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Abstract

We study the propagation of compact superheated solid in the large undercooling limit using the phase-field model. Below
a critical undercooling, the superheated solid decomposes into solid and liquid domains, either in the form of liquid droplets
or in periodic structures of concentric rings. For the latter, a one-dimensional analysis provides an excellent estimate for the
propagation velocity and for the wavelength. Both numerical and approximate analytical expressions are obtained.

PACS: 61.50.Cj 64.60.-i 64.70.Dv 81.10.Fq 81.30.Fb

1. Introduction

During the past decade a considerable progress has
been achieved in the understanding of interfacial pat-
terning [ 1-4]. Initially, the focus was on the forma-
tion of isolated growth elements (e.g., dendrites, fin-
gers and bubbles). This approach was motivated by
the need to explain the existing experiments on steady-
state dendritic and fingering growth. Solidification ex-
periments, for example, were mainly performed in the
limit of low undercooling [ 5]. Under such conditions,
neighboring branches are almost non-interacting as
the average solid-liquid fraction is equal to the di-
mensionless undercooling [6,7]. Technically, the in-
vestigation of steady-state growth of isolated patterns
provides an enormous simplification compared to the
consideration of the full time-dependent behavior of
global morphologies. In particular, this approach led
to the discovery of the singular nature of the micro-
scopic interfacial dynamics, and to the formulation
of solvability criterions for the existence of different

types of isolated growth elements [8-10].

Another case which has received much attention
is the opposite limit of very large undercooling. For
A > 1, all the latent heat is absorbed by the solidifica-
tion front, hence, the interface can remain stable and
form a compact structure. In this regime the problem
can easily be solved as the solution is a quasi-one-
dimensional steady-state.

Clearly, the most interesting and challenging regime
is the intermediate case of finite (but not too large) un-
dercooling. When the interactions between branches
become dominant, a subtle self-organization mecha-
nism leads to the formation of a regular well-defined
envelope on the global scale, even when the growth
is very noisy and irregular on the scale of the individ-
ual branches [6]. This envelope remains shape pre-
serving and propagates at constant velocity. Moreover,
the geometrical characterization of the envelope seems
to be correlated with the internal branching structure.
Specifically, the envelope was found to be convex
for tip-splitting growth, while concave for dendritic
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Fig. 1. Numerical simulations of the two-dimensional phase-field model. The lines represent ¢ = 0.5 contour lines. (a) Array of droplets
behind a compact solid front obtained for € = 0.2, A =10 and 4=0.9. (b) A typical example of concentric rings structure for € = 0.35,
A =10 and 4 = 0.65. The rings start with the nucleation of droplets which then propagate to fill the entire circcumference. (¢) Tip splitting

growth obtained for € = 0.35, A = 10 and 4 = 0.55.

growth [6]. In order to investigate this growth regime,
it is necessary to resolve the time-dependent behavior
of the fully-developed structure. In the absence of ap-
propriate analytical tools, such treatment has been re-
stricted so far mainly to the framework of algorithmic
computational models, and recently, it has also been
possible to achieve large-scale numerical simulations
of deterministic growth models [11-15].

In Ref. [15], numerical simulations of the phase-
field model were performed in the large undercool-
ing limit. In particular, a new pattern was found to
emerge for levels of undercooling close to one. For

values of 4 down to 0.85, the solidification front re-
mains compact. Energetical considerations imply that
compact growth below unit undercooling gives rise to
a superheated solid. Such state turns out to be unsta-
ble with respect to propagating wave-fronts of solid—
liquid decomposition. In the simulations of Ref. [15],
it yielded arrays of liquid droplets forming behind the
solidification front (Fig. 1a). Solid-liquid decomposi-
tion can also appear in the form of a periodic structure
of concentric rings (Fig. 1b). Below a critical value
of undercooling, the concentric pattern breaks down,
and a transition to radial branching occurs (Fig. 1c).
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In this paper, we investigate these new patterns by
considering a one-dimensional system. In Section 2
we review the phase-field model and present the two-
dimensional numerical simulations which give rise
to concentric rings. A one-dimensional investigation
is presented in Section 3. Three types of solutions
are identified including uniformly translating fronts,
Zener-like solutions, and oscillatory solutions. In Sec-
tion 4, analytical approximate expressions are derived
for the uniformly translating solutions, and for their
range of existence. The oscillatory solutions are stud-
ied in Section 5. The oscillating wave-front is found
to propagate into a new intermediate phase, its ve-
locity and wavelength satisfying a marginal stability
principle {16,17]. Concluding remarks are made in
Section 6.

2. The phase-field model
2.1. The model

The phase-field model has become one of the stan-
dard models to describe pattern formation during dif-
fusion limited growth [18,19]. It is based on a phe-
nomenological description of the phase boundaries as
a diffuse interface by means of a continuous order-
parameter field. The order-parameter has two locally
stable fixed points, identified as the thermodynamical
phases (liquidand solid). Its dynamics is derived from
a Landau free-energy by a variational principle. The
dynamics of the order parameter is coupled to that of
a diffusion field (e.g., temperature or concentration).
The coupling between the two fields is on two levels.
On the one hand, the diffusion field determines locally
the relative stability of the two phases. On the other
hand, variations in the order parameter act as a source
for the diffusion field (latent heat generation in the
thermal model, or absorption due to a miscibility gap
in the chemical model).

The model considered here describes solidification
of a pure substance from its undercooled melt. The
order-parameter, ¢, is defined such that ¢ = 0 in a ho-
mogeneous liquid, and ¢ = 1 in a homogeneous solid.
The conjugate temperature field, 7, is represented by

the dimensionless field, u = ¢, (T —Ty) /L, where Ty
is the phase coexistence equilibrium temperature, c,, is
the specific heat, and L is the latent heat per unit vol-
ume. The thermal properties of the substance are as-
sumed to be equal in both phases (symmetric model).
The dynamical evolution of the system is given by
[20]

EEAF (W) 0,
7V(u)5“fv¢
I AF
tot1-0) (4500 ()
and
m_ oz, . 9%
= = DViu+ —=. (2)

The parameters are related to the material properties
as follows: ¢ is the thickness of the interfacial layer
at phases coexistence, y is the (isotropic) surface-
energy (in two dimensions it is a line-energy), and D
is the heat diffusion constant. The function AF (u) de-
notes the thermodynamical free-energy difference be-
tween liquid and solid at temperature u, and the func-
tion V(u) denotes the kinetic response function. That
is, the velocity at which a flat interface would propa-
gate under controlled isothermal conditions. Boundary
and initial conditions complete the model. Growth in
an open geometry, for example, is realized by taking
$(o0) = 0 and u(oc) = 4 < 0 as boundary condi-
tions. The initial conditions consist of a solid nucleus
in an undercooled environment.

In the sharp boundary limit where the interfacial
thickness, £, is much shorter than the characteristic
diffusionlength, £ = D /0 (# is a characteristic velocity
of the phase boundary), Eqgs. (1) and (2) reduce to
the free boundary model [21,22]. It is defined by the
linear diffusion equation,

ou 2
= , 3
y DV*u (3)

and supplemented by boundary conditions on the mov-
ing interface. Namely, heat conservation

D [Vu] - it = —u,, (4)

where the square brackets denote discontinuity across
the interface, and v, is the normal velocity of the in-
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terface. The generalized kinetic Gibbs-Thompson re-
lation is

AF (u;)

AF(u;) = — Vi) Uy —

YK, (5)

where u; is the temperature at the interface, and « is
the local curvature. Eq. (5) reduces to its standard
form in the linear approximation, V(#) = u/8 and
AF(u) = (L?/c,Ty) u.

For large scale numerical simulations, it proved ad-
vantageous to choose a specific form of the model
originally proposed by Kobayashi [11],

209 =2V + ¢(1 — @) (¢ -  — etanh Au),
at
(6)
and
du _ 2 _ag
> =Vu+ 7 (7

In these dimensionless equations, length is measured
in units of D/9, and time is measured in units of D/5?.
The parameter e is the ratio of the interfacial thickness,
¢, and the characteristic diffusion length D/5.

2.2. Numerical simulations for large undercooling

In Ref. [15] we presented a numerical investiga-
tion of the late-stage growth of phase-field simulations
in a two-dimensional open geometry. The main result
was the identification of different “growth elements™:
dendrites, parity-broken dendrites, tip-splitting fingers
and compact growth. Each growth element is charac-
teristic to a distinct region of the parameters space.

In this study, we concentrate on the limit of very
large undercooling, for which superheated solid is
generated. Growth of superheated solid into under-
cooled melt is in general unstable. This instability
leads to the spontaneous emergence of liquid domains
behind the propagating front. For the parameters used
in Ref. [15] the resulting pattern was that of liquid
droplets (Fig. 1a). For a larger value of interfacial
diffusivity, €, the liquid domains organize instead in
a new structure consisting of a periodic array of con-
centric rings. Such typical rings structure is shown in
Fig. 1b. Two fronts are identified: first, the solid front

which propagates into the liquid, and behind, the
wave-front of the rings structure. Both fronts advance
at constant speeds, the solid-liquid front being the
fastest. This pattern is observed for a limited range of
undercooling. Above a critical undercooling the rings
disappear, the propagating phase being instead an ho-
mogeneous superheated solid. Below a lower critical
undercooling the solid front destabilizes, giving rise
to radial tip-splitting growth (Fig. 1¢).

The circular symmetry of the rings structure sug-
gests its investigation by means of a purely one-
dimensional analysis. The following sections are
devoted to such an investigation. The quantitative
agreement between the two-dimensional simulations
and the one-dimensional analysis is presented in the
discussion section.

3. Numerical results for a one-dimensional system

In this section we present numerical solutions of the
phase-field equations for a one-dimensional system.
In order to investigate the time-dependent behavior,
and find the dynamically selected solutions, Egs. (6)
and (7) were integrated numerically using the Crank-
Nicholson scheme. We start with melt (¢ = Q) un-
dercooled at temperature u = —4, except for a solid
nucleus (¢ = 1) at zero temperature located at the ori-
gin. The system boundaries are taken to be reflecting.
In practice, the particular choice of boundary condi-
tions does not affect the growth as long as the diffu-
sion layer is sufficiently far from the boundaries.

We performed time-dependent simulations for var-
ious values of 4 and €. Three regimes of late-stage
growth are identified, corresponding to three regions
on the e-4 plane (Fig. 2):

(i) Uniformly translating fronts, where the two
phases are connected by a sharp domain wall of
width of order €. Such solutions are obtained for
all values of undercooling greater than a critical
value 4, < 1. For values of undercooling less
than one, the growing phase is a superheated
solid at temperature u = 1 — 4 > 0. For small
values of €, A, tends to unit undercooling as
expected for the sharp boundary limit.
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Fig. 2. Schematic map of the different late-stage growth regimes
on the e-4 plane.

For uniformly translating solutions, it is pos-
sible to solve directly the stationary equations
in the moving frame. Egs. (6) and (7) reduce
then to

2" + €*vd’ + f(d,u) =0, (8)
and
W' + o — @) =0, )]

where f(¢,u) = &(1 — ¢$)(¢ — 1/2 —
e tanh Au). The boundary conditions are
P(—~o0) =1, #(c0) =0 and u(oc) = —A4. The
velocity of propagation, v, is determined by
this non-linear eigenvalue problem. Integrating
Eq. (9) once, we get

w +v(u— ¢+ 4) =0, (10)

where the constant of integration, 4, has been
determined by the boundary conditions. Itis use-
ful to transform Eqgs. (8) and (10) to a set of
three first order equations, the third variable be-
ing z = d¢/dx. The velocity, then, can be cal-
culated numerically using a standard shooting
method by requiring the existence of an inte-
gration path connecting the “solid” fixed point,
(¢ =1, u=1— 4,z =0), to the “liquid” fixed
point, (¢ = 0,u = —4,z = 0). This velocity

1.5 ———

0.5 —

Fig. 3. Velocity of the uniformly translating fronts as function of
undercooling for A = 10 and for three different values of €. The
solid lines are calculated using the shooting procedure. The dots
are calculated from the time-dependent simulations.

(i)

(iii)

is presented in Fig. 3 as function of undercool-
ing for different values of €. For 4. < 4 < 1,
the velocity is multivalued, but only the upper
branch for which v is an increasing function of
4 is linearly stable.

Slowing down Zener-like solutions. In this
regime the front slows down as 1/ \/t, while the
length of the thermal diffusion layer increases
as /7. These solutions can be calculated ana-
lytically in the sharp boundary limit by means
of a similarity transformation [23].

Oscillatory solutions. In this regime, the front
advances at constant velocity although the level
of undercooling is not sufficiently high to sus-
tain uniform translation. The superheated solid
left behind the front is unstable, and decom-
poses into a periodic structure of alternating re-
gions of solid and liquid. These solutions are
observed above a critical value of €, and for a
range of undercooling which is bounded above
by the regime of uniformly translating fronts,
and bounded below by the regime of Zener so-
lutions.

In Figs. 4a and 4b we show the fields profiles above
(4a) and below (4b) a transition from uniformly
translating fronts to Zener solutions. In both regimes
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Fig. 4. Snapshots of the profiles of ¢(x) (solid lines) and u(x) (dotted lines). (a) and (b) are for A = 10 and € = 0.2, and show a
transition from a uniformly translating front (a) to the Zener regime (b). (c) and (d) are for A = 10 and € = 0.35, and show a transition

from a uniformly translating front (c) to the oscillatory regime (d).

the front is sharp, its width being of order €. This
is not the case in the vicinity of a transition from a
uniformly translating front to an oscillatory solution
(Figs. 4c and 4d). For 4 2 A, (Fig. 4c), the front is
structured. Both ¢¢(x) and u(x) pass through a saddle
point, so that the profile is effectively divided into two
rapidly varying regions which are connected through
a moderately varying region. As A approaches 4,
from above, the region where the fields are nearly
constant widens. For 4 < A, (Fig. 4d), the profile
divides into two separated regions. A uniformly trans-

lating front connects the liquid to an “intermediate
phase” (a meta-stable state for which 0 < ¢ < 1).
Behind this front, the periodic pattern propagates into
the intermediate phase. A secondary process of period
doubling occurs far behind the wave-front, indicating
that the wave-pattern is not a globally stable state.

The new solution of a front connecting the lig-
uid phase to the intermediate phase bifurcates off the
uniformly translating solutions of solid-liquid fronts.
Fig. 5 shows that the v(4) curve of the former origi-
nates from the upper branch of the latter.
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Fig. 5. Velocity versus undercooling for A = 10, and € = 0.35. The
critical undercooling is 4. >~ 0.686. The solid line represents the
velocity of the uniformly translating solid-liquid fronts, whereas
the dashed line gives the velocity of the front connecting the liquid
phase to the intermediate phase. Both are calculated using the
shooting procedure as explained in Section 4. The bars represent
the data extracted from the time-dependent simulations.

4. Phase-space representation
4.1. Mechanical analog of the phase-field equations

A standard procedure in the analysis of front prop-
agation is to refer to an analogous mechanical sys-
tem. Here we present a generalization of the standard
analogy in order to gain additional insight about the
new phenomena described above. First, we consider
Egs. (8) assuming u being constant. It can be viewed
as describing the motion of a particle of mass €2, ¢
being its displacement, x being time and €2v being the
dissipation constant. The particle is driven by a force,
f(d,u), derived from the potential

U(p.u) =~1¢* (1 - ¢)?
- (%¢2 — %¢3) etanh( Au), (11)

which equals to minus the potential part of the free-
energy. Hence, it has two maxima, at ¢ = 0 and at
¢ =1, and a local minimum at ¢ = 0.5 + e tanh( Au)
(Fig. 6). The fictitious particie moves along the homo-
clinic trajectory connecting the “solid” unstable equi-
librium point, ¢ = 1, to the “liquid” unstable equilib-
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Fig. 6. The mechanical analog: the particle trajectory connects the
unstable equilibrium points, ¢ = 1 and ¢ = 0.

U(¢)

rium point, ¢ = 0. This analogy can be employed to
calculate the velocity of propagation, v, using energy
conservation. Under the assumption of constant tem-
perature, there exists a unique trajectory, and hence
only one possible velocity.

Next, we combine the above picture with the simul-
taneous evolution of u(x). The integration of Eq. (10)
gives

u(x) =¢(x) —A4—e % /dse”s%(s). (12)
ax

— o0

The particle’s trajectory can be described now in the
following manner. While the particle moves towards
¢ = 0, u evolves according to Eq. (12). The poten-
tial, U( ¢, u), varies consequently, with the maximum
at ¢ =1 shifting upwards while the minimum at ¢ =
‘5 + € tanh Au moves towards the left. The energy con-
servation relation has also to account now for the en-
ergy gained by the potential shift along the trajectory.
It is the possibility of such energy gain to compen-
sate the negative potential difference between the ini-
tial and the final states which allows the formation of
superheated solid.
The energy conservation law is



300 M. Zukerman et al. | Physica D 90 (1996) 293-305

€V 7dx (%)2

=e/dx tanh(Au) (1 — &) ¢

IZ}
—. 13
ax (13)
The function v(4) can be estimated by performing the
following approximation. As ¢ decays from 1 to 0 over
a distance of order ¢, it is a reasonable approximation
to replace it by a model function,

1— %exp (é) x<0
dum(x) = ) (14)
1 X
5 eXp (————) x>0
ae

where « is a fitting parameter. From the integral ex-
pression for u, Eq. (12), it follows that the temper-
ature also varies mainly in the region x ~ Of(e)
where d¢/dx is large. Hence, we replace tanh(Au)
by a power series in € about x = 0. Substituting this
power series expansion together with the model func-
tion, ¢ (x), into Eq. (13), we obtain

u=—33‘—“tanh[/\u(0)] + 0(€e?). (15)
The front velocity is determined within this approxi-
mation by the temperature at the interface. To set the
fitting parameter, &, we compare this result with the
sharp boundary limit, v = —v/2 tanh [ Az(0) ]. Hence,
a=3/ V2. Finally, #(0) is evaluated by substituting
the model function also into Eq. (12). This procedure
gives an implicit equation for the front velocity,

1 1

U= \/itanh{/\ [A 7 2(3eu/\/.7:+ 1)]} . (16)
The qualitative similarity between the evaluated veloc-
ity and the exact solution is shown in Fig. 7. Eq. (16)
has multivalued solutions only if ex > 2/3, which
provides an estimate for the existence range of uni-
formly translating fronts which generate superheated
solid.

4.2. The intermediate phase

Next, we turn to explain the formation of the new in-
termediate phase by considering the dynamical system

15 (1 ] T
1+
> |
05—
OllJLlLLLJJI\\Jll‘LJLILJ
0.9 0.95 1 1.05 1.1
A

Fig. 7. Comparison between the exact velocity curves obtained
using the shooting procedure (solid lines), and the approximated
solution (dashed lines). For € = 0.05 (a) the agreement is excel-
lent, but remains essentially qualitative for € = 0.2 (b).

Fig. 8. The function g4(u) for (a) 4 =0.5; (b) 4 = 0.667 and
(c) 4=038.

which generates the profiles of the uniformly translat-
ing fronts,

b=z

. 1

i=—vz = f(du) - (17)
t=v(¢p —u—A4)

The relevant trajectories are those connecting the fixed
point (1,0, 1 — 4) to the fixed point (0,0, —4). Local
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¢’ (a)

¢’ (b)

Fig. 9. Trajectories of the dynamical system (19) projected on the ¢—z plane (z = ¢’). The parameters are € = 0.35, A = 10.0 and (a)

4=1.0; (b) 4=0.68; (c) 4=0.64.

analysis shows that both fixed points have two negative
and one positive eigenvalues. A simple “counting ar-
gument” indicates that such trajectories will exist only
for selected values of v, as the one trajectory leaving
the point (1,0,1 — 4) will in general (i.e., for arbi-
trary v) be on the one-dimensional unstable manifold
of trajectories passing through the point (0,0, —A4).

The intermediate phase corresponds to an additional
fixed points of Eq. (17), which is the root of

ga(u) =u+ A — 5 — € tanh(Au) = 0. (18)

In Fig. 8 we plot g4(u) for three values of A. For
A > A, Eq. (18) has only one root corresponding to

the unstable fixed point (the stability is defined with
respect to the rest frame for time dependent pertur-
bations). For 4 = A, a saddle-node bifurcation gives
rise to two additional roots. The stability of these new
fixed points is determined by the sign of g, (1), hence,
it is the middle one which corresponds to the interme-
diate phase.

Fig. 9 shows different trajectories of the dynamical
system, (17) (the trajectories are projected on the ¢-
z plane). For A slightly larger than 4. (Fig. 9b), z =
d¢p/dx becomes very small in the vicinity of ¢ = 0.8,
reflected as a slowly varying region in terms of ¢(x)
(Fig. 4c). The 4 = A, trajectory is the first which
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passes through the new fixed point, while there are
no trajectories connecting the solid phase (§) to the
liquid phase (L) for 4 below 4.

For 4 = A, the trajectory passes through a fixed
point, and it corresponds to two independent fronts:
one connecting S to the intermediate state (/), and a
second connecting the latter to L. The stability proper-
ties of / being identical to those of S, we can find uni-
formly translating /-L fronts using the same shooting
procedure as for the S-L fronts (Fig. 9¢). The velocity
curve of these fronts was shown in Fig. 5 to bifurcate
off the S-L fronts velocity curve. A similar attempt to
find S-/ fronts failed as all the trajectories leaving S
flow into the unstable intermediate fixed point. Thus,
uniformly translating S-/ fronts don’t exist, in agree-
ment with the numerical simulations.

5. Velocity and wavelength selection in the
oscillatory regime

Having treated separately the /-L front propaga-
tion, we analyze in this section the formation and the
propagation of the periodic state into the /-state. Be-
hind the oscillations wave-front, the periodic pattern
is stationary. So far, the only stationary states which
were considered were homogeneous ones, however the
phase-field equations assume also periodic solutions.
The stationary equations are

u = up = Const,, (19)
and
e + flg.u) =0, (20)

so that Eq. (20) can be identified as describing the
frictionless motion of a particle of mass € in the po-
tential field, U(¢,ug), ¢ being again the analog of
displacement. The corresponding energy conservation
law is

1e2(¢)? + U(g,up) = E. (21)

Provided that the total energy, E, is less than
the energy of the potential barriers, (ie., E <
U(O,uy),U(1,ug)), the solution will be that of pe-
riodic oscillations about the minimum of U(¢,up).

The apparent two-parameters (#9 and E) family of
periodic solutions is reduced to a one-parameter fam-
ily under the constraint of global heat conservation.
Comparing the periodic solution with the homoge-
neous intermediate state, (¢*,u™), the difference in
¢(x) must on the average be equal to the difference
in u(x). That is,

x+A"
;‘1: dx' [¢(x") — ¢"] =up —u", (22)
x
where A* is the wavelength of the periodic pattern.
The existence of a continuous family of periodic
solutions poses a selection problem, both for the
wavelength and for the velocity at which the oscilla-
tory pattern advances into the intermediate state. It
will be shown that the selection mechanism satisfies
a marginal stability principle which is characteristic
to cases where a stable phase propagates into an un-
stable one. Such problems were extensively studied
by Ben-Jacob et al. | 16] and by Van Saarloos [17].
Consider a general disturbance propagating into the
intermediate state. The assumption is that the selection
is completely determined at the leading edge of this
disturbance. There, we can take a perturbation of the
form,

¢(x,t) =" + 6¢ exp(wt — kx)

2
u(x,t) =u* + ou exp(wt — kx) (23)

and linearize the equations about the intermediate
state. The following dispersion relation is obtained

1
w(k>=k2+2—65(f¢+fu>

|
o5\ U+ )2+ 4202, (24)
(the solution is dominated by the positive root), where

_ 9

= =¢* (1 —¢"), 25
fe by . ¢ (1—¢") (25)
and

af ¢* (1 — ™)

= L = —EA————, 26

fu o | px ux €A cosh? (Au*) (26)

In general, both k and @ are complex. The enve-
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Fig. 10. The velocity at which the oscillations wave-front propa-
gates into the intermediate phase for € = 0.35 and A = 10. The
solid curve is calculated using the marginal stability hypothesis.
The dots are results of numerical simulations.

lope of the disturbance is determined by Re k and its
velocity is given by
Re w(k)

c(k) = Rek
Imagine now a superposition of such Fourier compo-
nents, all having the same value of Re & (i.e., spatial
decay), but different values of Im k. Clearly, the so-
lution will be dominated after long time by the mode
which maximizes the velocity of the envelope. There-
fore, rather than being viewed as an independent de-
gree of freedom, Im & can be considered to be a func-
tion of Re k through the condition that

dc(k) dRe w(k) o
dTm klRe & dlmk IRek

(27)

=0, hence .
(28)

An additional condition has to determine the selected
decay rate of the envelope. It can be derived in vari-
ous alternative manners. Perhaps the most intuitive ap-
proach is the one adopted by Van Saarloos [17]. Pro-
vided that the initial perturbation is sufficiently local-
ized, the construction of the envelope can be thought
of as consisting of a continuous process in which the
front is being “invaded” from behind by modes of
longer spatial decay. This process continues as long as
the long spatial decay modes are slower. Once the ve-

]

8
<
7
gl v v e L
0.5 0.55 0.6 0.65
A
Fig. 11. Wavelength of the periodic pattern as function of under-

cooling for € = 0.35 and A = 10. The solid curve is calculated
using the marginal stability hypothesis. The solid dots are the re-
sults of the one-dimensional numerical simulations, whereas the
open dots are the wavelength of the concentric pattern in the
two-dimensional simulations.

locity has reached a minimum, the front remains stable

with respect to such “invasions”. Hence, the condition
for the selected spatial decay rate is

dc 1 dRe w Re w

= — =0, 29
dRek RekdRek (Rek)? (29)

and since

dRew_aRew+aRedemk_aRew
dRek OdReck dlmkdRek dRek’

we obtain the second condition that

r?Rew_Rew
dRek  Rek’

Egs. (24), (28) and (30) determine the marginally
stable mode, k = kys, together with the velocity of
propagation, cys. In order to calculate the wavelength
of the oscillations, A*, we use the standard node-
counting argument [ 16]. In a frame of reference mov-
ing with the envelope at speed cums, the rate at which
nodes are created at the leading edge is given by
1 Im (wms — cmskwms). Assuming that nodes are nei-
ther created nor annihilated elsewhere than at the lead-
ing edge, this rate is equal to 2cms/A*, which is the
rate at which nodes are passing through a second co-
moving observation point which is located in the de-

(30)
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veloped waveform. This determines the wavelength to
be,

A =27 [Im (%%Ms)}_l. (31)
CMS

The calculated values of cys and A* are compared

with the simulations data in Figs. 10 and 11. The agree-

ment is very good, showing conclusively that marginal

stability governs the selection of the periodic solutions.

6. Conclusions

We studied the propagation of superheated solid
into -undercooled melt at large undercooling in the
framework of the phase-field model. Such propaga-
tion leads to a decomposition of the superheated solid
into alternating liquid and solid domains, constrained
by the equality of the average solid fraction and the
dimensionless undercooling. In the regime where
the growth in two-dimensional gives rise to concen-
tric rings, a one-dimensional investigation provides
a good estimate for the wave-length of the periodic
structure (Fig. 11), and for its velocity of propagation
(Fig. 10). The periodic solution breaks down in both
one-dimensional and two-dimensional case for the
same critical value of undercooling. While in 1D, this
transition yields a solution in which the front slows
down, in 2D, the solidification front has the possibil-
ity to keep growing at constant rate by selecting a new
growth pattern. As a result, the growth morphology
undergoes a transition to tip-splitting growth, that is,
the character of the structure changes from concentric
to radial.

While this analysis is interesting mathematically, its
physical significance is not clear. As a model of so-
lidification, the layer of the phase must be thin, and
cannot admit internal structures. Different is the ap-
plication of a phase-field model to superconducting-
to-normal transitions (there, the two fields vary over
comparable scales). It remains to find whether our re-
sults have physical relevance to the formation of lig-
uid domains behind a solidification front. The major
difficulty lays in the fact that levels of undercooling

(or alternatively, levels of supersaturation) as large as
A = 0.7-0.9 are hard to attain. Relatively large un-
dercooling has been realized in liquid crystals and in
white phosphorus [24] due to their small latent heat,
hence they seem to be the most promising systems for
the performance of large undercooling experiments.
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