
Chapter 2

Fourier Series

2.1 Approximation theorems

2.1.1 The Weierstrass approximation theorem

Definition 2.1 Let [a,b] be an interval. We denote by ⇧n(a,b) the vector space
of polynomials of degree less or equal n on [a,b], and by

⇧(a,b) = ∞�
n=0
⇧n(a,b)

the vector space of all polynomials on [a,b].
Comment: The space of polynomials is more than just a vector space; the product
of every two polynomials is also a polynomial, which means that⇧(a,b) is closed
under pointwise multiplication. A vector space that is closed under a multiplica-
tion operation is called an algebra.
The following celebrated theorem states that every continuous function can be
approximated uniformly by polynomials:

Theorem 2.2 (Weierstrass) Let [a,b] be an interval. The set of polynomials
⇧(a,b) is a dense subset of C([a,b]) with respect to the maximum norm. That is,
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for every f ∈ C([a,b]) there exists a sequence of polynomial Pn ∈ ⇧(a,b), such
that

lim
n→∞ �Pn − f �∞ = 0.

Proof : Step 1: Reduction. It su�ces to prove this theorem for [a,b] = [0,1].
Indeed, given f ∈ C([a,b]) we may define f̃ ∈ C([0,1]) by

f̃ (x) = f (a + x(b − a)).
Suppose that a sequence P̃n ∈ ⇧(0,1) converges uniformly to f̃ . Then, Pn ∶[a.b]→ R defined by

Pn(x) = P̃n((x − a)�(b − a))
are polynomials converging uniformly to f , as

sup
x∈[a,b] �Pn(x)− f (x)� = sup

x∈[0,1] �Pn(a+x(b−a))− f (a+x(b−a))� = sup
x∈[0,1] �P̃n(x)− f̃ (x)�.

Step 2: The approximating sequence. Given f ∈ C([0,1]), we define a sequence
of polynomials Bn f ∈ ⇧n(0,1), known as the Bernstein polynomials of f ,

Bn f (x) = n�
k=1

f �k
n
��n

k
�xk(1 − x)n−k.

We view Bn ∶ f � Bn f as a mapping C([0,1])→ ⇧n(0,1).
Step 3: Properties of the mapping Bn. The mapping Bn satisfies the following
properties:

(a) Linearity:
Bn(↵ f + �g) = ↵Bn f + �Bng.

(b) Positivity: if f ≥ 0 then Bn f ≥ 0.

(c) For f = 1, using the binomial formula,

Bn1(x) = n�
k=0
�n

k
�xk(1 − x)n−k = (x + 1 − x)n = 1,

i.e., Bn1 = 1 for every n ∈ N.



Fourier Series 107

(d) For f = Id, using again the binomial formula,

BnId(x) = n�
k=0
�n

k
�k

n
xk(1 − x)n−k

= n�
k=1
�n − 1

k − 1
�xk(1 − x)n−k

= x
n−1�
k=0
�n − 1

k
�xk(1 − x)n−1−k

= x,

so that BnId = Id for every n ∈ N.

(e) For f = Id2,

BnId2(x) = n�
k=0
�n

k
�k2

n2 xk(1 − x)n−k = n − 1
n

x2 + 1
n

x,

so that �BnId2 − Id2�∞ → 0.

To summarize, �Bn f − f �∞ → 0 for f = 1, Id, Id2.

Step 4: The properties of Bn imply uniform convergence. The next theorem
shows that the properties of Bn ensure that for every f ∈ C([0,1]), the sequence
of polynomials Bn f converges uniformly to f . n

Theorem 2.3 (Bohman-Korovkin) Let Bn ∶ C([0,1]) → C([0,1]) be a sequence
of operators that are linear, positive, and satisfy

lim
n→∞ �Bn f − f �∞ = 0 for f = 1, Id, Id2.

Then �Bn f − f �∞ → 0 for all f ∈ C([0,1]).

Proof : By linearity and positivity, if f ≥ g, then

Bn f − Bng = Bn( f − g) ≥ 0,
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i.e., Bn f ≥ Bng. In particular, since ± f ≤ � f � it follows that ±Bn f ≤ Bn� f �, hence

�Bn f � ≤ Bn� f �. (2.1)

Let f ∈ C([0,1]) be given as well as " > 0. Since f is continuous on a bounded
domain, it is uniformly continuous: there exists a � > 0 such that for every x, y
such that �x − y� < �, � f (x) − f (y)� < ". On the other hand, if �x − y� > � then� f (x) − f (y)� ≤ 2� f �∞ < 2� f �∞(x − y)2��2. In either case, there exists a constant
C" such that � f (x) − f (y)� < C"(x − y)2 + ".
View now this inequality as an inequality between functions of y with x being a
parameter, namely

� f (x) − f � ≤ C"(x2 − 2x Id + Id2) + ".
By (2.1) and by positivity,

� f (x) − Bn f � ≤ � f (x) − f (x)Bn1� + � f (x)Bn1 − Bn f �
≤ � f (x)��1 − Bn1� + Bn� f (x) − f �
≤ � f �∞�1 − Bn1� +C"(x2 Bn1 − 2x BnId + BnId2) + "Bn1
≤ � f �∞�1 − Bn1� +C"(x2 − 2x Id + Id2)
+C"x2�1 − Bn1� + 2xC"�Id − BnId� +C"�Id2 − BnId2�
+ " + "�1 − Bn1�
≤ � f �∞�1 − Bn1�∞ +C"(x2 − 2x Id + Id2)
+C"x2�1 − Bn1�∞ + 2xC"�Id − BnId�∞ +C"�Id2 − BnId2�∞+ " + "�1 − Bn1�∞.

In particular, this should hold at x, where x2 − 2x Id + Id2 = 0, hence

� f (x) − Bn f (x)� ≤ � f �∞�1 − Bn1�∞ + " + "�1 − Bn1�∞
+C"�1 − Bn1�∞ + 2C"�Id − BnId�∞ +C"�Id2 − BnId2�∞,

where we also used the fact that x ∈ [0,1]. Taking the maximum over x and letting
n→∞,

lim sup
n→∞ � f (x) − Bn f (x)�∞ ≤ ".

Since this holds for every " > 0, the limit is zero. n
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Comment: Given f ∈ C([a,b]), one could choose n + 1 equi-distributed points xi

on [a,b] and construct an interpolation polynomial of degree up to n through the
points (xi, f (xi)). It turns out that in many cases this will not yield a sequence of
approximating polynomials. There is something very special about the Bernstein
polynomials, which makes them always work.

2.1.2 The Stone-Weierstrass theorem

Definition 2.4 Let K be a set. A collection A of functions on K is called point-

separating (�;&$&81 0*" %$*95/) if for every x, y ∈ K there exists a function f ∈ A,
such that

f (x) ≠ f (y).

Theorem 2.5 (Stone-Weierstraß) LetA be a point-separating algebra of continu-
ous real-valued functions on a compact set K ⊂ Rn, whereA includes the constant
function f = 1. Then A is dense in C(K) with respect to the maximum norm. That
is, ∀ f ∈ C(K) ∀" > 0 ∃g ∈ A ∶ � f − g�∞ < ".

Comment: The Weierstrass approximation theorem is a special instance of the
Stone-Weierstrass theorem, as the polynomials are an algebra of real-valued func-
tion that is point-separating and includes the constants.

Proof : Step 1: We may assume that A is closed. We need to prove that Ā =
C(K). The closure of A is a vector subspace of C(K); moreover, if f ,g ∈ Ā,
then there exist fn,gn ∈ A, such that fn → f and gn → g. It is easy to see thatA ∋ fngn → f g, implying that Ā is also an algebra of continuous functions. Thus,
it su�ces to show that if A is a closed point-separating algebra of continuous
real-valued functions including the constants, thenA = C(K). We will henceforth
assume that A is closed.
Step 2: If f ∈ A then � f � ∈ A. Let f ∈ A be given. By the Weierstraß approxima-
tion theorem,

∀" > 0 ∃P ∈ ⇧[−� f �∞, � f �∞]) ∶ max�t�≤� f �∞ ��t� − P(t)� < ".
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Since A is an algebra, P ○ f is also in A, and

max
x∈K �� f (x)� − P( f (x))� ≤ max�t�≤� f �∞ ��t� − P(t)� < ",

i.e., � f � ∈ A, where we used the fact that the latter is closed.
Step 3: If f ,g ∈ A then min( f ,g),max( f ,g) ∈ A. This follows from the fact that

min( f ,g) = 1
2
( f + g) − 1

2
� f − g� and max( f ,g) = 1

2
( f + g) + 1

2
� f − g�.

Step 4: We prove that

∀F ∈ C(K) ∀x ∈ K ∀" > 0 ∃ f ∈ A ∶ f (x) = F(x) and f < F + ".
Since A separates between points and 1 ∈ A, there exists for every x, y ∈ K and
every ↵,� ∈ R a function g ∈ A such that g(x) = ↵ and g(y) = � (very easy to
show). Thus, given F, x, and ", then

∀y ∈ K ∃gy ∈ A ∶ gy(x) = F(x) and gy(y) = F(y).
Since both F and gy are continuous, there exists an open neighborhood Uy of y
such that

gy�Uy < F�Uy + ".
The collection {Uy} is an open covering of K, and since K is compact, there exists
a finite open sub-covering {Uyi}n

i=1. The function

f = min(gy1 ,gy2 , . . . ,gyn)
satisfies the required properties.
Step 5: Finalization. Let F ∈ C(K) and " > 0 be given. We have seen that

∀x ∈ K ∃ fx ∈ A ∶ fx(x) = F(x) and fx < F + ".
Relying again on continuity, there exists an open neighborhood Vx of x, such that

fx�Vx > F�Vx − ".
By the compactness of K, K can be covered by a finite number of {Vxi}n

i=1. The
function

f = max( fx1 , fx2 , . . . , fxn)
satisfies, � f − F�∞ < ",
which completes the proof. n—21h(2019)—
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Corollary 2.6 Let

K = {(cos x, sin x) ∶ 0 ≤ x < 2⇡} ⊂ R2

be the unit circle. Then, the trigonometric polynomials (�.**9)/&1&#*9) .*/&1*-&5),

T = Span{1, sin x, sin 2x, . . . , cos x, cos 2x, . . .}
are dense in C(K). That is, every continuous function f on the circle is a uniform
limit of trigonometric polynomials.

Proof : The trigonometric polynomials form an algebra of continuous functions
on K (products of trigonometric polynomials are trigonometric polynomials by
elementary trigonometric identities), which includes the constants and separates
point (if 0 ≤ x < y < 2⇡, then either sin x ≠ sin y or cos x ≠ cos y). n

Putting this slightly di↵erently:

Corollary 2.7 Every continuous function f ∈ C([0,2⇡]) satisfying f (0) = f (2⇡)
is a uniform limit of trigonometric polynomials.

2.2 Inner-product spaces

2.2.1 Basic definitions

Definition 2.8 Let V be a real vector space. A function (⋅, ⋅) ∶ V×V → R is called
an inner-product (�;*/*15 %-5,/) if it satisfies the following conditions:

(a) Symmetry: For every x, y ∈ V,

(x, y) = (y, x).
(b) Bilinearity: For every x, y, z ∈ V and a ∈ R,

(ax, y) = a(x, y) and (x + y, z) = (x, z) + (y, z).
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(c) Positivity: For every x ∈ V, (x, x) ≥ 0,

with equality if and only if x = 0.

Example: Rn with the Euclidean inner-product,

(x, y) = n�
i=1

xiyi.

▲▲▲
Example: The vector space of n-by-n real matrices with

(A,B) = Tr(AT B).
▲▲▲

Example: The vector space of infinite sequences

`2 = {(xn)∞n=1 ∶ ∞�
n=1
�xn�2 <∞},

with
(x, y) = ∞�

n=1
xnyn.

▲▲▲
Definition 2.9 Let (V, (⋅, ⋅)) be an inner-product space. Then we denote

�x� = (x, x)1�2. (2.2)

As the notation suggests, this defines a norm (hence a metric) on V . To prove it,
we need the following key inequality:

Proposition 2.10 (Cauchy-Schwarz inequality) Let (V, (⋅, ⋅)) be an inner-
product space. For every x, y ∈ V,

�(x, y)� ≤ �x��y�.
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Proof : By the positivity of the inner-product, for x, y ≠ 0,

0 ≤ � x�x� − (x, y)�x��y� y�y� , x�x� − (x, y)�x��y� y�y��
= �x�2�x�2 − 2

�(x, y)�2�x�2�y�2 + �(x, y)�
2

�x�2�y�2 �y�
2

�y�2 ,
from which follows that �(x, y)� ≤ �x��y�.

n

Proposition 2.11 Let (V, (⋅, ⋅)) be an inner-product space. Then, � ⋅ � as defined
in (2.2) is a norm on V.

Proof : Positivity and homogeneity are immediate. The triangle inequality follows
from the Cauchy-Schwarz inequality, as

�x + y�2 = (x + y, x + y)
= �x�2 + 2(x, y) + �y�2
≤ �x�2 + 2�(x, y)� + �y�2
≤ �x�2 + 2�x��y� + �y�2
= (�x� + �y�)2,

hence �x + y� ≤ �x� + �y�.
n

Comment: As you will notice, in an inner-product space �x�2 is a much more
convenient object than �x�.

Proposition 2.12 Let (V, (⋅, ⋅)) be an inner-product space. Then, the inner-
product is continuous with respect to the metric induced by the norm (2.2).
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Proof : Let xn → x and yn → y. Then,

(xn, yn) = (x, y) + (xn − x, y) + (xn, yn − y),
and by the Cauchy-Schwarz inequality,

�(xn, yn) − (x, y)� ≤ �xn − x��y� + �xn��yn − y�.
Since the norm in a normed space is continuous, �xn� → �x�, and by limit arith-
metics the right-hand side tends to zero as n→∞. n

. Exercise 2.1 Prove that a norm � ⋅ � on a vector space V is induced by an
inner-product if and only if it satisfies the parallelogram law (�;*-*"8/% ;&%'),

�x + y�2 + �x − y�2 = 2(�x�2 + �y�2),
in which case the inner-product is given by the polarization identity

(x, y) = 1
2
��x + y�2 − �x�2 − �y�2� .

2.2.2 Orthonormal systems

Definition 2.13 Let (V, (⋅, ⋅)) be an inner-product space. Two vectors x, y are
called orthogonal (�.*"7*1), denoted x ⊥ y, if

(x, y) = 0.

A set of vectors {xi ∶ i ∈ I} is called an orthogonal system (�;*-1&#&;9&! ;,93/) if
xi ⊥ x j for all i ≠ j. It is called an orthonormal system (�;*-/9&1&;9&! ;,93/) if in
addition �xi� = 1 for all i ∈ I. (Note that the index set I needs not be countable.)

Proposition 2.14 (Pythagoras law) Let {x1, . . . , xn} be an orthogonal system,
then �x1 +� + xn�2 = �x1�2 + ⋅ ⋅ ⋅ + �xn�2.

Proof : For a pair of orthogonal vectors x, y,

�x + y�2 = (x + y, x + y) = �x�2 + 2(x, y) + �y�2 = �x�2 + �y�2.
The general case follows by induction. n
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Proposition 2.15 Let {x1, . . . , xn} be a finite orthonormal system. Then, for every
set of real numbers (a1, . . . ,an),

� n�
j=1

ajx j� = � n�
j=1
�aj�2�

1�2
.

Proof : This is immediate as by linearity and orthogonality,

� n�
j=1

ajx j�
2 = � n�

i=1
aixi,

n�
j=1

ajx j� = n�
i, j=1

aia j(xi, x j) = n�
j=1
�aj�2.

n

Proposition 2.16 Let {xi ∶ i ∈ I} be an orthogonal system. Then, it is linearly
independent. That is, for every finite subset of indexes J ⊂ I, the vectors {x j ∶ j ∈
J} are linearly independent.

Proof : Suppose that for some finite J ⊂ I and a set of real numbers {aj ∶ j ∈ J},
�
j∈J

a jx j = 0.

Taking an inner-product with xk, k ∈ J, we obtain

�
j∈J

a j(x j, xk) = ak�xk�2 = 0,

i.e., ak = 0. n

Theorem 2.17 Let V be an inner-product space. Let W ⊂ V be a finite-
dimensional vector subspace spanned by an orthonormal system {xi ∶ i =
1,2, . . . ,d}. Define the function ⇡W ∶ V → V,

⇡W(y) = d�
i=1
(y, xi)xi.

Then,
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(a) ⇡W is a continuous linear map.

(b) Image(⇡W) ⊂W.

(c) For every y ∈ V, y − ⇡W(y) ⊥W.

(d) For every y ∈ V, ⇡W(y) is the element in W that is closest to y, i.e., for every
z ∈W, �z − y� ≥ �⇡W(y) − y�
with equality if and only if z = ⇡W(y).

(e) For every z ∈W, ⇡W(z) = z. In particular, Image(⇡W) =W and ⇡W○⇡W = ⇡W .

(f) For every y ∈ V, �⇡W(y)� ≤ �y�,
with equality if and only if y ∈W.

Proof :

(a) Linearity and continuity follow from the properties of the inner-product.

(b) By definition ⇡W(y) is a linear combination of elements in the vector sub-
space W.

(c) For every y ∈ V and k = 1, . . . ,d,

(y − ⇡W(y), xk) = (y, xk) − d�
i=1
(y, xi)(xi, xk) = 0.

That is, y− ⇡W(y) is orthogonal to a basis in W, hence to every vector in W.

(d) Let y ∈ V and z ∈ W. Then, since y − ⇡W(y) ⊥ z − ⇡W(y), it follows from
Pythagoras’ Law that

�z − y�2 = �(z − ⇡W(y)) − (y − ⇡W(y))�2= �(z − ⇡W(y))�2 + �(y − ⇡W(y))�2≥ �(y − ⇡W(y))�2,
with equality if and only if z = ⇡W(y).

(e) Let z ∈ W. Then z is the element in W closest to z, hence z = ⇡W(z). The
surjectivity and idempotence of ⇡W follow at once.
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(f) Using the previous items and Pythagoras law,

�y�2 = �(y − ⇡W(y)) + ⇡W(y)�2 = �(y − ⇡W(y))�2 + �⇡W(y)�2 ≥ �⇡W(y)�2,
with equality if and only if y = ⇡W(y), i.e., y ∈W.

n

Comment: It follows from Item (d) that ⇡W does not depend on the orthonor-
mal system spanning W, but only on the subspace W. The map ⇡W is called the
orthogonal projection (�;"7*1 %-)%) from V onto W.

Proposition 2.18 (Bessel inequality) Let {xn ∶ n ∈ N} be a countable orthonor-
mal system in an inner-product space V. Then, for every y ∈ V,

∞�
n=1
�(y, xn)�2 ≤ �y�2.

Proof : For every N define

VN = Span{x1, . . . , xN},
and let

⇡N(y) = n�
n=1
(y, xn)xn

be the corresponding orthogonal projection. By Theorem 2.17( f ),
�y�2 ≥ �⇡N(y)�2 = � N�

n=1
(y, xn)xn,

N�
m=1
(y, xm)xm�

= N�
n,m=1
(y, xn)(y, xm)(xn, xm)

= N�
n=1
�(y, xn)�2.

Letting N →∞ we obtain the desired result. n
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Corollary 2.19 Let {xn ∶ n ∈ N} be a countable orthonormal system in an inner-
product space V. For every y ∈ V,

lim
n→∞(y, xn) = 0.

Proof : �(y, xn)�2 is an element in a converging series. n

Definition 2.20 An orthonormal system {xn ∶ n ∈ N} is called complete (;,93/
�%/-:) if its span is dense in V, where

Span{xn ∶ n ∈ N} = {�
j∈J

a jx j ∶ aj ∈ R, �J� <∞}.

Theorem 2.21 Let {xn ∶ n ∈ N} be an orthonormal system in an inner-product
space V. The following statements are equivalent:

(a) It is complete.

(b) For every y ∈ V,

y = ∞�
n=1
(y, xn)xn,

which is called the expansion (�(&;*5) of y according to the orthonormal
system {xn}. Note that this condition means that

lim
N→∞ �y −

N�
n=1
(y, xn)xn� = 0.

(c) For every y ∈ V,

�y�2 = ∞�
n=1
�(y, xn)�2,

an identity known as the Parseval identity.

Proof : Suppose that Condition (a) holds and let y ∈ V . Denote by

VN = Span{x1, . . . , xN}
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and by

⇡N(y) = N�
n=1
(y, xn)xn

the corresponding orthogonal projection. Since the orthonormal system is com-
plete, there exists given " > 0 an N ∈ N and an element yN ∈ VN such that

�yN − y� < ".
Since ⇡N(y) is the element of VN that is closest to y, we have

� N�
n=1
(y, xn)xn − y� < ".

Moreover, if N′ > N, then VN ⊂ VN′ , hence ⇡N′(y) may be an even better approxi-
mation to y than ⇡N(y), i.e., for every N′ > N,

� N′�
n=1
(y, xn)xn − y� < ".

That is,

∀" > 0 ∃N ∶ ∀N′ > N � N′�
n=1
(y, xn)xn − y� < ",

proving that

lim
N→∞

N�
n=1
(y, xn)xn = y.

Suppose next that Condition (b) holds. Condition (a) follows from the fact that
every y ∈ V is a limit of linear combinations of xn’s.
Suppose once again that Condition (b) holds. By the continuity of the norm,

�y�2 = �∞�
n=1
(y, xn)xn�

2 = lim
N→∞�

N�
n=1
(y, xn)xn�

2 = lim
N→∞

N�
n=1
�(y, xn)�2 = ∞�

n=1
�(y, xn)�2.

Finally, suppose that Condition (c) holds. For every N, by the orthogonality y −
⇡N(y) ⊥ VN ,

�y�2 = �(y − ⇡N(y)) + ⇡N(y)�2= �y − ⇡N(y)�2 + �⇡N(y)�2
= �y − ⇡N(y)�2 + N�

n=1
�(y, xi)�2.
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Letting N →∞, we obtain that

lim
N→∞ �y − ⇡N(y)�2 = 0.

n—23h(2019)—

Corollary 2.22 Let {xn ∶ n ∈ N} be a complete orthonormal system. If

y = ∞�
n=1

anxn,

then an = (y, xn). That is, there exists a unique representation of y as a sum of
xn’s.

Proof : By the continuity of the inner-product, for every k ∈ N,

(y, xk) = �∞�
n=1

anxn, xk� = ∞�
n=1

an (xn, xk) = ak.

n

Comment: Strictly speaking, an orthonormal system is not a basis for V unless V
has finite-dimension. Yet, it is very similar to a basis in the sense that every vector
is a limit of a sequence of unique linear combinations.

Comment: Consider the mapping

y� {(y, xn) ∶ n ∈ N},
taking an element in V into a sequence of real numbers; this is clearly a linear
map. Since

�y�2 = ∞�
n=1
�(y, xn)�2,

this map is a distance-preserving map V to `2(R). But is it also onto? If it were,
the inverse map would be

{an}� ∞�
n=1

anxn.
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The question is whether the limit exists for every (an) ∈ `2(R). Note that the
partial sums form a Cauchy sequence as

� N�
n=1

anxn − M�
n=1

anxn�
2 = N�

n=M+1
a2

n.

It follows that an inverse map exists if and only if V is complete. That is, metrically-
speaking, every complete inner-product space assuming a complete countable or-
thonormal system is equivalent to `2(R).
. Exercise 2.2 Show that if an orthonormal system {xn} is complete, then the
generalized Parseval identity,

(y, z) = ∞�
n=1
(y, xn)(xn, z)

holds.

. Exercise 2.3 Let {xn} be an orthonormal system in an inner-product space
V . Show that if the system is complete, then there is no element y ∈ V which is
orthogonal to all the xn’s.

2.3 The space H(a,b)
Definition 2.23 Let a < b ∈ R. We denote by H(a,b) the real vector space of
functions [a,b]→ R that are bounded and Riemann-integrable.

Comment: We are making a compromise here; Riemann integrability is a prob-
lematic notion which eventually led to the definition of a stronger concept—
Lebesgue integrability. For example, Riemann integrability does not pass to
limits. As an example, consider an enumeration {qn} of the rationals and the
sequence of functions

fn(x) =
�������

1 x = qk for some k ≤ n
0 otherwise.

Then each fn is Riemann integrable, but its pointwise limit as n → ∞ is the
Dirichlet function, which is not integrable. Lebesgue integrability, however is
only taught in 3rd year in the framework of measure theory (�%$*/% ;9&;), so we
will make do with Riemann integrability.
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Definition 2.24 For f ,g ∈ H(a,b) we define

( f ,g) = � b

a
f (x)g(x)dx. (2.3)

The immediate question is whether (2.3) is an inner-product on H(a,b). Symme-
try and bilinearity follows from the properties of the integral. For positivity,

( f , f ) = � b

a
f 2(x)dx

is non-negative, however may be zero even if f is not identically zero. To over-
come this di�culty, we proceed as follows:

Definition 2.25 A set A ⊂ R is said to have measure zero (�25! %$*/) if for every
" > 0 there exists a countable number of open segments (an,bn), such that

A ⊂ ∞�
n=1
(an,bn) and

∞�
n=1
(bn − an) < ".

Example: Every singleton {x} has measure zero in R. This can be proved by
taking for example, given " > 0,

an = x − "

2n and bn = x + "

2n .

▲▲▲
Lemma 2.26 A countable union of sets of measure zero is a set of measure zero.

Proof : Suppose that a sequence of sets An all have measure zero. Given " > 0,
there exists for every n a sequence of open segments (ak

n,bk
n)∞k=1, such that

An ⊂ ∞�
k=1
(ak

n,bk
n) and

∞�
k=1
(bk

n − ak
n) < "

2n .

Thus, ∞�
n=1

An ⊂ ∞�
n=1

∞�
k=1
(ak

n,bk
n) and

∞�
n=1

∞�
k=1
(bk

n − ak
n) < ".

n
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Example: The rationals Q have measure zero in R. ▲▲▲
Definition 2.27 Two functions f ,g ∶ [a,b] → R are said to be equal almost ev-

erywhere ( �.&8/ -," )3/, ;&&:) if the set

{x ∈ [a,b] ∶ f (x) ≠ g(x)}
has measure zero.

Lemma 2.28 The property of two functions being equal almost everywhere is an
equivalence relation.

Proof : This is immediate. n

Proposition 2.29 Let f ∈ H(a,b). Then, ( f , f ) = 0 if and only if f = 0 almost
everywhere.

Proof : Suppose that

� b

a
f 2(x)dx = 0,

and that it were not true that f is non-zero at most on a set of measure zero. Denote

A = {x ∶ f (x) ≠ 0},
and note that

A = ∞�
n=1

An where An = {x ∶ f 2(x) > 1�n}.
By Lemma 2.26, there exists an n for which An does not have measure zero.
By definition, this means that there exists an " > 0, such that for any partition[ck,dk)Nk=1 of the segment [a,b],

�
k∈J
(bk − ak) ≥ " where J = {k ∶ An ∩ [ak,bk) ≠ �}.

For all k ∈ J, take ⇠k ∈ [ak,bk) ∩ An and for all k �∈ J take any ⇠k ∈ [ak,bk). Then,

N�
k=1

f 2(⇠k)(bk − ak) ≥�
k∈J

f 2(⇠k)(bk − ak) ≤ 1
n�k∈J(bk − ak) ≥ "n .
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The left-hand side is a Riemann sum; this inequality holds for any partition of[a,b], it follows from the definition of the Riemann integral that

� b

a
f 2(x)dx ≥ "

n
,

which is a contradiction.
Conversely, if f = 0 almost everywhere, it cannot be non-zero on any segment.
This means that every partition of [a,b] has a vanishing Riemann sum for f 2, and
since f 2 is Riemann-integrable, its integral is zero. n

Define now H̃(a,b) to be the set of equivalence classes of functions in H(a,b)
di↵ering on sets of measure zero; we denote the equivalence class of f ∈ H(a,b)
by [ f ]. We endow H̃(a,b) with a vector space structure by defining

a[ f ] + b[g] = [a f + bg].
For [ f ], [g] ∈ H̃(a,b), we set

([ f ], [g]) = ( f ,g). (2.4)

One has to check that this is well-defined, i.e., that if [ f ] = [ f1] and [g] = [g1]
then ( f ,g) = ( f1,g1),
which is indeed the case, as

�( f1,g1) − ( f ,g)� = �( f1 − f ,g) + f1(g1 − g)� ≤ � f1 − f ��g� + � f1��g1 − g� = 0.

Proposition 2.30 The product (2.4) is an inner-product on H̃(a,b).

Proof : Symmetry follows from

([ f ], [g]) = ( f ,g) = (g, f ) = ([g], [ f ]).
Linearity from

(a[ f ] + b[g], [h]) = ([a f + bg], [h])
= (a f + bg,h)
= a( f ,h) + b(g,h)
= a([ f ], [h]) + b([g], [h]).
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Finally, by Proposition 2.29, ([ f ], [ f ]) = 0,

implies that f = 0 almost-everywhere, i.e., [ f ] = [0]. n

Comment: Note that it may well be that f ∈ H(a,b), g = f almost everywhere
however g �∈ H(a,b). For example the Dirichlet function on [0,1] equals zero
almost everywhere, but it is not Riemann integrable. This is the price for working
with Riemann integrability.
Henceforth, we will omit the tilde in H̃(a,b) and refer to functions rather than
equivalence classes of functions, but remember that whenever we refer to a func-
tion, we really refer to its equivalence class.

Definition 2.31 Let fn, f ∈ H(a,b). We say that fn converges to f in the mean

(�37&//") if
lim
n→∞ � fn − f � = 0,

i.e., if it converges to f in the norm induced by the inner-product.

Thus, we now have three di↵erent notions of convergence in H(a,b):
(a) Pointwise convergence.

(b) Uniform convergence.

(c) Convergence in the mean.

We already know that uniform convergence implies pointwise convergence, but
that the converse is not true.

Proposition 2.32 Uniform convergence implies convergence in the mean.

Proof : Suppose that fn → f uniformly. Then,

� fn − f �2 = � b

a
( fn(x) − f (x))2 dx ≤ (b − a) sup

x∈[a,b]( fn(x) − f (x))2 → 0.

n
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Proposition 2.33 Pointwise convergence does not imply convergence in the
mean.

Proof : Take for example the sequence of functions fn ∈ H(0,1),
fn(x) =

�������
√

n sin nx 0 ≤ x ≤ ⇡�n
0 otherwise.

Then, fn convergence to zero pointwise, however

� fn − 0�2 = � ⇡�n
0

n sin2 nx dx = � ⇡

0
sin2 t dt = ⇡

2
,

i.e., fn does not convergence to zero in the mean. n

Proposition 2.34 Convergence in the mean does not imply pointwise conver-
gence.

Proof : Take for example the sequence of functions fn ∈ H(0,1),
f1(x) = �[0,1]

f2(x) = �[0,1�2] f3(x) = �[1�2,1]
f4(x) = �[0,1�4] f5(x) = �[1�4,1�2] f6(x) = �[1�2,3�4] f7(x) = �[3�4,1]

etc

Then, fn converges to zero in the mean however not pointwise, since for every x,
fn(x) ≠ 0 infinitely-often. n—25h(2019)—

Definition 2.35 We denote by Cper(a,b) the set of continuous functions on [a,b]
satisfying f (a) = f (b). (Note that this is a vector subspace of H(a,b).)

Theorem 2.36 Cper(a,b) is dense in H(a,b). That is, for every f ∈ H(a,b) there
exists a sequence fn ∈ Cper(a,b) such that fn → f in the mean.
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Proof : It su�ces to prove the theorem for the subset of H(a,b) consisting of
functions f for which � f �∞ ≤ 1�2. Indeed, let f ∈ H(a,b), then there exists a
sequence of functions fn ∈ C(a,b) such that

lim
n→∞� fn − f

2� f �∞� = 0,

hence 2� f �∞ fn ∈ C(a,b) converges to f in the mean.

So let f ∈ H(a,b) satisfy � f �∞ ≤ 1�2 and let " > 0. We need to prove that there
exists a g ∈ Cper(a,b) satisfying � f − g� < ". Let P = {t0, t1, . . . , tn} be a partition
of (a,b) and denote by

S ( f ,P) = n�
i=1
(ti − ti−1) inf

ti−1≤x<ti
f (x)

the lower Darboux sum of f with respect to the partition P. By definition of the
Riemann integral, there exists a partition P such that

0 ≤ � b

a
f (x)dx − S ( f ,P) < "2

4
.

Define next the discontinuous function

h(x) = inf
ti−1≤x<ti

f (x) for x ∈ [ti−1, ti),
and h(b) = f (b). By the definition of h, �h�∞ ≤ 1�2 hence � f (x)−h(x)� ≤ 1, hence

� f−h�2 = � b

a
( f (x)−h(x))2 dx ≤ � b

a
( f (x)−h(x))dx = � b

a
f (x)dx−S ( f ,P) < "2

4
.

We have thus found a “step function” h satisfying � f −h� < "�2. It remains to find
a function g ∈ Cper(a,b) satisfying �g − h� < "�2. Take

� < "2

4n
and � < (ti − ti−1), i = 1, . . . .n.

Consider the following illustration where the blue segments are the graph of h and
the orange segments are the graph of g where it di↵ers from h:
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a bt1 − � t2 − �
t1 t2

Then, g ∈ Cper(a,b), and

�g − h�2 ≤ n� < "2

4
,

which completes the proof. n

Comment: As a side result, we have also proved that the step functions are dense
in H(a,b).

2.4 Fourier series

In this section we will consider the inner-product space H(0,2⇡).
Definition 2.37 The trigonometric system in H(0,2⇡) is the family of functions

T = { n}∞n=0 ∪ {'n}∞n=1,

where
 0(x) = 1√

2⇡

 n(x) = 1√
⇡

cos nx, n = 1,2, . . .

'n(x) = 1√
⇡

sin nx, n = 1,2, . . . .

(Note that these functions all belong to Cper(0,2⇡).)
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Proposition 2.38 The trigonometric system forms an orthonormal system in
H(0,2⇡).

Proof : This is verified by direct integration. For example,

('m,'n) = 1
⇡ �

2⇡

0
sin mx sin nx dx = �m,n.

n

Proposition 2.39 The trigonometric system forms a complete orthonormal sys-
tem in H(0,2⇡).

Proof : This is an immediate consequence of the Stone-Weierstrass theorem, whereby
the span of the trigonometric system is dense in Cper(0,2⇡) with respect to the
maximum norm, and Cper(0,2⇡) is dense in H(0,2⇡) with respect to the inner-
product norm. Thus,

SpanT = Cper(0,2⇡),
and

Cper(0,2⇡) = H(0,2⇡).
This may seem confusing as it seems to insinuate that Cper(0,2⇡) is closed, hence
equals H(0,2⇡) (which is of course not true). One has to remember, however that
both equalities refer to di↵erent metrics. The first is with respect to the maximum
norm, whereas the second is with respect to the inner-product norm. Since for
f ∈ H(0,2⇡),

� f �2 = � 2pi

0
f 2(x)dx ≤ 2⇡ � f �∞,

(or as we’ve already seen, uniform convergence implies convergence in the mean),
it follows that

SpanT ⊇ Cper(0,2⇡),
where now the closure is with respect to the inner-product norm. Thus,

SpanT ⊇ Cper(0,2⇡) = H(0,2⇡),
which concludes the proof. n
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Corollary 2.40 For every f ∈ H(0,2⇡),
f = ∞�

n=0
( f , n) n + ∞�

n=1
( f ,'n)'n. (2.5)

The right-hand side in (2.5) is called the Fourier series (�%**9&5 9&)) of f . The
scalars

af
0 = 1√

2⇡
( f , 0) = 1

2⇡ �
2⇡

0
f (x)dx

af
n = 1√

⇡
( f , n) = 1

⇡ �
2⇡

0
f (x) cos nx dx

bf
n = 1√

⇡
( f ,'n) = 1

⇡ �
2⇡

0
f (x) sin nx dx

are called the Fourier coe�cients (�%**9&5 */$8/) of f . Thus, for every f ∈
H(0,2⇡),

f (x) = ∞�
n=0

af
n cos nx + ∞�

n=1
bf

n sin nx.

We will also denote by

S n f (x) = n�
k=0

af
k cos kx + n�

k=1
bf

k sin kx

the partial trigonometric sum. Hence

f = lim
n→∞S n f ,

but note that the convergence is in the mean, and not necessarily uniform, and
neither pointwise. That is, (2.5) cannot be interpreted as a pointwise equation, but
only as an equality in H(0,2⇡), where functions may di↵er on a set of measure
zero.

Corollary 2.41 For every f ,g ∈ H(0,2⇡),
( f ,g) = 2⇡af

0ag
0 + ⇡ ∞�

n=1
af

nag
n + ⇡ ∞�

n=1
bf

nbg
n,
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and in particular

� f �2 = 2⇡�af
0 �2 + ⇡ ∞�

n=1
�af

n �2 + ⇡ ∞�
n=1
�bf

n �2.

Proof : By the generalized Parseval’s identity,

( f ,g) = ∞�
n=0
( f , n)(g, n) + ∞�

n=1
( f ,'n)(g,'n),

and it remains the substitute the definitions of af
n and bf

n . n

Example: Consider the function f (x) = x. Then,

2⇡af
0 = � 2⇡

0
x dx = 2⇡2

⇡af
n = � 2⇡

0
x cos nx dx = 1

n
x sin nx�2⇡0 − 1

n �
2⇡

0
sin nx dx = 0

⇡bf
n = � 2⇡

0
x sin nx dx = −1

n
x cos nx�2⇡0 + 1

n �
2⇡

0
cos nx dx = −2⇡

n
.

Thus,

x = ⇡ − ∞�
n=1

2
n

sin nx.

Note that for any truncation the right-hand side is continuous periodic whereas the
limit is not periodic; clearly, the convergence cannot be uniform. Moreover, for
x = 0 it looks utterly wrong, as the left-hand side equals zero and the right-hand
side equals ⇡. This equality holds however as a limit in H(0,2⇡), hence almost
everywhere.
Parseval’s identity yields

� 2⇡

0
x2 dx = 8⇡3

3
= 2⇡3 + ⇡ ∞�

n=1

4
n2 ,

which reduces to ∞�
n=1

1
n2 = ⇡

2

6
.
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This is a very well-known formula, which is very di�cult to obtain by other meth-
ods. The calculation of the sum of inverse square was knows as the Basel prob-
lem. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler
in 1734 (not using Fourier series, which had not yet been invented). ▲▲▲
We proceed to investigate under what conditions the Fourier series converges
pointwise and/or uniformly:

Proposition 2.42 Let f ∈ H(a,b) and let ✓ ∈ R. Then,

lim
n→∞�

b

a
f (x) sin((n + ✓)x)dx = 0,

and
lim
n→∞�

b

a
f (x) cos((n + ✓)x)dx = 0,

Proof : Suppose first that [a,b] = [0,2⇡]. Then,

� b

a
f (x) sin((n + ✓)x)dx = � 2⇡

0
f (x) (sin nx cos ✓x + cos nx sin ✓x) dx.

Defining f1(x) = f (x) cos ✓x and f2(x) = f (x) sin ✓x, we have that

� b

a
f (x) sin((n + ✓)x)dx = 2⇡(bf1

n + af2
n ),

which converges to zero as n→∞. We proceed similarly for the cos term.
Next, suppose that [a,b] ⊂ [0,2⇡], define

g(x) = �������
f (x) x ∈ [a,b]
0 otherwise.

Then, g ∈ H(0,2⇡),
� b

a
f (x) sin((n + ✓)x)dx = � 2⇡

0
g(x) sin((n + ✓)x)dx,

which tends to zero as n→∞.
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Consider then the case where [a,b] = [2⇡k,2⇡`]. Then,

� 2⇡`

2⇡k
f (x) sin((n + ✓)x)dx = `�

j=k
� 2⇡( j+1)

2⇡ j
f (x) sin((n + ✓)x)dx

= `�
j=k
� 2⇡

0
f (x − 2⇡ j) sin((n + ✓)(x − 2⇡ j))dx,

and the limit as n → ∞ vanishes by the [0,2⇡] case. Finally, any closed interval
can be encapsulated in an interval [2⇡k,2⇡`] as above. n

Proposition 2.43 Let f ∈ H(0,2⇡).
(a) A necessary condition for its Fourier series to converge pointwise is that

f (0) = f (2⇡).
(b) A necessary condition for its Fourier series to converge uniformly is that f

be continuous (and also that f (0) = f (2⇡)).

Proof :

(a) The functions S n f satisfy S n f (0) = S n f (2⇡). Hence, if S n f converges to f
pointwise, it must holds that f (0) = f (2⇡).

(b) The functions S n f are continuous, hence if they converge uniformly, their
limit must be continuous.

n —27h(2019)—

Proposition 2.44 Let f ∈ H(0,2⇡) be continuous, piecewise continuously-
di↵erentiable and satisfies f (0) = f (2⇡). Then, f ′ ∈ H(0,2⇡) and its Fourier se-
ries is obtained by term-by-term di↵erentiation of the Fourier series of f , namely,

f ′ = − ∞�
k=0

ka f
k sin kx + ∞�

k=1
kb f

k cos kx,

that is
a f ′

n = n bf
n and bf ′

n = −n af
n .
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Proof : Clearly, f ′ ∈ H(0,2⇡) as a piecewise-continuous function. Integrating by
parts,

af
n = 1

⇡ �
2⇡

0
f (x) cos nx dx

= 1
⇡n

f (x) sin nx�2⇡
0
− 1
⇡n �

2⇡

0
f ′(x) sin nx dx

= −1
n

bf ′
n .

We proceed similarly with bf
n . n

Proposition 2.45 Let f ∈ H(0,2⇡) be continuous, piecewise continuously-
di↵erentiable and satisfies f (0) = f (2⇡). Then,

∞�
n=1
�af

n � <∞ and
∞�

n=1
�bf

n � <∞.
Moreover, the Fourier series of f converges absolutely and uniformly. Moreover,

Proof : From the previous proposition, the Cauchy-Schwarz inequality and the
Parseval identity for f ′,

∞�
n=1
�af

n � = ∞�
n=1

�bf ′
n �
n

≤ �∞�
n=1

1
n2�

1�2 �∞�
n=1
�bf ′

n �2�
1�2

≤ ⇡√
6

1√
⇡
� f ′� <∞,

and similarly for bf
n . Then, the series

S n f (x) = n�
k=0

af
k cos kx + n�

k=1
bf

k sin kx

satisfies the Weierstrass M-test, hence converging absolutely and uniformly to
some limit g. Since uniform convergence implies convergence in the mean, it
follows that the Fourier series of f converges in the mean both to f and to g, hence
f and g are equal almost everywhere. However g is continuous as a uniform limit
of continuous functions and f is continuous as well, hence f = g. n
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Lemma 2.46 Let f ∈ H(0,2⇡). Then, it partial Fourier sums can be represented
as

S n f = 1
2⇡ �

2⇡

0
f (t)Dn(x − t)dt,

where

Dn(x) = sin(n + 1
2)x

sin 1
2 x

is called the Dirichlet kernel (�%-,*9*$ 0*39#).

The following figure shows D32(x):
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Proof : This follows from straightforward algebra:

S n f (x) = af
0 + n�

k=1
af

k cos kx + n�
k=1

bf
k sin kx

= 1
2⇡ �

2⇡

0
f (t)dt + 1

⇡ �
2⇡

0
� n�

k=1
f (t) cos kt cos kx� dt

+ 1
⇡ �

2⇡

0
� n�

k=1
f (t) sin kt sin kx� dt

= 1
2⇡ �

2⇡

0
f (t)�1 + 2

n�
k=1

cos k(x − t)� dt.

It remains to prove that

1 + 2
n�

k=1
cos kx = Dn(x),

which can be done using induction. Alternatively, using the fact that

cos x = eix + e−ix

2
and sin x = eix − e−ix

2i

1 + 2
n�

k=1
cos kx = n�

k=−n
eikx = e−inx ei(2n+1)x − 1

eix − 1

= ei(n+1)x − e−inx

eix − 1
= e

1
2 ix

e
1
2 ix

ei(n+ 1
2 )x − e−i(n+ 1

2 )x
e

1
2 ix − e− 1

2 ix

= sin(n + 1
2)x)

sin 1
2 x

.

n

Lemma 2.47 The Dirichlet kernel satisfies the following properties:

(a) Dn(x) = Dn(−x),
(b) For every n,

1
2⇡ �

2⇡

0
Dn(x)dx = 1.
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(c) Let x ∈ R and let [a,b] be an interval not containing points of the form
x + 2⇡k, then for every f ∈ H(a,b),

lim
n→∞�

b

a
f (t)Dn(x − t)dt = 0.

Proof :

(a) Obvious.

(b) Set f = 1 ∈ H(0,2⇡). Then,

af
0 = 1

2⇡ �
2⇡

0
f (x)dx = 1 and af

n = bf
n = 0 for n ≥ 1.

It follows that for every n ≥ 1,

S n f (x) = 1 = 1
2⇡ �

2⇡

0
Dn(x − t)dt.

Substituting x = 0 we recover the desired result.

(c) We have

� b

a
f (t)Dn(x − t)dt = � b

a

f (t)
sin � x−t

2 � sin �(n + 1
2)(x − t)� dt.

Since the interval [a,b] does not contain points of the form x + 2⇡k, the de-
nominator is bounded away from zero, hence the first term of the integrand
in bounded and integrable. It follows from Proposition 2.42 that the limit as
n→∞ vanishes.

n

Theorem 2.48 (Localization principle) Let f ,g ∈ H(0,2⇡) and suppose that
f (x) = g(x) in a neighborhood of a point x0 ∈ (0,2⇡). Then,

lim
n→∞(S n f (x0) − S ng(x0)) = 0.
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In particular, if the Fourier series of f convergence at x0, so does the Fourier
series of g, and to the same limit. (This means that the converges of the Fourier
series of a function at a point only depends on its value in an arbitrarily small
neighborhood of that point, hence the term “localization”.)

Comment: The Fourier series of f at 0 only depends on its values in a neighbor-
hood of 0 and 2⇡.

Proof : Suppose that f (x) = g(x) in (x0 − �, x0 + �). Then

S n f (x0) − S ng(x0) = 1
2⇡ �

2⇡

0
( f (t) − g(t))Dn(x0 − t)dt

= 1
2⇡ �

x0−�
0
( f (t) − g(t))Dn(x0 − t)dt

+ 1
2⇡ �

2⇡

x0+�( f (t) − g(t))Dn(x0 − t)dt,

where we used the fact that f = g in the rest of the interval. Since t in the inte-
grands does not assume values of the form x0+2⇡k, it follows from Lemma 2.47(c)
that the limits as n→∞ vanish. n

2.5 Fejér sums

The basic question remains: under what conditions does the Fourier series of
a function (if it exists) converge pointwise to the function? The question was
asked already by Fourier himself in the beginning of the 19th century. Dirichlet
proved that the Fourier series of continuously di↵erentiable functions converges
everywhere. It turns out, however, that continuity is not enough for pointwise
convergence everywhere. For example, the series

f (x) = ∞�
n=1

1
n2 sin�(2n3 + 1) x

2
�

converges uniformly to a continuous function, but its Fourier series diverges at
certain points.
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Rather than looking at the partial sums S n f , we can consider their running aver-
age:

�n f = 1
n + 1

n�
k=0

S k f .

Such sums are called after Lipót Fejér. It turns out that Fejér sums are much
better behaved than the Fourier partial sums. Note that it is trivial that if S n f (x)
converges as n→∞, then so does �n f (x), and to the same limit.

Consider the Fejér sums in explicit form:

�n f (x) = 1
n + 1

n�
k=0

1
2⇡ �

2⇡

0
f (t)Dk(x − t)dt

= 1
2⇡ �

2⇡

0
f (t)� 1

n + 1

n�
k=0

Dk(x − t)� dy

≡ 1
2⇡ �

2⇡

0
f (t)Kn(x − t)dy,

where,

Kn(x) = 1
n + 1

sin2 1
2nx

sin2 1
2 x
,

which can be proved by induction. The function Kn(x) is known as the Fejér
kernel (�9**5 0*39#).
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The Fejér kernel is also normalized, as found by setting f ≡ 1:

1 = �n f (x) = 1
2⇡ �

2⇡

0
Kn(y)dy.

It di↵ers a lot from the Dirichlet kernel in that it is non-negative.

Like the Dirichlet kernel it is “centered” at zero. That is, for every " > 0,

lim
n→∞�

2⇡−"
"

Kn(x)dx = lim
n→∞

1
n + 1 �

2⇡−"
"

sin2 1
2nx

sin2 1
2 x

dx

≤ lim
n→∞

1
n + 1 �

2⇡

0

dx
sin2 1

2�
= 0.

Theorem 2.49 (Fejér) For every f ∈ C([0,2⇡]) such that f (0) = f (2⇡):
lim
n→∞ ��n f − f �∞ = 0.

Proof : Since continuous functions on compact intervals are uniformly continuous,

∀" > 0 ∃� > 0 ∶ ∀�x − y� < � � f (x) − f (y)� < ".
Using the normalization of the Fejér kernel:

��n f (x) − f (x)� = � 1
2⇡ �

⇡

−⇡ ( f (t) − f (x))Kn(x − t)dt�
≤ � 1

2⇡ ��x−t�≥�( f (t) − f (x))Kn(x − t)dt� + � 1
2⇡ ��x−t�<�( f (t) − f (x))Kn(x − t)dt�

≤ 2� f �∞ 1
2⇡ ��x�≥� Kn(y)dy + "

2⇡ �
2⇡

0
Kn(y)dy,

and we used the fact that the Fejér kernel is non-negative. For su�ciently large n
the right hand side can be made smaller than a constant (independent of x) times
", which completes the proof. n—29h(2019)—
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2.6 Applications of Fourier series

The Fourier series is named after Jean-Baptiste Joseph Fourier (1768–1830). Fourier
introduced the series for the purpose of solving the heat equation in a metal plate,
publishing his initial results in his 1807. Fourier’s research established that an
arbitrary continuous function can be represented by a trigonometric series. Early
ideas of decomposing a periodic function into the sum of simple oscillating func-
tions date back to the 3rd century BC, when ancient astronomers proposed an
empiric model of planetary motions.

TA material 2.1 The heat equation (�.&(% ;!&&:/) describes the evolution over
time of a temperature field. In its simplest formulation, let T(x, t) denote the
temperature at a point x and time t, where x ∈ [0,2⇡] and t ≥ 0. Suppose that the
initial temperature T(x,0) is given. Then, T(x, t) satisfies the partial di↵erential
equation,

@T
@t
(x, t) = k

@2T
@x2 (x, t),

where k > 0 is a constant. In addition, one has to specify boundary conditions
(�%5: *!1;). For example, one may dip the ends of the rod in ice, so that for every
t,

T(0, t) = T(2⇡, t) = 0.

This is the problem that Fourier wanted to solve. He notices that every function
of the form

T(x, t) = sin nx e−kn2t

is a solution to the heat equation satisfying the boundary conditions. Since the
heat equation is linear, every linear combination of the form

T(x, t) = ∞�
n=1

an sin nx e−kn2t

is also a solution to the heat equation, satisfying the boundary conditions.


