Chapter 2

Measure spaces

2.1 Sets and o-algebras

2.1.1 Definitions

Let X be a (non-empty) set; at this stage it is only a set, i.e., not yet endowed with
any additional structure. Our eventual goal is to define a measure on subsets of
X. As we have seen, we may have to restrict the subsets to which a measure is
assigned. There are, however, certain requirements that the collection of sets to
which a measure is assigned—measurable sets (M7 Mx13P)—should satisfy.
If two sets are measurable, we would like their union, intersection and comple-
ments to be measurable as well. This leads to the following definition:

Definition 2.1 Let X be a non-empty set. A (boolean) algebra of subsets (772358
ms1ap S0) of X, is a non-empty collection of subsets of X, closed under finite
unions ("DW TMR) and complementation. A (boolean) o-algebra ( 792158 TRD)
Y of subsets of X is a non-empty collection of subsets of X, closed under countable
unions (™1 12 MMR) and complementation.

Comment: In the context of probability theory, the elements of a o-algebra are
called events (MPIRM).

Proposition 2.2 Let A be an algebra of subsets of X. Then, A contains X, the
empty set, and it is closed under finite intersections.



Given in 2018

—1heoisy—

Chapter 2

Proof: Since A is not empty, it contains at least one set A € A. Then,
X=AuA‘eA and g=XeA.

LetAy,...,A, c A. By de Morgan’s laws,

ﬁAk:(L"JA;) e A.
k=1

k=1
|

& ‘Exercise 2.1 Let X be a set and let A be a collection of subsets containing X and closed
under set subtraction (i.e, if A, B € A then A \ B € A. Show that A is an algebra.

The following useful proposition states that for an algebra to be a o-algebra, it
suffices to require closure under countable disjoint union:

Proposition 2.3 Let X be a non-empty set, and let A ¢ (X)) be an algebra of
subsets of X, closed under countable disjoint unions. Then, A is a o-algebra.

Proof: We need to show that A is closed under countable unions. Let (A,) c A,
and define recursively the sequence of disjoint sets (B,),

n—1
B =A e A and anA,lx(UAk)eA.
k=1

Then,

A, =[][B.c A
n=1 n=1
(The inclusion [],2, B, c U;2, A, is obvious. Let x € U;2, A,. Then, there exists a
minimal n such that x € A,. By definition of the B,’s, x € B,, hence x € [[, B,
which proves the reverse inclusion.) [

Trick #1: Turn a sequence of sets into a sequence of disjoint sets having the same
union.

Definition 2.4 A non-empty set endowed with a o-algebra of subsets is called a
measurable space (77 207M).
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To conclude, a o-algebra is a collection of sets closed under countably-many set-
theoretic operations.

Examples:
1. Let X be a non-empty set. Then,
{2, X}
is its smallest o-algebra (the trivial o-algebra).

2. Let X be a non-empty set. Then, its power set (P17 N¥12p) (X)) is its
maximal o-algebra.

3. Let X be a non-empty set. Then,
Y2 ={AcX : Aiscountable or A¢ is countable}

is a o-algebra (the countable or co-countable sets). Clearly, X is non-
empty and is closed under complementation. Let (A,) c X. If all A, are
countable, then their union is also countable, hence in . Conversely, if one
of the A,, is co-countable, then their union is also co-countable, hence in X.

The following proposition states that every intersection of o-algebras is a o-
algebra. This property will be used right after to prove that every collection of
subsets defines a unique o-algebra, which is the smallest o-algebra containing
that collection.

Proposition 2.5 Let {£, ¢ P(X) : a € J} be a (not necessarily countable)
collection of o-algebras. Then, their intersection is a o-algebra.

Proof: Set

2=

aeJ
Since for every a € J, @, X € Z,, it follows that X contains @ and X. Let A € Z; by
definition,
AelX, Ya e J.
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Since each of the X, is a o-algebra,
AfeX, Va € J,

hence A¢ € X, proving that 2 is closed under complementation. Likewise, let
(A,) c Z. Then,
A, eX, VneN and Vacel

It follows that
U A,eZ, Ya € J,

n=1
hence
[ee)
UJA, €Z,
n=1

proving that X is closed under countable unions. |

RSN f?(p?‘ cise 2.2 Let X be a set. (a) Show that the collection of subsets that are either finite or
co-finite is an algebra. (b) Show that it is a o-algebra if and only if X is a finite set.

RSN Z?(BT cise 2.3 (a) Let A, be an increasing sequence of algebras of subsets of X, i.e., A, c
A,+1. Show that

A=) A,
n=1

is an algebra. (b) Give an example in which .4, is an increasing sequence of o-algebras, and its
union is not a o-algebra.

Let & ¢ Z(X) be a collection of sets and consider the family of all o-algebras of
subsets of X containing &. This family is not empty since is includes at least the
power set (X). By Proposition 2.5,

o(&) =(){Z : Tisaoc-algebra containing £}
is a o-algebra; it is the smallest o-algebra containing &; it is called the o-algebra

generated by ("1 by na3n) £.

A comment about nomenclature: we will repeatedly deal with sets of sets and sets
of sets of sets; to avoid confusion, we will use the terms collection (501R8), class
(np’:'rm) and family (772wn) for sets whose elements are sets.

The following proposition comes up useful:
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Proposition 2.6 Let £ ¢ ¥ (X) and let X c P (X)) be a o-algebra. If
Ecl,

then
o(E)ck.

Proof: Since X is a o-algebra containing &, then, by definition, it contains o(£).
[ |

Corollary 2.7 Let £, F ¢ 2(X). If
Eca(F) and Fco(€),

then
o(&)=o(F).

N ‘Exercise 2.4 Let X be a non-countable set. Let
E={{x} : xeX}.

What is the o-algebra generated by £?
N ‘Exercise 2.5 Let Ay, ...,A, be a finite number of subsets of X.

(a) Prove thatif the Ay,...,A, are disjoint and their union is X, then

lo({A1,...,A,})] = 2"
(b) Prove that for arbitrary Ay, ..., A,,
o({A,....,A.})
contains a finite number of elements.

N Exercise 2.6 Let (X,X) be a measurable space. Let C be a collection of sets. Let P be a
property of sets in X (i.e., a function P : £ (X) — {true, false}), such that

(a) P() = true.



Given in 2018

Given in 2018

Given in 2018

m Chapter 2

(b) P(C) =true forall C € C.
(c) P(A) = true implies that P(A) = true.
(d) if P(A,) = true for all n, then P(U;2, A,) = true.

Show that P(A) = true for all A € o(C).

A5 Z?Cercise 2.7 Prove that every member of a o-algebra is countably-generated: i.c., let C
be a collection of subsets of X and let A € 0-(C). Prove that there exists a countable sub-collection
Ca cC,suchthat A € 0(Cy).

RSN ZZ?CBT cise 2.8 Let f Xy - X, be a function between two sets. Prove that if X, is a o-
algebra on X, then

T ={f(A) : AeX,)

is a o-algebra on X .

ESY ‘Exercise 2.9 Let (X,X) be a measurable space and let A, € = be a sequence of measurable
set. The superior limit of this sequence is the set of points x which belong to A, for infinitely-
many n’s, i.e.,

limsupA, ={xeX : [{n : xeA,}|=o0}.

The inferior limit of this sequence is the set of points x which belong to A, for all but finitely-
many n’s, i.e.,
liminfA, ={xeX : {n : x¢A,}| < oo}

n—oo

(a) Prove thatlimsup,_ A, =N Ure, Ak

(b) Prove that liminf,_, e Ay = U 2| Nioy, Ak

(c) Prove that (limsup,,_, . A,)¢ = liminf,_,. A.
(d) Prove that (liminf,_.c A,;)¢ = limsup,_, . Aj.

(e) Denote by x4 the indicator function of a measurable set A. Prove that

Xlimsup, A, = limsup x4, and Xliminf, . 4, = liminf y4, .

n—oo n—oo

2.1.2 The Borel o-algebra on R

A o-algebra is a structure on a set. Another set structure you are familiar with is a
topology. Open sets and measurable sets are generally distinct entities, however,
we often want to assign a measurable structure to a topological space. For that,
there is a natural construction:
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Definition 2.8 Let (X,1x) be atopological space ("n>101 2n1M). The o-algebra
generated by the open sets is called the Borel o-algebra and is denoted

B(X) = o(1x).

Its elements are called Borel sets (M2 M212P) (roughly speaking, it is the collec-
tion of all sets obtained by countably-many set-theoretic operations on the open
sets).

Since we have special interest in the topological spaces R" (endowed with the
topology induced by the Euclidean metric), we want to get acquainted with its
Borel sets. We first investigate the Borel o-algebra Z(R), and then construct
o-algebras for products of measurable spaces.

Proposition 2.9 The Borel o-algebra %(R) is generated by each of the following
collections of subsets,

{(a,b) : a<b}
{[a,b] : a<b}
{[a,b) : a<b}
{(a,b] : a<b}
{(a,00) : aeR}
{[a, ) : aeR}.
Proof: Since
(a,b) c B(R)

[a,b] =02 (a=1/n,b+1/n) c B(R)
[a,b) =52 (a—1/n,b) c B(R)
(a,00) =2, (a.n) c B(R)
[a,00) =0 U2 (a—1/m,n) c B(R),

and since Z(R) is a o-algebra, it follows from Proposition 2.6 that the o-algebra
generated by each of the collections on the right-hand side is a subset of Z(R).
It remains to prove the reverse inclusion. Since every open set in R is a countable
union of open intervals (R is first countable (77WR3 7™ DAMOPR)), then

1z c 0({(a,b) : a<b}),
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and by Proposition 2.6,
B(R) =0(1r) co({(a,b) : a<b}).
Proving the other cases is not much harder. [

X ‘Exercise 2.10 Show that every open set in R is a countable disjoint union of open seg-
ments. (You may use the fact that the rational numbers form a countable set.)

N ‘Exercise 2.11 Prove that
BR) =0({[a,00) : aeR}).

Comment: Let C be a collection of subsets of X containing the empty set. We
define

C(rc:{Ucm (Ucn) : CnEC},
n=1 n=1

which is this collection, augmented by all possible countable unions of elements
and their complements. Define now recursively,

cO-¢c and i) — ¢,

Finally, let
D=]Jcw.

n=1
Intuitively, we might expect that D = o-(C). This turns out not to be true, showing
how large a o-algebra might be.

Theorem 2.10 The Borel o-algebra on R has the cardinality of the continuum,
card(#(R)) = card(R).
In particular, the cardinality of B(R) is strictly smaller than the cardinality of

P(R).

Proof: This is a set-theoretic statement, whose proof we leave for the interested
reader to complete. |

Another set-theoretic statement is:
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Theorem 2.11 A o-algebra is either finite or not countable.

Proof:[Sketch] One can show that an infinite o-algebra contains at least an X
number of disjoint set, A,,. Then, all the sets of the form

o0
s,
(145
n=1

where s, = 1 with Al = A, and A;' = A¢ are distinct, and there are 2% many of
those. [ |

2.1.3 Products of measurable spaces

Let (X,) be a sequence of non-empty sets. The product set

X = XX,

n=1

consists of sequences in which the n-th element belongs to X,,. For every
x=(x1,x,...)eX,
we define the projections
m,: X->X, T, i X - X,

Definition 2.12 Let (X,,%,) be a sequence of measurable spaces and let X =
X2, X,. The product o-algebra on X is

R, Yo ({m'(A) : AyeZ,, neN}).
n=1

Proposition 2.13 Let (X,,%,) be sequence of measurable spaces. Then,

éEn = G({S.O(An A, € Zn})
n=1

n=1
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X5 X
7' (Ay)
Al ml(A) nag'(A2)
A1 X1 Al Xl

Proof: Denote
S:{XAn : A,,EZ,,} and f:{ﬂ,;l(An) A, eX,, neN}.
n=1

We need to prove that o-(€) = o(F). By Corollary 2.7, it suffices to show that

Eco(F) and Fco(€).

Indeed, for every element of F,
n;‘(A,,) =Xy xox X, xA, x Xy x-eEco(E),

and for every element of &,

;An = ﬁn;I(An) eo(F).
n=1

n=1

Proposition 2.14 Suppose that for every n € N, X, is generated by &, and X € &,.
Then, ®;2, %, is generated by either of the collections of sets

F'={n,"(E,) : E, €&, neN}.

and

&= {;o(En : Enegn}.
n=1
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N ‘Exercise 2.12 Prove Proposition 2.14.

Proposition 2.15 Let X, ..., X, be metric spaces and let X = X; x --- x X,, be
the product space equipped with the product metric (the €,-norm of the metrics).
Then

é@(x ) ¢ BX).

If the spaces are separable, then this is an equality.

Proof: First. since for x,y € X,
n
2 2
dz(x,y) = Y d7 (x}9)),
j=1
it follows that convergence in X occurs if and only if each component converges,
and in particular, the projections r; : X — X are continuous.

By Proposition 2.14,
@@(Xj) =0 ({n;"(U;) : UjopeninX;, j=1,...,n}).
J:

Since 7, is continuous, every set of the form ﬂ;l(U j), where U; open in X, is
open in X, namely,
{n7'(U;) : U;openinX;} c 1%,

from which follows that

él)%%x,-) c o(t5) = B(X).

Next, suppose that the X; are separable; let C; c X; be countable dense sets, so
that

n

j=1
is a countable dense set in X. It follows that the collection of open sets,

]::{;(B(pj,r) : pjeCy, reQ*}

J=1
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is a countable basis for 7. Since B(p;,r) € #(X;), it follows that
Fc@®A(X;) hence  o(F)cQRAB(X)).
e e

On the other hand, since every element in 7 is a (necessarily countable) union of
elements of F,

txco(F)  hence  AB(X)co(F),

hence "
B(X) c @,%’(Xj),
s

which completes the proof. [

Corollary 2.16 For every n €N,

BR") - (%}%’(R).

Proof: R" = X}_; R and R is separable. |

A5 ‘Exercise 2.13 Show that every open set in R? is a countable union of open rectangles of the
form (a,b) x (c,d). Is it also true if we require the rectangles to be disjoint (Hint: a contradiction
is obtained by a topological argument)?

2.1.4 Monotone classes

The notion of a monotone class will be used later in this course. The motivation
for it is as follows: given an algebra A of sets, the o-algebra generated by A
is hard to characterize. As we will see 0(.A) can be characterized as being the
monotone class generated by A, which is easier to perceive.

Definition 2.17 Let X be a set. A monotone class on X (D*12m np‘anr: ) isa
collection of subsets of X closed under countable increasing unions and countable
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decreasing intersections. That is, if M ¢ & (X) is a monotone class, and A, € M
is monotonically increasing, then

A, e M.
n=1
Likewise, if B, € M is monotonically decreasing, then

(B, €M.

n=1

Comment: Every o-algebra is a monotone class. Also, the intersection of every
collection of monotone classes is a monotone class. It follows that every non-
empty collection & of sets generates a monotone class—the minimal monotone
class containing it—which we denote by M(E).

Lemma 2.18 If an algebra A is a monotone class, then it is a o-algebra.

Trick #2: Turn a sequence of sets into an increasing sequence of sets having the
same union.

Proof: Let A; € A, then define

A;.

Cs

B, =

~.
I
—_

Clearly, B, € A and they are monotonically increasing. Since 4 is also a monotone
class,

OB” = GA/GA,

n=1 j=1
proving that A is a o-algebra. |

The following proposition establishes a connection between monotone classes and
o-algebras:

Proposition 2.19 Let A be an algebra of subsets of X. Then, M(A) is a o-
algebra.

~
_ﬁh\lU\M_
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Proof . By the previous lemma, it suffices to prove that M(.A) is an algebra, i.e.,
that it is closed under pairwise union and complementation. Specifically, we will
proceed as follows:

1.
2.
3.

B e M(A) implies B¢ € M(.A).
BeM(A) and C € A implies BUC € M(A).
B,D e M(A) implies BuD € M(A).

. Let

U={BeM(A) : B e M(A)} c M(A),

be the subset of M(.A) closed under complementation. On the one hand,
since A is an algebra, A c U. On the other hand, I/ is a monotone class, for
if A, is an increasing sequence in U/, then

o0

UAcedi(4)  and (A = ()45 € M(A),

n=1
which implies that
UJA,eU.
n=1

Similarly, since U is closed under complementation, it is also closed under
the intersection of decreasing sequences. It follows that &/ = M(A), i.e.,
M(A) is closed under complementation.

Let C € A, and define

Te={BeM(A) : BUCeM(A)} cM(A).

Clearly, A € I'. Moreover, ['¢ is a monotone class, since if A, is an increas-
ing sequence in I'c (likewise, if A, is a decreasing sequence and considering
intersections), then,

JA, e M(A) and VB eM(A), BU(UA,,) = J(BUA,) e M(A),
n=1 n=1

n=1

which implies that

I'c=M(A) forall C € A.
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3. Let D € M(.A) and consider I'p. By the previous item, it follows that I'p
contains .4 and we can show in the same way that it is a monotone class. It
follows that

['p=M(A) for all D e M(A).

This concludes the proof. [

Note that we used the following recurring approach:

Trick #3: In order to prove that all the elements of a o-algebra X (or a monotone
class M) satisfy a Property P, consider the set of all elements of  (or M) satisfying
Property P, and show that it is a o-algebra (or a monotone class) containing a
generating collection of sets.

Theorem 2.20 (Monotone Class Theorem) Let A be an algebra of subsets of X.
Then,
M(A) = o(A).

Proof: Since o-(A) is a monotone class containing A, it follows that
M(A) co(A).
Conversely, since M(.A) is a o-algebra containing .4, then
o(A) cM(A),
which completes the proof. [

A5 Exer cise 2.14 1In each of the following cases, find the o-algebra and the monotone class
generated by a collection £ of sets:

(a) Let X beasetand P: X — X a permutation (i.e., a one-to-one and only map). Then, £ is
the collection of all sets that are invariant under P.

(b) Xisthe Euclidean plane and £ is the collection of all sets that may be covered by countably-
many horizontal lines.
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2.2 Measures

2.2.1 Definitions

Definition 2.21 Let X be a non-empty set. A set function on X (5v mRpND
M®1IP) is a function whose domain is a collection of subsets of X.

Definition 2.22 Let X be a non-empty set and let u be a set function whose do-
main is a collection & of subsets of X and whose range is the extended real line.
The function u is called finitely-additive (0°D10 D"2°IN) if whenever A, B € £ are
disjoint set whose union belongs to &,

p(AuB) = pu(A) +u(B).

It is called countably-additive or o-additive (D2 IR D) if whenever A, € £
are disjoint sets whose union belongs to &,

Definition 2.23 Let (X,X) be a measurable space. A measure (17") on X is an
extended real-valued o-additive set function p : £ — [0, oo], satisfying u(@) = 0.
The triple (X,X,u) is called a measure space (77°1 2r17n).

We next classify families of measure spaces:

Definition 2.24 A measure space (X, 2, 1) is called

(a) Finite (") if u(X) < oo.

(b) o-Finite ("0 o) if X = u®, X, with u(X,) < oo for all n.

(c) Semi-finite (73MM> *B0) if for every A € X for which u(A) > 0, there exists
a B c A such that 0 < u(B) < .

Examples:

1. A probability space (PM172027 2r171) is a finite measure space satisfying
p(X)=1.
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2. For every measurable space, the set function, defined by

0 A=y
H(A) = { .
oo otherwise,

is a measure (the infinite measure).

3. Let X be a non-empty set and let X = &?(X). Every function f : X — [0, co]
defines a measure u on X via,

u(A) =2 f(x).

XxeA

Note that we may have here an uncountable sum, which is defined as the
supremum of all finite partial sums. If f(x) = 1 for all x, then y is called
the counting measure of X (7717 D). If f(x) = 1 and f(x) =0 for all
X # X, then p is called the Dirac measure (PR3 D7) at xo.
—4heo1sy—

& ‘Exercise 2.15 Let X be an infinite set with £ = 2 (X). Define

0 A is finite (or empty)
H(A) = o
oo A is infinite.

Show that y is finitely-additive, but not o-additive (hence not a measure).

2.2.2 General properties of measures

Proposition 2.25 Let (X, X, u) be a measure space. Then,

(a) Monotonicity (DNTIMN): if A ¢ B, then u(A) < u(B).
(b) Sub-additivity (D1P2'®™IR DN): for every sequence (A,) of measurable sets,

K (GAn) < iﬂ(An)

(both sides may be infinite).



W‘ Chapter 2

(c) Lower-semicontinuity (¥751 13n5 M) If (A,) is an increasing se-
quence of measurable sets, namely, Ay c A, c ..., then

n=1 oo

(Why does the limit on the right-hand side exist?)

(d) Upper-semicontinuity (3°251n 73mn5 me'sn): If (A,) is a decreasing se-
quence of measurable sets, namely, Ay > A, > ..., and there exists some
k € N for which u(A;) < oo, then

H (mAn) = lim ,u(An)'
n=1 n—»oco

Proof-

(a) Monotonicity is immediate, as A c B implies that

u(B) =pu(Au (BNA)) =pu(A) + u(B~A) > u(A).

(b) To prove sub-additivity, we replace (A, ) by a sequence of disjoint sets (B,,)
(Trick #1),
n—1
B] =A1 and Bn:An\(UAk)-
k=1
Then, B, c A,, and

(e e]

[18. = )A.
n=1 =

By o-additivity and monotonicity,

u (GAn) = (IjB) = iu(Bn) < iu(f\n)a

where those equalities and inequalities hold also if the terms are infinite.
(c) To prove lower-semicontinuity we use the same trick, except that the mono-
tonicity of (A,) implies that for every n,

A= 11B.
k=1
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Thus,

n=1

= lim p (H Bk) = lim u(A,).

k=1

(d) Without loss of generality, we may assume that u(A;) < oo. To prove upper-
semicontinuity, we would like to use the fact that if (A,) is decreasing, then
(A¢) is increasing. It follows from the previous item that

u(fjAn) =ﬂ(GA2) = lim p(A7),

n=1

however, this is not obviously helpful; unlike in probability theory, it is not
generally true that u(AS) = 1 — u(A,). However, if u(A;) < oo, then we can
complement with respect to A;. That is, (A; \ A,) is increasing, hence from
the previous item,

N(U(Al \An)) = lim (A N Ay).
ol n—oo

Now,

fj(A1 “A,) = [](A1 NAS) = A;n (GA;) AN (ﬁA) - A~ (ﬁA,,),

n=1

hence

u(Ar) —u(ﬁAn) - lim (u(A1) - (4,)).

n=1

which completes the proof.

N ‘Exercise 2.16 Let (X, X, u) be a measure space. For A, B € X, their symmetric difference
is
AAB=(ANB)U(B\A).

Show that for every A, B,C € X,

1(AAB) < u(AAC) + u(CAB).
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N ‘Exercise 2.17 Let j be a set function on a measurable space (X, X). Show that if u(@) = 0,
w is finitely-additive and countably-subadditive, then y is a meaure.

N ‘Exercise 2.18 Construct an example showing that upper-semicontinuity requires some
finiteness assumption, as it may well be that p(A,) = oo for all n, however, u (N2, A,) < oo.

N Exercise 2.19 Let (X,X) be a measurable space. Let u : £ — [0, oo] satisfy u(@) = 0 and
be finitely additive. Prove that u is a measure if and only if it is lower-semicontinuous.

N ‘Exercise 2.20 Let (X, X, 1) be a measure space. Let E € . Prove that the set function

uE(A) = p(AN E)

is a measure on (X, X).

N ‘Exercise 2.21 Every probability measure on a metric space is regular: Let (X,d) be a
metric space and let ¥ = 2(X) be the o-algebra of Borel sets. Let 4 be a probability measure on
(X,X) (the important fact is that it is finite). Prove that u is regular in the following sense: for
every A € X and for every € > 0, there exist a closed set C and an open set U, such that

CcAcU and u(UNC)<e.

Hint: (a) Show that this holds for every closed set. (b) Show that the collection of measurable sets
for which this assertion holds is a o-algebra.

N ‘Exercise 2.22 Fatou’s lemma for measures: Let (X,Z, ) be a measure space. Let (A,) c
2. Show that
u(liminf A,) < liminf u(A,),

where liminf,_, . A, = U, 2| N2, Ax. Further, show that if
u (U A,,) < oo,
n=1

then
u(limsupA,) > limsupu(A,),

n—oo n—oo

where limsup,_, ., A, = Mho; Ups, Ax.

N ‘Exercise 2.23 The following statement is known as the Borel-Cantelli lemma: Let A, be
a sequence of measurable sets in a measure space (X, X, ). Suppose that

> u(A,) < oo.
n=1
Prove that almost every x € X is an element of only finitely many A,’s, i.e.,

u({x :|{n: xeA,}=00})=0.

Given in 2018
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N Exercise 2.24 Let (X,Z,u) be a measure space and let C ¢ £ be a sub-o-algebra. Denote
by v = ¢ the restriction of y to C.

(a) Show that v is a measure.
(b) Assume that y is a finite measure. Is v necessarily finite?

(c) Does v inherit o-finiteness from u?

N ‘Exercise 2.25 Let X be a countable set endowed with the o-algebra 22 (X). Show that
every measure on this space can be uniquely represented in the form

H= Zcxéx’

xeX

for some ¢, € [0, oo].

2.2.3 Complete measures

Q)eﬁnition 2.26 Let (X,X,u) be a measure space. A measurable set A is called
a null set (71 713p) if u(A) = 0. A property of points in X is said to occur
almost everywhere (a.e.) (DN 502 nwnd RPN if the set of points in which
it does not occur is measurable and has measure zero (compare this to the notion
of a property occurring almost always in probability).

Generally, the definition of a measure space does not require subsets of null sets
to be measurable. Thus, even though one would clearly like to assign such sets a
zero measure, this is not possible. Yet, measure spaces in which subsets of null
sets are measurable turn out to have nice properties.

As an example of how completeness may be relevant, suppose that we already
have the Lebesgue measure on (R, %(R)), which assigns a measure zero to all
singletons. We want to use this measure to define the Lebesgue measure on
(R2, Z(R) ® #(R)). Such a measure assigns measure zero to every line. Let
A c R be a non-measurable set, and consider the set

{0} x A c R%,

It is not #(R?)-measurable even though we would want it to have measure zero.

This leads us to the following definition:

Definition 2.27 A measure space is called complete (D), if every subset of a
null set is measurable (and by monotonicity, it is also a null set).
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The following theorem asserts that every measure space has a canonical extension
into a complete measure space.
Theorem 2.28 (Completion) Let (X,%,u) be a measure space. Let
N={AeX : u(A)=0}
be the collection of its null sets. Then,
Y ={AUB : A€eX, Bc N forsomeN eN}

is a o-algebra. Moreover, u has a unique extension u' on X', which is complete,
and is called the completion (Tn5Wn) of p.

Comment: This is probably not your first encounter with a completion theorem,
e.g., the completion of a metric space.

Proof: First, note that both £ and AV are closed under countable unions (a count-
able union of null sets is a null set). Hence, if

C,=A,UuB,eY, A,eX, B,cN,ecN,
then, since U2, B, c U2, N, € N,

e (0o [0 v

n n=1

Next let,
C=AuBeY, AeX, BcNeN.

Then (see figure),
C°=(AUN)°U(NNANB)eY,
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proving that ¥’ is indeed a o-algebra.

It is quite clear now to define the extended measure u’(A U B), as we must have

u(A) = (A) <p'(AUB) </ (AUN) = pu(AUN) <pu(A) +u(N) = u(A),
1.e.,
W(AUB) = u(A).
We first need to show that this extension does not depend on the representation:

let
A1 U B, =A2UBz,

where A|,A, €%, Bc N, e N and B, c N, € N. Then,
AjcAjuB; =A,uB, cAbUN,,
and by monotonicity,
p(AL) <p(Az) + pu(N2) = pu(Az).

By symmetry, (A;) = u(A).
Now that we have shown that i’ is well-defined, it is easy to see that it extends u.
For A € 2,

A=Aug,

where @ c @ € 4, hence
H'(A) = p(A),
namely, u'ls = p.
We next prove that ¢’ is a measure, i.e., that it is o-additive. This follows from the

fact that null sets are closed under countable unions. That is, if A, is a sequence
of measurable sets, B, c N, ¢ N, and A, U B, are disjoint, then

(e - (T4 o118 (14 - Sutan - Sua, o).
n=1 n=1 n=1 n=1 n=1 n=1
We next prove that g’ is complete. Let A € ¥ and B ¢ N € \ satisfy
#(AuB)=u(A)=0.
Then, A e N andsois AuN. If C c Au B, then

C=puCeY,
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proving that u’ is complete.

It remains to prove that the extension is unique. Let v be an extension of u defined
onY.ForAeXand Bc Ne N,

u(A) =v(A) <v(AuB) <v(AUN) <v(A) +v(N) = u(A) + u(N) = u(4),

proving that v(A U B) = u(A) = u'(Au B). [

2.3 Borel measures on R: a first attempt

Our ultimate goal is to define a measure p on R satisfying

pu((a,b)) =b - a.

The measure u has to be defined for all open segments, and as a result, it must be
defined at least for all sets in the o-algebra generated by the collection of open
segments. i.e., for all sets in the Borel o-algebra Z(R).

In this section we shall start developing such a measure. In fact, we shall start
constructing a more general family of Borel measures on the real line. The gener-
alization is based on the following observation:

Proposition 2.29 Let (R, ZA(R),u) be a measure space, such that u is finite for
every finite interval. Consider the cumulative distribution function (10777 D*3pND
N1288RT NMISD)

u((0,x]) x>0
F(x)=10 x=0 2.1)
-u((x,0]) x<0
Then,

(a) Forevery a<b,
u((a,b]) = F(b) - F(a).

(b) F is monotonically-increasing.
(c) F is right-continuous (including at —oo).
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Comment: You may be familiar with the cumulative distribution function from a
Probability course. The standard length measure on the real line corresponds to
the case F(x) = x.

Proof-
(a) Forevery 0 <a<b, (a,b] = (0,b] ~ (0,a], hence

u((a,b]) = u((0,b]) - u((0.a]) = F(b) - F(a).

Likewise, for every a < 0 < b, (a,b] = (a,0] u (0,b], hence

u((a,b]) = u((a.0]) + u((0,5]) = F(b) - F(a),

and similarly for the case a < b < 0.

(b) The monotonicity of F follows from the monotonicity of .

(c) Without loss of generality, assume that x > 0. By the upper-semicontinuity
of u (for sets of finite measure!), for every sequence x, \ X,

[ee)

tim F5) = fim (0.50) = (Y051 ) (0.5 - F o).

n=1

The same argument works for x < 0 and x = —oo.

We will proceed in the reverse direction, and construct for every monotonically-
increasing right-continuous function F, a Borel measure on the real line; this con-
struction does not cover all possible Borel measures on the real line, but as we
shall see, it covers all possible Borel measures that are finite on finite intervals.
Thus far, given such a function F, we have a set-function for semi-open sets of the
form (a,b]. Note that we may well let a and b assume the values +oco. The mea-
sure, of the semi-open intervals (—oo, b] and (a, oo ] will be finite or not depending
on whether F has a finite limit at +oo.

Thus, we have an early notion of a set-function for all sets in the family
E={a}u{(a,b] : —c0<a<b}u{(a,) : acR}.

The reason for working with semi-open intervals is essentially technical, and re-
lated to the following definition:
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Definition 2.30 Let X be an non-empty set. An elementary family (n*110° Inwn)
of subsets of X, is a collection & of subsets of X (the elementary sets), satisfying

(a) B €.
(b) & is closed under pairwise intersection (hence under finite intersection).
(c) Forevery E € &, E€ is a finite disjoint union of elementary sets; that is

VE €&, dneN, (F)j c&, suchthat E°=]]F;.
k=1

‘Example: The semi-open intervals are an elementary family of subsets of R. A A
A

An elementary family of sets is somewhat reminiscent of a subbase (773rn5 0°02)
in a topological space, in that it is a basis for constructing an algebra, as shown by
the following proposition:

Proposition 2.31 Let £ be an elementary family of subsets of X. Then, the col-
lection of finite disjoint unions of elementary sets,

Az{HEk : ne Nu {0}, El,...,Eneg},
k=1

is an algebra.

Proof: Clearly, @ € A. Next, A is closed under pairwise intersection: Let
A=]JEicA and B=]]F;cA,
k=1 =1

then -
AnB=]]]]J(ExnF;)eA,

k=1 j=1

where we used the fact that £ is closed under pairwise intersection. Finally, A is
closed under complementation: Let

n g
A=]]E.,  where E{=]][F;cA
k=1

J=1
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Then by Item (b),
A =(E;e A
k=1

The next step is to use monotonically-increasing, right-continuous functions F :
R — R to construct a set-function on the algebra A. Measures, however, are
defined on o-algebras, which brings us to the following definition:

Definition 2.32 Let X be an non-empty set and let A be an algebra of subsets of
X. A function py : A - [0, 0] is called a pre-measure (771 01p) if uo(@) = 0
and g is o-additive. Note that the disjoint union of (E,) c A is not necessarily
in A; however, if it is, then

[ee)

Ho (I:J[En) = Z/JO(En)

n=1

Comment: While a pre-measure looks “almost” like a measure, its restriction to an
algebra, rather than a o-algebra, makes it easier to construct, hence a convenient
starting point for constructing measures.

Proposition 2.33 Let F : R — R be monotonically-increasing and right-
continuous (including at —oc). Let A be the algebra of disjoint unions of semi-
open intervals. Then, the set-function py : A — [0, 00] defined by po(2) = 0
and

,U()(A) = Z(F(bk) — F(ak)) fOl" A= H(ak,bk] (22)
Jj=1 k=1
is a pre-measure for A. (Note that one of the a, may be —c.)

Proof: We will break the proof into a few lemmas. [

Lemma 2.34 The function g defined by (2.2) is well-defined; it does not depend
on the representation of elements in A.
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Proof: For example, suppose that

n

I=(a,b]= ﬁ(ak,bk] =[] L

k=1 k=1

The (ay), (by) can be re-ordered, such that
a=a1<bj=a,<by=--=a,<b,=b.

By the definition of uy,

m(gu):iuuw—Fwowfuw—Fwo=mu>

With some technical work, we may show that y is uniquely-defined for any ele-
ment of A. u

Lemma 2.35 The function u defined by (2.2) is finitely-additive.

Proof': This is immediate. Let
A= H(Cli,bi] and B= H(Cj’dj]
i=1 =1
be disjoint finite disjoint unions of semi-open intervals. Then,

jo(A 1 B) = 2F@>F @) + iww»%um=mmwmw>

Lemma 2.36 Let

I
38
R

I=(a,b]= Iz(ambn]

S
]
—_

then

mm=2mw)
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Proof: On the one hand, since for every n,

]i[lk c I,
k=1

and since y is finitely-additive,

Ho (glk) = kﬁ;ﬂo(lk) <po(I).

Letting n — oo,

iﬂo(ln) < po(1).

n=1

In the other direction, let £ > 0 be given. Since F is right-continuous, there exists
a 0 > 0 such that
F(a+6)-F(a)<e,
1.e.,
uo((a,a+6]) <e.

Likewise, for every n € N, there exists a ¢,, > 0, such that

F(by+6,) - F(by) < 25

namely.
e
/J()((bn,bn + 6,,]) < E
a+o b, +6,
& { ]
a a, l’)n b
The union,

J(an by +6,)
n=1

is an open cover of the compact set [a + 6, b]. Thus, there exists a finite sub-cover,

J(ans bn, +64,) 2 [a+6,b].
k=1

—6heo18)—
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By monotonicity,

uo((a+6.b]) < guo«ank,bnk +6,]).

By the definition of ¢ and &,

Ho(1) = po((a,a +61) + pol (a + 5,b))

<&+ Zﬂo((ank’bnk + 6nk:|)
k=1

<e+ Z (,uo((ank,bnk]) + i)

P 2m

<o+ Y (uol(anb)) + 5 )
& ay, Op N

S s Ho o
=2¢c+ Z,uo(l,,)

n=1

Since ¢ is arbitrary,
o(I) < po(ly),
n=1

which completes the proof.

Lemma 2.37 The function g defined by (2.2) is o-additive.

Proof: Suppose that A, € A are disjoint, with

Pn
Ay = I_I In,ka
k=1

such that

) q
[TA=]]JneA
n=1

m=1

‘We need to show that

Zﬂomn) - ﬁ_{luo(fm),
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1.e., that
0 Dn q
Y 1T ro(Lus) = T Ho(Jm)-
n=1 k=1 m=1
Now foreverym=1,...,q,
o0 Pn
H U(Jm N In,k) = Jm,
n=1 k=1
hence by the previous lemma,
o0 Pn

NO(Jm n Irz,k) = /JO(Jm)
n=1 k=1

Summing over m we recover the desired result. [

In conclusion, given any monotonically-increasing right-continuous function F,
we have a pre-measure g, defined on the algebra A of finite disjoint unions of
semi-open intervals. Moreover, o (A) = Z(R). What is now missing is a method
for extending pre-measures into measures. We undertake this task in the next
section. This is not a trivial task, as o-algebras may be very large collections, for
which we do not have an explicit representation.

2.4 Outer-measures

2.4.1 Definition

Definition 2.38 (outer-measure) Let X be a non-empty set. An outer-measure
(02 77m) on X is a function p* : P(X) - [0, oo] satisfying

(a) (@) =0.

(b) Monotonicity: if Y c Z then u*(Y) < u*(Z).

(c) Countable sub-additivity (D°D™1 DPAWIR DN): for every sequence (Y,) C

2 (X),
w (On) < S
n=1 n=1

Unlike measures, outer-measures, which are defined for all subsets of X, are easy
to construct. The following proposition provides a canonical construction:
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Proposition 2.39 Let £ ¢ P (X) be a collection of sets including & and X, and
let p: & - [0, 00] be a set function satisfying p(2) = 0. Then,

w(Y) =inf{ip(E,,) t E, €&, Yc GEn} (2.3)

n=1 n=1

IS an outer-measure.

Proof: First, note that u* is well-defined and non-negative, as the set

{Zp(En) : E, €€, Yc UE,,}
n=1 n=1
is non-empty (choose E| =X, and E; = @ for all n > 2). Also, u*(@) = 0 since we
can take E, = g for all n. If Y c Z, then a covering of Z is also a covering of Y,
1.e.,
{(En)cé' :Yc UEH}D{(E,,)CS : Zc UEn},
n=1 n=1

which is an inclusion between sets of sequences. Hence,

{Zp(En) : E, €&, Yc GE} = {Zp(En) :E, €&, Zc GE}
n=1 n=1 n=1 n=1

which is an inclusion between sets of numbers. The infimum of the left-hand side
is less or equal than the infimum of the right-hand side, i.e.,

p(Y) <p*(2).

It remains to show that u* is countably sub-additive. Let (Y,) ¢ Z(X). If
w*(Y,) = oo for some n, then there is nothing to prove. Otherwise, by the def-
inition of u*(Y,), there exist for every & > 0, E, ; € £, such that

d e

Y, c|JEuw and Y p(Enx) < ¥ (Yy) + >
k=1 k=1

Then,

o0 o0

UYn c UUEn,k’

n=1 n=1k=1
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and

S p(Eni) < S (V) + .

n=1k=1 n=1
proving that

© (Dl Yn) < 2#*(%) +e.
Since ¢ is arbitrary, u* is countably sub-additive. |
‘Example: We can define an outer-measure on R by taking

E={(a,b) : a<b}UBUR,

and setting p((a,b)) = b - a, p(@) = 0 and p(R) = co. We will do something in
that spirit shortly. AAA

2.4.2 Carathéodory’s theorem

We next follow the path of Carathéodory and show how an outer-measure may
be used to define a measure on a collection of measurable sets. (Constantin
Carathéodory (1873-1950) was a Greek mathematician who spent most of his
professional career in Germany.)

Definition 2.40 Let u* be an outer-measure on X. A set A c X is called p*-
measurable if

W (Y)=uw(YnA)+u*(YnA°) VY cX.

Comment: By the sub-additivity of the outer-measure, it is always the case that

p(Y) spt(YnA) +pr (Y nAY),

—Theoi1s)—
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hence A is yu*-measurable if and only if
w(Y) > (YnA)+u (Y nA) VY cX.

Since this property holds trivially if u*(Y) = oo, it suffices to verify it for u*-finite
sets Y.

N ‘Exercise 2.26 Let X be a non-empty set, and let

0 Y=02
* Y —
w () {1 otherwise.

(a) Show that ¢* is an outer-measure. (b) Find all the u*-measurable sets.

Proposition 2.41 Let u* be an outer-measure on X. Then, the collection
Y={AcX : Aisu*-measurable}

of all u*-measurable sets is a o-algebra, which we denote by o(u*).

Proof: We will proceed as follows:

(i) Show that X is non-empty, by showing that @ € X.
(i) Show that A € X implies that A € Z,
(iii) Show that X is closed under finite union.
(iv) Show that X is closed under countable union.

(1) For every Y c X,

p(Y) =p* (Y n@) +p* (Y ng),

w*(@)=0 w*(Y)

1.e., Je.

(i1) X is closed under complementation, since A and A¢ play a symmetric role in
the definition of y*-measurability.

(iii) Let A, B € . We need to show that for every ¥ c X,
wW(Y)2u*(Yn(AuB)) +u* (Y n(AuB)°).

——— ———
YiuY,uYs Yy
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[
57
\/

Since A, B are u*-measurable,
W (V) = (Y1 ¥a) 4 (Ys 1 Vo)
= () +p*(Y2) + " (Ys) + " (Ya)
> (YyuYouYs)+u(Yy),

where in the last passage we used the sub-additivity of u*.

(iv) By Proposition 2.3, it suffices to show that X is closed under countable disjoint
unions. Let (A,) c  be a sequence of disjoint u*-measurable sets, and define

B, = ﬁAk and B= ]O_O[A,,.
k=1 n=1

Let Y c X. Since A, € Z for every n,
W YnB)=pw(YnB,nA,) +u* (Y nB,NAS)
= (YnA,)+u* (YnB,),
from which follows inductively that
w (Y0 B,) =Y u(YnA). (2.4)
k=1
By the closure of X under finite unions, B, € Z; it follows that for every n,
p(Y) = (YnB,) +u" (Y nB)

=3 (YA +p* (Y nBY)

k=1
>3 (Y nAg) +pt (Y B,
k=1
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where we used (2.4), replaced B¢ by the smaller B¢ and used the monotonicity of
w*. Letting n — oo,

,u*(Y)Zi,u*(YmAk)ﬂf(YmB"). (2.5)
k=1

Finally, using again the countable sub-additivity of u*,

w(YnB)=u* (Ym (]_[An)) = u* (I_[(YmA,,)) < (YnA),  (2.6)
n=1 n=1 k=1
showing that
p(Y) 2 p* (Y nB) +pu* (Y nB°),
ie,BeX. [ |

N ‘Exercise 2.27 Let u* be an outer-measure on a set X. Let A, B ¢ X, such that at least one
of them is p*-measurable. Prove that

p'(A) +u"(B) =pu"(AuB) +u" (AN B).

N ‘Exercise 2.28 Let u* be an outer-measure on X. Suppose that u* is finitely-additive on
P(X), i.e., for all disjoint A, B c X, u* (A u B) = u*(A) + u*(B). Show that o(u*) = 2(X).

Theorem 2.42 (Carathéodory) Let u* be an outer-measure on X. Then, the re-
striction i = p*|y(+) is a measure on (X,0(u*)). Moreover, this measure is
complete.

Proof: The property u(@) = 0 follows from the defining properties of outer-
measures and the fact that @ € o-(u*). To show that u is o-additive, let (A,) c
o (u*) be disjoint and let B = [[;2, A,. We have just shown (see (2.5) and (2.6))
that for every Y c X,

u () = zu*(ymk) F i (YN BY) = i (Y 1 B) + i (Y 1 BY),

Substituting ¥ = B and using the fact that u*|; ) = 4,

u(B) = " (B) = gu%BmAk) st (BB = gumk).
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It remains to show that u is complete, i.e., that o(u*) contains every subset of
every pu-null set. Let N € o-(u*) satisfy u(N) = 0 and let A ¢ N. By the sub-
additivity and the monotonicity of the outer-measure, for every ¥ c X,

p(Y) <p (Y nA) +p* (Y0 A) <p"(N) +p*(Y) =0+ p*(Y),

i.e., A is u*-measurable. [ |

To summarize, we may construct a measure on X as follows: take any collection £
of sets including @ and X, along with a function p : £ — [0, co], which only needs
to vanish on the empty set. Then, construct an outer-measure u* via formula
(2.3). The outer-measure defines a o-algebra of u*-measurable sets, o-(u*). The
restriction of u* to this o-algebra is a complete measure.

N Exercise 2.29 Let u* be an outer-measure on X, and let 4 = 4¢*|(,+) be the induced com-
plete measure on the o-algebra of u*-measurable sets. Let v* be the outer-measure defined by
(2.3), with £ = o-(u*) and p = u, namely,

vi(Y) = inf{i,u(En) tE eo(u’), Yc QE"}

n=1

(a) Prove that
W (Y) <vi(Y) VY cX.

(b) Prove that u*(Y) = v*(Y) if and only if there exists an A € o(u*), such that ¥ c A and
1 (¥) = pu(A).

The following proposition asserts that if one starts with a o-finite measure p,
constructs from it an outer-measure y*, and proceeds to derive a measure fi using
Carathéodory’s theorem, then one obtains the closure of the original measure.

Proposition 2.43 Let (X,Z,u) be a o-finite measure space. Let pi* be the outer-
measure induced by u. We denote by [i the restriction of u* to o(u*). Prove that
(X,0(u*), ) is the completion of (X, X, ). That is, all the sets A € o-(u*) are of
the form

A=BuUY,

where B € X and Y c N with u(N) = 0.

ESY ‘Exercise 2.30 Prove Proposition 2.43.

—8ho18)—
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2.4.3 Extension of pre-measures

Thus far, we have the following construction:

(€.p) (Z(X), 1) (o (k). 1l )
A set function An outer-measure A complete measure

Note that it is not clear a priori which measure u results from a given set function
p. A useful construction would start from a clever choice of set function p, by
taking & sufficiently large and p satisfying properties expected for p.

In this section, we show how to use Caratheddory’s theorem to extend a pre-
measure defined on an algebra A into a measure on the o-algebra o(.A). In par-
ticular, this will complete the construction of Borel measures on R with given
cumulative distribution function F.

Proposition 2.44 Let A be an algebra of subsets of X and let y be a pre-measure
on A. Let u* be the outer-measure defined by

1 (4) =inf{iﬂ0(En) By e A ACDE,,}.
n=1 n=1

Then,

(a) 1|4 = po.
(b) Every setin A is u*-measurable, i.e., A c o(u*).

Comment: Since A is an algebra, we can replace any sequence E, from a disjoint
sequence F,, such that

ﬁm:ﬁm.

n=1 n=1

Since by monotonicity,
> to(Fu) <Y po(En),
n=1 n=1

such a substitution does not change the infimum.
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Proof: (a) Let A € A. Setting E, =Aand E, = @ forn> 1,

oo

Ac]]E, and > Ho(En) = po(A),
n=1

1.e.,
1 (A) < po(A).

To show the reverse inequality, suppose that A c []77, E,,, with E,, € A. Then,

A:Am(ﬁEn)=g(AnEn).

n=1

We have a situation where a countable disjoint union in A is an element of 4. By
the o-additivity of the pre-measure,

po(A) = ) po(ANE,) <) uo(Ey).
n=1 n=1
Since this holds for any sequence (E,) covering A, it follows that
Ho(A) < 41° (A).

(b) Let A € A and let Y c X. By the definition of the outer-measure, there exists
for every € > 0 a sequence (E,) c A, such that Y c [[,2, E, and

S (B, < (Y) +e.

n=1

—9heo1y—
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Since g is o-additive on A,

W(Y)+e> i,uo(En)

ilm)(EnnA) + po(E, 1 A°))
- Zu*(EnﬂA) + wamm

>u* (]o_lEnmA)+u* (]lenmA“)

> (YnA)+u (Y nA),

where the passage to the second line follows form the fact that A, E, € A, the
passage to the third line follows from p*| 4 = po and the passage to the fourth line
follows from the sub-additivity and monotonicity of u*. Since ¢ is arbitrary, it
follows that A is u*-measurable. |

Theorem 2.45 (Extension of a pre-measure) Let A be an algebra of subsets of X

and let py be a pre-measure on A; let u* be the outer-measure induced by .
Then,

(a) u=p*|o(a is a measure on o(A) extending p.

(b) If v is some other measure on o(A) extending o, then
v(A) < u(A),

(c) v(A) = u(A) for all u-finite sets.

(d) If wo is o-finite, then the extension is unique.

Proof: (a) By Proposition 2.44, A c o-(u*), hence

o(A) cou).

Since
M*|O-(/l*) is a (complete) measure,
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and since the restriction of a measure on a sub-c-algebra is a measure, it follows
that

M = [ |5(a) is @ measure.

Since p* extends u, so does u.

(b-c) Next, let v be a measure on o (A) extending po. If u(A) = oo then the
assertion v(A) < u(A) is trivial. Otherwise, let A € o(A) be u-finite. Since
u(A) = u*(A), there exists for every £ > 0 a sequence E, € A such that A c
H;il Em and

S o(E,) < (4) + 8 = p(A) + &,

n=1

(This is where we used the finiteness of ©(A).) On the other hand, by the sub-
additivity of v,

[e.e]

v(A) < S V(E,) = iuown),

n=1
proving that v(A) < u(A).

For the reverse inequality, set

E:]jE,,.

n=1

By the countable additivity of the measure,
H(E) = Y mo(E,) < p(A) +,
n=1
hence

H(E) -p(A) <e.

By the o-additivity of the measures ¢ and v, and the fact that ¢ and v coincide on

A,
v(E) = Y v(E) = Y u(En) = u(E)

It follows that _
H(A) < p(E) = v(E) = v(A) + V(E N A) < v(A) + u(E ~ A) < v(A) +e,

proving that u(A) = v(A).
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(d) Finally, suppose that u is o-finite, i.e.,

(@

X=X,

]
—_

n

with X, € A and po(X,,) < oo; without loss of generality we may assume that the
X,, are disjoint. Then, for every A € o(A),

H(A) = iu(A nX,) - iv(A NX,) = v(A).

A5 Exer cise 2.31 Letu* be an outer-measure on X induced by a pre-measure j on an algebra
A. Suppose that E is u*-measurable, and there exist A, B c X, such that £ = A u B and

W (E) = " (A) + 4" (B).

Prove that A, B are both u*-measurable.

A5 ‘Exercise 2.32 Let A be an algebra of sets of X. Let A, be the collection of countable
unions of sets in A, and let A be the collection of countable intersections of sets in A,. Let uq
be a pre-measure on A and let u* be the induced outer-measure.

(a) Show that for every Y c X and & > 0, there exists an A € A, such that ¥ c A and
W(A) <t (Y) +e.

(b) Show that if u*(E) < oo, then E is u*-measurable if and only if there exists for every & > 0
aBe Ays, suchthat Ec Band u*(BNE) < e.

(c) Show that the restriction u* (E) < oo in (b) is not needed if y is o-finite.

N ‘Exercise 2.33 Let u* be an outer-measure on X induced from a pre-measure i on an al-
gebra A, and let y = ut*|;(,+) be the induced complete measure on the o-algebra of 1" -measurable
sets. Let u** be the outer-measure defined by (2.3), with £ = o-(u*) and p = u, namely,

u**(Y)=inf{iu(En) D Eyeo(u’), YCGE,,}.

n=1 n=1

Prove that
w(Y) =" (Y) VY eX,

In other words, y and u induce the same outer-measure, and as a result, if one starts with a pre-
measure the process of extracting a measure cannot be further iterated to yield another measure.
(Note that this exercise differs from Ex. 2.29 in that u* is induced by a pre-measure.)
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To conclude, we have the following picture:

Ho defined on [ w* defined on ( u defined on

an algebra A L 2(X) ) . o(A4) )
( ji defined on ) ( p* defined on )
L ow) 2K

The fact that u induces the same outer-measure p* as the one that generated it was
proved in Ex. 2.33. Finally, by Proposition 2.43, the complete measure j is the
completion of p.

N ‘Exercise 2.34 Let y, be a finite pre-measure on (X, %), and let u* be the induced outer-
measure. For Y c X, we define its inner-measure (D278 77°0),

px(Y) = po(X) — ™ (Y°).

Prove that A € o(u*) if and only if its outer-measure coincides with its inner-measure.

2.5 Measures on R

2.5.1 Borel measures on the real line

We may now combine together the construction of the pre-measures induced by
a monotonically-increasing, right-continuous function F" and Carathéodory’s the-
orem applied by pre-measures (Theorem 2.45). Then, we will focus our attention
on the standard Lebesgue measure, which corresponds to the choice of F(x) = x.

Proposition 2.46 (a) Let F : R - R be monotonically-increasing and right-
continuous. Then, F defines a unique Borel measure, denoted ur, on R, such
that

ur((a,b]) = F(b) - F(a).

—10heo1n—
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(b) Conversely, every Borel measure u on R, which is finite on all bounded Borel
sets, is of the form u = up, where

u((0,x]) x>0
F(x)=10 x=0 (2.7)

—u((x,0]) x<O.

Proof: (a) By Proposition 2.33, F defines a pre-measure y, on A. By the exten-
sion Theorem 2.45, u, extends to a measure on o-(A) = Z(R), i.e., into a Borel
measure yr. Moreover, this measure is o-finite, as

R= D (n,n+1] and to((n,n+1])=F(n+1)-F(n) < oo.

n=—00

(b) Given a Borel measure u and defining F as in (2.7), we obtain that u and up
agree on semi-open intervals, hence on 4. By the uniqueness of the extension,
they are equal |

The measure ur is not complete. Its completion, Ar, which equals ,u;|zF, where
Zr = o(u}), and y} is induced by up, is called the Lebesgue-Stieltjes measure
associated with F.

We proceed to study regularity properties of the family of Borel measures yr on
R;

Lemma 2.47 Let (R, B(R),ur) be a Borel measure. For every A € B(R),

ue(4) - mf{ijjlm((an,bn]) Ac Q(an,bn]}.

Proof': This is an immediate consequence of the the definition of the outer-measure
Uy, which is generated by the pre-measure p, on the algebra of finite unions of

semi-open intervals, and the fact that ur and o coincide for semi-open intervals.
|
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Lemma 2.48 Every open interval on R is a countable disjoint union of semi-open
intervals. In particular,

{ZﬂF((an,bn]) tAc Q(an,bn]} > {iluF((an,bn)) tAc Q(ambn)}

Proof: Clearly,
(a,0) = [[(a",0"],
k=1

where a' = a and b* ~ b. Using the same notation, if

A c J(ay, by),

n=1

then .
Ac UL 5
n=1k=1
and o -
21( lﬂF((aﬁabﬁ]) = pr((an bn)),
proving the second part. |

Lemma 2.49 Let (R, B(R),ur) be a Borel measure. For every A € B(R),

ur(4) =inf{§uF<<an,bn>> A Q(an,m},

i.e., the semi-open intervals have been replaced by open intervals.

Proof: For A € (R), denote

V(A) = inf{i,up((an,bn)) Ac G(an,bn)}.

n=1 n=1
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It follows from Lemma 2.48 that
ur(A) <v(A).

Conversely, let A € Z(R) and let € > 0. By definition, there exist (a,,b,], such
that

A c | J(a,,b,] and Y ur((an, ba]) <pr(A) +e.
n=1 n=1
Since F is right-continuous, there exists for every n a 6,, > 0, such that
F(bn +6n) - F(bn) < 5,

i.e.,
£

pE((@n, by +6,)) < pp((@n, by +6,]) < pr((an, bal) + o

Then,

o0

Ac U(am bn + 6n)»

n=1

and by the definition of v as an infimum,

V(A) <> pup((an, by +64)) < Y pr((an b)) + € <up(A) + 2e.
n=1 n=1
Since this holds for every € > 0, we obtain

v(A) < pr(A),

which completes the proof. [

Proposition 2.50 Let ur be a Borel measure on R (as usual, finite on bounded
intervals). Then,

(a) u is outer-regular,
ur(A) =inf{up(U) : U > Aisopen}.
(b) u isinner-regular,

ur(A) = sup{ur(K) : K c A is compact}.
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Comment: In the general context of Borel measures, a measure that is locally-
finite (every point has a neighborhood having finite measure), inner- and outer-
regular is called a Radon measure. What we are thus proving is that every locally-
finite Borel measure on R is a Radon measure. Radon measures play an important
role in functional analysis.

Proof:

(a) By Lemma 2.49, there exist for every & > 0 open intervals (a,, b, ), such that

(b)

Ac G(an,bn) and i,uF((an,bn)) <ur(A) +e.

n=1 n=1

Setting U = U2, (a,, b,), and using the countable sub-additivity of the mea-
sure pr,

pr(U) <Y up((an. b)) < ur(A) + &,
n=1
from which we deduce that
inf{up(U) : U>Aisopen} <urp(A).

The other direction is trivial, as A c U implies pr(A) < up(U) = up(U).

Suppose first that A is bounded. If it is closed, then it is compact, and the
statement is trivial. Otherwise, for € > 0, there exists by the first part an
open set U o A \ A, such that

ur(U) <pur(ANA) +e.
Let K = A\ U. It is compact, contained in A, and
pr(K) = pr(A) = pur(U) 2 pp(A) - pr (AN A) - = pp(A) - &,
and this since holds for all £ > 0,
sup{ur(K) : K c Ais compact} > ur(A).

The reverse inequality is once again trivial.

Remains the case where A is not bounded. Let

Aj=An(jj+1],  j=...-2,-1,0,1,2,....
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By the result for bounded sets, there exists for every € > 0 a compact set
K; c Aj, such that
2-lilg

3

ur(K;) > up(A;) -
Set

PI,1 = ﬁ[ Kj
j=-n

The H, are compact and
H,c ]_[ K;c U Aj=A.
jemee  jemoo
On the other hand,

pr(Hy,) = Z 1r(K;) > pr ( ]_[ Ak) - &.

j==n j==n

Letting n to infinity, we obtain that
lim pip(Hy) 2 pr(A) - &,
and since ¢ is arbitrary, we obtain the desired result.

Finally, we use the above regularity result to show that modulo sets of measure
zero, all the Borel sets on R are of relatively simple form:

Theorem 2.51 Let (R, B(R),ur) by a Borel measure. Then every Borel set A €
A (R) can be represented in either way:

(a) A=B~ N, where Bis aG;s set and u(N) = 0.
(b) A=BUN, where Bisan F, set and u(N) = 0.

ESY ‘Exercise 2.35 Prove Theorem 2.51.
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2.5.2 The Lebesgue measure on R

The Lebesgue measure (J;'? D7) on R is the complete measure generated by
the function F(x) = x. We denote it by m; the o-algebra is denoted by £ and its
elements are called Lebesgue-measurable (325 n7*n). That is,

m((a,b]) =b - a.

With a certain abuse of notation, we also denote by m the Borel measure induced
by F(x) = x and call it Lebesgue measure as well. Generally, we will keep work-
ing with the incomplete Borel measure, unless stated otherwise.

By the definition of the outer-measure u*, for every A € #8(R) (or every A € L),

m(A) = inf{Z(bn -a,) t Ac U(an,bn]} .
n=1 n=1
Proposition 2.52 Every singleton has Lebesgue measure zero.

Proof: For every x e R,

m({x}) = m(fj(x— 1/n,x]) - lim m ((x = 1/n,x]) = lim + =0,

n—>oo n

where in the second inequality we used the upper-semicontinuity of the measure.
|

Coro[[ary 2.53 Every countable set has Lebesgue measure zero.

N ‘Exercise 2.36 Let N be anull set of (R, Z(R),m). Prove that N¢ is dense in R.

The following theorem shows that the Lebesgue measure satisfies natural invari-
ance properties:
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Theorem 2.54 For a € R and B > 0, denote the affine transformation
Top(x) = ax+p.

Then,
T.s(#(R)) = Z(R),

and for evert A € (R),
m(T,p(A) = am(A).

Proof: 1If is easy to see that T,3(#(R)) is a o-algebra containing all the open
segments, hence

T,p(BR)) c B(R).
Since this holds for every «, 3, It follows that

BR) = Tija-pja (Tep(BR))) € Top(A(R)).

Next, define
v(A) = am(T,p(A)).

It is easy to see that v is a measure on A(R): indeed,
v(@) =am(2) =0,

and for disjoint A, € Z(R),

v (HAH) =am (T;}, (HA,,)) =am (U T(;};(An)) =a )y m(T,5(An)) = > v(A,).
n=1 n=1 n=1 n=1 n=1
Furthermore, every every semi-open segment,

v((a,b]) = am((a-pB)/a,(b-B)/a]) = m((a,]]).

If follows that v and m are equal on the algebra of finite unions of semi-open
segments, and by the uniqueness of the extension v = m, or

m(A) = a.m(T;5(A)).

This completes the proof. |
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N ‘Exercise 2.37 Prove that Theorem 2.54 remains valid if (R, Z(R), m) is replaced by (R, £, m).

N ‘Exercise 2.38 Let A ¢ L satisfy 0 < m(A) < oo. Prove that there exists for every a € (0, 1)
an open interval I, such that
am(l) <m(AnT) <m(I)

N ‘Exercise 2.39 Let A c E c B c R, such that A, B are Lebesgue-measurable and m(A) =
m(B). Prove that E is Lebesgue-measurable.

Proof: Since
E~NAcB\A

and m(B \ A) =0, it follows that E \ A is measurable, hence so is
E=An(E~A).
N ‘Exercise 2.40 Let A c R be Lebesgue-measurable, with m(A) > 0. Prove that
A-A={x-y:xecAycA}
contains a non-empty open segment.

N ‘Exercise 2.41 Let A c R be of positive Lebesgue measure. Prove that A contains two
points whose difference is rational; same for irrational.

A5 Exer cise 2.42 Let pu be a locally-finite Borel measure on R (every point is in an open
segment of finite measure) which is invariant under translation. Prove that yu is proportional to the
standard Borel measure m.

N ‘Exercise 2.43 Let A be a Lebesgue-measurable set in R, such that m(A) = 1. Show that A
has a subset having measure 1/2.

2.5.3 Measure and topology

The concept of a measure is intuitively associated with the size of a set. There
are also set-theoretical notions of magnitude (cardinality), as well as topological
notions of magnitude: for example, sets that are both open and dense are usually
considered to be “large”. As we will see, the topological notion of magnitude and
the measure-theoretic notion of magnitude are not always consistent.

As we have seen (Proposition 2.52), every singleton in R has Lebesgue measure
zero. It follows that Q, which is a countable union of singletons, has Lebesgue
measure zero. On the other hand,

m([0,1]~ Q) =m([0,1]) -m([0,1]nQ) = 1.
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Thus, in this example of rationals versus irrationals, the two notions of magnitude
coincide.

Let (r,) be an enumeration of the rationals in [0, 1], and let /, be an open interval
centered at r, of length £/2", where 0 < £ < 1. Then,

U=( In)m(O,l)
n=1
is open and dense in [0, 1]. On the other hand, by the sub-additivity of the mea-
sure,
m(U) <> m(l,) = Z% =&.
n=1 n=1

Thus, open and dense sets in [0, 1] can have arbitrarily small Lebesgue measure.

In contrast, set
K=[0,1]\U.

Then, K is closed and nowhere dense, and yet
m(K) =m([0,1]) -m(U) > 1 —¢,

showing that closed and nowhere dense sets in [0, 1] can have Lebesgue measure
arbitrarily close to 1.

Note that there are no open intervals having Lebesgue measure zero, however,
there are Lebesgue-null sets having the cardinality of the continuum, as the fol-
lowing example shows. Recall that the Cantor set C, is the subset of [0, 1] con-
sisting of those numbers whose base-3 expansion contains only the digits 0 and
2. Tt can be constructed inductively, by first removing from [0, 1] the segment
[1/3,2/3], then removing from each of the two remaining segments their mid-
third, i.e., removing 2 segments of length 1/9, then 4 segments of length 1/27,
and so on.




Measure spaces '@‘

The Cantor set has the cardinality of the continuum, since we can map bijectively
a base-3 expansion using the digits O and 2 to a base-2 expansion using the digits
0 and 1, i.e., the Cantor set can be mapped bijectively to the unit segment.

fProposition 2.55 The Cantor set C is measurable and has measure zero.

Proof: The Cantor set can be represented as

C:[O,l]\(

where m(1I,;) = 1/3". C is clearly measurable. Moreover,

oo g1 11
= 1 — = 1 — — = U.
m(C)=1-2.; 37223 0

n=1

RSN Z?CBT cise 2.44 AsetA cRiscalleda Gs-setif it is a countable intersection of open sets (re-
call that a dense G set is called residual (72w 7312p)). Show that there exists a G set containing
all the rationals (i.e., a residual set) having Lebesgue measure zero.

N ‘Exercise 2.45 Find two measurable sets A, B € Z(R), such that m(A) = m(B) = 0 and
m(A + B) > 0, where
A+B={a+b:acA beB}.

Finally, we have an argument showing that there exist Borel-measurable sets that
are not Lebesgue-measurable.

Proposition 2.56 L is strictly larger than 2(R).

Proof: W asserted (without a proof) that the cardinality of Z(R) is that of the
continuum,
card(ZA(R)) = 2%.

The cardinality if the Cantor set is also 2%, and since it has measure zero, all its

subsets must be in £, i..e, £ has the a cardinality larger than that of the continuum.
[ |
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