
Appendix A

Sequences and series

This course has for prerequisite a course (or two) of calculus. The purpose of this
appendix is to review basic definitions and facts concerning sequences and series,
which are needed for this course.

A.1 Sequences

An (infinite) sequence ( �%9$2) is an infinite ordered set of real numbers. We denote
sequences by a letter which labels the sequence, and a subscript which labels the
position in the sequence, for example,

a1,a2,a3, . . . .

The essential fact is that to each natural number corresponds a real number. Hav-
ing said that, we can define:

Definition A.1 A sequence is a function N→ R.

Definition A.2 A sequence (an) converges (�;21,;/) to ` ∈ R, denoted

lim
n→∞an = `,

if (∀✏ > 0)(∃N ∈ N) ∶ (∀n > N)(�an − `� < ✏).
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Definition A.3 A sequence is called convergent (�;21,;/) if it converges to some
(real) number; otherwise it is called divergent (�;9$";/) (there is no such thing as
convergence to infinity; we rather say that a sequence tends (�;5!&:) to infinity).

Theorem A.1 Let a and b be convergent sequences. Then the sequences (a+b)n =
an + bn and (a ⋅ b)n = anbn are also convergent, and

lim
n→∞(an + bn) = lim

n→∞an + lim
n→∞bn

lim
n→∞(an ⋅ bn) = lim

n→∞an ⋅ limn→∞bn.

If furthermore limn→∞ bn ≠ 0, then there exists an N ∈ N such that bn ≠ 0 for all
n > N, the sequence (an�bn) converges and

lim
n→∞

an

bn
= limn→∞ an

limn→∞ bn
.

Comment: Since the limit of a sequence is only determined by the “tail” of the
sequence, we do not care if a finite number of elements is not defined.

Theorem A.2 Let f be defined on a (punctured) neighborhood of a point c. Sup-
pose that

lim
x→c

f (x) = `.
If a is a sequence whose entries belong to the domain of f , such that an ≠ c, and

lim
n→∞a = c,

then
lim
n→∞ f (an) = `,

Conversely, if limn→∞ f (an) = ` for every sequence an that converges to c, then
limx→c f (x) = `.
Comment: This theorem provides a characterization of the limit of a function at
a point in terms of sequences. This is known as Heine’s characterization of the
limit.
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Theorem A.3 A convergent sequence is bounded.

Theorem A.4 Let (an) be a bounded sequence and let (bn) be a sequence that
converges to zero. Then

lim
n→∞(anbn) = 0.

Theorem A.5 Let (an) be a sequence with non-zero elements, such that

lim
n→∞an = 0.

Then
lim
n→∞

1�an� =∞.

Theorem A.6 Let (an) be a sequence such that

lim
n→∞ �an� =∞.

Then
lim
n→∞

1
an
= 0.

Theorem A.7 Suppose that (an) and (bn) are convergent sequences,

lim
n→∞an = ↵ and lim

n→∞bn = �,
and � > ↵. Then there exists an N ∈ N, such that

bn > an ∀n > N,

i.e., the sequence (bn) is eventually greater (term-by-term) than the sequence (an).
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Corollary A.1 Let (an) be a sequence and ↵,� ∈ R. If the sequence (an) con-
verges to ↵ and ↵ > � then eventually an > �.

Theorem A.8 Suppose that (an) and (bn) are convergent sequences,

lim
n→∞an = ↵ and lim

n→∞bn = �,
and there exists an N ∈ N, such that an ≤ bn for all n > N. Then ↵ ≤ �.

Theorem A.9 (Sandwich) Suppose that (an) and (bn) are sequences that con-
verge to the same limit `. Let (cn) be a sequence for which there exists an N ∈ N
such that

an ≤ cn ≤ bn ∀n > N.

Then
lim
n→∞ cn = `.

Definition A.4 A sequence (an) is called increasing ( �%-&3) if an+1 > an for all n.
It is called non-decreasing (�;$9&* !-) if an+1 ≥ an for all n. We define similarly a
decreasing and a non-increasing sequence.

Theorem A.10 (Bounded + monotonic = convergent) Let (an) be a non-
decreasing sequence bounded from above. Then it is convergent.

Definition A.5 Let (an) be a sequence. A subsequence (�%9$2 ;;) of (an) is any
sequence

an1 ,an2 , . . . ,

such that
n1 < n2 < �.

More formally, (bn) is a subsequence of (an) if there exists a monotonically in-
creasing sequence of natural numbers (nk), such that bk = ank for all k ∈ N.
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Definition A.6 Let (an) be a sequence. A number ` is called a partial limit (an)
(�*8-( -&"#) if ` is the limit of a subsequence of (an).
Lemma A.1 Any sequence contains a subsequence which is either non-
decreasing or non-increasing.

Corollary A.2 (Bolzano-Weierstraß) Every bounded sequence has a convergent
subsequence. That is, it has at least one partial limit.

Theorem A.11 If a bounded sequence has a unique partial limit, then the se-
quence is convergent and this partial limit is in fact its limit.

In many cases, we would like to know whether a sequence is convergent even
if we do not know what the limit is. We will now provide such a convergence
criterion.

Definition A.7 A sequence (an) is called a Cauchy sequence if

(∀✏ > 0)(∃N ∈ N) ∶ (∀m,n > N)(�an − am� < ✏).
Theorem A.12 A sequence converges if and only if it is a Cauchy sequence.

Theorem A.13 Let (an) be a bounded sequence. Then, the sequence

bn = sup{ak ∶ k ≥ n}
is monotonically decreasing, hence has a limit which is called the superior limit
(�0&*-3 -&"#) of the sequence (an),

lim sup
n→∞ an = lim

n→∞ sup{ak ∶ k ≥ n}.
Furthermore, the superior limit is the largest partial limit of (an).
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Likewise, the sequence
cn = inf{ak ∶ k ≥ n}

is monotonically increasing, hence has a limit which is called the inferior limit
(�0&;(; -&"#) of the sequence (an),

lim inf
n→∞ an = lim

n→∞ inf{ak ∶ k ≥ n}.
Furthermore, the inferior limit is the smallest partial limit of (an).
The following is obvious:

Proposition A.1 For every sequence (an),
lim inf

n→∞ an ≤ lim sup
n→∞ an

A.2 Series

Let (an) be a sequence. We define the sequence of partial sums (�.**8-( .*/&,2)
of (an) by

S a
n = n�

k=1
ak.

Note that (S a
n) does not depend on the order of summation (a finite summation).

If the sequence (S a
n) converges, we will interpret its limit as the infinite sum of

the sequence.

Definition A.8 A sequence (an) is called summable (�%/*,2) if the sequence of
partial sums (S a

n) converges. In this case we write

∞�
k=1

ak = lim
n→∞S a

n.

The sequence of partial sum is called a series ( �9&)). Often, the term series refers
also to the limit of the sequence of partial sums.
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Comment: Note the terminology:

sequence is summable = series is convergent.

Theorem A.14 Let (an) and (bn) be summable sequences and � ∈ R. Then the
sequences (an + bn) and (�an) are summable and

∞�
n=1
(an + bn) = ∞�

n=1
an + ∞�

n=1
bn,

and ∞�
n=1
(�an) = � ∞�

n=1
an.

An important question is how to identify summable sequences, even in cases
where the sum is not known. This brings us to discuss convergence criteria.

Theorem A.15 (Cauchy’s criterion) The sequence a is summable if and only if for
every ✏ > 0 there exists an N ∈ N, such that

�an+1 + an+2 + ⋅ ⋅ ⋅ + am� < ✏ ∀m > n > N.

Corollary A.3 If a is summable then

lim
n→∞an = 0.

The vanishing of the sequence is only a necessary condition for its summability.
It is not su�cient as proves the harmonic series, an = 1�n,

S a
n = 1 + 1

2
+ 1

3
+ 1

4�≥1�2
+ 1

5
+ 1

6
+ 1

7
+ 1

8���������������������������������������������������������������������≥1�2
+�.

This grouping of terms shows that the sequence of partial sums is unbounded.
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Theorem A.16 A non-negative sequence is summable if and only if the series (i.e.,
the sequence of partial sums) is bounded.

Theorem A.17 (Comparison test) If 0 ≤ an ≤ bn for every n and the sequence (bn)
is summable, then the sequence (an) is summable.

Theorem A.18 (Limit comparison) Let (an) and (bn) be positive sequences, such
that

lim
n→∞

an

bn
= � ≠ 0.

Then (an) is summable if and only if (bn) is summable.

Theorem A.19 (Ratio test (�%1/% 0("/)) Let an > 0 and suppose that

lim
n→∞

an+1

an
= r.

(i) If r < 1 then (an) is summable. (ii) If r > 1 then (an) is not summable.

Definition A.9 Let f be integrable on any segment [a,b] for some a and b > a.
Then

� ∞
a

f (t)dt = lim
x→∞�

x

a
f (t)dt.

Theorem A.20 (Integral test) Let f be a positive decreasing function on [1,∞)
and set an = f (n). Then ∑∞n=1 an converges if and only if ∫ ∞1 f (t)dt exists.

We have dealt with series of non-negative sequences. The case of non-positive
sequences is the same as we can define bn = (−an). Sequences of non-fixed sign
are a di↵erent story.
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Definition A.10 A series ∑∞n=1 an is said to be absolutely convergent (;21,;/
�)-(%") if ∑∞n=1 �an� converges. A series that converges but does not converge
absolutely is called conditionally convergent (�*!1;" ;21,;/).

Theorem A.21 Every absolutely convergent series is convergent. Also, a series is
absolutely convergent, if and only if the two series formed by its positive elements
and its negative elements both converge.

Theorem A.22 (Leibniz) Suppose that an is a non-increasing sequence of non-
negative numbers, i.e.,

a1 ≥ a2 ≥ � ≥ 0,

and
lim
n→∞an = 0.

Then the series ∞�
n=1
(−1)n+1an = a1 − a2 + a3 − a4 +�

converges.

Definition A.11 A rearrangement (�:$(/ 9&$*2) of a sequence an is a sequence

bn = af (n),
where f ∶ N→ N is one-to-one and onto.

Theorem A.23 (Riemann) If ∑∞n=1 an is conditionally convergent then for every
↵ ∈ R there exists a rearrangement of the series that converges to ↵.

Theorem A.24 If ∑∞n=1 an converges absolutely then any rearrangement ∑∞n=1 bn

converges absolutely, and ∞�
n=1

an = ∞�
n=1

bn.

In other word, the order of summation does not matter in an absolutely convergent
series.
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Theorem A.25 Suppose that ∑∞n=1 an and ∑∞n=1 bn converge absolutely, and that cn

is any sequence that contains all terms anbk. Then

∞�
n=1

cn = �∞�
n=1

an��∞�
k=1

bk� .


