
Chapter 3

Random Variables (Discrete Case)

3.1 Basic Definitions

Consider a probability space (⌦,F ,P) corresponding to an experiment. The
points! ∈ ⌦ represent all possible outcomes of the experiment. In many cases, we
are not necessarily interested in the outcome ! itself, but rather in some property
(function) of it. Consider the following pedagogical example: in a coin toss, a per-
fectly legitimate sample space is the set of initial conditions of the toss (position,
velocity and angular velocity of the toss, complemented perhaps with wind con-
ditions). Yet, all we are interested in is a very complicated function of this sample
space: whether the coin ended up with Head or Tail showing up. The following is
a “preliminary” version of a definition that will be refined further below:

Definition 3.1 Let (⌦,F ,P) be a probability space. A function X ∶ ⌦ → S
(where S is a set) is called a random variable (�*98/ %1;:/).

Example: Two dice are tossed, i.e.,

⌦ = {(i, j) ∶ 1 ≤ i, j ≤ 6}.
The random variable X is the sum, i.e.,

X((i, j)) = i + j.

Note that the set S (the range of X) can be chosen to be {2, . . . ,12}. Suppose now
that all our probabilistic interest is in the value of X, rather than the outcome of
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the individual dice (this would be the case if we played snakes and ladders). In
such case, it seems reasonable to construct a new probability space in which the
sample space is S . Since it is a finite space, the events related to X can be taken to
be all subsets of S . But now we need a probability function on (S ,2S ), which is
compatible with the experiment. If A ∈ 2S (e.g., the sum was greater than 5), the
probability that A has occurred is given by

P({! ∈ ⌦ ∶ X(!) ∈ A}) = P(�! ∈ ⌦ ∶ ! ∈ X−1(A)�) = P(X−1(A)).
That is, the probability function associated with the experiment (S ,2S ) is P ○X−1.
We call it the distribution (�;&#-5;%) of the random variable X and denote it by PX.▲▲▲
Generalization These notions need to be formalized and generalized. In prob-
ability theory, a space (the sample space) comes with a structure (a �-algebra of
events). Thus, when we consider a function from the sample space ⌦ to some
other space S , this other space must come with its own structure—its own �-
algebra of events, which we denote by FS .
The function X ∶ ⌦ → S is not necessarily one-to-one (although it can always be
made onto by restricting S to be the range of X), therefore X is not necessarily
invertible. However, as we have seen, X−1 is well-defined on subsets of S ,

X−1(A) = {! ∈ ⌦ ∶ X(!) ∈ A} , ∀A ∈FS .

There is however nothing to guarantee that for every event A ∈FS the set X−1(A) ⊂
⌦ is an event in F . This is something we want to ensure otherwise it will make
no sense to ask “what is the probability that X(!) ∈ A?”.

Definition 3.2 Let (⌦,F ) and (S ,FS ) be two measurable spaces. A function
X ∶ ⌦ → S is called a random variable if X−1(A) ∈ F for all A ∈ FS . In the
context of measure theory it is called a measurable function (�%$*$/ %*781&5). 1

Comment: X is a random variable if the �-algebra

{X−1(A) ∶ A ∈FS}
is a sub-�-algebra of F .

1Note the analogy with the definition of continuous functions between topological spaces, the
definition of linear transformations between vector spaces, and the definition of homomorphisms
between groups.
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Example: Let A be an event in a measurable space (⌦,F ). An event is not a
random variable, however, we can always form from an event a binary random
variable (a Bernoulli variable), as follows. Let S = {0,1} and FS = 2S . Then,
IA ∶ ⌦→ S is defined by

IA(!) =
�������

1 ! ∈ A
0 otherwise

.

IA is called the indicator function (�;1**7/ %*781&5) of the event A. IA = 1 means
that the event A has occurred. Note that IA is measurable, as

I−1
A ({1}) = {! ∈ ⌦ ∶ IA(!) = 1} = {! ∈ ⌦ ∶ ! ∈ A} = A ∈F

and similarly I−1
A ({0}) = Ac ∈F . ▲▲▲

So far, we completely ignored probabilities and only concentrated on the structure
that the function X induces on the measurable spaces that are its domain and range.
Now, we remember that a probability function P is defined on (⌦,F ). We want
to define the probability function that it induces on (S ,FS ).
Definition 3.3 Let X be an (S ,FS )-valued random variable on a probability
space (⌦,F ,P). The distribution (�;&#-5;%) PX of X is a function FS → R defined
by

PX(A) = P(X−1(A)) = P({! ∈ ⌦ ∶ X(!) ∈ A}).
Comment: In short-hand notation,

PX(A) = P(X ∈ A).

Proposition 3.1 The distribution PX is a probability function on (S ,FS ).

Proof : The range of PX is obviously [0,1]. Also

PX(S ) = P(X−1(S )) = P(⌦) = 1.
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Finally, let (An) ⊂FS be a sequence of disjoint events, then

PX �∞�
n=1

An� = P�X−1 �∞�
n=1

An�� = P�∞�
n=1

X−1(An)�
= ∞�

n=1
P(X−1(An)) = ∞�

n=1
PX(An),

where the first and last equalities follow from the definition of PX, the second
equality follows from the commutation of inverse functions with set-theoretic op-
erations and the third equality follows from the fcountable additivity of probabil-
ity. n

Comment: The distribution is defined such that the following diagram commutes

⌦ S

F FS

[0,1]

X
//

X−1
oo

∈
✏✏

∈
✏✏

P

⌫⌫

PX

⌥⌥

In this chapter, we restrict our attention to random variables whose ranges S are
countable spaces, and take FS = 2S . Then the distribution is fully specified by its
value for all singletons,

PX({s}) =∶ pX(s), s ∈ S .

We call the function pX the point distribution of the random variable X (;&#-5;%
�;*;$&81). Note the following identity,

pX(s) = PX({s}) = P(X−1({s})) = P ({! ∈ ⌦ ∶ X(!) = s}) ,
where

P ∶F → [0,1] PX ∶FS → [0,1] pX ∶ S → [0,1]
are the probability, the distribution of X, and the point distribution of X, respec-
tively. The function pX is also called the probability mass function (pmf) of the
random variable X.
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Example: Three balls are extracted from an urn containing 20 balls numbered
from one to twenty. What is the probability that at least one of the three has a
number 17 or higher.
This question can easily be answered without random variables, but we will in-
troduce a random variables for didactic reasons. We take the sample space to
be

⌦ = {(i, j, k) ∶ 1 ≤ i < j < k ≤ 20} ,
and for every ! ∈ ⌦, p(!) = 1��20

3 �. We define the random variable

X((i, j, k)) = k,

which returns the largest number drawn. It maps every point ! ∈ ⌦ into a point in
the set S = {3, . . . ,20}. To every k ∈ S corresponds an event in F ,

X−1({k}) = {(i, j, k) ∶ 1 ≤ i < j < k} ∈F .
The point distribution of X is

pX(k) = PX({k}) = P(X = k) = �k−1
2 ��20
3 � .

Then,

PX({17, . . . ,20}) = pX(17) + pX(18) + pX(19) + pX(20)
= �20

3
�−1 ��16

2
� + �17

2
� + �18

2
� + �19

2
�� ≈ 0.508.

▲▲▲
Example: Let A be an event in a probability space (⌦,F ,P). We have already
defined the random variables IA ∶ ⌦→ {0,1}. The distribution of IA is determined
by its value for the two singletons {0},{1}. Now,

pIA(1) = PIA({1}) = P(I−1
A ({1})) = P({! ∶ IA(!) = 1}) = P(A).

▲▲▲
Example: The coupon collector problem. Consider the following situation:
there are N types of coupons. A coupon collector gets each time unit a coupon at
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random. The probability of getting each time a specific coupon is 1�N, indepen-
dently of prior selections. Thus, our sample space consists of infinite sequences
of coupon selections, ⌦ = {1, . . . ,N}N, and for every finite sub-sequence the cor-
responding probability space is that of equal probability. For example, setting
⌦0 = {1, . . . ,N},

P({(1,2,5,17,1,1,4)} ×⌦N0 ) = 1
N7 .

A random variable of particular interest is the number of time units T until the
coupon collector has gathered at least one coupon of each sort. This random
variable takes values in the set S = {N,N + 1, . . .} ∪ {∞}. Our goal is to compute
its point distribution pT(k). It is easy to see, for example, that

pT(N) = PT({N}) = P(T = N) = N!
NN ∼

√
2⇡NN+1�2e−N

NN = √2⇡Ne−N ,

where we have used here Stirling’s formula, whereby

lim
N→∞

√
2⇡NN+1�2e−N

N!
= 1.

Fix an integer n ≥ N, and define the events A1,A2, . . . ,AN such that Aj is the event
that no type- j coupon is among the first n coupons. By the inclusion-exclusion
principle,

PT({k ∶ k > n}) = P� N�
j=1

Aj�
=�

j
P(Aj) −�

j<k
P(Aj ∩ Ak) + . . . .

Now, by the independence of selections, P(Aj) = [(N − 1)�N]n, P(Aj ∩ Ak) =[(N − 2)�N]n, and so on, so that

PT({k ∶ k > n}) = N �N − 1
N
�n − �N

2
� �N − 2

N
�n + . . .

= N�
j=1
(−1) j+1�N

j
��N − j

N
�n

.

Finally,
pT(n) = PT({k ∶ k > n − 1}) − PT({k ∶ k > n}).
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Note that the coupon collector problem is in a sense dual to the birthday problem.
In the latter, we are interested in when two identical birthdays are obtained for
the first time. In the former, we are interested in the first time that all possible
birthdays were obtained. ▲▲▲

(12 hrs) (12 hrs)

3.2 The cumulative distribution function

Definition 3.4 Let X ∶ ⌦ → S be a real-valued random variable. Its cumulative
distribution function (�;9")7/ ;&#-5;% ;*781&5) FX is a real-valued function R→
R defined by

FX(x) = P({! ∶ X(!) ≤ x}) = P(X ≤ x) = PX((−∞, x]).

Comment: Strictly speaking, for FX to be well-defined, the pre-images of all
closed rays X−1((−∞, x]) must be in F , and for PX((−∞, x]) to be defined we
must have (−∞, x] ∈FS . This may seem a problem if S is countable and FS = 2S .
Without getting into details that belong to measure theory, we will state that if we
take S = R (i.e., the range of X is larger than its image), then we can endow R with
a �-algebra generated by all the sets of the form (−∞, x]; it is called the �-algebra
of Borel sets.

Example: Consider the experiment of tossing two dice and the random variable
X(i, j) = i + j. Then, FX(x) is of the form
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-

6

1 2 3 4 5 6 7

▲▲▲

Proposition 3.2 The cumulative distribution function FX of any random variable
X satisfies the following properties:

1. FX is non-decreasing.
2. FX(x) tends to zero when x→ −∞.
3. FX(x) tends to one when x→∞.
4. Fx is right-continuous.

Proof :

1. Let a ≤ b, then (−∞,a] ⊆ (−∞,b] and since PX is a probability function,

FX(a) = PX((−∞,a]) ≤ PX((−∞,b]) = FX(b).
2. Let (xn) be a sequence that converges to −∞. Then, by the continuity of

probability (for decreasing sequences)

lim
n

FX(xn) = lim
n

PX((−∞, xn]) = PX(limn (−∞, xn]) = PX(�) = 0.
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3. The other limit is treated along the same lines.

4. Same for right continuity: if the sequence (hn) converges to zero from the
right, then

lim
n

FX(x + hn) = lim
n

PX((−∞, x + hn])
= PX(limn (−∞, x + hn])
= PX((−∞, x]) = FX(x).

n

. Exercise 3.1 Explain why FX is not necessarily left-continuous.

What is the importance of the cumulative distribution function? A distribution is
a complicated object, as it has to assign a number to any set in the range of X (for
the moment, let’s forget that we deal with discrete variables and consider the more
general case where S may be a continuous subset of R). The cumulative distribu-
tion function is a real-valued function (much simpler object) which encodes the
same information. That is, the cumulative distribution function defines uniquely
the distribution of any (measurable) set in R. For example, the distribution of
semi-open segments is

PX((a,b]) = PX((−∞,b] � (−∞,a]) = FX(b) − FX(a).
What about open segments?

PX((a,b)) = PX(limn (a,b − 1�n]) = lim
n

PX((a,b − 1�n]) = FX(b−) − FX(a).

3.3 The binomial distribution

Definition 3.5 A random variable over a probability space is called a Bernoulli
variable if its range is the set {0,1}. The distribution of a Bernoulli variable X is
determined by a single parameter pX(1) ∶= p. In fact, a Bernoulli variable can be
identified with a two-state probability space.

Definition 3.6 A Bernoulli process is a compound experiment whose constituents
are n independent Bernoulli trials. It is a probability space with sample space

⌦ = {0,1}n,
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and probability defined on singletons,

P({(a1, . . . ,an)}) = pnumber of ones(1 − p)number of zeros.

Consider a Bernoulli process (this defines a probability space), and set the random
variable X to be the number of “ones” in the sequence (the number of successes
out of n repeated Bernoulli trials). The range of X is {0, . . . ,n}, and its point
distribution is

pX(k) = P(X = k) = �n
k
�pk(1 − p)n−k. (3.1)

Definition 3.7 A random variable X over a probability space (⌦,F ,P) is called
a binomial variable (�*/&1*" %1;:/) with parameters (n, p) if it takes integer values
between zero and n and its point distribution is (3.1). We write X ∼B (n, p).
Discussion: A really important point: one often encounters problems starting
with a statement “X is a binomial random variable, what is the probability that
bla bla bla..” without any mention of the underlying probability space (⌦,F ,P).
It this legitimate? There are two answers to this point: (i) if the question only
addresses the random variable X, then it can be fully solved knowing just the
distribution PX; the fact that there exists an underlying probability space is ir-
relevant for the sake of answering this kind of questions. (ii) The triple (⌦ ={0,1, . . . ,n},F = 2⌦,P = PX) is a legitimate probability space. In this context the
random variable X is the identity map X(x) = x.

Example: Diapers manufactured by Pamp-ggies are defective with probability
0.01. Each diaper is defective or not independently of other diapers. The company
sells diapers in packs of 10. The customer gets his/her money back only if more
than one diaper in a pack is defective. What is the probability for this to happen?
Every time the customer takes a diaper out of the pack, he faces a Bernoulli trial.
The sample space is {0,1} (1 is defective) with p(1) = 0.01 and p(0) = 0.99. The
number of defective diapers X in a pack of ten is a binomial variable B (10,0.01).
The probability that X be larger than one is

PX({2,3, . . . ,10}) = 1 − PX({0,1})= 1 − pX(0) − pX(1)
= 1 − �10

0
�(0.01)0(0.99)10 − �10

1
�(0.01)1(0.99)9

≈ 0.0043.
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▲▲▲
Example: An airplane engine breaks down during a flight with probability 1 − p.
An airplane lands safely only if at least half of its engines are functioning upon
landing. What is preferable: a two-engine airplane or a four-engine airplane (or
perhaps you’d better walk)?
The number of functioning engines is a binomial variable, in one case X1 ∼
B (2, p) and in the second case X2 ∼B (4, p). The question is whether PX1({1,2})
is larger than PX2({2,3,4}) or the other way around. Now,

PX1({1,2}) = �21�p1(1 − p)1 + �2
2
�p2(1 − p)0

PX2({2,3,4}) = �42�p2(1 − p)2 + �4
3
�p3(1 − p)1 + �4

4
�p4(1 − p)0.

Opening the brackets,

PX1({1,2}) = 2p(1 − p) + p2 = 2p − p2

PX2({2,3,4}) = 6p2(1 − p)2 + 4p3(1 − p) + p4 = 3p4 − 8p3 + 6p2.

One should prefer the four-engine airplane if

p(3p3 − 8p2 + 7p − 2) > 0,

which factors into
p(p − 1)2(3p − 2) > 0,

and this holds only if p > 2�3. That is, the higher the probability for a defective
engine, less engines should be used. ▲▲▲
Everybody knows that when you toss a fair coin 100 times it will fall Head 50
times... well, at least we know that 50 is the most probable outcome. How proba-
ble is in fact this outcome?

Example: A fair coin is tossed 2n times, with n� 1. What is the probability that
the number of Heads equals exactly n?
The number of Heads is a binomial variable X ∼ B �2n, 1

2�. The probability that
X equals n is given by

pX(n) = �2n
n
��1

2
�n �1

2
�n = (2n)!(n!)2 22n .
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To evaluate this expression we use Stirling’s formula, n! ∼ √2⇡nn+1�2e−n, thus,

pX(n) ∼
√

2⇡(2n)2n+1�2e−2n

22n 2⇡n2n+1e−2n = 1√
⇡n

For example, with a hundred tosses (n = 50) the probability that exactly half are
Heads is approximately 1�√50⇡ ≈ 0.08. ▲▲▲
We conclude this section with a simple fact about the point distribution of a Bino-
mial variable:

Proposition 3.3 Let X ∼ B (n, p), then pX(k) increases until it reaches a maxi-
mum at k = �(n + 1)p�, and then decreases.

Proof : Consider the ratio pX(k)�pX(k − 1),
pX(k)

pX(k − 1) = n!(k − 1)!(n − k + 1)! pk(1 − p)n−k

k!(n − k)!n!pk−1(1 − p)n−k+1 = (n − k + 1)p
k(1 − p) .

pX(k) is increasing if

(n − k + 1)p > k(1 − p) ⇒ (n + 1)p − k > 0.

n

. Exercise 3.2 In a sequence of Bernoulli trials with probability p for success,
what is the probability that a successes will occur before b failures? (Hint: the
issue is decided after at most a + b − 1 trials).

3.4 The Poisson distribution

Definition 3.8 A random variable X is said to have a Poisson distribution with
parameter �, if it takes values S = {0,1,2, . . . ,}, and its point distribution is

pX(k) = e−� �
k

k!
.

(Prove that this defines a probability distribution.) We write X ∼ Poi (�).
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The first question any honorable person should ask is “why”? After all, we can
define infinitely many distributions, and give them fancy names. The answer is
that certain distributions are important because they frequently occur in real life.
The Poisson distribution appears abundantly in life, for example, when we mea-
sure the number of radio-active decays in a unit of time. In fact, the following
analysis reveals the origins of this distribution.

Comment: Remember the inattentive secretary. When the number of letters n is
large, we saw that the probability that exactly k letters reach their destination is
approximately a Poisson variable with parameter � = 1.
Consider the following model for radio-active decay. Every ✏ seconds (a very
short time) a single decay occurs with probability proportional to the length of the
time interval: �✏. With probability 1 − �✏ no decay occurs. Physics tells us that
this probability is independent of history. The number of decays in one second is
therefore a binomial variable X ∼B (n = 1�✏, p = �✏). Note how as ✏ → 0, n goes
to infinity and p goes to zero, but their product remains finite. The probability of
observing k decays in one second is

pX(k) = �nk���n�
k �1 − �

n
�n−k

= �k

k!
n(n − 1) . . . (n − k + 1)

nk �1 − �
n
�n−k

= �k

k!
�1 − 1

n
� . . .�1 − k − 1

n
� �1 − �n�

n

�1 − �n�k .
Taking the limit n→∞ we get

lim
n→∞ pX(k) = e−� �

k

k!
.

Thus the Poisson distribution arises from a Binomial distribution when the prob-
ability for success in a single trial is very small but the number of trials is very
large such that their product is finite.

Example: Suppose that the number of typographical errors in a page is a Poisson
variable with parameter 1�2. What is the probability that there is at least one error?
This exercise is here mainly for didactic purposes. As always, we need to start by
constructing a probability space. The data tells us that the natural space to take is
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the sample space ⌦ = {0} ∪ N with a probability p(k) = e−1�2�(2kk!). Then the
answer is

P({k ∈ N ∶ k ≥ 1}) = 1 − p(0) = 1 − e−1�2 ≈ 0.395.

While this is a very easy exercise, note that we converted the data about a “Pois-
son variable” into a probability space over the natural numbers with a Poisson
distribution. Indeed, a random variable is a probability space. ▲▲▲
. Exercise 3.3 Assume that the number of eggs laid by an insect is a Poisson
variable with parameter �. Assume, furthermore, that every egg has a probability
p to develop into an insect. What is the probability that exactly k insects will
survive? If we denote the number of survivors by X, what kind of random variable
is X? (Hint: construct first a probability space as a compound experiment).

3.5 The Geometric distribution

Consider an infinite sequence of Bernoulli trials with parameter p, i.e.,⌦ = {0,1}N,
and define the random variable X to be the number of trials until the first success
is met. This random variables takes values in the set S = {1,2, . . .}. The proba-
bility that X equals k is the probability of having first (k − 1) failures followed by
a success:

pX(k) = PX({k}) = P(X = k) = (1 − p)k−1 p.

A random variable having such an point distribution is said to have a geometric
distribution with parameter p; we write X ∼ Geo (p).
Comment: The number of failures until the success is met, i.e., X−1, is also called
a geometric random variable. We will stick to the above definition.

Example: There are N white balls and M black balls in an urn. Each time, we
take out one ball (with replacement) until we have a black ball. (1) What is the
probability that we need k trials? (2) What is the probability that we need at least
n trials.
The number of trials X is distributed Geo (M�(M + N)). (1) The answer is simply

� N
M + N

�k−1 M
M + N

= Nk−1M(M + N)k .
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(2) The answer is

M
M + N

∞�
k=n
� N

M + N
�k−1 = M

M + N
� N

M+N �n−1

1 − N
M+N

= � N
M + N

�n−1

,

which is obviously the probability of failing the first n − 1 times.
▲▲▲

An important property of the geometric distribution is its lack of memory (%1;:/
�0&9,*' 92(). That is, the probability that X = n given that X > k is the same as the
probability that X = n − k (if we know that we failed the first k times, it does not
imply that we will succeed earlier when we start the k + 1-st trial, that is

PX({n} � {k + 1, . . .})���������������������������������������������������������������������������������������������������������������������������
P(X=n � X>k)

= pX(n − k)������������������������������������
P(X=n−k)

.

This makes sense even if n ≤ k, provided we extend PX to all Z. To prove this
claim we follow the definitions. For n > k,

PX({n} � {k + 1, k + 2 . . .}) = PX({n} ∩ {k + 1, . . .})
PX({k + 1, k + 2, . . .})
= PX({n})

PX({k + 1, k + 2, . . .})
= (1 − p)n−1 p(1 − p)k = (1 − p)n−k−1 p = pX(n − k).

(14 hrs) (14 hrs)

3.6 The negative-binomial distribution

A coin with probability p for Heads is tossed until a total of n Heads is obtained.
Let X be the number of failures until n successes were met. We say that X has
the negative-binomial distribution with parameters (n, p). What is pX(k) for k =
0,1,2 . . . ? The answer is simply

pX(k) = �n + k − 1
k
�pn(1 − p)k.
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This is a special instance of negative-binomial distribution, which can be extended
to non-integer n. To allow for non-integer n we introduce the �-function:

�(x) = � ∞
0

tx−1e−t dt.

Using integration by parts,

�(x + 1) = � ∞
0

txe−t dt = � ∞
0

x tx−1e−t dt = x�(x).
Since �(1) = 1, it follows that

�(2) = 1, �(3) = 2 ⋅ 1,
and so on.
Thus, for integers, �(n) = (n − 1)!. The general negative-binomial distribution
with parameters 0 < p < 1 and r > 0 has the point distribution,

pX(k) = �(r + k)
k!�(r) pr(1 − p)k.

We write X ∼ nBin (r, p).

3.7 Other examples

Example: Here is a number theoretic result derived by probabilistic means. Recall
that the harmonic series is divergent,

∞�
n=1

1
n
=∞.

On the other hand, both the geometric series

∞�
n=1

1
2n = 1,

and the series of inverse squares

∞�
n=1

1
n2 = ⇡

2

6
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converge. Note that both these series include a subset of the terms of the harmonic
series, which diverges. In other words, the sequence 2n and n2 grow “su�ciently
fast”, so that the series of their inverse converge. We now pose the following
question: does the series of inverse primes,

�
p prime

1
p

converge?

If the answer is positive, then it would mean that the prime numbers become
sparse “su�ciently fast”; in the opposite case, it would mean that their density
decays “slowly”. It was Euler who first proved in 1737 that the inverse prime
series diverges. Euler’s proof was not really rigorous. Sound proofs were given in
forthcoming years, notably by Erdös.
We will now prove that the inverse prime series diverges, using a probabilistic
framework. Let s > 1 and let X be a random variable taking values in N with point
distribution,

pX(k) = k−s

⇣(s) ,
where ⇣ is the Riemann zeta-function,

⇣(s) = ∞�
n=1

1
ns .

Note that ⇣(s) is well-defined for every s > 1 (e.g., using Cauchy’s condensation
test). Moreover,

Lemma 3.1
lim
s→1
⇣(s) =∞.

Proof : Let M ∈ R. Since the harmonic series diverges, there exists an N such that

N�
n=1

1
n
> M + 1.

Since by limit arithmetic,

lim
s→1

N�
n=1

1
ns =

N�
n=1

1
n
> M + 1,
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for all s su�ciently close to 1,

N�
n=1

1
ns > M.

Thus, ⇣(s) > M, which completes the proof. n

Let Am ⊂ N be the set of integers divisible by m. Clearly,

PX(Am) = ∑k divisible by m k−s

∑∞n=1 n−s = ∑∞k=1(mk)−s

∑∞n=1 n−s = 1
ms .

Next, we show that the events Ap, with p prime are independent. Indeed, Ap∩Aq =
Apq, so that

PX(Ap ∩ Aq) = PX(Apq) = 1(pq)s = 1
ps ⋅ 1

qs = PX(Ap)PX(Aq).
The same consideration holds for all collections of Ap.
Next, we define for q prime

Bq = �
p prime≤q

Ac
p,

which is the set of integers that do not have a prime divisor less than q (for exam-
ple, B5 includes all of the integers that are not divisible by 2, 3 and 5). (Bq) is a
decreasing sequence satisfying

�
q prime

Bq = {1}.
By the continuity of probability for decreasing events,

pX(1) = PX � �
q prime

Bq� = lim
q→∞PX(Bq) = lim

q→∞ �
p prime≤q

PX(Ac
p) = �

p prime
PX(Ac

p),
i.e.,

1
⇣(s) = �p prime

�1 − 1
ps� ,

an identity known as Euler’s formula.
Taking the logarithm,

− log ⇣(s) = �
p prime

log�1 − 1
ps� .
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Since p ≥ 2 and s > 1, it follows that 0 < 1�ps < 0.5. It can easily be checked that
for 0 < x < 0.5, log(1 − x) ≥ −2x, hence

log ⇣(s) ≤ 2 �
p prime

1
ps ,

namely
1
2

log ⇣(s) ≤ �
p prime

1
ps ≤ ⇣(s).

Letting s→ 1 we conclude that the harmonic prime series diverges. ▲▲▲
(15 hrs) (15 hrs)

3.8 Jointly-distributed random variables

Consider a probability space (⌦,F ,P) and a pair of random variables, X and Y .
That is, we have two maps between probability spaces:

(⌦,F ,P) X�→ (S X,FX,PX)
(⌦,F ,P) Y�→ (S Y ,FY ,PY).

Recall that the probability that X be in a set A ∈FX is fully determined by the dis-
tribution PX. Now, try to answer the following question: suppose that we are only
given the distributions PX and PY (i.e., we don’t know P). What is the probability
that X(!) ∈ A and Y(!) ∈ B, where A ∈ FX and B ∈ FY? We cannot answer this
question because the knowledge of PX amounts to knowing only the probability
of events of the form {! ∈ ⌦ ∶ X(!) ∈ A} ,
with A ∈ FX, whereas the knowledge of PY amounts to knowing only the proba-
bility of events of the form

{! ∈ ⌦ ∶ Y(!) ∈ B} ,
with B ∈FY . Events of the form

{! ∈ ⌦ ∶ X(!) ∈ A,Y(!) ∈ B} ,
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are not in the union of these two classes of events. The knowledge of the separate
distributions of X and Y is insu�cient to answer questions about events that are
joint to X and Y .
The correct way to think about a pair of random variables is as a mapping ⌦ →
S X × S Y , i.e.,

!� (X(!),Y(!)).
We equip S X × S y with a �-algebra of events FX,Y and we require that every set
A ∈ FX,Y has a pre-image in F . In fact, given the �-algebra FX,Y , the �-algebra
FX is a restriction of FX,Y ,

FX = {A ⊆ S X ∶ A × S Y ∈FX,Y} ,
and similarly for FY .
The joint distribution (�;5;&:/ ;&#-5;%) of the pair X,Y is defined naturally as

PX,Y(A) ∶= P({! ∈ ⌦ ∶ (X(!),Y(!)) ∈ A}).
One can infer the marginal distributions (�;&*-&: ;&*&#-5;%) of X and Y from this
joint distribution, as

PX(A) = PX,Y(A × S Y) A ∈FX

PY(B) = PX,Y(S X × B) B ∈FY .

When both S X and S Y are countable spaces, we define the joint point distribution,

pX,Y(x, y) ∶= PX,Y({(x, y)}) = P(X = x,Y = y).
Obviously,

pX(x) = PX,Y({x} × S Y) = �
y∈S Y

pX,Y(x, y)
pY(y) = PX,Y(S X × {y}) = �

x∈S X

pX,Y(x, y).
Finally, we define the joint cumulative distribution function,

FX,Y(x, y) ∶= PX,Y((−∞, x] × (−∞, y]) = P(X ≤ x,Y ≤ y).
Example: There are three red balls, four white balls and five blue balls in an urn.
We extract three balls. Let X be the number of red balls and Y the number of white
balls. What is the joint distribution of X and Y?
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The natural probability space here is the set of triples out of twelve elements,

⌦ = {(i, j, k) ∶ 1 ≤ i < j < k ≤ 12},
endowed with uniform probability. Then,

(X,Y) ∶ ⌦→ {(i, j) ∶ i, j ≥ 0, i + j ≤ 3} .
For example, (X,Y)((3,4,5)) = (1,2).
Then,

pX,Y(0,0) = �
5
3��12
3 � and pX,Y(1,1) = �

3
1��41��51��12

3 � ,

etc. ▲▲▲
. Exercise 3.4 Construct two probability spaces, and on each define two ran-
dom variables, X,Y , such that the two PX are the same and the two PY are the
same, but the PX,Y di↵er.

Multiple random variables These notions can be easily generalized to n ran-
dom variables. X1, . . . ,Xn are viewed as a function from ⌦ to the product set
S 1 × ⋅ ⋅ ⋅ × S n, with joint distribution

PX1,...,Xn(A) = P({! ∶ (X1(!), . . . ,Xn(!)) ∈ A}),
where A ∈ S 1 × ⋅ ⋅ ⋅ × S n. The marginal distributions of subsets of variables are
obtained, for example,

PX1,...,Xn−1(A) = PX1,...,Xn(A × S n),
with A ⊆ S 1 × S 2 × ⋅ ⋅ ⋅ × S n−1.

3.9 Independence of random variables

Let (⌦,F ,P) be a probability space and let X ∶ ⌦ → S be a random variable,
where the set S is equipped with its�-algebra of events FS . By the very definition
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of a random variable, for every event A ∈ FS , the event X−1(A) is an element of
F . That is,

X−1(FS ) = �X−1(A) ∶ A ∈FS� ⊆F .

We have seen that X−1(FS ) is a �-algebra, i.e., a sub-�-algebra of F . We call it
the �-algebra generated by the random variable X, and denote it by �(X). Events
in �(X) are subsets of ⌦ (not of S ) that characterize the outcome of X(!).
Similarly, when we have a pair of random variables X,Y with a �-algebra FX,Y ,
they generate (together!) a �-algebra, �(X,Y), which consists of all events of the
form {! ∈ ⌦ ∶ (X(!),Y(!)) ∈ A} ,
. Exercise 3.5 Let X be a random variable (a measurable mapping) from (⌦,F ,P)
to the space (S ,FS ,PX). Consider the collection of events,

{X−1(A) ∶ A ∈FS},
which is by assumption a subset of F . Prove that this collection is a �-algebra.

We are now ready to define the independence of two random variables. Recall
that we already have a definition for the independence of events:

Definition 3.9 Two random variables X,Y over a probability space (⌦,F ,P)
are said to be independent if every event in �(X) is independent of every event in
�(Y). In other words, they are independent if every information associated with
the value of X does not a↵ect the (conditional) probability of events reflecting only
the random variable Y.

Example: Consider the probability space associated with tossing two dice, and let
X be the sum of the dice and Y be the value of the first die, i.e.,

X((i, j)) = i + j and Y((i, j)) = i.

The ranges of X and Y are S X = {2, . . . ,12} and S Y = {1, . . . ,6}, respectively. The
�-algebras generated by X and Y are

�(X) = {{(i, j) ∈ ⌦ ∶ i + j ∈ A} ∶ A ⊆ {2, . . . ,12}}
�(Y) = {{(i, j) ∈ ⌦ ∶ i ∈ B} ∶ B ⊆ {1, . . . ,6}} .

Recall that the events X−1({7}) and Y−1({3}) are independent. Does it mean that
X and Y are independent variables? No, for example X−1({6}) and Y−1({3}) are
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dependent. It is not true that any information on the outcome of X does not change
the probability of the outcome of Y . ▲▲▲
While the definition of independence may seem hard to work with, it is easily
translated into simpler terms. Let A × B be an event in FX,Y with A ∈ FX and
B ∈FY . If X and Y are independent, then

PX,Y(A × B) = P(X ∈ A,Y ∈ B)
= P(X ∈ A)P(Y ∈ B)
= PX(A)PY(B).

In particular, if A = {x} and B = {y} are singletons, then

pX,Y(x, y) = pX(x)pY(y).
Finally, if A = (−∞, x] and B = (−∞, y], then

FX,Y(x, y) = FX(x)FY(y).
Thus, two random variables are independent only if their joint distribution (joint
point distribution, joint cumulative distribution function) factors into a product of
distributions.

. Exercise 3.6 Prove that two random variables X,Y are independent if and only
if

PX,Y(A × B) = PX(A)PY(B)
for every A ∈FX and B ∈FY .

These definitions are easily generalized to n random variables. The random vari-
ables X1, . . . ,Xn have a joint distribution PX1,...,Xn defined on a �-algebra of events
of the form

{! ∈ ⌦ ∶ (X1(!), . . . ,Xn(!)) ∈ A} , A ∈ S 1 × ⋅ ⋅ ⋅ × S n.

These variables are mutually independent if for all A1 ∈F1, . . . ,An ∈Fn,

PX1,...,Xn(A1 × ⋅ ⋅ ⋅ × An) = PX1(A1) . . .PXn(An).
We further extend the definition to a countable number of random variables. An
infinite sequence of random variables is said to me mutually independent if every
finite subset is independent.
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We will see now a strong use of independence. But first an important lemma,
which is the “second half” of a lemma whose first part we have already seen.
Recall the first Borel-Cantelli lemma that states that if an infinite sequence of
events (An) has the property that ∑n P(An) <∞, then

P(lim sup
n

An) = 0.

There is also a converse lemma, which however requires the independence of the
events:

Lemma 3.2 (Second Borel-Cantelli) Let (An) be a sequence of mutually inde-
pendent events in a probability space (⌦,F ,P). If ∑n P(An) =∞, then

P(lim sup
n

An) = 1.

Proof : Note that

(lim sup
n

An)c = �∞�
n=1

∞�
k=n

Ak�
c = ∞�

n=1

∞�
k=n

Ac
k = lim inf

n
Ac

n.

Fix n. Because the events are independent we have

P�∞�
k=n

Ac
k� = ∞�

k=n
(1 − P(Ak)).

Using the inequality 1 − x ≤ e−x,

P�∞�
k=n

Ac
k� ≤ ∞�

k=n
e−P(Ak) = exp�− ∞�

k=n
P(Ak)� = 0,

where we have used the divergence of the series. Thus, the event (lim supn An)c is
a countable union of events that have zero probability, and therefore also has zero
probability. It follows that its complement has probability one. n

. Exercise 3.7 Show, by means of a counter example, why does the second
Borel-Cantelli lemma require the independence of the random variables.
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Example: Consider an infinite sequence of Bernoulli trials with probability 0 <
p < 1 for “success”. What is the probability that the sequence SFS appears in-
finitely many times? Let Aj be the event that the sub-sequence aja j+1aj+2 equals
SFS, i.e.,

Aj = �(an) ∈ {S ,F}N ∶ aj = S ,aj+1 = F,aj+2 = S � .
The events A1,A4,A7, . . . are independent. Since they have an equal positive prob-
ability, p2(1 − p),

∞�
n=1

P(A3n) =∞ ⇒ P(lim sup
n

A3n) = 1.

▲▲▲
Example: Here is a more subtle application of the second Borel-Cantelli lemma.
Let (Xn) be an infinite sequence of independent random variables assuming real
positive values, and having the following cumulative distribution function,

FX(x) =
�������

0 x ≤ 0
1 − e−x x > 0

.

(Such random variables are called exponential; we shall study them later on).
Thus, for any positive x,

P(Xj > x) = e−x.

In particular, we may ask about the probability that the n-th variable exceeds
↵ log n,

P(Xn > ↵ log n) = e−↵ log n = n−↵.
It follows from the two Borel-Cantelli lemmas that

P(Xn > ↵ log n i.o. ) = �������
0 ↵ > 1
1 ↵ ≤ 1

.

By the same method, we can obtain refined estimates, such as

P(Xn > log n + ↵ log log n i.o. ) = �������
0 ↵ > 1
1 ↵ ≤ 1

,

and so on. ▲▲▲
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3.10 Sums of random variables

Let X,Y be two (discrete) real-valued random variables with joint distribution
PX,Y . Let Z = X + Y , that is, if

X ∶ ⌦→ S X ⊂ R and Y ∶ ⌦→ S Y ⊂ R,
then

Z ∶ ⌦→ S X + S Y = {x + y ∶ x ∈ X, y ∈ Y} ≡ S Z

is given by
Z(!) = X(!) + Y(!).

Note that for every S Z,

Z−1({z}) = �
x∈S X

X−1({x}) ∩ Y−1({z − x}),
so that

pZ(z) = P(Z−1({z})) = �
x∈S X

P �X−1({x}) ∩ Y−1({z − x})� = �
x∈S X

pX,Y(x, z − x).
For the particular case where X and Y are independent we have

pX+Y(z) = �
x∈S X

pX(x)pY(z − x),
the last expression being the discrete convolution of pX and pY evaluated at the
point z.

Example: Let X ∼ Poi (�1) and Y ∼ Poi (�2) be independent random variables.
What is the distribution of X + Y?
Using the convolution formula, and the fact that Poisson variables assume non-
negative integer values,

pX+Y(k) = k�
j=0

pX( j)pY(k − j)
= k�

j=0
e−�1
� j

1

j!
e−�2

�k− j
2(k − j)!

= e−(�1+�2)
k!

k�
j=0
�k

j
�� j

1�
k− j
2

= e−(�1+�2)
k!

(�1 + �2)k,
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i.e., the sum of two independent Poisson variables is a Poisson variable, whose
parameter is the sum of the two parameters. ▲▲▲
. Exercise 3.8 Let X ∼B (n, p) and Y ∼B (m, p). Prove that X+Y ∼B (n +m, p).
Give an intuitive explanation for why this must hold.

3.11 Conditional distributions

Recall our definition of the conditional probability: if A and B are events, then

P(A � B) = P(A ∩ B)
P(B) .

This definition embodies the notion of prediction that A has occurred given that B
has occurred. We now extend the notion of conditioning to random variables:

Definition 3.10 Let X,Y be (discrete) random variables over a probability space(⌦,F ,P). We denote their joint point distribution by pX,Y; it is a function S X ×
S Y → [0,1]. The conditional point distribution (�%1;&/ ;*;$&81 ;&#-5;%) of X given
Y is defined as

pX�Y(x � y) ∶= P(X = x � Y = y) = P(X = x,Y = y)
P(Y = y) = pX,Y(x, y)

pY(y) .
(It is defined only for values of y for which pY(y) > 0.)

Example: Let pX,Y be defined by the following table:

Y,X 0 1
0 0.4 0.1
1 0.2 0.3

What is the conditional distribution of X given Y?
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Answer:
pX�Y(0 � 0) = pX,Y(0,0)

pY(0) = 0.4
0.4 + 0.1

pX�Y(1 � 0) = pX,Y(1,0)
pY(0) = 0.1

0.4 + 0.1

pX�Y(0 � 1) = pX,Y(0,1)
pY(1) = 0.2

0.2 + 0.3

pX�Y(1 � 1) = pX,Y(1,1)
pY(1) = 0.3

0.2 + 0.3
.

▲▲▲
Note that we always have

pX,Y(x, y) = pX�Y(x � y)pY(y).
Summing over all y ∈ S Y ,

pX(x) = �
y∈S Y

pX,Y(x, y) = �
y∈S Y

pX�Y(x � y)pY(y),
which can be identified as the law of total probability formulated in terms of ran-
dom variables.

. Exercise 3.9 True or false: every two random variables X,Y satisfy

�
x∈S X

pX�Y(x � y) = 1

�
y∈S Y

pX�Y(x � y) = 1.

Example: Assume that the number of eggs laid by an insect is a Poisson variable
with parameter �. Assume, furthermore, that every eggs has a probability p to
develop into an insect. What is the probability that exactly k insects will survive?
This problem has been previously given as an exercise. We will solve it now in
terms of conditional distributions. Let X be the number of eggs laid by the insect,
and Y the number of survivors. We don’t even bother to (explicitly) write the prob-
ability space, because we have all the needed data as distributions and conditional
distributions. We know that X has a Poisson distribution with parameter �, i.e.,

pX(n) = e−� �
n

n!
n = 0,1, . . . ,
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whereas the distribution of Y conditional on X is binomial,

pY �X(k � n) = �nk�pk(1 − p)n−k k = 0,1, . . . ,n.

The distribution of the number of survivors Y is then

pY(k) = ∞�
n=0

pY �X(k � n)pX(n) = ∞�
n=k
�n

k
�pk(1 − p)n−ke−� �

n

n!

= e−� (�p)k
k!

∞�
n=k

[�(1 − p)]n−k

(n − k)!
= e−� (�p)k

k!
e�(1−p) = e−�p (�p)k

k!
.

Thus, Y ∼ Poi (�p). ▲▲▲
(17 hrs) (17 hrs)

Example: Let X ∼ Poi (�1) and Y ∼ Poi (�2) be independent random variables.
What is the conditional distribution of X given that X + Y = n?
We start by writing things explicitly,

pX�X+Y(k � n) = P(X = k � X + Y = n)
= P(X = k,X + Y = n)

P(X + Y = n)
= pX,Y(k,n − k)
∑n

j=0 pX,Y( j,n − j) .
At this point we use the fact that the variables are independent and their distribu-
tions are known:

pX�X+Y(k � n) = e−�1
�k

1
k! e−�2

�n−k
2(n−k)!

∑n
j=0 e−�1

� j
1

j! e−�2
�n− j

2(n− j)!
= �nk��k

1�
n−k
2

∑n
j=0 �nj�� j

1�
n− j
2

= �nk��k
1�

n−k
2(�1 + �2)n .
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Thus, it is a binomial distribution with parameters n and �1�(�1 + �2), which me
may write as

[X conditional on X + Y = n] ∼B �n, �1

�1 + �2
� .

▲▲▲
Generalization Conditional probabilities can be generalized to multiple vari-
ables. For example,

pX,Y �Z(x, y � z) ∶= P(X = x,Y = y � Z = z) = pX,Y,Z(x, y, z)
pZ(z)

pX�Y,Z(x � y, z) ∶= P(X = x � Y = y,Z = z) = pX,Y,Z(x, y, z)
pY,Z(y, z) ,

and so on.

Proposition 3.4 Every three random variables X,Y,Z satisfy

pX,Y,Z(x, y, z) = pX�Y,Z(x � y, z)pY �Z(y � z)pZ(z).

Proof : Immediate. Just follow the definitions. n

Example: Consider a sequence of random variables (Xk)nk=0, each assuming val-
ues in a finite alphabet A = {1, . . . , s}. Their joint distribution can be expressed
as follows:

pX1,...,Xn(x0, x1, . . . , xn) = pXn�X1,...,Xn−1(xn � x0, . . . , xn−1)
pXn−1�X0,...,Xn−2(xn−1 � x0, . . . , xn−2) . . . pX1�X0(x1 � x0)pX0(x0).

There exists a class of such sequences called Markov chains (�"&89/ ;&!9:9:). In
a Markov chain,

pXn�X1,...,Xn−1(xn � x0, . . . , xn−1) = pXn�Xn−1(xn � xn−1),
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i.e., the distribution of Xn “depends on its history only through its predecessor”; if
Xn−1 is known, then the knowledge of its predecessors is superfluous for the sake
of predicting Xn. Note that this does not mean that Xn is independent of Xn−2!
Furthermore, a Markov chain is said to be time-homogeneous if the functions
pXk � Xk−1(x � y) are the same for all k, i.e., can be represented by an s-by-s matrix,
Mxy.
Thus, for a Markov chain,

pX1,...,Xn(x0, x1, . . . , xn) = pXn�Xn−1(xn � xn−1)pXn−1 � Xn−2(xn−1 � xn−2) . . . pX1�X0(x1 � x0)pX0(x0)= Mxn,xn−1 Mxn−1,xn−2 . . .Mx1,x0 pX0(x0). .

If we now sum over all values that X0 through Xn−1 can assume, then

pXn(xn) = �
xn−1∈A

⋅ ⋅ ⋅ �
x0∈A

Mxn,xn−1 Mxn−1,xn−2 . . .Mx1,x0 p(x0) = �
x0∈A

Mn
xn,x0

pX0(x0).
Thus, the distribution on Xn is related to the distribution of X0 through the applica-
tion of the n-power of a matrix, the transition matrix (�9"3/% ;7*9)/). Situations
of interest are when the distribution of Xn tends to a limit, which does not depend
on the initial distribution of X0. Such Markov chains are said to be ergodic. When
the rate of approach to this limit is exponential, the Markov chain is said to be
exponentially mixing. ▲▲▲
. Exercise 3.10 Let X,Y,Z be three random variables. We say that X is inde-
pendent of Z given Y if

pX�Y,Z(x � y, z) = pX�Y(x � z)
for all z. Is this relation symmetric? Does it imply that Y is independent of X
given Z? Does it imply that X is independent of Y given Z.


