a
n

−3�4� < e).
This requires some work. Consider the difference,

a

n

− 3
4
= 4(3n

3+7n

2+1)−3(4n

3−8n+63)
4(4n

3−8n+63)
= 28n

2−24n−185
4(4n

3−8n+63) <
28n

2

16n

3−32n

= 7n

7n

2−8
.

For n > 3, n

2 > 8, which implies that 7n

2−8 > 6n

2, hence for all n > 3,

�a
n

− 3
4
� < 7n

6n

2 = 7
6n

.



54 Sequences

We can now close the proof. Given e > 0, let

N =max(3,6e�7).
Then, for every n >N,

�a
n

− 3
4
� < 7

6n

< e.

�
� Example 3.5 Let a ∈R. We will show that there exists a sequence (r

n

) of rational
numbers that converges to a . The idea is very simple. For every n consider the
open ball B(a,1�n). By the density of the rationals, there exists a rational number
r

n

∈ B(a,1�n). Pick one. This constructs a sequence (which we don’t care to know
explicitly).
This sequence converges to a , because given e > 0, let N = �1�e�. Then, for every
n >N,

r

n

∈ B(a,1�n) ⊂ B(a,e) .
�

3.3 Uniqueness of the limit

A converging sequence has a limit. The question is whether it is possible to converge
to two different limits. We will show that the limit is unique, thus justifying the
reference to the limit of a converging sequence. The rationale behind the proof
is very simple. If a sequence (a

n

) converges to a , then for any (small) interval
around a , the sequence must eventually be within this interval. If the sequence also
converges to b , then for any (small) interval around b , the sequence must eventually
be within this interval. We can take those intervals sufficiently small so that they are
disjoint (�.*9'), leading to a contradiction.
Let’s proceed step by step:

Lemma 3.1 Let a,b ∈R, a ≠ b . Then there exists an e > 0 such that B(a,e)
and B(b ,e) are disjoint.

Proof. Suppose, without loss of generality (a notion we have to discuss), that a < b .
Let e = (b −a)�2. Then,

B(a,e) = �3
2 a − 1

2 b , 1
2(a +b)�

and
B(b ,e) = �1

2(a +b), 3
2 b − 1

2 a

� ,
and these two open segments are indeed disjoint. �
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Lemma 3.2 Let P

n

and Q

n

be two sequences of propositions (assuming values
True and False). If P

n

holds for large enough n and Q

n

holds for large enough n,
then P

n

∧Q

n

holds for large enough n.

Proof. It is given that (∃N1)(∀n >N1)(Pn

= True),
and (∃N2)(∀n >N2)(Qn

= True).
Let N =max(N1,N2). Then, for all n >N, both n >N1 and n >N2, hence

P

n

= True and Q

n

= True.

�
Theorem 3.3 — Uniqueness of the limit. Let (a

n

) be a convergent sequence. If
a ∈R and b ∈R are limits of (a

n

), then a = b .

Proof. Assume, by contradiction that a ≠ b . By Lemma 3.1 there exists an e > 0
such that

B(a,e)∩B(b ,e) =�.
By the definition of the limit, a

n

∈ B(a,e) for large enough n and a

n

∈ B(b ,e) for
large enough n. It follows from Lemma 3.2 that a

n

∈ B(a,e)∩B(b ,e) for large
enough n, which is impossible. �
We conclude this section by discussing divergent sequences. A sequence is diver-
gent if it does not have a limit. In other words,

∀a ∈R a is not a limit of (a
n

).
This requires some elaboration. Since

a is a limit of (a
n

) ⇐⇒ (∀e > 0)(∃N ∈N)(∀n >N)(�a
n

−a � < e),
it follows that

a is a not limit of (a
n

) ⇐⇒ (∃e > 0)(∀N ∈N)(∃n >N)(�a
n

−a � ≥ e).
Thus,

(a
n

) is divergent ⇐⇒ (∀a ∈R)(∃e > 0)(∀N ∈N)(∃n >N)(�a
n

−a � ≥ e).
� Example 3.6 Consider the sequence of natural, a

n

= n. This sequence is divergent,
for let a ∈R. Take e = 1. For all N ∈N, there exists an n >N such that

a

n

−a ≥ 1.

�
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� Example 3.7 Consider the alternating sequence a

n

= (−1)n. We first claim that 1
is not a limit is this sequence, take e = 2. For every N ∈N there exists an n >N, such
that a

n

= (−1), i.e.,

�a
n

−1� ≥ 2 or a

n

�∈ B(2,1) .
We next claim that no a ≠ 1 can be a limit of (a

n

), for let e > 0 be such that

B(a,e)∩B(1,e) =�.
For every N ∈N there exists an n >N such that a

n

= 1, namely, a

n

�∈ B(a,e). �

3.4 Bounds and order
Definition 3.6 A sequence (a

n

) is said to be upper bounded (�-*3-/ %/&2() if
there exists an M ∈R such that

(∀n ∈N)(a
n

≤M).
If is said to be lower bounded ( �39-/ %/&2() if there exists an m ∈R such that

(∀n ∈N)(m ≤ a

n

).
It is said to be bounded if it is both upper bounded and lower bounded.

Comment 3.5 The sequence (a
n

) is upper (resp. lower) bounded if and only if the
set of values it assumes, {a

n

∶ n ∈N}
is upper (resp. lower) bounded. The property of being bounded does not “see" the
order within the sequence.

� Example 3.8

1. The sequence of naturals, a

n

= n, is lower bounded by not upper bounded.
2. The harmonic sequence is bounded.
3. The sequence a

n

= (−1)nn is neither upper nor lower bounded.

�

Theorem 3.4 A convergent sequence is bounded.

Proof. Let (a
n

) be a sequence that converges to a limit a . We need to show that
there exist L1,L2 such that

L1 ≤ a

n

≤ L2 ∀n ∈N.
By definition, setting e = 1,

(∃N ∈N)(∀n >N)(a
n

∈ B(a,1)),
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or, (∃N ∈N)(∀n >N)(a −1 < a

n

< a +1).
Since {a

n

∶ 1 ≤ n ≤N}
is a finite set, there exist

M =max{a
n

∶ 1 ≤ n ≤N}
m =min{a

n

∶ 1 ≤ n ≤N}.
Then for all n,

min(m,a −1) ≤ a

n

≤max(M,a +1).
�

Proposition 3.5 Suppose that (a
n

) and (b
n

) are convergent sequences,

lim
n→∞a

n

= a and lim
n→∞b

n

= b .

Suppose that a > b . Then there exists an N ∈N, such that

b

n

> a

n

for all n >N,

i.e., the sequence (b
n

) is eventually greater (term-by-term) than the sequence(a
n

).
Proof. By Lemma 3.1, there exists an e > 0 such that

A = B(a,e) and B = B(b ,e)
are disjoint. In fact, every element in A is smaller than every element in B. By
Lemma 3.2 there exists an N ∈N such that for all n > N, a

n

∈ A and b

n

∈ B, which
implies that a

n

< b

n

. �
Corollary 3.6 Let a,b ∈R with a < b . Let (a

n

) be a convergent sequence with
limit a . Then, a

n

< b for large enough n.

Proof. Apply the previous proposition with the constant sequence b

n

= b . �
Proposition 3.7 Suppose that (a

n

) and (b
n

) are convergent sequences,

lim
n→∞a

n

= a and lim
n→∞b

n

= b ,

and there exists an N ∈N, such that a

n

≤ b

n

for all n >N. Then a ≤ b .
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Proof. This is an immediate corollary of the previous proposition (reverse implica-
tion of the negations). �
Comment 3.6 If instead, a

n

< b

n

for all n >N, then we still only have a ≤ b . Take
for example the sequences a

n

= 1�n and b

n

= 2�n. Even though a

n

< b

n

for all n, both
converge to the same limit.

Theorem 3.8 — Sandwich. Suppose that (a
n

) and (b
n

) are sequences that
converge to the same limit `. Let (c

n

) be a sequence for which there exists an
N ∈N such that

a

n

≤ c

n

≤ b

n

for all n >N.

Then
lim

n→∞c

n

= `.
Proof. By the given assumptions and Lemma 3.2,

(∀e > 0)(∃N ∈N)(∀n >N)(−e < a

n

−` and b

n

−` < e and a

n

≤ c

n

≤ b

n

).
Since,

−e < a

n

−` and b

n

−` < e and a

n

≤ c

n

≤ b

n

�⇒ −e < c

n

−` < e

It follows that (∀e > 0)(∃N ∈N)(∀n >N)(�c
n

−`� < e).
�

� Example 3.9 Since for all n,

1 <�1+1�n <�1+2�n+1�n2 = 1+1�n,
it follows that

lim
n→∞
�

1+1�n = 1.
�

3.5 Limit arithmetic

Suppose we have two sequences (a
n

) and (b
n

). We can form new sequences, such
as (c

n

) given by
c

n

= a

n

+b

n

,

a (d
n

) given by
d

n

= a

n

b

n

.

If the elements of b

n

are non-zero, then we can also form a sequence (e
n

), given by

e

n

= 1
b

n

.

Suppose that (a
n

) and (b
n

) are both convergent sequences with limits a and b . Can
we infer the convergence and limits of the sequences (a

n

+b

n

), (a
n

b

n

) and (1�b
n

)?
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Lemma 3.9 Let (a
n

) be a sequence. Then the following statements are equiva-
lent:

1. (a
n

) converges to a .
2. (a

n

−a) converges to zero.
3. (�a

n

−a �) converges to zero.

Proof. Since
�a

n

−a � = �(a
n

−a)−0� = ��a
n

−a �−0�,
it follows that

(∀e > 0)(∃N ∈N)(∀n >N)(�a
n

−a � < e)
(∀e > 0)(∃N ∈N)(∀n >N)(�(a

n

−a)−0� < e)
(∀e > 0)(∃N ∈N)(∀n >N)(��a

n

−a �−0� < e)
are equivalent statements. �
Proposition 3.10 If (a

n

) converge to a , then (�a
n

�) converges to �a �.
Proof. From the reverse triangle inequality,

0 ≤ ��a
n

�− �a �� ≤ �a
n

−a �.
Since (�a

n

−a �) converges to zero, we can invoke the sandwich theorem. �
Comment 3.7 Note that the converse is not true. Set a

n

= (−1)n, then (�a
n

�)
converges to 1, but (a

n

) is divergent.

Lemma 3.11 If x ∈ B(a,r) and y ∈ B(b ,r) then x+y ∈ B(a +b ,2r).
Proof. This is immediate. We know that

a − r < x < a + r

b − r < y < b + r.

It only remain to “add" the two inequalities. �
Theorem 3.12 — Limits of sums of sequences. Let (a

n

) and (b
n

) be conver-
gent sequences. Then the sequence c

n

= a

n

+b

n

is also convergent, and

lim
n→∞c

n

= lim
n→∞a

n

+ lim
n→∞b

n

.
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Proof. Denote the limits of (a
n

) and (b
n

) by a and b . Let e > 0 be given. From the
definition of the limit and Lemma 3.2,

a

n

∈ B(a,e�2) and b

n

∈ B(b ,e�2)
for n large enough. Invoking Lemma 3.11, we obtain that

c

n

∈ B(a +b ,e)
for n large enough, which implies that

lim
n→∞c

n

= a +b .

�
Comment 3.8 Note that the converse is not true. (a

n

+b

n

) may be convergent,
whereas (a

n

) and (b
n

) are not.

Comment 3.9 The theorem about the limit of a sum of two sequences can be
readily extended to any finite sum of sequences.

Comment 3.10 By a similar argument we may show that

lim
n→∞(an

−b

n

) = lim
n→∞a

n

− lim
n→∞b

n

,

provided that the right-hand side exists.

Lemma 3.13 Let e > 0 and let a,b ∈R. If

x ∈ B�a,min�1, e

2(�b �+1)�� and y ∈ B�b ,min�1, e

2(�a �+1)�� ,
then

xy ∈ B(ab ,e) .
Proof. Start with

xy−ab = (x−a)y+a(y−b).
Using the triangle inequality,

�xy−ab � ≤ �x−a ��y�+ �a ��y−b �.
Since �y� < �b �+1. �x−a � < e�2(�b �+1) and �y−b � < e�2(�a �+1), it follows that

�xy−ab � < (�b �+1) e

2(�b �+1) + �a �
e

2(�a �+1) < e,

which concludes the proof. �
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Theorem 3.14 — Limits of products of sequences. Let (a
n

) and (b
n

) be con-
vergent sequences. Then the sequence c

n

= a

n

b

n

is also convergent, and

lim
n→∞c

n

= lim
n→∞a

n

⋅ lim
n→∞b

n

.

Proof. Denote the limits of (a
n

) and (b
n

) by a and b . Let e > 0 be given. From the
definition of the limit and Lemma 3.2,

a

n

∈ B�a,min�1, e

2(�b �+1)�� and b

n

∈ B�b ,min�1, e

2(�a �+1)��
for n large enough. Invoking Lemma 3.13, we obtain that

c

n

∈ B(ab ,e)
for n large enough, which implies that

lim
n→∞c

n

= ab .

�
Corollary 3.15 Let (a

n

) be a convergence sequence and let b ∈ R. Then, the
sequence (ba

n

) is convergent with

lim
n→∞(ba

n

) = b lim
n→∞a

n

.

Proof. Apply Theorem 3.14 with the constant sequence b

n

= b. �
In remains to prove a sequence arithmetic theorem regarding the ratio of sequences.

Lemma 3.16 Let b ≠ 0 and

y ∈ B�b ,min� �b �2 , �b �2e

2 �� .
Then, y ≠ 0 and

1
y

∈ B� 1
b

,e� .

Proof. It is given that

�y−b � < �b �
2
.

Since y = b −(b −y), it follows from the triangle inequality that

�y� ≥ �b �− �b −y� > �b �
2
,
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which proves that y ≠ 0. Then,

�1
y

− 1
b

� = �b −y�
�y��b � <

�b �2e�2
�b ��2 �b � = e,

which concludes the proof. �
Theorem 3.17 Let (b

n

) be a convergent sequence whose limit is not zero. Then,
the sequence c

n

= 1�b
n

is well-defined for n large enough. Furthermore, it is
convergent, and

lim
n→∞c

n

= 1
lim

n→∞b

n

.

Proof. Denote the limit of b

n

by b . Let e > 0 be given. From the definition of the
limit

b

n

∈ B�b ,min� �b �2 , �b �2e

2 ��
for n large enough. It follows from Lemma 3.16 that b

n

≠ 0 and

c

n

∈ B� 1
b

,e�
for n large enough, which concludes the proof. �
Corollary 3.18 Let (a

n

) be a convergent sequence, and let (b
n

) be a convergent
sequence whose limit is not zero. Then, the sequence c

n

= a

n

�b
n

is well-defined
for n large enough. Furthermore, it is convergent, and

lim
n→∞c

n

= lim
n→∞a

n

lim
n→∞b

n

.

� Example 3.10 Use limit arithmetic to calculate the limit of

a

n

= n

3+6n

2−6
3n

3+5n+10
.

�

Theorem 3.19 Let (a
n

) be a bounded sequence and let (b
n

) be a sequence that
converges to zero. Then

lim
n→∞a

n

b

n

= 0.

Proof. Let M be a bound for (a
n

), namely,

(∀n ∈N)(�a
n

� ≤M).
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Since (b
n

) converges to zero,

(∀e > 0)(∃N ∈N)(∀n >N)��b
n

� < e

M

� .
Thus, (∀e > 0)(∃N ∈N)(∀n >N)(�a

n

b

n

� ≤M�b
n

� < e) ,
which implies that the sequence (a

n

b

n

) converges to zero. �
� Example 3.11 The sequence

a

n

= sinn

n

converges to zero. �

3.6 Convergence of means

Let (a
n

) be a sequence. We define a new sequence (s
n

) as follows,

s1 = a1

s2 = 1
2(a1+a2)

s3 = 1
3(a1+a2+a3)

etc.

For the general term,

s

n

= 1
n

n�
k=1

a

k

.

Theorem 3.20 — Cezaro. If (a
n

) is convergent, then so is (s
n

) and

lim
n→∞s

n

= lim
n→∞a

n

.

Proof. Denote by a the limit of (a
n

). Note that

s

n

−a = 1
n

n�
k=0
(a

k

−a),
and by the triangle inequality,

�s
n

−a � ≤ 1
n

n�
k=0
�a

k

−a �.
Recall that a convergent sequence is bounded, let M be a bound for {a

n

∶ n ∈N}.
By the triangle inequality, for all n ∈N,

�a
n

−a � ≤ �a
n

�+ �a � ≤M+ �a �.
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Given e > 0, there exists an N ∈N, such that for every n >N,

�a
n

−a � < e

2
.

Then, for every n >N,

�s
n

−a � ≤ 1
n

N�
k=0
�a

k

−a �+ 1
n

n�
k=N+1

�a
k

−a �
< N

n

(M+ �a �)+ n−N

n

e

2

≤ N

n

(M+ �a �)+ e

2
.

Let

N

′ =max�N,
e

2N(M+ �a �)� .
Then for every n >N

′,
�s

n

−a � < e

2
+ e

2
= e.

�
3.7 Generalized limits

A sequence is divergent if it does not have a limit. There are two types of divergent
sequences: some “just don’t have a limit", whereas other “grow indefinitely without
bounds", or “decrease indefinitely without bounds".

Definition 3.7 Let (a
n

) be a sequence. We say that it tends to infinity (;5!&:
�4&21*!-) if (∀M ∈R)(∃N ∈N)(∀n >N)(a

n

>M).
We write

lim
n→∞a

n

=∞.

Comment 3.11 Recall that infinity is not a real number.

Likewise:

Definition 3.8 Let (a
n

) be a sequence. We say that it tends to minus infinity if

(∀M ∈R)(∃N ∈N)(∀n >N)(a
n

<M).
We write

lim
n→∞a

n

= −∞.

Comment 3.12 If a sequence tends to plus or minus infinity we say that it con-

verges in a wide sense (�"(9% 0"&/"). A sequence that tends to plus or minus infinity
is still divergent.
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We now start to investigate properties of sequences that converge in a wide sense.

Proposition 3.21 A sequence that tends to infinity is not bounded from above.
Similarly, a sequence that tends to minus infinity is not bounded from below.

Proof. If (a
n

) is bounded from above,

(∃M ∈R)(∀n ∈N)(a
n

<M).
It is then not true that (∀M ∈R)(∃n ∈N)(a

n

≥M).
A fortiori, it is not true that

(∀M ∈R)(∃N ∈N)(∀n >N)(a
n

>M).
�

Proposition 3.22 Let (a
n

) and (b
n

) be sequences satisfying

a

n

≤ b

n

for sufficiently large n. If
lim

n→∞a

n

=∞,

then
lim

n→∞b

n

=∞.

Proof. Let M > 0 be given. By definition, and using Lemma 3.2, there exists an
N ∈N, such that for all n >N,

a

n

>M and a

n

≤ b

n

.

If follows that for all n >N,
b

n

>M,

which concludes the proof. �
Proposition 3.23 Let (a

n

) be a sequence of non-zero elements, satisfying

lim
n→∞a

n

= 0.

Then
lim

n→∞
1
�a

n

� =∞.
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Proof. By definition,

(∀M > 0)(∃N ∈N)(∀n >N)(0 < �a
n

� < 1�M),
hence (∀M > 0)(∃N ∈N)(∀n >N)(1��a

n

� >M),
which concludes the proof. �
Comment 3.13 Note that

lim
n→∞a

n

= 0.

does not implies that (1�a
n

) converges a wide sense.

Proposition 3.24 Let (a
n

) be a sequence satisfying

lim
n→∞ �an

� =∞.

Then
lim

n→∞
1
a

n

= 0.

Proof. By definition,

(∀e > 0)(∃N ∈N)(∀n >N)(�a
n

� > 1�e),
hence (∀e > 0)(∃N ∈N)(∀n >N)(0 < 1��a

n

� < e),
which concludes the proof. �
3.8 Monotone sequences

Definition 3.9 A sequence a is called increasing ( �%-&3) if a

n+1 ≥ a

n

for all n. It
is called strictly increasing (�:// %-&3) if a

n+1 > a

n

for all n. We define similarly
decreasing ( �;$9&*) and strictly decreasing ( �:// ;$9&*) sequences. Any one of
those sequences is called monotone.

� Example 3.12

1. The sequence (a
n

) = n is strictly increasing.
2. The sequence (b

n

) = 1�n is strictly decreasing.
3. The sequence (c

n

) = (−1)n is not monotone.
4. The sequence (d

n

) = a is both increasing and decreasing.

�
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Theorem 3.25 Let (a
n

) be an increasing sequence. If it is bounded from above,
then it is convergent. Otherwise, it tends to infinity.

Proof. The second statement is easier to prove. Suppose that (a
n

) is increasing and
not bounded from above. Then, for every M ∈R there exists an N ∈N such that

a

N

>M.

Since the sequence is increasing,

(∀n >N)(a
n

>M),
which proves that the sequence tends to infinity.
Suppose now that (a

n

) is bounded from above. This implies the existence of a least
upper bound. Set

a = sup{a
n

∶ n ∈N}.
(Note that a supremum is a property of a set, i.e., the order in the set does not matter.)
By the definition of the supremum,

(∀e > 0)(∃N ∈N)(a −e < a

N

≤ a).
Since the sequence is non-decreasing,

(∀e > 0)(∃N ∈N)(∀n >N)(a −e < a

N

≤ a

n

≤ a),
and in particular,

(∀e > 0)(∃N ∈N)(∀n >N)(�a
n

−a � < e).
�

Similarly,

Theorem 3.26 Let (a
n

) be a decreasing sequence. If it is bounded from below,
then it is convergent. Otherwise, it tends to minus infinity.

Corollary 3.27 Every monotone sequence converges in a wide sense.

� Example 3.13 Consider the sequence

a

n

= �1+ 1
n

�n

.

We will first show that a

n

< 3 for all n. From the binomial formula,

(a+b)n = n�
k=0
�n

k

�ak

b

n−k,
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follows that

�1+ 1
n

�n = n�
k=0
�n

k

��1
n

�k = n�
k=0

1
k!
�1

n

�k

k−1�
j=0
(n− j) = n�

k=0

1
k!

k−1�
j=0
�1− j

n

� .
This sequence is increasing as the larger n, the more terms there are, and each grows.
Moreover,

�1+ 1
n

�n ≤ n�
k=0

1
k!
= 1+1+ 1

2
+ n�

k=3

1
k!
≤ 1+1+ 1

2
+ n�

k=3

1
2k

< 3.

It follows that
lim

n→∞�1+ 1
n

�n

exists

(and equals to 2.718 ⋅ ⋅ ⋅ ≡ e). �

3.9 Cantor’s lemma

Consider the sequence of segments,

I

n

= [0,1�n].
For every n ∈N, I

n+1 ⊂ I

n

. Moreover, the length of the segments tends to zero. If we
look at the intersection of all the I

n

’s, we find out that it contains a single point,

∞�
n=1

I

n

= {0}.
If we rather used open, or semi-open segments,

J

n

= (0,1�n],
It still holds that J

n+1 ⊂ J

n

, and that the length of the segments tends to zero. Yet,

∞�
n=1

J

n

=�.

Theorem 3.28 — Cantor’s lemma. Let (I
n

) be a sequence of closed segments
satisfying

I

n+1 ⊂ I

n

and lim
n→∞ �In

� = 0,

where �I
n

� denotes the segment’s length. Then there exists a unique real number c

such that
A = ∞�

n=1
I

n

= {c}.
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Proof. Let I

n

= [a
n

,b
n

]. Since I

n+1 ⊂ I

n

, it follows that (a
n

) is increasing and (b
n

)
is decreasing. Since a1 ≤ a

n

< b

n

≤ b1, it follows that (a
n

) is bounded from above
and (b

n

) is bounded from below. By Theorem 3.25, both sequences are convergent.
Denote,

a = lim
n→∞a

n

and b = lim
n→∞b

n

.

Recall that for monotone sequence,

a = sup{a
n

∶ n ∈N} and b = inf{b
n

∶ n ∈N}.
Since the length of the segments tends to zero, if follows from limit arithmetic that

0 = lim
n→∞ �In

� = lim
n→∞(bn

−a

n

) = b −a,

hence a = b . Furthermore, since

a = sup{a
n

∶ n ∈N} = inf{b
n

∶ n ∈N},
it follows that a ∈ I

n

for all n, namely a ∈ A.
It remains to prove that A contains a unique point. Let g ∈ A. Then, for every n,

0 ≤ �g −a � ≤ (b
n

−a

n

),
and by the sandwich theorem, g = a . �
3.10 Subsequences and partial limits

Definition 3.10 Let (a
n

) be a sequence. A subsequence (�%9$2 ;;) of (a
n

) is
any sequence

a

n1 ,an2 , . . . ,

such that
n1 < n2 <�.

More formally, (b
n

) is a subsequence of (a
n

) if there exists a strictly increasing
sequence of natural numbers (n

k

)∞
k=1, such that

b

k

= a

n

k

.

Comment 3.14 Every sequence is its own subsequence for n

k

= k.

Comment 3.15 The sequence (a
n

)∞
n=1 is the same as (a

k

)∞
k=1, but unless n

k

= k, it
is not the same as the sequence (a

n

k

)∞
k=1.

� Example 3.14 The sequence b

n

= 1�2n is a subsequence of the harmonic sequence
a

n

= 1�n, for the choice n

k

= 2k. Indeed,

b

k

= 1
2k

= a2k

.

�



70 Sequences

� Example 3.15 Let (a
n

) be the sequence of natural numbers, namely a

n

= n. The
subsequence (b

n

) of all even numbers is

b

k

= a2k

,

i.e., n

k

= 2k. �
The following lemma makes a number of obvious statements:

Lemma 3.29

1. If (n
k

) is an increasing sequence of indexes then n

k

≥ k.
2. Let (n

k

) be an increasing sequence of integers. Let (P
n

) be a sequence of
propositions. If P

n

holds for sufficiently large n, i.e.,

(∃N ∈N)(∀n >N)(P
n

= True),
then (P

n

k

) holds for sufficiently large k. i.e.,

(∃K ∈N)(∀k >K)(P
n

k

= True).
3. Let (n

k

) be an increasing sequence of integers. Let (P
n

) be a sequence of
propositions. If (P

n

k

) holds for sufficiently large k, i.e.,

(∃K ∈N)(∀k >K)(P
n

k

= True).
then (P

n

) holds for infinitely many n’s, i.e.,

(∀N ∈N)(∃n >N)(P
n

= True).
4. Every sub-subsequence is a subsequence.
5. If A ⊂N is an infinite set, then there exists a sequence (n

k

) of indexes such
that n

k

∈ A for all k.

Definition 3.11 Let (a
n

) be a sequence. A real number a is called a partial

limit ( �*8-( -&"#) of (a
n

) if it is the limit of a subsequence of (a
n

). That is, if
there exists a strictly increasing sequence of integers (n

k

), such that

a = lim
k→∞a

n

k

.

Similarly, we define partial limits in the wide sense.

� Example 3.16 A constant sequence a

n

= c only has one subsequence, and only
one partial limit, c. More generally, every limit is also a partial limit. �
� Example 3.17 The sequence a

n

= (−1)n has two partial limits, 1 and −1. It is
easy to show that these are its only partial limits. �
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� Example 3.18 Every natural number is a partial limit of the sequence,

(1,1,2,1,2,3,1,2,3,4,1,2,3,4,5, . . .).
�

Proposition 3.30 If (a
n

) is convergent with limit a , then every subsequence of(a
n

) converges to a , and in particular, a is the only partial limit.

Proof. Let (n
k

) be an increasing sequence of indexes. Given e > 0, let

P

n

= (�a
n

−a � < e).
This clause holds for sufficiently large n, hence by Lemma 3.29(2),

P

n

k

= (�a
n

k

−a � < e).
holds for sufficiently large k. �
Corollary 3.31 If a sequence has two partial limits then it is not convergent.

Partial limits can be characterized with no reference to a particular subsequence:

Proposition 3.32 A real number a is a partial limit of a sequence (a
n

) if and only
if every neighborhood of a contains infinitely many elements of that sequence.

Proof. Suppose first that a is a partial limit of (a
n

). If follows that there exists an
increasing sequence of indexes (n

k

) such that

lim
k→∞a

n

k

= a.

Let e > 0 be given, and let
P

n

= (a
n

∈ B(a,e)).
Then, P

n

k

holds for sufficiently large k, and by Lemma 3.29(3), P

n

holds for infinitely
many n’s.
Suppose next that every neighborhood of a contains infinitely many elements of(a

n

). Consider the set
I1 = {n ∈N ∶ a

n

∈ B(a,1)}
Since this set is not empty, there exists an n1 ∈ I1, i.e., a

n1 ∈ B(a,1).
Consider next the set

I2 = {n ∈N ∶ a

n

∈ B(a,1�2)}�{n ∈N � n ≤ n1}.
This set is not empty, hence it contains an element n2, which, by definition, satisfies

n2 > n1 and a

n1 ∈ B(a,1�2) .
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We proceed inductively, setting

I

k+1 = {n ∈N ∶ a

n

∈ B(a,1�(k+1))}�{n ∈N � n ≤ n

k

}.
This set is not empty, hence it contains an element n

k+1, which, by definition, satisfies

n

k+1 > n

k

and a

n

k+1 ∈ B(a,1�(k+1)) .
We have thus constructed a subsequence a

n

k

. Since

0 ≤ �a
n

k

−a � < 1
k

,

it follows from the “sandwich theorem" that (a
n

k

) converges to a . �
Proposition 3.33 ∞ is a partial limit of (a

n

) if and only if (a
n

) is not bounded
from above. Similarly, −∞ is a partial limit of (a

n

) if and only if (a
n

) is not
bounded from below.

Proof. The proof is essentially the same. �
We next prove this very important theorem:

Theorem 3.34 — Bolzano-Weierstrass. Every bounded sequence has a converg-
ing subsequence.

Proof. Suppose that M > 0 is a bound for the sequence, namely,

(∀n ∈N)(a
n

∈ [−M,M]).
We construct recursively a sequence of segments (I

n

) satisfying:

1. I

n+1 ⊂ I

n

.
2. �I

n+1� = 1
2 �In

�.
3. I

n

contains infinitely many elements of (a
n

).
This sequence is constructed using bisection ( �%**7().
Specifically, let I

n

contain infinitely many elements of (a
n

), which means that

A

n

= {k ∈N ∶ a

n

∈ I

n

}
is an infinite set of indexes. Partition I

n

into two closed segments of equal size,
which only intersect at one point,

I

n

= I

R

n

∪ I

L

n

,

and define

A

R

n

= {k ∈N ∶ a

n

∈ I

R

n

} and A

L

n

= {k ∈N ∶ a

n

∈ I

L

n

}.



3.10 Subsequences and partial limits 73

Since A

n

= A

R

n

∪A

L

n

is an infinite set, either A

R

n

or A

L

n

must be infinite. Then, set

I

n+1 =
�������

I

R

n

�IR

n

� =∞
I

L

n

otherwise.

By Cantor’s lemma, there exists a unique number a in the intersection of all the I

n

.
We will prove that a is a partial limit of (a

n

). Indeed, given e > 0, let n be large
enough such that �I

n

� < e . Then,

B(a,e) ⊃ I

n

.

Since I

n

contains infinitely many elements of (a
n

) so does B(a,e), and by Proposi-
tion 3.32, a is a partial limit of (a

n

). �
The Bolzano-Weierestrass can be proved in a completely different way: it is an
immediate corollary of the following lemma:

Lemma 3.35 Any sequence contains a subsequence which is either decreasing
or increasing.

Proof. Let (a
n

) be a sequence. Let’s call a number n a peak point (�!*: ;$&81) of
the sequence a if a

m

< a

n

for all m > n.

a peak poin!

a peak poin!

There are now two possibilities.
There are infinitely many peak points: If n1 < n2 <� are a sequence of peak points,
then the subsequence a

n

k

is decreasing.
There are finitely many peak points: Then let n1 be greater than all the peak points.
Since it is not a peak point, there exists an n2, such that a

n2 ≥ a

n1 . Continuing this
way, we obtain a non-decreasing subsequence. �
Comment 3.16 There is a fundamental difference between the two proofs. The
first proof can be generalized with little modification to bounded sequences in Rn.
The second proof relies on the fact that R is an ordered set, hence the possiblity to
define monotone sequences.
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Corollary 3.36 Every sequence has a subsequence that converges in the wide
sense.

Proof. Either the sequence of bounded, in which case this is a consequence of the
Bolzano-Weierstrass theorem, or it is not bounded, and this is a consequence of
Proposition 3.33. �
Proposition 3.37 Let (a

n

) be a sequence that does not converge in the wide sense.
Then, it has at least two partial limits (in the wide sense).

Proof. Let a be a partial limit of (a
n

) in the wide sense. Suppose first that a ∈R.
Since, by assumption, a is not a limit of (a

n

) there exists an e > 0 such that

a

n

�∈ B(a,e)
for infinitely many n’s. Thus, we can construct a subsequence a

n

k

such that

(∀k ∈N)(a
n

k

�∈ B(a,e)).
By Corollary 3.36, this subsequence has a partial limit (in the wide sense) b . Since
b �∈ B(a,e), it differs from a . The proof is similar if a = ±∞. �
Corollary 3.38 A sequence (a

n

) converges in the wide sense to a if and only if
a is its only partial limit.

3.11 The exponential function

We have seen that the sequence

a

n

= �1+ 1
n

�n

is bounded and monotonically increasing, hence converging. The limit, which we
denoted by

e = lim
n→∞�1+ 1

n

�n

.

is a number between 2 and 3.
Likewise, for every x ∈R we may define the sequence

a

n

= �1+ x

n

�n

.

As for the case x = 1,

a

n

= n�
k=0
�n

k

� x

k

n

k

= n�
k=0

1
k!

x

k

n

k

k−1�
j=1
(n− j) = n�

k=0

x

k

k!

k−1�
j=1
�1− j

n

� .
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This sequence is increasing as the larger n the more terms there are, and the k-th
term is larger. Also,

a

n

≤ n�
k=0

x

k

k!
.

Let N = �2x�, i.e., x�N < 1�2. Then, for n >N,

a

n

≤ N�
k=0

x

k

k!
+ n�

k=N+1

x

k

k!

= N�
k=0

x

k

k!
+ n�

k=N+1

x

N

N!
x

n−N

(N +1) . . .n
= N�

k=0

x

k

k!
+ x

N

N!

n�
k=N+1

x

n−N

(N +1) . . .n
≤ N�

k=0

x

k

k!
+ x

N

N!

n�
k=N+1

1
2n−N

≤ N�
k=0

x

k

k!
+ x

N

2N!
.

The right-hand side is independent of n, which means that (a
n

) is a bounded
sequence, hence converges. Since the sequence depends on x, so does the limit. We
define

exp(x) = lim
n→∞�1+ x

n

�n

.

In particular,
exp(1) = e.

In the previous chapter, we define the notion of powers with real-valued exponents.
Thus, for every x ∈R, we can define a number e

x, whose definition, we recall, is

e

x = sup{er � Q ∋ r ≤ x}.
We now claim that

Theorem 3.39 For every x ∈R,

exp(x) = e

x.

That is,

lim
n→∞�1+ x

n

�n = sup{er � Q ∋ r ≤ x},
where

e = lim
n→∞�1+ 1

n

�n

.
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Proof. We will first show that this identity holds for every x ∈N. Set x =m ∈N, and
consider the sequence

a

n

= �1+ m

n

�n

.

Since it converges to exp(m), every subsequence converges to exp(m) as well. Set
n

k

=mk. Then,

a

n

k

= �1+ m

mk

�mk = ��1+ 1
k

�k�m .

Since

lim
k→∞�1+ 1

k

�k = e,

it follows from limit arithmetic that

lim
k→∞a

n

k

= � lim
k→∞�1+ 1

k

�k�m = e

m,

i.e.,

lim
n→∞�1+ m

n

�n = e

m.

Next suppose that x = p�q, p,q ∈N, and consider the sequence

a

n

= �1+ p

qn

�n

.

Then, consider the sequence

a

q

n

= �1+ p

qn

�qn

.

This sequence is a subsequence (every q-th term) of a sequence that converges to e

p,
i.e.,

lim
n→∞a

q

n

= e

p.

Again, by limit arithmetic,

lim
n→∞a

q

n

= � lim
n→∞a

n

�q

,

which implies that (exp(p�q))q = e

p,

or equivalently,
exp(p�q) = e

p�q.
It remains to deal with the case x ∈R. Note that both e

x and exp(x) are increasing
functions of x. Consider the sets,

A = {exp(r) � Q ∋ r ≤ x} and B = {exp(r) � Q ∋ r ≥ x}.
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We already know that

A = {er � Q ∋ r ≤ x} and B = {er � Q ∋ r ≥ x}.
For the latter case, we know that e

x is the unique number separating the sets A and
B. Since exp(x) also separates A and B, it follows that

exp(x) = e

x.

�
3.12 Limit inferior and limit superior

Not taught this year.

3.13 Cauchy sequences

In many cases, we would like to know whether a sequence is convergent even if we
do not know what the limit is. We will now provide such a convergence criterion.

Definition 3.12 A sequence (a
n

) is called a Cauchy sequence if

(∀e > 0)(∃N ∈N)(∀m,n >N)(�a
n

−a

m

� < e).
Comment 3.17 A common notation for the condition satisfied by a Cauchy se-
quence is

lim
n,m→∞ �an

−a

m

� = 0.

Theorem 3.40 A sequence converges if and only if it is a Cauchy sequence.

Proof. One direction is easy1. If a sequence (a
n

) converges to a limit a , then

(∀e > 0)(∃N ∈N)(∀n >N)(�a
n

−a � < e�2).
By the triangle inequality,

(∀e > 0)(∃N ∈N)(∀m,n >N)(�a
n

−a

m

� ≤ �a
n

−a �+ �a
m

−a � < e),
i.e., the sequence is a Cauchy sequence.
Suppose next that (a

n

) is a Cauchy sequence. We first show that the sequence is
bounded. Taking e = 1,

(∃N ∈N)(∀n >N)(�a
n

−a

N+1� < 1).
1There is something amusing about calling sequences satisfying this property a Cauchy sequence.

Cauchy assumed that sequences that get eventually arbitrarily close converge, without being aware
that this is something that ought to be proved.
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Then, for every n >N, �a
n

� < �a
N+1�+1,

whereas for n ≤N, �a
n

� ≤max
k≤N

�a
k

�,
which proves that the sequence is bounded.
By the Bolzano-Weierstrass theorem, it follows that (a

n

) has a converging subse-
quence. Denote this subsequence by b

k

= a

n

k

and its limit by b . We will show that
the whole sequence converges to b .
By the Cauchy property

(∀e > 0)(∃N ∈N)(∀m,n >N)(�a
n

−a

m

� < e�2),
whereas by the convergence of the sequence (a

n

k

),
(∀N ∈N)(∃K ∈N)(∀k >K)(�b

k

−b � < e�2).
Combining the two,

(∀e > 0)(∃N ∈N)(∃k ∈N ∶ n

k

>N)(∀n >N)(�a
n

−b � ≤ �a
n

−b

k

�+ �b
k

−b � < e).
This concludes the proof. �
Comment 3.18 Limits of sequences can be defined for only for sequences in R.
Limits can be defined for sequences in any metric space, which is a set S on which
a distance function d is defined. A sequence (a

n

) in S converges to a ∈ S if

(∀e > 0)(∃N ∈N)(∀n >N)(d(a
n

,a) < e).
In any metric space we can define a Cauchy sequence: (a

n

) is a Cauchy sequence if

(∀e > 0)(∃N ∈N)(∀n,m >N)(d(a
n

,a
m

) < e).
It is not generally true that a Cauchy sequence in a metric space converges. Metric
spaces in which every cauchy sequence converges are called complete. This is the
fact the more general definition of completeness for an ordered field.


