
2. Banach spaces

2.1 Definitions and examples

We start by defining what a Banach space is:

Definition 2.1 A Banach space is a complete, normed, vector space.

Comment 2.1 Completeness is a metric space concept. In a normed space the
metric is

d(x,y) = �x−y�.
Note that this metric satisfies the following “special" properties:

¿ The underlying space is a vector space.
¡ Homogeneity: d(ax,ay) = �a �d(x,y).
¬ Translation invariance: d(x+ z,y+ z) = d(x,y).

Conversely, every metric satisfying these three conditions defines a norm:

�x� = d(x,0).

Exercise 2.1 Let (X ,� ⋅�) be a normed space. A series ∑∞n=1 xn is absolutely
convergent if ∞�

n=1
�xn� <∞.
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Prove that a normed space is a Banach space (i.e., complete) if and only if every
absolutely convergent series is convergent. �

Definition 2.2 An injection f ∶X �Y (i.e., one-to-one) between two normed
spaces X and Y is called an norm-preserving if

(∀x ∈X ) �T f (x)� = �x�.
If the image of f is Y then the two spaces are called isometric and f is called
an isometry (which is an isomorphism in the category of metric spaces).

Theorem 2.1 — Completion theorem. Let (X ,� ⋅�) be a normed space. There
exists a Banach space (B,� ⋅�) and a linear norm-preserving map, T ∶X →B,
whose image is dense in B. Furthermore, B is unique up to an isometry.

Proof. The proof is practically identical to the proof for Hilbert spaces. Define B
to be the space of all Cauchy sequences in X , modulo the equivalence relation x ∼ y
if lim(xn−yn) = 0. Denote the equivalence class of a Cauchy sequence x by [x].
We endow B with a norm: �a� = lim

n→∞�xn�,
where [(xn)] = a . This norm is well-defined because

��xn�−�xm�� ≤ �xn−xm�.
If (xn) is a Cauchy sequence so is (�xn�), and the latter converges by the com-
pleteness of R. It is also easy to see that the norm of a ∈B is independent of the
representing sequence (xn) ⊂X .

The mapping T ∶X →B is defined by

T x = [(x,x, . . .)].
It is obviously norm-preserving. The rest of the proof continues as for Hilbert
spaces. �
� Example 2.1 Let X =Cn. For p ≥ 1 we define:

�x�p = � n�
i=1
�xi�p�

1�p
.

It is easy to see that � ⋅ � satisfies the positivity and homogeneity conditions. To
see that it satisfies also the triangle inequality we need to derive first a number of
classical inequalities. �
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Lemma 2.2 — Young’s inequality. Let p > 1 and set q = p�(p−1). For every
a,b ∈C:

�ab� ≤ �a�p
p
+ �b�q

q

Proof. Note that 1�p+1�q = 1. Since (− log) is a convex function then for every
a,b > 0:

− log�a

p
+ b

q
� ≤ −1

p
loga − 1

q
logb = − log(a1�p

b

1�q).
It follows that:

a

p
+ b

q
≥ a

1�p
b

1�q.
Setting a = �a�p and b = �b�q we recover the desired result. �

Proposition 2.3 — Hölder inequality. Let p > 1 and set q = p�(p−1). For every
x,y ∈Cn:

n�
i=1
�xi��yi� ≤ �x�p�y�q.

Proof. Using Young’s inequality term-by-term:

∑n
i=1 �xiyi��x�p�y�q =

n�
i=1
� �xi��x�p

�� �yi��y�q� ≤
1
p

n�
i=1
� �xi��x�p

�p+ 1
q

n�
i=1
� �yi��y�q�

q = 1
p
+ 1

q
= 1.

�

Proposition 2.4 — Minkowski inequality. Let p > 1. For every x,y ∈Cn:

�x+y�p ≤ �x�p+�y�p.

Proof. For every i ∈ {1, . . . ,n}, it follows from the triangle inequality that

�xi+yi�p = �xi+yi� �xi+yi�p−1 ≤ �xi� �xi+yi�p−1+ �yi� �xi+yi�p−1.

Summing over i, and using Hölder’s inequality:

�x+y�p
p ≤ (�x�p+�y�p)� n�

i=1
�xi+yi�q(p−1)�1�q

,
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where q = p�(p−1). Noting that q(p−1) = p and 1�q = (p−1)�p:

�x+y�p
p ≤ (�x�p+�y�p)�x+y�p−1

p ,

which completes the proof. �

Corollary 2.5 For every p ≥ 1, � ⋅�p is a norm.

� Example 2.2 For X =Cn we define

�x�∞ =max
1≤i≤n
�xi�.

It is easy to see that this is indeed a norm. It is a classical exercise to show that

�x�∞ = lim
p→∞�x�p.

�
� Example 2.3 The above examples can be extended to space of infinite sequences,
which are denoted by `p, 1 ≤ p ≤∞. �

The `p spaces are “generic normed" spaces. The cases of p ≠∞ and p =∞ are
inherently different for the following reason:

Proposition 2.6 The spaces `p, 1 ≤ p <∞ are separable.

Proof. The subset of rational sequences that only have a finite number of non-zero
entries is countable and dense. �

Proposition 2.7 The space `∞ is not separable.

Proof. Consider the set A of elements in `∞ whose entries only assume the values 0
and 1. This set is uncountable (it is isomorphic to [0,1]), and the distance between
every two elements in A is 1. Let B be a dense subset of `∞. Every x ∈ A has a
x(x) ∈ B such that �x−x(x)�∞ < 1�4.
By the triangle inequality, x1 ≠ x2 implies x(x1) ≠ x(x2), hence x ∶A→B is injective,
which implies that B is uncountable. �
� Example 2.4 Consider the linear subspace of c⊂ `∞ that consists of all converging
sequences. This subspace is closed, hence it is a Banach space. The subspace c0 of
c that consists of sequences that converge to zero is also a Banach space. �
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� Example 2.5 Let B(S) be the set of all bounded functions on some set S. It is a
vector space with respect to pointwise addition and scalar multiplication. It is made
into a normed space with respect to

� f � = sup
x∈S � f (x)�.

Convergence with respect to this norm is called uniform convergence (;&21,;%
�%&&: %$*/"). �

Proposition 2.8 Let S be any set. Then, B(S) is a Banach space. (Please note
that this conclusion requires no structure on the set S.)

Proof. Let fn ∈ B(S) be a Cauchy sequence; we need to show that it converges
uniformly. Fix x ∈ S. Then:

� fn(x)− fm(x)� ≤ � fn− fm�,
which implies that ( fn(x)) is a Cauchy sequence, hence converges. Denote the limit
of fn(x) by f (x); we will show that fn→ f in B(S).
For every e there exists an N such that for every m,n >N,

� fn− fm� < e.

Thus, for every x, � fn(x)− f (x)� ≤ e,

i.e., fn converges uniformly to f . �
The next example adds structure to the previous one:

� Example 2.6 Let K be a Hausdorff topological space, and let C(K) ⊂ B(K) be
the subspace of bounded continuous functions with the norm inherited from B(K).
Since and uniform limits of continuous functions are continuous, then C(K) is a
closed subspace of B(K) and hence a Banach space. �

As of now K can be any Haussdorf topological space. More structure on K affects
the properties of the Banach space C(K) as shown in the following theorem:

Theorem 2.9 Let K be a compact Hausdorff topological space. The Banach
space C(K) is separable if and only if K is metrizable (i.e., one can define on K a
metric that induces the same topology).
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Proof. Suppose first that K is metrizable with metric d. Compact spaces are separa-
ble, so let xn be a dense sequence in K. For every m,n define fn,m ∈C(K):

fn,m(x) =
�������

1 d(x,xn) ≤ 1�m
0 d(x,xn) > 2�m ,

with some continuous gluing between the two domains. This sequence of functions
separates between points. By the Stone-Weierstraß theorem, polynomials of fn,m

with rational coefficients form a countable dense set.

Conversely, suppose that C(K) is separable. let fn be a dense sequence in the unit
ball of C(K). Define the map j ∶K → [−1,1]ℵ0 (the Hilbert cube),

j(x) = ( f1(x), f2(x), . . .).
The norm on the Hilbert cube is

�a� = �∞�
n=1

a2
n

n2�
1�2

.

j is continuous, and because the fn separate between points it is one-to-one1. Since
K is compact, j is a homeomorphism, and since the Hilbert cube is metrizable, so
is K. �
Schauder basis

Every vector space has a Hamel basis, which is a purely algebraic construct. Every
Hilbert space has an orthonormal basis, which builds upon the inner product. A
normed space (X ,(⋅, ⋅)) is said to have a Schauder basis (en) if for every x ∈X
there is a unique sequence of scalars (an) such that

x = ∞�
n=1

anen.

It can be shown that if a normed space has a Schauder basis then the space is
separable. The harder question is whether a separable Banach space necessarily has
a Schauder basis. This question was raised originally by Banach. For a long time all
known examples of Banach spaces were found to have such a basis. In 1973, Enflo
constructed a separable Banach space that does not have a Schauder basis.

1If they did not separate between two points they could not approximate uniformly a function
taking distinct values at these two points.
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Exercise 2.2 Show that if a normed space has a Schauder basis then it is separa-
ble. �

Linear operators

Let X and Y be normed spaces. We have already proven that a linear transformation
T ∶X →Y is continuous if and only if it is bounded (we proved it in Chapter 1,
but the theorem was for general normed space). We denote the space of bounded
linear operators from X to Y by B(X ;Y ). It is made into a vector space over C
by pointwise operations:

(aS+bT)(x) = a S(x)+b T(x).
As usual we define: �T� = sup�x�=1

�T x�.
Note that �x� is a norm in X and �T x� is a norm in Y .

Proposition 2.10 � ⋅� is a norm on B(X ;Y ).

Proof. It is evident that � ⋅� is homogeneous and positive. If �T� = 0 then T x = 0
for all x ∈X , i.e., T is the zero transformation. It remains to prove the triangle
inequality. It follows from the triangle inequality in X that

�S+T� = sup�x�=1
�(S+T)x� ≤ sup�x�=1

(�Sx�+�T x�) ≤ sup�x�=1
�Sx�+ sup�x�=1

�T x� = �S�+�T�.
�

The following proposition shows that for B(X ;Y ) to be complete it is sufficient
that the target space Y be complete:

Proposition 2.11 Let X be a normed space and let Y be a Banach space. Then
B(X ;Y ) is a Banach space.

Proof. Let Tn ∈ B(X ;Y ) be a Cauchy sequence.

Step 1: define the limit T : For every x ∈X ,

�Tnx−Tmx� = �(Tn−Tm)x� ≤ �Tn−Tm��x�,
which implies that (Tnx) is a Cauchy sequence in Y , hence converges to a limit. We
denote

T x = lim
n→∞Tnx.
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Step 2: T is linear: T is a linear transformation from X to Y , because

T(ax+by) = lim
n→∞Tn(ax+by) = lim

n→∞(a Tnx+b Tny) = a T x+b Ty.

Step 3: T is bounded: By the continuity of the norm, for every x ∈X
�T x� = lim

n→∞�Tnx� ≤ (limsup�Tn�)�x�.
Since the Cauchy sequence Tn is bounded, it follows that T ∈ B(X ;Y ).
Step 4: T is the limit of Tn: Let e > 0 be given. There exists an N such that for all
m,n >N: �Tn−Tm� < e.

By the continuity of the norm, for every x ∈X and n >N,

�Tnx−T x� = lim
m→∞�Tnx−Tmx� ≤ �limsup

m→∞ �Tn−Tm���x� < e�x�,
i.e., �Tn−T� < e , which proves that Tn→ T . �

Definition 2.3 Let X be a normed space. The space of all bounded linear
functionals on X is called its dual space and it is denoted by X ∗.

Corollary 2.12 Let X be a normed space. Then, X ∗ is a Banach space.

Proof. It follows from Proposition 2.11 and the completeness of the field of scalars.�
Notation 2.1 Let X be a normed space. Let x ∈X and f ∈X ∗. We will denote
the action of f on x by � f ,x�.
This notation makes it plain that the function ( f ,x)� f (x) is bilinear.

TA material 2.1 The converse of the last proposition is also true:

Proposition 2.13 let X and Y be normed spaces. If B(X ,Y ) is a Banach
space then Y is a Banach space.

Proof. Let f ∈X ∗ be a functional of positive norm (i.e., there is an x ∈X such that� f ,x� ≠ 0). Define T ∶Y → B(X ,Y ):
y� � f , ⋅�y.
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T is clearly linear; it is also bounded as

�Ty�B(X ,Y ) = sup�x�=1
��Ty,x��Y = sup�x�=1

�� f ,x�y�Y ≤ � f �X ∗�y�Y
Let (yn) be a Cauchy sequence in Y . Then

�Tyn−Tym�B(X ,Y ) = � f �X ∗�yn−ym�Y .

Thus, (Tyn) is a Cauchy sequence in B(X ,Y ). By assumption, there exists an
S ∈ B(X ,Y ) such that Tyn→ S. Let x0 ∈X such that � f ,x0� = 1 and set y = S(x0).
Then,

�yn−y�Y = �S(x0)−� f ,x0�yn�Y = �S(x0)−Tyn(x0)�Y ≤ �S−Tyn�B(X ,Y )�x0�X →0,

hence yn→ y and Y is complete. �

Proposition 2.14 Let p ≥ 1 and set q = p�(p−1) (if p = 1 then q =∞). Then, `∗p
is isometric to `q.

Comment 2.2 For p = 2 the proposition states that `∗2 ≅ `2, which we already know
from the Riesz representation theorem.

Proof. Consider the case p > 1; the proof for p = 1 follows the same lines.

Step 1: construct a linear map T ∶ `q→ `∗p: Let y ∈ `q. We associate with y a linear
functional on `p:

T(y)x = ∞�
n=1

ynxn.

The right hand side is well defined because by Hölder’s inequality

N�
n=1
�ynxn� ≤ � N�

n=1
�xn�p�

1�p� N�
n=1
�yn�q�

1�q ≤ �y�q�x�p.

Note that not only T(y) is a linear functional; the mapping T ∶ y� T(y) is also
linear.

Step 2: T ∶ `q→ `∗p is bounded: By Hölder’s inequality:

�T(y)x� ≤ �y�q�x�p,

which implies that �T(y)�`∗p ≤ �y�q. Thus, T is indeed a mapping from `q to `∗p,
and moreover, T ∈ B(`q;`∗p). Having shown that T(y) ∈ `∗p, we denote its action by
T(y)x = �T(y),x�.
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Step 3: T is onto: Let F ∈ `∗p and define

yn = �F,en�,
where en is the n-th unit vector. We have thus mapped an element in F ∈ `∗p into a
sequence y. We are going to show that the sequence y is in `q.

Define the sequence of sequences:

x(n)k = �������
�yk�q−1e−ı argyk k ≤ n
0 k > n.

Then,

�x(n)�p = � n�
k=1
�yk�p(q−1)�1�p = � n�

k=1
�yk�q�

1�p
,

and
�F,x(n)� = n�

k=1
x(n)k �F,ek� = n�

k=1
x(n)k yk = n�

k=1
�yk�q.

It follows that

n�
k=1
�yk�q = �F,x(n)� ≤ �F�`∗p�x(n)�p = �F�`∗p �

n�
k=1
�yk�q�

1�p
,

i.e.,

� n�
k=1
�yk�q�

1�q ≤ �F�`∗p .
Since this inequality holds uniformly in n, it follows that y ∈ `q and �y�q ≤ �F�`∗p .

Since F is continuous:

(∀x ∈ `p) �F,x� = �F, lim
n

n�
k=1

xkek� = ∞�
n=1

xn�F,ek� = ∞�
n=1

xnyn = T(y)x.
Thus, F belong to the image of T , i.e., T is surjective.

Step 4: T is an isometry: We have shown both that �T(y)�`∗p ≤ �y�q and �T(y)�`∗p ≥�y�q, which proves that T is an isometry. �

Corollary 2.15 The spaces `p, p ≥ 1, are Banach spaces.

Proof. For p ≥ 1,
`p ≅ `∗q ,

and the dual of any normed space is a Banach space. �
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Comment 2.3 Another immediate corollary is that (`∗p)∗ ≅ `p for 1 < p <∞. On
the other hand, `∗∞ ≠ `1.

Proposition 2.16 c∗0 ≅ `1.

Proof. Left as an exercise. �

2.2 The uniform boundedness principle

This section is concerned with the Banach-Steinhaus theorem and its ramifications.
This theorem is one of the four “cornerstones" of Banach spaces, together with the
Hahn-Banach theorem (which in fact applies to general vector spaces), the open
mapping theorem, and the closed graph theorem.

2.2.1 The Banach-Steinhaus theorem

Theorem 2.17 — Banach-Steinhaus, 1927 ( �%&&: %$*/" ;&/*2(). Let B be a
Banach space and let {Y

a

� a ∈ A} be normed spaces. Let T
a

∈ B(B;Y
a

) be a
family of bounded linear operators. If

(∀x ∈B) sup
a∈A �Ta

x� <∞,

then
sup
a∈A �Ta

� <∞.

Proof. Consider the sequence of sets

Bn = {x ∈B � sup
a∈A �Ta

x� ≤ n}.
These sets are closed and cover B. Since B is complete, it follows from Baire’s
category theorem that there exists an m such that Bm contains an open ball. That is,
there exist an x0 ∈B and a r > 0, such that for all x ∈ B(x0,r):

sup
a∈A �Ta

x� ≤m.

For all �x� = 1 and a ∈ A,

�T
a

x� = 2
r

�T
a

�r

2
x�� ≤ 2

r

�T
a

�x0+ r

2
x�−T

a

(x0)� ≤ 4m
r

�x�,
which implies that �T

a

� ≤ 4m�r for all a ∈ A. �
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Comment 2.4 Note how similar is this proof to the proof that a weakly converging
sequence in a Hilbert space is bounded. This is not a coincidence. The Banach-
Steinhaus theorem is a generalization of the former. Indeed, suppose that a sequence
yn weakly converges to y. Defining

Tn = (⋅,yn),
this sequence of bounded linear functionals satisfies

�Tnx� = �(x,yn)�→ �(x,y)�,
hence the sequence (Tnx) is bounded for every x ∈H . It follows from the Banach-
Steinhaus theorem that �Tn� = �yn� is bounded.

Proposition 2.18 Let Tn be a sequence in B(B;B′), where both B and B′ are
Banach spaces. Then, Tnx converges for all x ∈B if and only if:

¿ Tnx converges for every x in some dense subset A of B.
¡ supn �Tn� <∞.

Proof. The “only if" direction: If Tnx converges for all x ∈B then it certainly
converges for every x in some dense subset of B. The boundedness of �Tn� follows
from the Banach-Steinhaus theorem.

The “if" direction: Suppose that the two conditions hold; denote

sup
n
�Tn� =M.

Let e > 0 be given. For every x ∈B corresponds a y ∈ A such that �x−y� < e . Since
Tny converges, there exists an N, such that for every n,m >N,

�Tny−Tmy� < e.

Then,

�Tnx−Tmx� ≤ �Tnx−Tny�+�Tny−Tmy�+�Tmy−Tmx� ≤ (2M+1)e.
It follows that Tnx is a Cauchy sequence hence converges. �



2.2 The uniform boundedness principle 113

Exercise 2.3 Let X , {Y
a

} be normed spaces and let T
a

∶X →Y
a

be a family
of bounded linear operators. Prove that the set

E = {x ∈X � sup�T
a

x� =∞}
is either empty or a dense G

d

set (a countable intersection of open sets). Hint: if
E is not dense, then its complement contains a ball. Any vector can be translated

by translation and dilation into any ball. �

Exercise 2.4 Let X be a Banach space, Y a normed space, and Tn ∈ B(X ,Y )
a sequence satisfying

lim
n→∞Tnx ≡ T x exists for all x ∈X .

¿ Show that T is a bounded linear operator.
¡ Show that limx→0 Tnx = 0 uniformly in n.
¬ Show that T is not necessarily bounded if X is not complete. Hint:

consider fn(x) =∑n
k=1 xk in the space cc of sequences the are zero from

some point, with an appropriate norm.

�

2.2.2 Applications

We will now see a number of applications of the Banach-Steinhaus theorem:

Proposition 2.19 Let H be a Hilbert space and let B(⋅, ⋅) be a bilinear form. If
B(⋅,y) is continuous for every y and B(x, ⋅) is continuous for every x, then B is
bounded.

Proof. Fix x ∈H and consider the linear functional B(x, ⋅). By assumption it is
continuous, hence bounded; denote its bound by Kx:

�B(x,y)� ≤Kx�y�.
Next, for given 0 ≠ y ∈H consider the bounded linear functional

Fy = B(⋅,y)
�y� .
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Then,

sup
y
��Fy,x�� = sup

y

�B(x,y)�
�y� ≤Kx,

i.e., the functionals Fy are pointwise bounded. It follows from the Banach-Steinhaus
theorem that there exists an M > 0, such that

sup
y
�Fy� ≤M.

Thus, for every x,y ∈H :

�B(x,y)� = ��Fy,x���y� ≤M�x��y�,
which proves that B is bounded. �
Comment 2.5 Where did we use the continuity of B(⋅,y)? It is a necessary condi-
tion for the Banach-Steinhaus theorem.

TA material 2.2 Note that we nowhere used the inner-product, which means that
the proposition holds for bilinear forms in Banach spaces. On the other hand,
completeness is essential. As an example for why completeness is needed, let
X ⊂ L1([0,1]) be the space of real-valued polynomials; it is not complete. Define
the bilinear form,

B(p,q) =� 1

0
p(x)q(x)dx.

B is continuous with respect to each argument as:

�B(p,q)� ≤ �max
x
�p(x)���q�1.

However B is not bounded for let pn(x) = (n+1)xn, then

�pn� =� 1

0
(n+1)xn dx = 1,

whereas

�B(pn, pn)� =� 1

0
(n+1)2x2n dx

(n+1)2
2n+1

→∞.

Pointwise convergence of Fourier series

Consider the space C[0,2p] of functions f satisfying f (0) = f (2p) (continuous
functions on a circle). Recall that

Sn f (x) = 1
2p

� 2p

0
Dn(x− t) f (t)dt,

where

Dn(x) = sin(n+ 1
2)x

sin 1
2 x

is the Dirichlet kernel.
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Proposition 2.20 For every x0 ∈ [0,2p] there exists a function f ∈C[0,2p] such
that the Fourier series of f does not converge at x0.

Proof. Define the following sequence of linear functionals on C[0,2p]:
Fn( f ) = Sn f (x0).

These functionals are bounded, for

�Fn( f )� ≤ 1
2p

� 2p

0
�Dn(x0− t) f (t)�dt ≤Kn� f �∞.

We need to show that there exists an f for which �Fn, f � does not converge. By the
Banach-Steinhaus theorem,

sup
n
�Fn� =∞ implies ∃ f ∈C[0,2p], sup

n
��Fn, f �� =∞.

The proposition will be proved if we show that �Fn�→∞. �

Proposition 2.21 For Fn defined as above:

lim
n→∞�Fn� =∞.

Proof. Suppose we took

f (t) =
�����������

1 Dn(x0− t) > 0
−1 Dn(x0− t) < 0
0 Dn(x0− t) = 0

,

then
�Fn, f � = Sn f (x0) = 1

2p

� 2p

0
�Dn(x0− t)�dt = 1

2p

� 2p

0
�Dn(t)�dt.

Of course, f is not continuous, however, for every e we can find a function f
e

∈
C[0,2p] (of norm one as well) that differs from f over a small set, such that

�Fn, f
e

� ≥ 1
2p

� 2p

0
�Dn(t)�dt −e.

It follows that
�Fn� ≥ 1

2p

� 2p

0
�Dn(t)�dt.

It is a simple exercise to show that the right hand side diverges as n→∞ (it grows
like logn). �
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Exercise 2.5 Prove that

lim
n→∞

1
2p

� 2p

0
�Dn(t)�dt =∞.

�

Polynomial interpolation

Proposition 2.22 Given n+ 1 points {(xi,yi)}n
i=0 in the plane with all the xi

distinct, there exists a unique polynomial pn ∈Pn, such that

p(xi) = yi for all i = 0,1, . . . ,n.

Proof. Uniqueness is immediate: if pn and qn satisfy the required conditions, then
their difference is a polynomial of degree up to n that vanishes at n+1 points.

The existence of pn is proved by providing a formula:

pn(x) = n�
i=0

yi�
j≠i
� x−x j

xi−x j
� .

This representation of the polynomial is called the Lagrange representation. �

Definition 2.4 Let f ∈C[−1,1] be real-valued. Let Qn = (x0, . . . ,xn) be distinct
points on [−1,1]; Qn is called a partition (�%8&-() of size n. The interpolation
polynomial of f through the points xi is the unique polynomial pn ∈Pn satisfying

p(xi) = f (xi) for all i = 0,1, . . . ,n.

Question: is pn a good approximation of f ? In particular, does pn→ f as n→∞? It
can be shown that there exists for every f ∈C[−1,1] a sequence of partitions (Qn)
such that pn→ f (the convergence is in C[−1,1], i.e., it is uniform). The following
theorem shows, somewhat surprisingly, that the opposite is not true: there exists
for every sequence (Qn) of partitions a function f ∈C[−1,1], such that pn does not
converge to f .

Theorem 2.23 — Faber, 1914. For every sequence of partitions Qn =(x(n)0 , . . . ,x(n)n ) there exists a function f ∈C[−1,1] for which

limsup
n→∞ � f − pn�∞ =∞,
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where pn is the interpolation polynomial of f with respect to the partition Qn.

Proof. We will prove the theorem for uniform partitions, x(n)k =−1+2k�n. Denote by
Ln ∶C[−1,1]→Pn[−1,1] the mapping of a function f to its polynomial interpolation
with respect to Qn:

(Ln f )(x) = n�
i=0

f (xi)�
j≠i
� x−x j

xi−x j
� .

Ln is a linear operator; it is bounded because

�Ln f � ≤ � f �max
x

n�
i=0
�
j≠i
� x−x j

xi−x j
� .

We will show that
lim

n→∞�Ln� =∞,

and it will follow from the Banach-Steinhaus theorem that there exists an f ∈C[−1,1]
for which

lim
n→∞�Ln f � =∞.

Let x̂ = 1
2(x0+x1). There exists a unit vector f satisfying

f (xi) = sgn�
j≠i
� x̂−x j

xi−x j
� .

Then,

(Ln f )(x̂) = n�
i=0
�
j≠i
� x̂−x j

xi−x j
� = n�

i=0
�
j≠i
� (−1+1�n)−(−1+2 j�n)
(−1+2i�n)−(−1+2 j�n) � =

n�
i=0
�
j≠i
�1�2− j

i− j
� .

It follows that

�Ln f � ≥ n�
i=0
�
j≠i
�1�2− j

i− j
� .

One can finally show that the right hand side is O(n). �
� Example 2.7 — Runge. The polynomial interpolations of

f (x) = 1
1+25x2

on the interval [−1,1] using uniform partitions diverge. This is surprising as f is
smooth. �

2.3 Isomorphisms
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Definition 2.5 Two normed spaces X and Y are called isomorphic if there
is a linear bijection T ∶X � Y such that both T and T−1 are continuous. T
is called an isomorphism (i.e., an isomorphism between normed spaces is a
homeomorphism that preserves the linear structure).

Proposition 2.24 Let X and Y be normed space. Let T ∶X �Y be a surjec-
tive, linear norm-preserving map (i.e., an isometry). Then T is an isomorphism.

Proof. It is given that T is linear, surjective, and

�T x�Y = �x�X
for all x ∈X . Hence, T is bounded, and therefore continuous. Since kerT = {0}, T
is also injective hence T−1 is well-defined. Finally, for every y ∈Y ,

�y�Y = �T−1y�X
so that T−1 is also bounded and hence continuous. �
Comment 2.6 The converse is not true: an isomorphism is not necessarily an
isometry. An isomorphism is an equivalence relation in the category of topological
vector spaces.

Proposition 2.25 — Characterization of isomorphisms. Let X and Y be
normed spaces. They are isomorphic if and only if there is a linear mapping
T ∶X →Y onto Y and constants c,C > 0, such that

(∀x ∈X ) c�x�X ≤ �T x�Y ≤C�x�X .

Proof. Suppose that X and Y are isomorphic. Then, there is a linear bijection
T ∶X �Y and constants c,C, such that �T� =C and �T−1� = 1�c. It follows that

�T x�Y ≤C�x�X and �x�X = �T−1(T x)�X ≤ 1
c
�T x�Y .

Conversely, suppose that the assumptions hold. It follows that T is bounded, �T�≤C,
kerT = {0}, hence T is injective and T−1 is well-defined. Finally, T−1 is continuous
as

�T−1y�X ≤ 1
c
�T(T−1y)�Y = 1

c
�y�Y ,

i.e., �T−1� ≤ 1�c. �
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Corollary 2.26 Two norms � ⋅�1 and � ⋅�2 induce the same topology on a vector
space X if and only if there exist constant c,C such that c�x�1 ≤ �x�2 ≤C�x�1.
(Two such norms are said to be equivalent).

Proof. Apply the previous characterization with T the identity. �
Please note that two norms on the same space are equivalent if every ball B(0,r)
with respect to one norm is contained in some ball B(0,r) with respect to the other
norm.

We next construct an example that shows that isomorphic normed spaces are not
necessarily isometric.

Proposition 2.27 The spaces c and c0 are isomorphic.

Proof. Recall that c is the subspace of `∞ consisting of converging sequences and
c0 is the subspace of c consisting of sequences converging to zero. For x ∈ c with
limit x̄, define

T x = (x̄,x1− x̄,x2− x̄, . . .) ∈ c0.

(The limit of x is encoded in the first element of T x.) T is linear; it is injective
because kerT = {0}. It is onto because for y ∈ c0:

y = T(y1+y2,y1+y3, . . .).
Finally, T and T−1 are both continuous because

�T x� ≤max{�x̄�,�x�+ �x̄�} ≤ 2�x�,
and �T−1y� ≤ 2�y�.
This completes the proof. �
But are c and c0 isometric? The operator T defined above is not an isometry: take
the sequence x = (5,4,4, . . .), then �x� = 5 and �T x� = 4. Yet, isomorphisms are not
unique, hence it might well be that an isometric exists. We will show that this is not
the case.

Definition 2.6 Let C be a convex set in a vector space V . A point x ∈C is called
an extreme point ( �0&7*8 ;$&81) if x is not an interior point of any open segment
contained in C.
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Comment 2.7 An extreme point is a boundary point. The converse is not true. A
closed half plane, for example, has boundary points but no extreme points.

Proposition 2.28 The closed unit ball in c0 has no extreme points.

Proof. Let x ∈ c0, �x� ≤ 1. Since x converges to zero, there is a k for which �xk� < 1�2.
The open segment

�x− 1
2

ek,x+ 1
2

ek� ,
where ek is the k-th unit vector, is contained in the unit ball, hence x is not an extreme
point. �

Proposition 2.29 The closed unit ball in c has an extreme point.

Proof. Consider the point x = (1,1, . . .). Suppose it were not an extreme point. This
would imply the existence of a vector 0 ≠ y ∈ c and an e > 0 such that

(x−ey,x+ey) ⊂ B(0,1).
Since y has a non-zero entry, say yk, either xk −eyk or xk +eyk is greater than one,
i.e., either x−ey or x+ey is not in the unit ball of c. �
The fact that c and c0 are not isometric follows from the following proposition:

Proposition 2.30 Let T ∶X →Y be a linear isometry. If x ∈X is an extreme
point in the unit ball of X , then T x is an extreme point in the unit ball of Y

Proof. Since isometries preserve all metric properties and being an extreme point is
a metric property the assertion holds trivially. �
We now return to the mere concept of isomorphism:

Proposition 2.31 Separability is an isomorphism invariant.

Proof. Let T ∶X →Y be an isomorphism. Suppose that X is separable, and let
A ⊂X be a countable, dense set. Let y ∈Y ; there exists a sequence (xn) ∈ A such
that

xn→ T−1y.
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By the continuity of T :
T xn→ T(T−1y) = y.

This proves that the countable set T(A) is dense in Y . �
Recall that in Hilbert spaces all separable spaces are isomorphic. Is it also the case
for Banach spaces?

Proposition 2.32 Let X and Y be isomorphic normed spaces, then X ∗ and
Y ∗ are isomorphic.

Comment 2.8 “Isomorphic" can be replaced by “isometric". We will prove the
latter after we learn the Hahn-Banach theorem.

Proof. Let T ∶X →Y be an isomorphism. T induces a natural map, its adjoint,
T∗ ∶Y ∗→X ∗, defined by2

[T∗(y∗)](x) = �y∗,T x�,
(or T∗(y∗) = y∗ ○T ). T∗ is linear as the map y∗� y∗ ○T is linear. T∗ is injective as
y∗1 ○T = y∗2 ○T implies that y∗1 = y∗2 (here we use the fact that T is invertible). T∗ is
also surjective as for any x∗ ∈X ∗,

x∗ = (x∗ ○T−1)○T = T∗(x∗ ○T−1).
Thus, T∗ is invertible, and

(T∗)−1(x∗) = x∗ ○T−1.

It remains to show that T∗ and (T∗)−1 are both continuous. Note that (T∗)−1 relates
to T−1 in the same way as T∗ relates to T , therefore, it is sufficient to verify the
boundedness of one of them:

�T∗� = sup�y∗�=1
�T∗(y∗)� = sup�y∗�=1

sup�x�=1
�T∗(y∗)(x)� = sup�y∗�=1

sup�x�=1
�y∗(T x)�

≤ sup�y∗�=1
sup�x�=1
�y∗��T��x� = �T�,

i.e., T∗ is bounded. �
The following corollary shows that unlike Hilbert spaces, two separable Banach
spaces can be non-isomorphic.

2We will study the adjoint operator in more detail in a later section.
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Corollary 2.33 `1 and c0 are not isomorphic.

Proof. If `1 and c0 were isomorphic then it would follow from the last proposition
that

`∗1 = `∞ and c∗0 = `1

are isomorphic. This is not true as `1 is separable and `∞ is not, and separability is
an isomorphic invariant. �

2.3.1 Finite-dimensional normed spaces

In this section we will study in depth finite-dimensional normed spaces. We will
denote by `n

1 the space of n-tuples F n with the norm

�x�1 = n�
k=1
�xk�.

Proposition 2.34 The space `n
1 is a Banach spaces, and its unit sphere is relatively

compact (i.e., its closure is compact).

Proof. Consider a Cauchy sequence x(n) in `n
1. Then, every component x(n)k is

a Cauchy sequence and hence converges to a limit xk. It follows that x(n) → x.
Since the unit sphere is closed and bounded it is relatively compact (true for any
finite-dimensional normed space). �

Theorem 2.35 Let X be an n-dimensional normed spaces. Then X is isomor-
phic to `n

1.

Proof. Let (u1, . . . ,un) be a basis for X . Every x ∈X has a unique representation
as

x = n�
k=1

ak(x)uk,

i.e., ak ∶X →F returns the n-th component of a vector with respect to the (arbitrar-
ily) chosen basis. Define the operator T ∶X → `n

1:

T x = (a1(x), . . . ,an(x)).
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T is linear, injective, and surjective, with

T−1(a1, . . . ,an) = n�
k=1

akuk.

It remains to prove that T and T−1 are continuous. Let a ∈ `n
1. By the triangle

inequality:

�T−1a�
X
≤ n�

k=1
�ak��uk�X ≤ �max

k
�uk�X ��a�1,

which proves that T−1 is continuous; note how essential the fact that the dimension
is finite is. Since T−1 is continuous and the unit ball of `n

1 is relatively compact it
follows that

min�a�1=1
�T−1a�X =M

exists, and moreover, M > 0. Now, for all x ∈X :

�x�X = �T−1T x�
X
= �T−1� T x

�T x�1��X �T x�1 ≥M�T x�1,
which completes the proof. �

Corollary 2.36 Let X and Y be finite-dimensional normed spaces of the same
dimension n and over the same field F . Then X and Y are isomorphic.

Proof. Isomorphism is an equivalence relation and every n-dimensional normed
space is isomorphic to `n

1. �

Lemma 2.37 Completeness is an isomorphic invariant.

Proof. Let T ∶X →Y be an isomorphism. Suppose that X is complete. Let (yn)
be a cauchy sequence in Y . Then,

�T−1yn−T−1ym� ≤ �T−1��yn−ym�,
i.e., (T−1yn) is a Cauchy sequence in X , and hence converges, so say x ∈X . By
the continuity of T ,

yn = T(T−1yn)→ T x,

i.e., Y is complete. �



124 Banach spaces

Corollary 2.38 Every finite-dimensional normed space is complete (i.e., a Ba-
nach space).

Proof. Completeness is invariant under isomorphisms, and every n-dimensional
normed space is isomorphic to `n

1, which is complete. �

Corollary 2.39 Every linear subspace of a finite-dimensional normed space is
closed.

Proof. Closedness is invariant under isomorphisms (it is a topological property),
and any linear subspace of `n

1 is closed. �

Corollary 2.40 All the norms on Cn are equivalent.

Proof. We have seen that (i) all norms on Cn are isomorphic and (ii) an isomorphism
on the same space implies equivalent norms. �

Corollary 2.41 Every linear transformation from a finite-dimensional normed
space into a normed space X is bounded.

Proof. Let Y be a finite dimensional normed space and let S ∶Y →X be a linear
transformation. Since Y is isomorphic to `n

1 there is an isomorphism

j ∶ `n
1→Y .

Then,
T = j ○S ∶ `n

1→X

is a linear transformation, which is bounded if an only if S is bounded.

For a = (a1, . . . ,an) ∈ `n
1,

�Ta�X = � n�
k=1

akT(ek)�
X

≤ �max
k
�T(ek)�X ��a�1,

which completes the proof. �
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Corollary 2.42 In a finite-dimensional normed space every bounded, closed set
is compact.

Proof. Follows again from the isomorphism to `n
1. �

We have shown that every n-dimensional normed space is isomorphic to `n
1. We

have seen that by choosing a basis {u1, . . . ,un} in X , and defining T ∶ `n
1→X as

T(a) = n�
k=1

akuk,

we have,
�Ta�X ≤ �max

k
�uk�X ��a�1,

and

�T−1x�1 ≤ �max�y�=1
�T−1y�1��x�X .

We can always have �T� = 1 be choosing a basis (uk) of unit vectors. The question
is whether we can simultaneously control �T−1�. This is an important question if
we are looking for isomorphisms that do not distort distances by too much. A bound
on �T−1� can be obtained using the following theorem:

Theorem 2.43 — Auerbach. Let X be an n-dimensional normed space. Then,
there is a basis (uk) and there are n functionals ( fk) ∈X ∗, such that �uk�= � fk�=1
and

f j(ui) = di j

(The functionals fk are the dual basis of uk).

Proof. Choose a basis (e1, . . . ,en) in X ; every vector x ∈X has a unique represen-
tation

x = n�
k=1

xkek.

Next, define the function, D ∶X n→F :

D(x1, . . . ,xn) = det((xi) j).
(D looks like a volume form, but of course, there is no such this in a Banach space).
By the compactness of the unit sphere, there exist n vectors {uk}n

k=1, on the unit
sphere of X , such that

D(u1, . . . ,uk) = max�x1�=⋅⋅⋅=�xn�=1
�D(x1, . . . ,xn)�.



126 Banach spaces

The {uk} are independent, otherwise the determinant would vanish.

For every i = 1,2, . . . ,n define the functional fi ∶X →F :

fi(x) = D(u1, . . . ,ui−1,x,ui+1,un)
D(u1, . . . ,uk) .

The fi are linear functionals, they have norm 1 (maximized for x = ui), and fi(u j) =
di j. �
Comment 2.9 The basis {uk} is not unique, but it uniquely determined the dual
basis. In Hilbert spaces the basis maximizing the volume form is orthonormal.

Corollary 2.44 Let X be an n-dimensional normed space. There exists an
isomorphism T ∶ `n

1→X such that �T� = 1 and �T−1� ≤ n.

Proof. Choose a basis of unit vectors {uk} in X as above along with its dual basis{ f j}. Define T ∶ `n
1→X by

T(a) = n�
k=1

akuk.

Clearly,

�T(a)�X ≤ n�
k=1
�ak��uk� = �a�1,

namely, �T� ≤ 1. The norm is in fact equal to one as for a = ek, T(a) = uk, hence�T(a)� = 1 = �a�1.

We turn to evaluate the norm of T−1. For every j = 1,2, . . . ,n,

f j� n�
k=1

akuk� = n�
k=1

akTj(uk) = a j,

i.e., f j returns the j-th component with respect to the basis {uk}. Thus,

T−1(x) = ( f1(x), . . . , fn(x)).
It follows that,

�T−1(x)�1 = n�
k=1
� fk(x)� ≤ n�

k=1
� fk�X ∗�x�X ≤ n�x�X ,

where we used the property � fk�X ∗ of the dual basis. �
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Lemma 2.45 — Riesz. Let X be a normed space and let X0 be a closed subspace
(in a strict sense). Then, for every e > 0 there exists a unit vector x ∈X , �x� = 1,
such that

d(x,X0) ≥ 1−e.

Proof. Let e > 0 be given. Choose an arbitrary y ∈X �X0 and denote

d = d(y,X0).
d > 0 because X0 is closed. By the definition of the distance of a point from a set as
an infimum, there is an x0 ∈X0 such that3

�y−x0� ≤ (1+e)d.
Set

x = y−x0�y−x0� .

x0

y

≤ (1+e)dx

X0

For all z ∈X0,

�x− z� = � y−x0�y−x0� − z� = �y−
∈X0���������������������������������������������������������

z�y−x0�−x0 ��y−x0� ≥ d
d(1+e) =

1−e

1−e

2 ≥ 1−e.

�
Riesz’s lemma allows us to characterize the finite-dimensional normed spaces:

Theorem 2.46 A normed space X has finite dimension if and only if its unit
ball BX is totally bounded ( �-*-, .&2(). That is, for every e > 0 there exists a
finite cover of BX by balls of radius e .

3Unlike in Hilbert space, there is no guarantee that a minimizer exists.
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Comment 2.10 A compact set is totally bounded (obvious: express the set as a
union of open balls of radius e around each point; by compactness there exists a finite
sub-cover). The converse is not true. In a complete metric space, however, a closed,
totally bounded set is compact. Why? Take a sequence xn. For every e > 0 the space
can be covered by a finite number of e-balls, and at least of one of them contains
an infinite subsequence. We may proceed inductively and, using a diagonalization
argument, construct a subsequence that satisfies Cauchy’s criterion. Since the space
is complete, this subsequence converges. In a metric space compactness coincides
with sequential compactness.

Proof. We have already seen (Corollary 2.42) that in a finite-dimensional normed
space every closed and bounded set is compact, hence BX is totally bounded.

Conversely, let BX be totally bounded. Suppose, by contradiction, that X has
infinite dimension. Take x1 ∈ ∂BX = S, and set

X1 = Span{x1}.
Since X is infinite-dimensional, X1 is a closed proper subspace of X . By Riesz’s
lemma there exists an x2 ∈ S such that

d(x2,X1) > 1
2 .

x1

x2

Set
X2 = Span{x1,x2}.

X2 is a closed proper subspace of X . By Riesz’s lemma there exists an x3 ∈ S such
that

d(x3,X2) > 1
2 .

Proceed inductively to construct an infinite sequence (xn) ⊂ S, such that the distance
between any pair is larger that 1

2 . It follows that S ⊂BX cannot be covered by a
finite number of balls of radius 1

4 , i.e., it is not totally bounded.

�
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Corollary 2.47 In an infinite-dimensional normed space the closed unit ball is
not compact.

Proof. Compactness implies total boundedness, and we have just seen that if the
closed unit ball is totally bounded then the space is finite-dimensional. �
TA material 2.3

Definition 2.7 Let X and Y be finite dimensional spaces of the same dimension.
Their Banach-Mazur distance is

d(X ,Y ) = inf{�T��T−1� � T ∶X →Y is an isomorphism}.
Note that we can always choose �T� or �T−1� to be 1 by multiplying T by a scalar.
Note also that if c,C > 0 are the constants in the definition of the isomorphism, then
C can be chosen to be �T� or larger, and c can be chosen to be �T−1� or smaller.
Hence

d(X ,Y ) = inf�C
c
� c,C > 0 are isomorphism constants� .

Proposition 2.48 Let X , Y , and Z be finite dimensional spaces of the same
dimension. Then,

¿ d(X ,Y ) = d(Y ,X ).
¡ d(X ,Y ) ≤ d(X ,Z)d(Z,Y ).
¬ d(X ,Y ) ≥ 1 with equality if and only if X and Y are isometric.

Corollary 2.49 The logarithm of the Banach-Mazur distance is a metric on the
collection of n-dimensional normed spaces modulo isometries.

� Example 2.8 We proved that for every n-dimensional normed space X ,

d(X ,`n
1) ≤ n.

�
� Example 2.9 Taking the identity map, it follows from the Cauchy-Schwarz
identity that

d(`n
1,`

n
2) ≤√n.

It can be shown, using the generalized parallelogram identity, that this is in fact an
equality. �
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Exercise 2.6 Let X be a normed space. Every subspace of X is closed. Prove
that X is finite-dimensional. �

Exercise 2.7

¿ Show that `n
1 and `n∞ (R) are isometric if and only if n ≤ 2. Hint: character-

ize the unit balls for n = 3.
¡ Let p ∈ [1,2). Prove that

d(`n
p,`

n
2) = n1�p−1�2.

Conclude that there are no p,q ∈ [1,2) such that `n
p and `n

q are isometric.

�

2.3.2 Compact sets in infinite-dimensional spaces

In finite-dimensional normed spaces, the compact sets coincide with the closed and
bounded sets. This is not so in infinite-dimensional spaces. The question then is
what else is needed to guarantee the compactness of closed bounded sets. This
question is of practical value in many applications, as compactness is a major tool,
e.g., in existence proofs. In this subsection we will see a two particular examples.

Proposition 2.50 Let X = `p, 1 ≤ p <∞ (the same applies to X = c0). Let Pn be
the projections:

Pn(x1,x2, . . .) = (x1, . . . ,xn,0,0, . . .)
(Pn projects `p onto `n

p). A closed bounded set A ⊂X is compact if and only if

lim
n→∞�Pnx−x� = 0

uniformly on A. That is, for every e > 0 there exists an N such that

sup
x∈A
n>N

�Pnx−x� < e.

Proof. Part 1: Suppose A is compact: It follows that it is totally bounded. Given
e > 0, there exists a finite set C ⊂ A such that

A ⊆�
y∈C B(y,e).
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(such a set C is called an e-net (�;:9 0&-*25!) of A). In other words:

sup
x∈A min

y∈C �x−y� < e.

Since Pny→ y for every y ∈C (a property of the space `p) and since C is a finite set,
then there is an N:

sup
y∈C
n>N

�Pny−y� < e.

Thus,

sup
x∈A
n>N

�Pnx−x� = sup
x∈A
n>N

min
y∈C �Pnx−x�

≤ sup
x∈A
n>N

min
y∈C (�Pnx−Pny�+�Pny−y�+�y−x�)

≤ sup
x∈A
n>N

min
y∈C (�Pnx−Pny�+�y−x�)+ sup

n>N
max
y∈C �Pny−y�

< 3e,

where in the last step we used the fact that �Pn� = 1. This proves that Pnx → x
uniformly on A.

Part 2: Suppose Pnx→ x uniformly in A: Let e > 0 be given. There is an n ∈ N
such that:

sup
x∈A �Pnx−x� < e.

Consider the set
Bn = {Pny � y ∈ A},

i.e., the set of elements of A truncated at the n-th entry. Bn is isomorphic to a closed
and bounded set in `n

p, hence it is compact (and totally bounded). It follows that Bn

can be covered by an finite e-net: there is a finite set of vectors C ⊂ A, such that

Bn ⊂�
y∈C B(Pny,e).

In other words,
sup
x∈A min

y∈C �Pnx−Pny� < e.

Hence,

sup
x∈A min

y∈C �x−y� ≤ sup
x∈A min

y∈C (�x−Pnx�+�Pnx−Pny�+�Pny−y�)
≤ sup

x∈A �x−Pnx�+ sup
x∈A min

y∈C �Pnx−Pny�+max
y∈C �Pny−y�

< 3e.

This proves that A ⊂ �y∈C B(y,3e), i.e., A is totally bounded. Since the space is
complete and A is both totally bounded and closed, A is compact. �
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The next theorem is classical (used, for example, to prove the existence of solutions
to initial value problems). The proof may differ somewhat from the proof you are
acquainted with.

Theorem 2.51 — Arzela-Ascoli, 1883. Let K is a compact metric space and let
C(K) be the space of continuous functions on K endowed with the supremum
norm (uniform convergence topology). Let A be a closed, bounded set in C(K).
Then A is compact if it is equi-continuous (�%$*(! %$*/" 4*79), that is, for every
e > 0 there is a d > 0 such that

sup
f ∈A sup

d(x,y)<d

� f (x)− f (y)� < e.

Proof. Part 1: Suppose that A is closed, bounded and equi-continuous: Let
e > 0 be given. Let d > 0 be given by the definition of equi-continuity. Since K is
compact, then it is totally bounded and there exists a finite set of points

K′ = (x1,x2, . . . ,xn)
that forms a d -net, namely

sup
x∈K min

y∈K′ d(x,y) < d .

It follows that
sup
f ∈A sup

x∈K min
y∈K′ � f (x)− f (y)� < e.

Consider the set

{( f (x1), f (x2), . . . , f (xn)) � f ∈ A} ⊂Rn.

It is bounded and therefore totally bounded (it is not necessarily compact, because it
is not necessarily closed). It follows that there exists a finite set of functions A′ ⊂ A
such that

sup
f ∈A min

g∈A′ max
y∈K′ � f (y)−g(y)� < e.

Then,

sup
f ∈A min

g∈A′ sup
x∈K � f (x)−g(x)� = sup

f ∈A min
g∈A′ sup

x∈K min
y∈K′ � f (x)−g(x)�

≤ sup
f ∈A min

g∈A′ sup
x∈K min

y∈K′ (� f (x)− f (y)�+ � f (y)−g(y)�+ �g(y)−g(x)�)
≤ sup

f ∈A sup
g∈A′ sup

x∈K min
y∈K′ (� f (x)− f (y)�+ �g(y)−g(x)�)

+ sup
f ∈A min

g∈A′ max
y∈K′ � f (y)−g(y)� < 3e.
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It follows that A ⊂ �g∈A′ B(g,3e), i.e., A is totally bounded, and since C(K) is a
complete metric space, A is also compact.

Part 2: Suppose that A is compact: Let e > 0 be given. Since A is totally bounded
there exists a finite set A′ ⊂ A such that

sup
f ∈A min

g∈A′ � f −g� < e.

Since each of the g ∈ A′ is (uniformly) continuous, there is a d > 0 such that

max
g∈A′ sup

d(x,y)<d

�g(x)−g(y)� < e.

Now,

sup
f ∈A sup

d(x,y)<d

� f (x)− f (y)� = sup
f ∈A sup

d(x,y)<d

min
g∈A′ � f (x)− f (y)�

≤ sup
f ∈A sup

d(x,y)<d

min
g∈A′ (� f (x)−g(x)�+ �g(x)−g(y)�+ �g(y)− f (y)�)

< 3e.

This proves that the set A is equi-continuous. �

2.4 The Hahn-Banach theorem

The Hahn-Banach theorem (proved independently by Hans Hahn and Stefan Banach
in the late 1920s) is a central result in functional analysis. Its context is the following:
in many cases we study Banach spaces B through their duals B∗. The question is
what is the guarantee that the dual is not trivial (contains only the zero functional).
The Hahn-Banach theorem allows the extension of bounded linear functionals
defined on a subspace of B to the whole space, and in particular shows that there
are “enough" continuous linear functionals to make the study of B∗ interesting.
Specifically, a consequence of the Hahn-Banach theorem is that if � f ,x� for all f in
a dense set in X ∗, then x = 0.

Note that in a finite dimensional vector space we are used to study vectors through
their coordinates. What is the coordinate of a vector? The value returned by a
bounded functional. In particular, it takes n independent linear functional in order
to “know everything" about a vector. The situation becomes more complicated in
infinite-dimensional spaces. It is in this context that the Hahn-Banach theorem tells
us that there the dual space is sufficiently rich in order to study a vector through the
values returned by bounded linear functionals.

Theorem 2.52 — Hahn-Banach. Let V be a real vector space and let p a
functional over V satisfying:

¿ Sub-linearity: p(x+y) ≤ p(x)+ p(y).
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¡ Homogeneity: for every a ≥ 0, p(ax) = a p(x).
Let Y ⊂V be a linear subspace and let f ∶Y →R be a linear functional satisfying:

f ≤ p�Y .

Then, there is a linear functional F on V satisfying F �Y = f and F ≤ p.

Comments 2.1

¿ Important: despite the fact that this theorem is associated with Banach, V
doesn’t need to be a Banach space; in fact it doesn’t even need to be normed.

¡ Note the condition that the vector space be over R.
¬ There is no requirement that the linear functional f be bounded (there is no

norm).
√ An important functional p that satisfies the required conditions in the case of

a normed space is the norm.

Proof. The Hahn-Banach theorem follows from the axiom of choice. Consider the
collection of all linear extensions (F,VF) of ( f ,Y ), where Y ⊆ VF ⊆ V , F �Y = f ,
satisfying F ≤ p�VF . We define a partial order among linear extensions according to
their domains: F1 ≥F2 if VF1 ⊇VF2 and F1�VF2

=F2. Take any chain {(F
a

,V
a

) � a ∈A}
and set

D =�
a

V
a

.

For every x ∈ D there exists an a such that x ∈ V
a

, hence we can unambiguously
define a functional F in D by �F,x� = �F

a

,x�. The functional F is a linear extension
of f that satisfies F ≤ p�D; it is an upper bound of the chain. It follows from Zorn’s
lemma that there exists a maximal element (F,VF) to all linear extension of f .

It remain to show that VF =V . For that, we show that if VF �V , then we can extend
F , contradicting its maximality.

So generally, let’s show that if Y � V , then we can extend f . Take x0 ∈ V �Y , and
set

V1 = Span{Y ,x0}.
Every vector x ∈ V1 has a unique representation as x = y+ax0, where y ∈Y . Define
a linear functional f1 ∶ V1→R, by setting � f1,x0� = b , i.e.,

� f1,y+ax0� = � f ,y�+ab ,

and b will be chosen later. Note that f1�Y = f , i.e., f1 is a linear extension of f on
V1. We want f1 ≤ p�V1 , i.e., we want for every a ∈R,

� f ,y�+ab ≤ p(y+ax0).
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In particular, we want for a = ±1, and any y,y′
� f ,y�+b ≤ p(y+x0) and � f ,y′�−b ≤ p(y′−x0),

which means that

� f ,y′�− p(y′−x0) ≤ b ≤ p(y+x0)− � f ,y�.
Such a b exists because for every y,y′:

� f ,y′�+ � f ,y� = � f ,y′+y� = � f ,y+x0+y′−x0�
f≤p≤ p(y+x0+y′−x0) p is sub-lin.≤ p(y+x0)+ p(y′−x0),

which implies that

sup
y′
�� f ,y′�− p(y′−x0)� ≤ inf

y
(p(y+x0)− � f ,y�) .

Having chosen b this way we have for every a ≥ 0:

� f1,y+ax0� = a � f1,
y
a

+x0� ≤ a p� y
a

+x0� = p(y+ax0),
whereas for a < 0,

� f1,y+ax0� = �a �� f1,
y
�a � −x0� ≤ �a �p� y

�a � −x0� = p(y+ax0).
It follows that f1�Y = f and f1 ≤ p�V1 . �

Exercise 2.8 Prove the complex version of Hahn-Banach theorem: let X be
a complex vector space and p a semi-norm on X (note that this is slightly
different from the real case). If Y ⊂X is a linear subspace and f ∶Y →C is a
linear functional satisfying � f � ≤ p�Y , then there is a linear functional F ∶X →C
extending f and satisfying �F � ≤ p. Hint: consider X as a real vector space, and
extend f1 =Re f to a linear functional g on X ; finally define F(x) = g(x)− ig(ix).
�

The following is a first application of the Hahn-Banach theorem:

Theorem 2.53 — Extension theorem. Let X be a normed space and Y a linear
subspace. Let f ∈ Y ∗. Then there is a linear extension F ∈X ∗ of f (namely
F �Y = f ) such that �F� = � f �.

Comment 2.11 Sometimes people refer to this theorem as the Hahn-Banach theo-
rem.
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Comment 2.12 We proved this theorem for Hilbert spaces. There, however, we
used an orthogonal projection from X to Y , something that has no analog in
Banach spaces.

Proof. The theorem holds for complex normed spaces. The proof starts by consid-
ering real spaces:

Case 1: X is a real vector space: For x ∈X define p(x)= � f ��x�. Then p satisfies

p(x+y) = � f ��x+y� ≤ � f �(�x�+�y�) = p(x+y),
and for a > 0,

p(ax) = � f ��ax� = a � f ��x� = a p(x).
Moreover, for y ∈Y ,

� f ,y� ≤ �� f ,y�� ≤ � f ��y� = p(y).
It follows from the Hahn-Banach theorem there is a linear functional F on X such
that F �Y = f and

F(x) ≤ p(x) = � f ��x�.
That is, F ∈X ∗ with �F� ≤ � f �; since F is an extension of f , it follows that�F� = � f �. (Please note that the sign does not constitute a problem since we can
always replace x by −x.)

Case 2: X is a complex vector space: We denote by XR the real vector space
obtained by restricting the scalars to R (the sets X and XR are the same sets, but x
and ıx are not co-linear in XR). A functional can be linear over XR but not over
X , because we only require that

� f ,ax+by� = a� f ,x�+b � f ,y�
for a,b ∈R.

Every linear functional f on Y can be decomposed as

f = u+ ıv,

where u and v are the real and imaginal parts of f . u and v are linear functionals on
YR (but no necessarily on Y !), since for a ∈R,

� f ,ax� = u(ax)+ ıv(ax) = a� f ,x� = a (u(x)+ ıv(x)) ,
namely,

u(ax) = a u(x) and v(ax) = a v(x).
We will thus write u(x) = �u,x�R and v(x) = �v,x�R.
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f is in fact determined by u. Since f is linear over C:

� f , ıx� = �u, ıx�R+ ı�v, ıx�R = ı� f ,x� = ı�u,x�R− �v,x�R,
from which follows that �v,x�R = −�u, ıx�R,
hence � f ,x� = �u,x�R− ı�u, ıx�R.
Consider now the functional u. For y ∈Y :

��u,y�R� = �u(y)� ≤ �u(y)+ ıv(y)� = �� f ,y�� ≤ � f ��y�,
hence u ∈Y ∗

R with �u� ≤ � f �. By the first part of this proof u can be extended into a
linear functional U on XR, such that �U� ≤ � f �.
Define F ∈X ∗

R by �F,x�R = �U,x�R− ı�U, ıx�R.
F is a linear functional on XR satisfying:

�F, ıx�R = �U, ıx�R− ı�U,−x�R = �U, ıx�R+ ı�U,x�R = ı�F,x�R,
i.e., F is linear over C, F ∈X ∗. F is an extension of f since for y ∈Y :

�F,y� = �U,y�R− ı�U, ıy�R = �u,y�R− ı�u, ıy�R = � f ,y�.
It remains to bound the norm of F . The Hahn-Banach theorem only guarantees a
bound on the norm of U . For x ∈X

��F,x�� = e−ıarg�F,x��F,x� = �F,e−ıarg�F,x�x� = �U,e−ıarg�F,x�x�R,
where the last equality follows because the imaginary part must be zero. Hence,

��F,x�� ≤ �U,e−ıarg�F,x�x�R ≤ � f ��x�,
from which follows that �F� ≤ � f �, and since F is an extension of f , �F� = � f �. �
The Hahn-Banach theorem and the resulting extension theorem have many applica-
tions, some of which we will see now.

Proposition 2.54 Let X be a normed space and let Y ⊂X be a linear subspace.
Denote by Y ⊥ ⊂X ∗:

Y ⊥ = { f ∈X ∗ � f �Y = 0}.
Then for all x ∈X �Y :

d(x,Y ) = max
f ∈BY ⊥

�� f ,x��.
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(This holds trivially for x ∈Y .)

Comment 2.13 Note that there is no minimizer of d(x,Y ) in Y but there is a
maximizer of �� f ,x�� in BY ⊥ . This hints to a type of compactness of the unit ball in
X ∗.
Comment 2.14 Does it remind you something? What happens in a Hilbert space?
One can write an explicit expression for d(x,Y ) in terms of a Gram matrix.

Proof. Denote d = d(x,Y ). For f ∈ BY ⊥ , we have for all y ∈Y :

sup
f ∈BY ⊥

�� f ,x�� = sup
f ∈BY ⊥

inf
y∈Y �� f ,x−y�� ≤ �� sup

f ∈BY ⊥
� f ��� inf

y∈Y �x−y� = d(x,Y ).
i.e.,

d(x,Y ) ≥ sup
f ∈BY ⊥

�� f ,x��.
If d is zero (which can happen if Y is a dense linear subset), then

max
f ∈BY ⊥

�� f ,x�� = 0,

and the proposition holds.

Suppose then that d > 0. We need to show that there is an f ∈BY ⊥ such that � f ,x�= d.
Let Z = Span{Y ,x}; every z ∈Z has a unique representation:

z = y+ax.

Define a linear functional f0 on Z:

� f0,y+ax� = a d,

i.e., f0 ∈Y ⊥ (with Y as a subset of Z), and � f0,x� = d.

For every y ∈Y and a ∈R:

�� f0,y+ax�� = �a �d ≤ �a � �y�a +x���������������������������������
dist of −y�a from x

= �y+ax�,

which implies that � f0� ≤ 1. Take yn ∈Y such that d(x,yn)→ d, then

d = �� f0,x−yn�� ≤ � f0��x−yn�→ � f0�d,
which implies that � f0� ≥ 1, i.e., � f0� = 1. We have thus found an f0 ∈BY ⊥ linear
over Z , such that � f0,x� = d. The only problem is that f0 is a linear functional on Z
rather than on X . By the extension theorem we can extend f0 to all of X without
changing its norm, which completes the proof. �
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Corollary 2.55 Let X be a normed space, then

�x� = max
f ∈BX ∗ �� f ,x��.

That is, there is an f ∈X ∗, � f � = 1, such that

� f ,x� = �x�.

Proof. Take Y = {0} in Proposition 2.54. Then d(x,Y ) = �x� and Y ⊥ =X ∗. �
Comment 2.15 We have an explicit expression of the norm in terms of X ∗.
The following corollary, though by now immediate, it of utter importance. It asserts
that in order for a vector to be zero it is sufficient to “test" it with a dense set of
bounded linear functionals.

Corollary 2.56 Let X be a normed space and let A be a dense set in X ∗. If� f ,x� = 0 for all f ∈ A then x = 0.

Proof. Let f ∈ BX ∗ . There exists a sequence fn ∈ A such that fn→ f . Then,

0 = � fn,x�→ � f ,x�,
which by Corollary 2.55 implies that

�x� = max
f ∈BX ∗ �� f ,x�� = 0.

�

Corollary 2.57 Let X be a normed space and let Y ⊂X be a linear subspace.
Then x ∈ Y if and only if every bounded linear functional that vanishes on Y
vanishes also on x.

In particular, Y in dense in X if and only the only functional f that vanishes on
Y is the zero functional.

Proof. Suppose that x ∈Y and let xn be a sequence in Y that converges to x. For
all f ∈Y ⊥,

� f ,x� = lim
n→∞� f ,xn� = 0.
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Conversely, suppose that x ∈X satisfies that � f ,x� = 0 for all f ∈Y ⊥. Then,

d(x,Y ) = max
f ∈BY ⊥

�� f ,x�� = 0,

i.e., x ∈Y .

In particular, if Y is dense in X , then x ∈ Y =X implies that every bounded
linear functional that vanishes on Y vanishes also on x, but the condition holds
trivially. �
The following theorem, which is also a consequence of the Hahn-Banach theorem,
shows that the separability of the dual implies the separability of the space.

Theorem 2.58 Let X be a normed space. If X ∗ is a separable then so is X .

Proof. Let ( fn) be a dense sequence in X ∗. Choose (xn) such that �xn� ≤ 1 and�� fn,xn�� ≥ 1
2� fn�; this is always possible by the definition of the norm.

Let Y = Span{xn}; it is separable because we can take all combinations of {xn} with
rational coefficients. Let f ∈Y ⊥. By the density of ( fn), there exists a subsequence
fnk → f . Then

1
2
� fnk� ≤ �� fnk ,xnk�� = �� f − fnk ,xnk�� ≤ � f − fnk�→ 0,

which proves that fnk → 0, i.e., f = 0.

We have just proved that every functional that vanishes on Y is the zero functional.
It follows by Corollary 2.57 that Y is dense in X , i.e., X is separable. �

Proposition 2.59 Let {x
a

� a ∈ A} be a collection of vectors in a normed space
X . If ∀ f ∈X ∗ sup

a

�� f ,x
a

�� <∞,

then
sup

a

�x
a

� <∞.

Comment 2.16 See how similar it is to the Banach-Steinhaus theorem. In the
former, the sequence was a sequence of functionals, and

∀x ∈X sup
a

�� f
a

,x�� <∞,

implies
sup

a

� f
a

� <∞.
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In a Hilbert space X and X ∗ are isomorphic, so the two coincide. This is not the
case in a Banach space.

Proof. Define F
a

∈ (X ∗)∗ as follows:

�F
a

, f � = � f ,x
a

�
(later on, we will call F

a

the natural inclusion of x
a

in X ∗∗). It is given that for
every f ∈X ∗:

sup
a∈A ��Fa

, f �� = sup
a∈A �� f ,xa

�� <∞.

It follows from the Banach-Steinhaus theorem that

sup
a∈A �Fa

� <∞.

We will be done if we show that �F
a

� = �x
a

� (the natural inclusion is norm-
preserving). Since ��F

a

, f �� = �� f ,x
a

�� ≤ � f ��x
a

�,
it follows that �F

a

� ≤ �x
a

�. By Corollary 2.55,

∀a ∈ A ∃g
a

∈ BX ∗ such that �x
a

� = �g
a

,x
a

�.
Hence �F

a

� = sup
f ∈BX ∗

��F
a

, f �� ≥ ��F
a

,g
a

�� = ��g
a

,x
a

�� = �x
a

�,
i.e., �F

a

� = �x
a

�. �
Comment 2.17 We have proved along the way that X is isometric to a subspace
of (X ∗)∗. This point will be elaborated when we deal more in depth with duality.

Exercise 2.9

¿ Let X =R3 with the Euclidean norm and let

Y = {(x,y,z) ∈X � x+2y = 0}.
Define on Y the functional � f ,(x,y,z)� = x−y. Find � f � and extend f to
X without changing the norm.

¡ Let X =R3 with the norm � ⋅�1 and let

Y = {(x,y,z) ∈X � x+2y = z = 0}.
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Define on Y the functional � f ,(x,y,z)� = x. Find � f � and find two norm-
preserving extensions of f to X .

�

2.4.1 Analytic Banach-space-valued functions

Consider a complex Banach space B, and let x ∶D→B be defined on a domainD ⊆C. x is called analytic if it is differentiable for all z ∈D, namely if

x′(z) = lim
h→0

x(z+h)−x(z)
h

exists,

i.e., if there exists a function x′ ∶D→B, such that

lim
h→0
�x(z+h)−x(z)−hx′(z)

h
� = 0.

x is called weakly analytic if for all f ∈B∗,
� f ,x(⋅)� ∶D→C

is analytic.

Interestingly, analyticity and weak-analyticity coincide. The proof relies on the
Hahn-Banach theorem.

Theorem 2.60 x is analytic if and only if it is weakly analytic.

Proof. Part 1: suppose that x is analytic: For every f ∈B∗:
� f ,x(z+h)�− � f ,x(z)�

h
− � f ,x′(z)� = � f ,

x(z+h)−x(z)−hx′(z)
h

� .
The right hand side tends to zero as h→ 0, hence x is weakly analytic.

Part 2: suppose that x is weakly analytic: Fix z. We will show that

x(z+h)−x(z)
h

− x(z+k)−x(z)
k

tends to zero when h,k→ 0 (independently). This will prove that x is analytic as
for any sequence hn→ 0, there exists, given e > 0, an index N, such that for every
n,m >N:

�x(z+hn)−x(z)
hn

− x(z+hm)−x(z)
hm

� < e,
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which implies that
x(z+hn)−x(z)

hn

is a Cauchy sequence in B and hence converges (the limit is independent of the
sequence).

Let f ∈B∗. Let B(z,r) be a closed ball contained in D. Let �h� < r�2 and �k� < r�2.
By the weak analyticity of x it follows from Cauchy’s formula that

� f ,x(z+h)� = 1
2pı �∂B(z,r)

� f ,x(z)�
z −(z+h)dz ,

hence

� f ,x(z+h)�− � f ,x(z)�
h

= 1
2pı �∂B(z,r)� f ,x(z)�

1
h
� 1

z − z−h
− 1

z − z
�dz

= 1
2pı �∂B(z,r)� f ,x(z)�

1
(z − z−h)(z − z)dz ,

and

� f ,x(z+h)�− � f ,x(z)�
h

− � f ,x(z+k)�− � f ,x(z)�
k

=
= 1

2pı �∂B(z,r)� f ,x(z)�
h−k

(z − z−h)(z − z−k)(z − z)dz .

Since � f ,x(⋅)� is bounded in B(z,r), we can bound �� f ,x(z)�� by a constant Mf (it
depends on f ). We can then evaluate the right hand side as follows:

1
�h−k� �

� f ,x(z+h)�− � f ,x(z)�
h

− � f ,x(z+k)�− � f ,x(z)�
k

� ≤ 1
2p

2prMf

r(r�2)2 =
4Mf

r2 .

We can rewrite this as follows:

1
�h−k�

��������������������
� f ,

x(z+h)−x(z)
h

− x(z+k)−x(z)
k����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

a collection x
a

�
��������������������
≤ 4Mf

r2 .

It follows from Proposition 2.59 that there exists a constant M such that

sup�h�,�k�<r�2
1
�h−k� �

x(z+h)−x(z)
h

− x(z+k)−x(z)
k

� ≤M.

This completes the proof. �
For a continuous functions D→B one can define path integrals in exactly the same
way as we define the Riemann integral of a continuous real-valued function.
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Proposition 2.61 Let x ∶ D →B be analytic. Then for every closed curve of
finite-length g:

�
g

x(z)dz = 0.

Proof. For every f ∈B∗ it follows from its continuity and linearity that

� f ,�
g

x(z)dz� =�
g

� f ,x(z)�dz = 0,

where the second equality holds because � f ,x(⋅)� is analytic. Since the application
of a functional f of ∫

g

x(z)dz yields zero for every f ∈B∗ is follows that it is
zero. �

Exercise 2.10 Prove Cauchy’s formula for analytic Banach-space-valued inte-
grals: Let D ⊂C be an open set and X a complex Banach space. Let x ∶D→X
be an analytic function and let g ⊂D be a closed, simple, smooth curve of finite
length encircling a point z ∈D. Prove that

x(z) = 1
2pı �g

x(z)
z − z

dz .

�

Exercise 2.11 Let X be a Banach space. A function f ∶ [a,b]→X is said to
be of bounded variation if

sup�
i
� f (bi)− f (ai)� <∞,

where the supremum is over all choices of finitely many disjoint intervals (ai,bi)
in [a,b]. Prove that if for any f ∈X ∗ the function f ○ f ∶ [a,b] →F is of
bounded variation, then f is of bounded variation (that is, the weak and strong
notions of bounded variation are equivalent). �

Exercise 2.12 Let (X ,� ⋅�X ) be an infinite-dimensional normed space.

¿ Construct an unbounded bijective linear operator T ∶X �X . Hint: recall
the construction of an unbounded linear functional.

¡ Use T to construct a new norm � ⋅ �T on X such that T ∶ (X ,� ⋅ �X )→
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(X ,� ⋅�T ) is an isometry.

¬ Conclude that the norms ,� ⋅�X and ,� ⋅�T are isomorphic but not equiva-
lent.

�

TA material 2.4 The space c ⊂ `∞ comprises convergent sequences. We want to
extend the notion of the limit of a sequence to `∞.

We may use the extension theorem resulting from the Hahn-Banach theorem to
conclude:

Corollary 2.62 Let lim be the limit functional on c ⊂ `∞ . Since � lim� = 1 then
there is an extension of lim to a continuous linear functional in `∗∞

The problem of this extension is that although we get the wanted linearity property
of the limit, we do not necessarily get other properties, such as dependence only on
the tail of the sequence. The following proposition shows that we can do better:

Proposition 2.63 There exists f ∈ `∗∞ such that for any x ∈ `∞:

¿
liminfxn ≤ � f ,x� ≤ limsupxn,

In particular, � f � = 1 and if x ∈ c then � f ,x� = limxn.
¡ For every k ∈N, � f ,{xn}� = � f ,{xn+k}�,

i.e. f depends only on the tail of the sequence.

The functional f is called a Banach limit of sequences. Note that it is not unique.

2.4.2 Geometric version of the Hahn-Banach theorem

Definition 2.8 Let V be a vector space. A linear subspace Y ⊂ V is called
maximal (or of co-dimensional one) if Y is not contained in any other (strict)
subspace of V .

Suppose that Y ⊂ V is a maximal linear subspace. Let x0 ∈ V �Y . Then

Span{Y ,x0} = V ,
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i.e., every x ∈ V has a unique representation

x = y+ax0.

Definition 2.9 Let V be a vector space, let Y be a linear subspace, and let
x0 ∈ V . The set

x0+Y

is called a plane. If Y is maximal, then we call this plane a hyperplane (-3
�9&:*/). (A hyperplane is a translation of a maximal subspace.)

x

y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x0

Proposition 2.64 Let V be a vector space. Let f be a non-zero linear functional.
The set

ker f

is a maximal subspace (and in particular a hyperplane).

Proof. Since f ≠ 0 there exists a vector x0 such that � f ,x0� ≠ 0. For every x ∈ V :

� f ,x− � f ,x�� f ,x0�x0� = 0,

i.e.,

x = � f ,x�� f ,x0�x0

������������������������������∈Span{x0}
+x− � f ,x�� f ,x0�x0

�����������������������������������������������������∈ker f

,

which proves that Span{ker f ,x0} = V . �



2.4 The Hahn-Banach theorem 147

Definition 2.10 Let V be a vector space and S ⊂ V . A point x ∈ S is called an
internal point (�+&; ;$&81) if

∀y ∈ V ∃e > 0 such that x+(−e,e)y ⊂ S.

That is, the intersection of every line x+ ty with S contains a segment with center
x.

Comment 2.18 An internal point replaces the notion of an interior point when
there is no topology. Since lines are well-defined in vector spaces and they have
a natural topology, we define a notion of “interiority" through lines. In a normed
space, an interior point is also an internal point. The converse is not true. Take for
example R2 (with, say, the Euclidean norm) and the set

S = {(x,y) � y ≤ 0 or y ≥ x2}.
The origin is an internal point but not an interior point.

Exercise 2.13 Let C be a convex subset of a finite-dimensional vector space X .
Prove that x ∈C is an internal point if and only if it is an interior point (with
respect to any norm on X ). �

Definition 2.11 Let V be a vector space. A set S ⊂ V for which the origin of V
is an internal point is called absorbing ( �;3-&"). This is because

∀y ∈ V ∃n ∈N such that y�n ∈ S,

i.e., ∞�
n=1

nS = V .

(The entire vector space is contained in blowups of S.)

Let V be a vector space. Let K be an absorbing set. Define the Minkowski
functional PK on V :

PK(x) = inf{t > 0 � x�t ∈K}.
(It is finite because K is absorbing.)

Comment 2.19 If for some a > 0,

x
a

∈K then PK(x) ≤ a.

Conversely, if
PK(x) < a,
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then by definition
(∃b < a) x

b

∈K.

This still doesn’t guarantee that x�a ∈K. If K is convex, since the origin is in K, it
follows that x

a

∈K.

Proposition 2.65 Let V be a vector space. Let K ⊂ V be convex and absorbing.
Then,

¿ PK is non-negative.
¡ For every a > 0: PK(ax) = aPK(x).
¬ For every x,y ∈ V : PK(x+y) ≤ PK(x)+PK(y).
√ For every x ∈K: PK(x) ≤ 1.
ƒ x is an internal point of K if and only if PK(x) < 1.

Proof. ¿ is obvious. ¡ is also clear as

PK(ax) = inf{t > 0 � ax�t ∈K} = inf{at > 0 � x�t ∈K} = a PK(x).
To prove ¬, suppose that

PK(x) < b and PK(y) < g.

Since K is convex, x�b ∈K, y�g ∈K, and

b

b +g

x
b

+ g

b +g

y
g

= x+y
b +g

∈K.

This means that
PK(x+y) ≤ b +g.

Because this holds for every upper bounds b of g of PK(x) and PK(y), ¬ follows.

√ is obvious: for x ∈K, x�1 ∈K, hence PK(x) ≤ 1.

It remains to prove ƒ. Suppose that x is an internal point of K. Then there is an
e > 0 such that x+ex ∈K, i.e., x�(1+e)−1 ∈K, which proves that PK(x) < 1.

Conversely, suppose that PK(x) < 1. Then there is an e > 0 such that PK(x) < 1−e ,
i.e.,

x
1−e

∈K.

Let y ∈V be arbitrary. Because K is absorbing there exists a d > 0, such that dyI ⊂K
(here I is the unit interval). Because K is convex,

x+edyI = (1−e) x
1−e

+edyI ⊂K,
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which proves that x is an internal point. �

Exercise 2.14 Let K be a convex, absorbing set in a real linear space X . As-
sume K is symmetric, i.e. if x ∈K then (−x) ∈K.

¿ Show that PK is a semi-norm on X .
¡ Show that if, in addition, K doesn’t contain an entire line passing through

the origin, then PK is a norm on X .
¬ Find the open unit ball B of that norm and prove that

B ⊂K ⊂ B,

where the inclusion on either side may be strict.

�

Definition 2.12 Let V be a vector space and let M,N ⊂ V . A linear functional f
on V is said to separate (�$*95/) M and N if

sup Re� f ,N� ≤ inf Re� f ,M�,
where � f ,N� = {� f ,x� � x ∈N}.

Proposition 2.66 f separates between M and N if and only if it separates between
M−N and {0}.

Proof. For every x ∈M and y ∈N:

Re� f ,x� ≤Re� f ,y�
if and only if for every x ∈M and y ∈N:

Re� f ,x−y� ≤ 0 =Re� f ,0�.
�

Theorem 2.67 — Separation theorem. Let M and N be disjoint convex sets in
a vector space V . If at least one of them, say M, has an internal point, then there
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exists a non-zero linear functional that separates between M and N.

Proof. Consider the case where V is a real vector space. Since for every point p, f
separates between M and N if and only if it separates between M− p and N− p, then
we can assume without loss of generality that 0 is an internal point of M.

Let x0 ∈ N. Then (−x0) is an internal point of the convex set M −N, and 0 is an
internal point of the convex set K = x0 +M−N. Since M and N are disjoint then
x0 �∈ K. If we prove the existence of a linear functional that separates K from x0,
then the same functional separates between M−N and 0, and also between M and
N. Thus, we may assume that M =K is a convex set containing the internal point 0
(it is absorbing) and that N = {x0}.

x0 

0 

M 

N 

M-N 

K 

Consider the Minkowski functional PK . Since x0 �∈ K then PK(x0) ≥ 1. On the
linear subspace Span{x0} define a linear functional � f ,ax0� = aPK(x0). For a > 0,� f ,ax0� ≤ PK(ax0) whereas for a < 0,

� f ,ax0� = aPK(x0) ≤ 0 ≤ PK(ax0).
By the Hahn-Banach theorem there exists a linear extension F of f on V such that�F,x� ≤ PK(x). For x ∈K: �F,x� ≤ PK(x) ≤ 1,

whereas �F,x0� = � f ,x0� = PK(x0) ≥ 1,

i.e. F separates K from {x0}.
If the space is complex it is possible to treat separately real and imaginary parts as
we did before. �
TA material 2.5 We will show that the separation theorem does not hold in the
absence of an internal point. Let X be the space of real-valued sequences that
are zero from some point onwards. Let K comprise the subset for which the last
non-zero coordinate is positive. A direct calculation shows that K is convex but It
has no internal points.

We now show that there is no non-trivial linear functional separating K from {0}.
Let f ≠ 0 be a linear functional on X . W.l.o.g. we can assume that f (K) ≥ 0
(otherwise take − f ). Since ek ∈ K for every k it follows that f (ek) ≥ 0. Since {ek}
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spans X and f ≠ 0, there is a j such that � f ,e j� > 0. Now, if � f ,e j+1� = 0, then−e j +e j+1 ∈K but � f ,−e j +e j+1� = −� f ,e j� < 0. Therefore � f ,e j+1� > 0, but then

� f ,−e j+ � f ,e j�
2� f ,e j+1�e j+1� = −1

2
� f ,e j� < 0,

which contradicts the fact that the argument is in K.

Theorem 2.68 — Geometric Hahn-Banach. Let V be a vector space and let
K ⊂ V be a convex set whose points are all internal points. Let D be a plane
disjoint of K. Then there is a hyperplane Y that contains D and is disjoint of K.

K 

D 

Proof. Without loss of generality we may assume that D is a linear subspace (i.e.,
it contains the origin). From the separation theorem follows the existence of a
non-zero linear functional F and a real number g such that

sup Re�F,K� ≤ g ≤ inf Re�F,D�.
Define � f ,x� =Re�F,x�, i.e.,

�F,x� = � f ,x�− ı� f , ıx�.
f is a linear functional over VR. We have

sup� f ,K� ≤ g ≤ inf� f ,D�,
and since 0 ∈D, g ≤ 0. Since D is a linear subspace, if there exists an x ∈D for which� f ,x� ≠ 0, then either � f ,x� or � f ,−x� is negative, which is a contradiction. Hence,
f �D = 0. It follows that F �D = 0. The set

kerF

is a hyperplane that contains D. It remains to show that kerF and K are disjoint.
Suppose that x0 ∈ K ∩kerF . Let y ∈ V such that � f ,y� > 0 (there necessarily exists
such point y). Since x0 is an internal point of K there exists a d > 0 such that
x0+dy ∈K. Then � f ,x0+dy� = � f ,x0�+d � f ,y� > 0,

which contradicts the fact that sup� f ,K� ≤ 0. �
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Comment 2.20 We proved that we can assume the separating functional f to
vanish on the hyperplane. We will use this fact later.

Comment 2.21 Even though we proved the separation theorem and the geometric
Hahn-Banach theorem using the (non-geometric) Hahn-Banach theorem, each of
these theorems is equivalent to the two other.

Proposition 2.69 Let X be a normed space and let f ≠ 0 be a linear functional
over X . f is continuous if and only if ker f is closed. Moreover, if f is not
continuous then ker f is dense in X .

Proof. The easy part: if f is continuous then ker f = f −1(0) is closed as it is the
pre-image of a closed set.

The harder part: if ker f is closed, define L = f −1(1)4. Take x0 ∈ L. Then

L = x0+ker f ,

which is closed. Note that 0 �∈ L, hence there is an open ball B(0,r) that does not
intersect L.

For every x ∈ B(0,r), �� f ,x�� < 1. Why? Suppose there were an x ∈ B(0,r) for which�� f ,x�� ≥ 1, then

� f ,
x
� f ,x�� = 1,

i.e., x� f ,x� ∈ B(0,r)∩L, which is a contradiction. It follows that for every x ∈X :

�� f ,x�� = 2�x�
r
�� f ,

rx
2�x��� ≤

2�x�
r

,

i.e., f is bounded.

For the last part of the proposition, suppose that f is not continuous. We have
already shown that ker f is not closed. Since ker f is a maximal linear subspace of
X , its closure, which is a linear subspace of X that contains ker f must be equal to
X (by Proposition 2.64). �

Corollary 2.70 A non-continuous linear functional f ≠ 0 maps every open set
onto F .

4L is not empty because since f ≠ 0 there exists an x0 such that � f ,x0� = 0. Then x0�� f ,x0� ∈ L.
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Proof. Let f be a non-continuous linear functional and let U ⊂X be an open set.
Let a ∈F . We need to show that there is an x ∈U such that � f ,x� = a.

Let x0 satisfy � f ,x0� = a ≠ 0. Then

� f ,
ax0

a

� = a.

By the previous proposition, the set

L = ax0

a

+ker f

is dense, hence intersects the open set U . That is, there exists an x ∈U of the form

x = ax0

a

+y,

where y ∈ ker f , which implies that � f ,x� = a. �

Corollary 2.71 A linear functional f ≠ 0 that separates two sets A,B, with at least
one of them having an interior (not internal) point (�.*15 ;$&81) is continuous.

Proof. If A has an interior point, then it contains, in particular, an open set U . If
f were non-continuous it would map U to the entire scalar field, hence would not
separate between the sets. �

Corollary 2.72 Let X be a normed space and let K1,K2 be disjoint convex sets
with at least one of them having an interior point (again, not internal). Then there
is a bounded linear functional f ≠ 0 that separates K1 and K2.

Proof. It follows from the Separation Theorem that there is an f ≠ 0 that separates
K1 and K2. It follows from the previous corollary that it is continuous/bounded. �

Exercise 2.15 Let X be a normed space and A,B ⊂X disjoint convex sets such
that B is closed and A is compact. Prove that there exists an f ∈X ∗ such that

sup Re� f ,A� < infRe� f ,B�,
i.e., the separation is strict. �
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2.5 Duality

2.5.1 Reflexivity

Definition 2.13 Let X be a normed space. The mapping i ∶X →X ∗∗ defined
by �i(x), ⋅� = �⋅,x�
is called the natural inclusion (�*3")% 0&,*:%) of X into X ∗∗.

Proposition 2.73 i is a linear, norm-preserving map.

Proof. We proved it already in the course of proving Proposition 2.59. Let’s recall
how: one the one hand, for every f ∈X ∗:

��i(x), f �� = �� f ,x�� ≤ � f ��x�,
which proves that �i(x)� ≤ �x�. On the other hand, by (a corollary of) the Hahn-
Banach theorem,

�x� = max� f �=1
�� f ,x�� = max� f �=1

��i(x), f �� ≤ max� f �=1
�i(x)�� f � = �i(x)�,

which proves that �i(x)� = �x�. �
Comment 2.22 i is not necessarily an isometry; an isometry has to be reversible,
i.e., surjective (a norm-preserving linear map is of course injective).

Definition 2.14 A Banach space X is called reflexive (�*"*28-59) if i is an
isometry.

Comment 2.23 Reflexivity was first introduced by Hahn in 1927. The term was
coined in 1939 by Lorch.

Comment 2.24 For X to be reflexive it is not sufficient that X and X ∗∗ be
isometric. The natural inclusion i has to be an isometry.

Why are reflexive spaces important? We will get an answer toward the end of this
section in the context of weak convergence.

Proposition 2.74 Every finite-dimensional Banach space is reflexive.

Proof. Let dimX = n. Since dimX ∗ = n it follows that dimX ∗∗ = n. Since i is
norm preserving, it is injective and hence also surjective. �
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� Example 2.10 Every Hilbert space is reflexive. This follows from the Riesz
representation theorem. Every f ∈H ∗ has a representation y f ∈H , such that

� f ,x� = (x,y f ).
The mapping f � y f is an anti-isomorphism between the inner-product spaces H ∗
and H with ( f ,g) = (yg,y f ).
By the same representation theorem, every F ∈H ∗∗ has a representation,

�F, f � = ( f , fF) = (y fF ,y f ).
The mapping F � y fF is an isomorphism between the inner-product spaces H ∗∗
and H . It remains to show that it is the natural inclusion. Indeed,

�i(y fF ), f � = � f ,y fF � = (y fF ,y f ),
namely,

F = i(y fF ).
�

� Example 2.11 The spaces `p, 1 < p <∞, are reflexive. This is because X ∗∗ ≅X
and the isometry is precisely the natural inclusion.

Recall that the isometry T ∶ `∗p → `q is defined via

[T( f )]n = � f ,en�,
for f ∈ L∗p. Conversely, for y ∈ Lq,

�T−1(y),x� = ∞�
n=1

ynxn.

TO CONTINUE �

2.5.2 Quotient spaces

Definition 2.15 Let V be a vector space and let M be a linear subspace. We say
that x,y are equivalent mod-M if x− y ∈M. The set of equivalence classes is
called the quotient space ( �%1/ "(9/) V �M. We denote the equivalence class of
x ∈ V by [x] ∈ V �M:

[x] = {y ∈ V ,y−x ∈M} = x+M.

As usual, we endow V �M with a vector space structure. For a,b ∈ V �M:

a +b = [x+y],
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where x ∈a and y ∈b . This definition is independent of representatives as if [x]= [x′]
and [y] = [y′] then [x+y] = [x′+y′].
Similarly, for a ∈ V �M and a ∈ F:

aa = [ax],
where x ∈ a . The mapping p ∶ x� [x] is called the natural homomorphism of V
onto V �M5.

Let X be a normed space and let M be a closed linear subspace. We endow X �M
with a norm: �a�X �M = inf

y∈a �y�X . (2.1)

For x ∈X : �[x]�X �M = inf
m∈M�x−m�X = d(x,M).

Proposition 2.75 (2.1) is a norm on X �M.

Proof. Positivity: Suppose that a ∈X �M satisfies

�a�X �M = 0.

Then, for x ∈ a there exists a sequence mn ∈N such that

lim
n→∞�x−mn� = 0.

Since M is closed it follows that x ∈M, i.e., a = [x] = 0.

Homogeneity: Let a ∈X �M and x ∈ a , then

�aa�X �M = �[ax]�X �M = inf
m∈M�ax−m�X = �a� inf

m∈M�x−m�a�X = �a��a�X �M.

Triangle inequality: The triangle inequality follows from:

�a +b�X �M = inf
y∈a+b

�y�X
= inf

x∈a,z∈b �x+ z�X
≤ inf

x∈a,z∈b (�x�X +�z�X )
= �a�X �M +�b�X �M.

�
5A homomorphism between vector spaces preserves the linear structure but it is not necessarily

injective.
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Proposition 2.76 If B is a Banach space and M is a closed linear subspace then
B�M is a Banach space.

Proof. Let an be a Cauchy sequence in B�M. It is sufficient to show that an has a
converging subsequence (any Cauchy sequence that has a converging subsequence
is convergent).

We can construct a subsequence bk = ank . such that

�bk+1−bk�B�M < 1
2k .

Let xk ∈ b : for every k there is an element mk ∈M, such that

�xk+1−xk −mk�B < 1
2k .

Define

wn = n−1�
k=1
(xk+1−xk −mk) = xn−x1− n−1�

k=1
mn.

The Weierstraß M-test Iimplies that wn converges; denote the limit by w; denote
b = [w+x1]. Then,

�bn−b�B�M = �[xn]− [w+x1]�B�M
= �[xn−x1]− [w]�B�M
= �[wn]− [w]�B�M
= d(wn−w,M)
≤ �wn−w�X .

Since the right hand side converges to zero, bn→ b . �
The following proposition is obvious from the definition of the norm in the quotient
space:

Proposition 2.77 Let X be a normed space and let M ⊂X be a linear subspace.
The natural homomorphism p ∶X →X �M maps the open unit ball of X onto
the open unit ball of X �M.

Proof. Let x ∈X . By definition

�p(x)�X �M = inf
y∈[x]�y�X ≤ �x�X ,



158 Banach spaces

which proves that
p ∶BX →BX �M.

It remains to show that p is surjective. Let a ∈BX �M. Then,

1 > �a�X �M = inf
y∈a �y�X ,

which implies that there exists a y ∈ a such that �y�X < 1, i.e., a ∈BX �M is the
image under p of an element y ∈BX . �

Proposition 2.78 Let X and Y be normed spaces. Let T ∶X →Y be a linear
transformation onto Y , such that BX is mapped onto BY . Then Y is isometric
to X �kerT .

Proof. Let p be the natural homomorphism of X onto X �kerT . Define t ∶
X �kerT →Y as follows:

t ∶ a � T x,

where x ∈ a; this definition does not depend on the representative x.

t is linear and surjective (because T is surjective). t is injective because t[a] = 0
implies T x = 0 for x ∈ a , i.e., x ∈ kerT = [0]. It follows that t is a bijective map
mapping the open unit ball onto the open unit ball; hence t

−1 satisfies the same
property.

We conclude that �t� ≤ 1 and �t−1� ≤ 1, which implies that

�t� = �t−1� = 1.

Finally, for every a ∈X �kerT :

�a�X �kerT = �t−1 ○t(a)�X �kerT ≤ �t(a)�Y ≤ �a�X �kerT ,

from which follows that t is an isometry. �

Lemma 2.79 Let B be a Banach space and let A be a dense set in B(0,r). Every
x ∈ B(0,r) can be represented as:

x = ∞�
j=1

l jx j,

where x j ∈ A and ∑∞j=1 �l j� < 1 (i.e., l = (l j) is in the unit ball of `1).
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Proof. We can assume without loss of generality that r = 1 (just scale otherwise).
Given x ∈BB , take d > 0 such that

�(1+d)x� < 1.

Fix e > 0 and take x1 ∈ A such that

�(1+d)x−x1� < e.

Since [(1+d)x−x1]�e ∈BB , there exists an x2 ∈ A such that

�(1+d)x−x1

e

−x2� < e.

Take now x3 ∈ A such that

�(1+d)x−x1−ex2

e

2 −x3� < e,

i.e., �(1+d)x−x1−ex2−e

2x3� < e

3.

Continuing inductively, we get that

x = 1
1+d

∞�
j=1

e

j−1x j,

and the limit exists. Since l j = e

j−1�(1+d) we have

∞�
j=1

l j = 1
(1+d)(1−e) ,

which we can make less than 1 by taking e sufficiently small. �
The following proposition is interesting. Recall that every separable Hilbert space is
isometric to `2. This is not true for Banach spaces. Instead every separable Banach
space is isomorphic to a quotient space of `1.

Proposition 2.80 Every separable Banach space B is isometric to a quotient
space of `1.

Proof. Let (xn) be a dense sequence in BB . For l ∈ `1 define the map T ∶ `1→B,

T(l) = ∞�
j=1

l jx j.



160 Banach spaces

It is a linear map with

�T(l)�B ≤ ∞�
j=1
�l j� = �l�1,

from which follows that �T� ≤ 1. Lemma 2.79 states that T maps B`1 onto BB. It
follows from Proposition 2.78 that B is isometric to `1�kerT . �
Comment 2.25 kerT depends on the choice of the dense sequence (xn), so this
construction is far from being unique.

2.5.3 The dual of a linear transformation

Notation 2.2 We usually denote elements of a normed space X by x,y, . . . and
elements of its dual space X ∗ by f ,g, . . . . In parts of this section we will deal with
duals of duals, duals of duals of duals, and even duals of duals of duals of duals....
in such cases it will be more convenient to use x ∈X , x∗ ∈X ∗, x∗∗ ∈X ∗∗, etc.

Definition 2.16 Let X and Y be normed spaces and let T ∈ B(X ,Y ). We
define T∗ ∶Y ∗→X ∗ which we call the dual of T ( �$&/7 9&)95&!):

�T∗(y∗), ⋅� = �y∗,T(⋅)�,
namely, T∗(y∗) = y∗ ○T .

Proposition 2.81 If T ∈ B(X ,Y ) then T∗ ∈ B(Y ∗,X ∗) and �T∗� = �T�.

Proof. Linearity of T∗ results from the linearity of the map y∗� y∗○T . To calculate
the norm of T∗ we first note that

�T∗(y∗)� = sup
x∈BX

��T∗(y∗),x�� = sup
x∈BX

��y∗,T(x)�� ≤ �y∗��T�,
from which we conclude that �T∗� ≤ �T�. On the other hand,

�T(x)� = max
y∗∈BY ∗

��y∗,T(x)��
= max

y∗∈BY ∗
��T∗(y∗),x��

≤ max
y∗∈BY ∗

�T∗��y∗��x� = �T∗��x�,
from which we deduce that �T� ≤ �T∗�, hence �T� = �T∗�. �
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Proposition 2.82 If T ∈ B(X ,Y ) is an isometry then so is T∗ ∈ B(Y ∗,X ∗).

Proof. We first show that T∗ is injective: let y∗ ∈ kerT∗. Then, for every y ∈Y ,

�y∗,y� = �y∗,T(T−1(y))� = �T∗(y∗),T−1(y)� = 0,

i.e., y∗ = 0, namely kerT∗ = {0}.
We then show that T∗ is surjective: for every x∗ ∈X ∗:

�x∗, ⋅� = �x∗,T−1T(⋅)� = �(T−1)∗(x∗),T(⋅)� = �T∗(T−1)∗(x∗), ⋅�,
namely x∗ = T∗(T−1)∗(x∗) ∈ Image(T∗).
Finally, T∗ is an isometry because for every y∗ ∈Y ∗:

�T∗(y∗)� = sup
x∈BX

��T∗(y∗),x��
= sup

x∈BX

��y∗,T(x)��
= sup

y∈BY

��y∗,y��
= �y∗�,

where we have used the fact that T is an isometry. �
Comment 2.26 The fact that X isometric to Y implies that X ∗ is isometric to
Y ∗ is not surprising (if two spaces are “the same" then so must be their duals). The
interesting fact is that if T is an isometry between normed spaces then (T∗)−1 is an
isometry between their duals.

2.5.4 The dual space of a Banach space

Our next goal is to derive tools for calculating the dual space of a given Banach
space. For this, we need some new constructions:

Definition 2.17 Let B be a Banach space. Let M ⊂B and N ⊂B∗ be linear
subspaces (not necessarily closed). We denote:

M⊥ = { f ∈B∗ � � f ,M� = {0}}
N⊥ = {x ∈B � �N,x� = {0}}.

Proposition 2.83 M⊥ and N⊥ are closed linear subspaces.
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Proof. Let f ∈M⊥. Then there exists a sequence fn→ f such that

∀x ∈M � fn,x� = 0,

from which follows that6 ∀x ∈M � f ,x� = 0,

i.e., f ∈M⊥, hence M⊥ =M⊥. A similar argument holds for N⊥. �

Proposition 2.84 (M⊥)⊥ =M.

Proof. The easy part: let x ∈M. Then,

∀ f ∈M⊥ � f ,x� = 0,

which follows that x ∈ (M⊥)⊥, i.e.,

M ⊂ (M⊥)⊥,
but since the latter is closed, it follows that

M ⊂ (M⊥)⊥.
The harder part: suppose that x �∈M. Since M is closed there is an open ball B(x,r)
that does not intersect M. It follows from the geometric Hahn-Banach theorem (well,
one of its sequels) that there exists a bounded linear functional f that vanishes on M
and not on x:

f ∈M⊥ and � f ,x� ≠ 0,

i.e., x �∈ (M⊥)⊥. �

Proposition 2.85 Let M be a closed subspace of a Banach space B. Then:

¿ M∗ is isometric to B∗�M⊥.
¡ (B�M)∗ is isometric to M⊥.

6Because �� fn,x�− � f ,x�� = �� fn− f ,x�� ≤ � fn− f ��x�.
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Proof. Part 1: Let f ∈M∗. It follows from the Hahn-Banach theorem that f can be
extended into a functional F ∈B∗. We define a map

s ∶M∗→B∗�M⊥
as follows:

s( f ) = [F].
The mapping s is well-defined (i.e., independent of the extension) because if F,G
are both extensions of f , then F �M = G�M, i.e., F −G ∈M⊥. In other words, we
identify the Hahn-Banach extension as an operator M∗→B∗�M⊥.
s is linear. It is also onto because let [F] ∈B∗�M⊥, then

[F] = s(F �M).
It remains to show that s is norm-preserving; injectivity follows at once.

It is easy to see that

�s( f )� = �[F]� = inf
G∈[F]�G� = � f �,

where we used the fact that there exists an extension G that has the same norm as f .

Part 2: Define
t ∶ (B�M)∗→B∗

as follows: �t( f ),x� = � f ,[x]�.
Note that if x ∈M then [x] = [0], so that �t( f ),x� = � f ,[0]� = 0, which shows that in
fact, t ∶ (B�M)∗→M⊥.
t is linear. It is onto because g ∈M⊥ uniquely defines a functional f ∈ (B�M)∗
satisfying, � f ,[x]� = �g,x�
i.e.,

g = t( f ).
As above it remains to show that t is norm-preserving. Let f ∈ (B�M)∗ and let[x] be on the unit sphere of B�M. For every e > 0 there exists a y ∈ [x] such that�y� ≤ 1+e . On the one hand,

� f ,[x]� = �t( f ),y� ≤ �t( f )�(1+e).
Since this holds for every [x] and every e > 0:

� f � ≤ �t( f )�.
On the other hand,

�t( f ),x� = � f ,[x]� ≤ � f ��[x]� ≤ � f ��x�,
which implies that �t( f )� ≤ � f �. This completes the proof. �
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Proposition 2.86 If B is reflexive then so is B∗∗.

Proof. It is given that i ∶B→B∗∗ is an isometry. By Proposition 2.82 so are

i

∗ ∶B∗∗∗→B∗ and i

∗∗ ∶B∗∗→B∗∗∗∗.
To prove that B∗∗ is reflexive we need to show that i

∗∗ is the natural inclusion.

For every x∗∗∗ ∈B∗∗∗:
�i∗∗(⋅),x∗∗∗� = �⋅, i∗(x∗∗∗)�

But since i is an isomorphism and it is the natural inclusion,

�⋅, i∗(x∗∗∗)� = �i(i−1(⋅)),i∗(x∗∗∗)�
= �i∗(x∗∗∗), i−1(⋅)�
= �x∗∗∗, i(i−1(⋅))�
= �x∗∗∗, ⋅�.

Thus, �i∗∗(⋅),x∗∗∗� = �x∗∗∗, ⋅�,
which means that i

∗∗ is the natural inclusion X ∗∗→X ∗∗∗∗. �

Exercise 2.16 More generally, show that if X and Y are isomorphic and X is
reflexive then Y is reflexive. �

Proposition 2.87 Let B be a Banach space:

B is reflexive if and only if B∗ is reflexive.

Proof. Suppose that B∗ is reflexive. To avoid confusion we denote the natural
inclusions

i ∶B→B∗∗ and i1 ∶B∗→B∗∗∗.
The latter is invertible., hence for every x∗∗∗ ∈B∗∗∗

�x∗∗∗, ⋅� = �i1(i−1
1 (x∗∗∗)), ⋅� = �⋅, i−1

1 (x∗∗∗)�.
Choose

x∗∗∗ ∈ [Image(i)]⊥.
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Then:
0 = �x∗∗∗, i(⋅)� = �i(⋅), i−1

1 (x∗∗∗)� = �i−1
1 (x∗∗∗), ⋅�,

from which we conclude that i

−1
1 (x∗∗∗) = 0, hence also x∗∗∗ = 0.

Thus,
x∗∗∗ ∈ [Image(i)]⊥ �⇒ x∗∗∗ = 0.

This implies that Image(i) is dense in B∗∗. Since it is closed, Image(i) =B∗∗, i.e.,
B is reflexive.

Suppose that B is reflexive. This implies that B∗∗ is reflexive, and from the first
part follows that B∗ is reflexive. �
Since we proved in Theorem 2.58 that B is separable only if B∗ is separable, we
conclude that:

Corollary 2.88 Let B be a Banach space:

B reflexive and separable if and only if B∗ reflexive and separable.

Proof. There seems to be a missing part: suppose B is reflexive and separable.
Since B is isometric to B∗∗ the latter is separable, hence B∗ is also separable. �

Proposition 2.89 A closed linear subspace of a reflexive Banach space is reflex-
ive.

Proof. Let M be a closed linear subspace of a Banach space B. We need to show
that the natural inclusion i ∶M→M∗∗ is onto.

Let m∗∗ ∈M∗∗. We can extend m∗∗ into a functional s(m∗∗) on B∗ as follows:

�s(m∗∗),x∗� = �m∗∗,x∗�M�.
Since B is reflexive, s(m∗∗) = i(x) for some x ∈B. Thus for every m∗∗ ∈M∗∗
there exists an x ∈B such that

�m∗∗,x∗�M� = �i(x),x∗� = �x∗,x�.
We now claim that x ∈M. Otherwise, we can find an x∗ that x∗�M = 0 and �x∗,x� ≠ 0
(here we use the fact that M is closed!) obtaining a contradiction.

So, for every m∗∗ ∈M∗∗ there exists an m ∈M such that

�i(m),x∗� = �m∗∗,x∗�M�.
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In particular, for every m∗ ∈M∗ let x∗ be an extension of m∗, then

�i(m),x∗� = �x∗,m� = �m∗,m� = �i(m),m∗� = �m∗∗,m∗�.
Thus, i is onto, which proves that M is reflexive. �

Theorem 2.90 Let B be a Banach space and M a closed linear subspace. Then
B is reflexive if and only if both M and B�M are reflexive.

Proof. �
2.5.5 Weak convergence in Banach spaces

We now study the notion of weak convergence in Banach spaces. As in Hilbert
spaces, weak convergence is important because the unit ball of infinite-dimensional
spaces is not (relatively) compact, however, it may be weakly (relatively) compact.
As a result, proving that a set is bounded guarantees the existence of a weak
accumulation point, which could be the object we are looking for (e.g., a minimizer
or the solution to an equation).

Definition 2.18 Let X be a normed space. A sequence xn ∈X weakly con-
verges to x ∈X if

lim
n→∞� f ,xn� = � f ,x�

for all f ∈X ∗. As in Hilbert spaces, we denote weak convergence by xn⇀ x.

Proposition 2.91 Let X be a normed space and (xn) a sequence. A weak limit
of (xn), if it exists, is unique.

Proof. if xn⇀ x and xn⇀ y, then

lim
n→∞� f ,xn� = � f ,x� = � f ,y�,

which implies that � f ,x− y� = 0 for all f ∈X ∗. As a consequence of the Hahn-
Banach theorem x = y. �

Definition 2.19 A sequence xn is called a weak Cauchy sequence if � f ,xn� is a
Cauchy sequence for all f ∈X ∗.
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Definition 2.20 The space X is called weakly sequentially complete (.-:
�:-( ;*;9$2) if every weak Cauchy sequence weakly converges.

Proposition 2.92 Let X be a normed space. If xn⇀ x then

¿ (xn) is bounded.
¡ x ∈ Span{xn � n ∈N}.
¬ �x� ≤ liminfn→∞ �xn�.

Proof. ¿ Since ∀ f ∈X lim
n→∞� f ,xn� = � f ,x�,

it follows that ∀ f ∈X sup
n
�� f ,xn�� <∞,

and by Proposition 2.59 (the “reverse" Banach-Steinhaus therem):

sup
n
�xn� <∞.

¡ Let V = Span{xn}. For every f ∈ V ⊥,
� f ,x� = lim

n→∞� f ,xn� = 0,

i.e., x ∈ (V ⊥)⊥. We have proved that (V ⊥)⊥ = V .

¬ It follows from the Hahn-Banach theorem (more precisely, from Corollary 2.55)
that there is an f ∈BX ∗ satisfying

�x� = �� f ,x�� = lim
n→∞ �� f ,xn�� ≤ limsup

n→∞ �xn�.
�

Comment 2.27 Recall Proposition 1.60 stating that a weak Cauchy sequence in a
Hilbert space is bounded. The proof was based on Baire’s category theorem. The
generalization to Banach spaces is based on Proposition 2.59 which relies on the
Hahn-Banach theorem.

Recall also Proposition 1.58 stating that in a Hilbert space xn ⇀ x implies �x� ≤
liminfn→∞ �xn�. The proof was based on the inner-product,

�x�2 = lim
n→∞(xn,x) ≤ liminf

n→∞ �xn��x�.
The generalization to Banach spaces relies on Corollary 2.55, which again relies on
the Hahn-Banach theorem.
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We will now see a number of results that explain the importance of reflexive spaces.

Theorem 2.93 Let B be a reflexive Banach space. Then, K ⊂B is bounded if
and only if every sequence in K has a weakly converging subsequence (in B). In
other words, a set is bounded if and only if it is weakly sequentially relatively
compact.

Proof. Suppose that K is weakly sequentially relatively compact. If K is not
bounded then there is a sequence xn ∈K satisfying �xn� > n. This contradicts the fact
that every sequence has a weakly converging (hence bounded) subsequence.

Suppose that K is bounded. Let (xn) ∈K and denote supn �xn� =M (by assumption
it is finite). Let

X0 = Span{xn � n ∈N}.
The space X0 is both separable and reflexive (since it is a closed subspace of a
reflexive Banach space—Proposition 2.89). It follows from Corollary 2.88 that
X ∗

0 is both separable and reflexive. Let x∗n ∈X ∗
0 be a dense sequence. Since the

sequence �x∗1 ,xn�
is bounded, it has a convergent subsequence �x∗1 ,x1,n�. Then because

�x∗2 ,x1,n�
is bounded, it has a convergent subsequence �x∗2 ,x2,n�. We proceed inductively.

Consider now the diagonal sequence xn,n. For every k the sequence

�x∗k ,xn,n�
converges. Our goal is to show that there exists an x0 ∈X0 such that

lim
n→∞�x∗k ,xn,n� = �x∗k ,x0�,

and further infer that we can replace x∗k by any x∗ ∈B∗.
For every k,

lim
n→∞�x∗k ,xn,n� = lim

n→∞�i(xn,n),x∗k � ≡ f (x∗k ).
f is well-defined; it is linear and satisfies for every k:

f (x∗k ) = lim
n→∞�x∗k ,xn,n� ≤M �x∗k �.

Since (x∗k ) is a dense sequence in X ∗
0 , for and x∗ ∈X ∗

0 we take a sequence x∗k → x∗,
then � f (x∗n)− f (x∗m)� ≤M�x∗n −x∗m�,
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i.e., f (x∗n) is a Cauchy sequence and hence converges (the limit is independent of
the chosen sequence). Thus, f can be extended to a bounded linear operator on X ∗

0 .

Since X0 is reflexive, there exists an x0 ∈X0 such that i(x0) = f . That is, for every
x∗0 ∈X ∗

0 :
lim

n→∞�i(xn,n),x∗0� = �i(x0),x∗0�,
namely,

lim
n→∞�x∗0 ,xn,n� = �x∗0 ,x0�.

We will be done if we can replace x∗0 ∈X ∗
0 by x∗ ∈B∗. Let x∗ ∈B∗, then

lim
n→∞�x∗,xn,n� = lim

n→∞�x∗�X0 ,xn,n�
= lim

n→∞�i(xn,n),x∗�X0�
= �i(x0),x∗�X0�= �x∗�X0 ,x0�= �x∗,x0�,

from which we conclude that xn,n⇀ x0 in B.

�

Corollary 2.94 Let B be a reflexive Banach space. Then, it is weakly sequen-
tially complete (every weak Cauchy sequence weakly converges).

Proof. Let (xn) be a weak Cauchy sequence in a reflexive Banach space, namely

� f ,xn�
is a Cauchy sequence for every f ∈B∗. Hence,

∀ f ∈B∗ sup
n
�� f ,xn�� <∞,

and it follows from the “reverse Banach-Steinhaus theorem" that supn �xn� <∞. By
the last theorem, (xn) has a weakly converging subsequence. That is, there exists a
subsequence xnk ⇀ x, i.e.,

∀ f ∈B∗ lim
k→∞� f ,xnk� = � f ,x�.

It follows at once that the entire sequence weakly converges to x. �
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Exercise 2.17 A mode of convergence is said to satisfy the Urysohn property
if for every sequence xn the existence of a unique partial limit x implies that
xn→ x.

¿ Prove that convergence in a metric space satisfies the Urysohn property.
¡ Prove that weak convergence in a normed space satisfies the Urysohn

property.

�

Exercise 2.18 Let X and Y be normed space. A linear operator T ∶X →Y is
weakly continuous if for every f ∈Y ∗:

f ○T ∶X →F

is continuous. Show that T is continuous if and only if it is weakly continuous.

�

Exercise 2.19 Prove that c and c0 are not weakly sequentially complete. �

2.6 The open mapping and closed graph theorems

The main subject of this section is two theorems about linear transformations
between Banach spaces.

2.6.1 The open mapping theorem

Definition 2.21 Let X and Y be topological spaces. A mapping T ∶X →Y
that maps open sets into open sets is called an open mapping.

Theorem 2.95 — Open mapping theorem, Banach-Schauder. Let B and
B′ be Banach spaces. A surjective bounded linear operator T ∶B�B′ is an
open mapping.
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B B′
T

T bdd + surjective⇒ T open

Before we prove this theorem, note the following corollary:

Corollary 2.96 — Bounded bijections are isomorphisms. Let B and B′ be
Banach spaces and let T ∶B�B′ be a linear bounded, bijection. Then, T is an
isomorphism, namely, T−1 is also bounded.

B

V

B′

(T−1)−1V

T

T bdd bijection⇒ T isomorphism

Proof. We need to show that T−1 is continuous Let V ⊂B be open. Then, we need
to show that (T−1)−1V is open in B′,
which follows from the open mapping theorem. �
Proof of open mapping theorem. It is sufficient to show that T maps the open ball
BB into an open set. To show this, it is sufficient to show that there exists a d > 0
such that

T(BB) ⊃ d BB′ .

Indeed, let y ∈ T(BB). Then there exists an x ∈BB such that y = T(x). Let h > 0
be such that

B(x,h) ⊂BX ,

then by linearity of T

T(BB) ⊃ T(B(x,h)) = T(x)+h T(BB) ⊃ y+hdBB′ ,

i.e., y is an interior point of T(BB) and the latter is indeed open.
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We can express B as follows:

B = n�
n=1

nBB.

Since T is linear and surjective, B′ = T(B), namely,

B′ = T � n�
n=1

nBB� = n�
n=1

nT(BB) = n�
n=1

nT(BB).
Since B′ is complete, Baire’s category theorem asserts that one of the sets nT(BB)
has a non-empty interior, but since these sets are all blowups of the same set, it
follows that T(BB) has a non-empty interior.

Thus, there is an open ball B(a,d) ⊂ T(BB). The set T(BB) symmetric about
zero, hence B(−a,d) ⊂ T(BB). Since it is also convex,

d BB′ ⊂ T(BB).
Let A ⊂BB be a set for which T(A) is dense in T(BB). Let y ∈ d BB′ . Since
y ∈ T(BB), it has a representation

y = ∞�
n=1

lnT(xn),
where xn ∈ A and ∑∞n=1 �ln� < 1 (Lemma 2.79). The sequence ∑∞n=1 lnxn is a Cauchy
sequence because

� n�
k=m

lkxk� ≤ n�
k=m
�lk�.

Since X is complete it converges to a limit x ∈BB . Since T is continuous,

y = T(x) ∈ T(BB),
i.e., d BB′ ⊂ T(BB), which completes the proof. �
� Example 2.12 Consider the Banach space c0(Z) of two-sided infinite sequences(xn) that tend to zero as �n�→∞. Define the linear operator T ∶ L1[0,2p]→ c0(Z),

(T f )n = f̂ (n) = 1
2p

� p

−p

e−ınx f (x)dx.

The Riemann-Lebesgue lemma states that indeed, T maps L1[0,2p] into c0(Z),
where c0(Z) ⊂ `∞(Z) is endowed with the supremum norm.

T is bounded because

�T f �∞ ≤ 1
2p

� p

−p

�e−ınx f (x)�dx = � f �L1 .
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T is injective—the Fourier coefficients identify the function uniquely (this has to be
shown). Is T surjective? Does any sequence of Fourier coefficients that decay at
infinite correspond to an L1[0,2p] function?

No! If T were surjective, this would imply that L1[0,2p] and c0(Z) are isomorphic,
but this is impossible because c∗0 = `1 is separable whereas L1[0,2p]∗ = L∞[0,2p]
is not separable (Proposition 2.32). �
Comment 2.28 You saw in the tutoring session that

f (x) = ∞�
k=1

sinkx√
k

converges pointwise but is is not an L2[0,2p] function. In other words, the c0(Z)
sequence xn = 1�√n is not the Fourier coefficients of an integrable function.

We now present a few corollaries of the open mapping theorem:

Corollary 2.97 Let B and B′ be Banach spaces and let T ∶B �B′ linear,
bounded and injective. Then, Image(T) is closed if and only if there exists a
constant C > 0 such that

∀x ∈B �T x� ≥C�x�.
Comment 2.29 This corollary states that if T is bounded and injective, then the
image of T closed if and only if T−1 ∶ Image(T)→B is bounded.

B B′

Image(T)

T

T bdd + injective

Image(T) closed⇔B ≅ Image(T)
Proof. Suppose that Image(T) is closed.Then Image(T) is a Banach space, and
by Corollary 2.96 T ∶B→ Image(T) is an isomorphism.

Suppose that �T x� ≥C�x�. We need to show that Image(T) is closed. Let y ∈
Image(T). Then there exists a sequence xn such that

lim
n→∞�T xn−y� = 0.

The sequence T xn, being convergent, is a Cauchy sequence. Since

�xn−xm� ≤ 1
C
�T(xn−xm)� = 1

C
�T xn−T xm�,
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it follows that (xn) is a Cauchy sequence and hence converges to a limit x. Finally,
since T is bounded:

T x = lim
n→∞T xn = y,

i.e., y ∈ Image(T), and therefore Image(T) is closed. �

Corollary 2.98 Let B and B′ be Banach spaces. There exists a bounded linear
operator from B onto B′ if and only if B′ is isomorphic to a quotient space of
B.

Proof. Suppose that B′ is isomorphic to B�M. Denote the isomorphism t ∶
B�M →B′ and p ∶B →B�M be the natural homomorphism. Then t ○p is a
bounded linear operator B→B′ that is surjective.

Suppose that T ∶B�B′ is linear, bounded, and surjective. Then kerT is a
closed subspace of B and s ∶B�kerT →B′ defined by

s[x] = T x

is bijective. It is also bounded as for all y ∈ [x],
�s[x]� ≤ �T��y�

and taking the infimum over all y ∈ [x],
�s[x]� ≤ �T��[x]�.

By Corollary 2.96 s is an isomorphism. �

Corollary 2.99 Let V be a vector space, which is a Banach space with respect
to two different norms � ⋅�1 and � ⋅�2. Suppose that � ⋅�1 ≤C� ⋅�2. Then the two
norms are equivalent, i.e., there exists a constant c > 0 such that c� ⋅�2 ≤ � ⋅�1.

Proof. Consider the mapping:

Id ∶ (V ,� ⋅�2)→ (V ,� ⋅�1).
It is a linear bijection. It is also bounded as

�Id(x)�1 = �x�1 ≤C�x�2.
Hence Id is an isomorphism and its inverse is bounded. �
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� Example 2.13 Let B = (C(0,1),� ⋅�0). Let X0 ⊂X be a closed subspace whose
elements are all continuously differentiable. Then X0 is finite dimensional. �
Comment 2.30 This is an interesting statement. Any infinite-dimensional closed
subspace of C(0,1) contains functions that are not in C1(0,1).
Proof. Since X0 is closed, it is a Banach space with respect to the sup-norm � ⋅�0.
Define on X0 the C1(0,1) norm:

� f �1 = � f �0+� f ′�0.
Since � f �0 ≤ � f �1, it follows from the previous corollary that the two norms are
equivalent, i.e., there exists a constant c > 0 such that

c� f �1 ≤ � f �0,
i.e.,

� f ′�0 ≤ 1−c
c
� f �0.

It follows that the elements in

B(X0,�⋅�0) = { f ∈X0 � � f �0 = 1}
are uniformly bounded and equi-continuous. By the Arzela-Ascoli theorem this set
is compact, and in particular totally bounded.

Theorem 2.46 states that a normed space has finite dimension if and only if its unit
ball is totally bounded. This concludes the proof.

�
2.6.2 The closed graph theorem

Definition 2.22 Let X and Y be normed spaces. Let D(T) ⊂X be a linear
subspace and T ∶D(T)→Y a linear map. T is called closed if

D(T) ∋ xn→ x and T xn→ y,

implies that
x ∈D(T) and y = T x.

Comment 2.31 If D(T) is closed, and T is bounded, then T is clearly closed, as
the closure of D(T) implies that xn → x implies x ∈ D(T). Furthermore, if T is
continuous, then

T xn→ T x.
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It is convenient to characterize closed maps through their graph. Consider the
cartesian product X ×Y , which we endow with a linear structure,

a(x1,y1)+b(x2,y2) = (ax1+bx2,ay1+by2),
and a norm �(x,y)� =��x�2+�y�2.
If X and Y are Banach spaces, so is their cartesian product.

Given a mapping T , its graph is

G(T) = {(x,T x) � x ∈D(T)} ⊂X ×Y .

If T is linear, then G(T) is a linear subspace of X ×Y .

Lemma 2.100 A linear subspace M of X ×Y is the graph of a function if and
only if it does not contain elements of the form (0,y) for y ≠ 0.

Proof. M is the graph of a function if and only if for every x ∈D(T):
(x,y) ∈M and (x,z) ∈M implies y = z,

which is turn occurs if and only if

(0,y− z) ∈M implies y− z = 0.

�

Proposition 2.101 — Closed operator = closed graph. A linear operator T ∶
D(T)→Y is closed if and only if its graph G(T) is closed in X ×Y .

Proof. The definition of a closed map is that

G(T) ∋ (xn,T xn)→ (x,y) in X ×Y

implies that x ∈D(T) and y = T x, namely

(x,y) ∈G(T),
which is precisely the condition for G(T) being closed. �
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Corollary 2.102 Let T ∶D(T)�Y be linear and injective. Then T is closed if
and only if T−1 ∶ Image(T)→D(T) is closed.

Proof. If T is injective then T−1 is well-defined on Image(T). Its graph is

G(T−1) = {(T x,x) ∶ x ∈D(T)} ⊂Y ×X .

This graph is closed if and only if G(T) is closed, namely

{(T x,x) ∶ x ∈D(T)} is closed in Y ×X

if and only if {(x,T x) ∶ x ∈D(T)} is closed in X ×Y .

�
Definition 2.23 A linear map T ∶ D(T)→ Y is called closable ( �%9*#2) if the
closure of its graph G(T) is the graph of a linear map. This linear map, if it
exists, is an extension of T .

Proposition 2.103 et X and Y be normed spaces. A linear map T ∶D(T)→Y
is closable if and only if

D(T) ∋ xn→ 0 and T xn→ y implies y = 0.

Namely, (xn,T xn)→ (0,y)
implies y = 0.

Proof. The conditions
xn→ 0 and T xn→ y

amount to the condition that (0,y) ∈G(T). Thus, we need to prove that T is closable
iff (0,y) ∈G(T) implies that y = 0.

We have all the pieces: T is closable if and only if G(T) is the graph of a function,
which in turn holds if and only if (0,y) ∈G(T) implies that y = 0. �
The following proposition shows that closed maps are not necessarily bounded.
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Proposition 2.104 Let B and B′ be banach spaces. Let T ∶B�B′ be a bounded
linear injective map. If Image(T) is not closed, then T−1 ∶ Image(T)→B is a
closed linear map that is not bounded.

Proof. Since D(T) is closed and T is bounded, then T is closed. It follows from
Corollary 2.102 that T−1 is closed. If T−1 was bounded, it would follow from
Corollary 2.97 that Image(T) is closed, which is a contradiction �
� Example 2.14 Let B =B′ =C[0,1]. We define the linear operator T ∶B→B′,

(T f )(x) =� x

0
f .

T is injective. Its image is

Image(T) = { f ∈C1[0,1] � f (0) = 0}.
T is closed as ( fn,� fn)→ ( f ,g) in C[0,1]×C[0,1]
implies that g = ∫ f . The image of T is a linear subspace that is not closed (otherwise
it would have had finite dimension). Hence, T−1, which is given by

T−1 f = f ′
is closed but not bounded. �
� Example 2.15 Let B =B′ = L2(0,1). Let (a0,a1, . . . ,aN) functions in CN(0,1).
Consider the linear operator

T = N�
k=0

ak(x) dk

dxk .

Its domain is

D(T) = { f ∈ L2(0,1)∩CN(0,1) � T f ∈ L2(0,1)}.
We will show that T is closable. Suppose that fn → 0 and T fn → g (all limits in
L2(0,1)). Let j ∈C∞0 (0,1) (a test function). Integrating by parts we find:

(j,T fn) = (T∗j, fn),
where

T∗j = N�
k=0
(−1)k dk

dxk (akj) .
Letting n→∞ and using the continuity of the inner-product:

(j,g) = (T∗j,0) = 0.

Since the tests functions are dense in L2(0,1) it follows that g = 0. T is closable by
Proposition 2.103. �
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We finally arrive to the closed graph theorem:

Theorem 2.105 — Closed graph. Let B and B′ be banach spaces. A closed
linear operator T ∶B→B′ is bounded.

Comment 2.32 Closed is not equivalent to bounded in a general normed space.

Proof. It is given that
G(T) = {(x,T x) ∶ x ∈B}

is a closed subspace of B×B′. The map

p2 ∶G(T)→B′

defined by
p2(x,y) = y

is linear. It is bounded because

�p2(x,T x)� = �T x� ≤��x�2+�T x�2 = �(x,T x)�.
Similarly, the map

p1 ∶G(T)→B

defined by
p1(x,y) = x

is linear, bounded, and bijective. Hence, it follows from the open mapping theorem
that p

−1
1 is bounded. Since

T = p2 ○p

−1
1 ,

it follows that T is bounded. �

Proposition 2.106 Let B,B1,B2 be Banach spaces. Let

T1 ∶D(T1) ⊂B→B1 and T2 ∶D(T2) ⊂B→B2

be linear operators. Suppose that T1 closable and T2 is closed. If D(T2) ⊂D(T1)
then there exists a constant C > 0 such that

�T1x� ≤C(�x�+�T2x�) .

Proof. G(T2) is closed hence as a closed subspace of a Banach space it is a Banach
space. Consider the linear operator p ∶G(T2)→B1,

p(x,T2x) = T1x.
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We will show that it is closed. Suppose that the sequence (xn,T2xn) converges
in G(T2) and that T1xn converges in B1. Since G(T2) is closed, there exists an
x ∈D(T2) such that (xn,T2xn)→ (x,T2x).
Since D(T2) ⊂ D(T1) it follows that x ∈ D(T1) and since T1 is closable, the limit
of T1xn is T1x. Hence p is a closed operator. From the closed graph theorem it is
bounded. Thus,

�T1x� = �p(x,T2)� ≤C�(x,T2x)� =C
��x�2+�T2x�2 ≤C(�x�+�T2x�) .

�
� Example 2.16 Let B =B1 =B2 =C[0,1]. Let T1 ∶C1[0,1]→C[0,1] be defined
by

T1 f = f ′.
We know that T1 is closed (and in particular closable). Define T2 ∶C2[0,1]→C[0,1]
by

T2 f = f ′′.
T2 is a closed linear operator. By the previous proposition there exists a constant C
such that for all f ∈C2[0,1]:

max
x
� f ′(x)� ≤C�max

x
� f (x)�+max

x
� f ′′(x)�� .

�


