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Elastic interactions between two-dimensional geometric defects
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In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources
of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are
viewed as singular defects—point charges of the curvature associated with a reference metric. The stress field
in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress
function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction
energies between various types of defects. We apply our methodology to two physical systems: shear-induced
failure of amorphous materials and the mechanical interaction between contracting cells.
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I. INTRODUCTION

A main theme in physics and material science is to predict
a material’s mechanical properties given its microscopic
structure. The study of crystalline materials has a longstanding
history, and a fairly good understanding of their mechanics
has been obtained. When it comes to amorphous materials the
situation is different. There is no fundamental theory, to date,
that relates microscopic structure to mechanical behavior in
amorphous materials.

A difference between crystalline and amorphous solids
is their response to external loads. When a crystalline solid
is weakly loaded, it responds elastically, maintaining its
microscopic order. Above a critical load, defects, which are
microscopic deviations from the ordered state, may form and
move. The formation, movement, and interactions of defects
in crystals determine their macroscopic plastic behavior (see,
for example, [1]). In amorphous solids, in which no structural
order exists, the response to weak loads is also elastic. For
larger loads, bonds between neighboring particles may break
and reform in small bounded regions, a phenomenon known
as localized plastic deformations (LPDs).

Despite the fundamental differences between crystalline
and amorphous materials, both react to strong loads
similarly—by a local rearrangement of particle bonds. How-
ever, as there is no underlying structural order in amorphous
materials, it is not clear how to characterize localized defor-
mations, nor how to quantify their interactions.

In a recent work, we advocated that defects in crystals and
LPDs in amorphous materials can be described in a unified
manner [2]. In a continuum theory, in which the material
is modeled by a manifold endowed with a reference metric,
both defects in crystals and LPDs in amorphous materials

*mmoshe@syr.edu
†erans@mail.huji.ac.il

can be described as singularities in the reference curvature,
associated with the reference metric. The reference curvature
is a geometric invariant, which can be calculated directly from
the metric. Viewed this way, LPDs can be called defects, even
though they are not related to a deviation from an ordered state.
Henceforth, the term defect will be used to describe metric
singularities in both crystalline and amorphous materials.

It was recently suggested that elastic interactions between
defects lay at the heart of plasticity theory in amorphous
materials [3]. While interactions between defects have been
studied extensively in crystalline materials, a unified treatment
of the various types of defects is still lacking. For example,
interactions between dislocations [4] are treated differently
than interactions between point defects and dislocations [5].
In amorphous materials, there exists a limited amount of
work on interaction between localized deformations [3]. Our
description of defects in crystalline and amorphous materials
as geometric singularities paves the way to a unified approach
to defect interactions in both types of materials.

To derive the interaction energy between defects, one needs
to know the material’s state of stress in the presence of those
defects. This elastic problem is complicated by the geometric
nonlinearity induced by the metric singularities. In this work
we calculate the interaction energy between various types of
defects using an approximation method applicable to general
metrically-incompatible systems [6]. We focus on defects for
which the induced state-of-stress is quasi two-dimensional,
that is, the system is translationally symmetric along an
axis. This includes edge-dislocations, Stone-Wales defects,
vacancies and inclusions (screw dislocations, for example,
remain out of the scope of the present work). These defects can
either be considered as point singularities on a flattened thin
sheet, or as straight line singularities in a 3D elastic medium.

The state-of-stress of a metrically-incompatible material
depends, of course, on the material’s constitutive properties.
For a homogeneous and isotropic Hookean solid, we obtain
analytical expressions for the interaction energy between

1539-3755/2015/92(6)/062403(8) 062403-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.062403


MICHAEL MOSHE, ERAN SHARON, AND RAZ KUPFERMAN PHYSICAL REVIEW E 92, 062403 (2015)

various types of defects. Our results are in excellent agreement
with known results for interactions between dislocations, and
provide new predictions for interactions between other types of
defects. Our approach is not limited to a particular constitutive
law, and it can be extended to higher-orders of accuracy.

Finally, we apply our methodology to two physical prob-
lems. The first problem is related with the failure of amorphous
materials under external loads. In particular, we interpret
the avalanche behavior observed in failure experiment. The
second problem studies the mechanical interaction between
contracting cells adhering to an elastic substrate [7–9]. When
a cell contracts, it generates a localized source of stress in the
substrate, very much like an LPD in an amorphous material. In
this system, the interaction between remote cells is generated
by a similar mechanism as interaction between defects in
solids.

II. METRIC FORMULATION OF ELASTICITY

Geometric formulations of elasticity model an elastic body
as a Riemannian manifold B equipped with a reference
metric ḡ [10]. The reference metric encodes local equilibrium
distances between adjacent material elements. A configuration
of an elastic body is an embedding of B in the ambient
Euclidean space. Every configuration induces on B a metric,
g, which quantifies actual distances between adjacent material
elements (in the literature g is known as the right Cauchy-
Green tensor). The most common definition of the elastic
strain tensor is the discrepancy between the actual metric and
the reference metric,

u = 1
2 (g − ḡ) (1)

(see [11] for a review on alternative measures of strain). In
particular, in a strain-free configuration, the actual metric and
the reference metric coincide everywhere. Note that this notion
of strain is purely geometric and involves no linearization.

In classical elasticity, bodies are assumed strain-free in the
absence of external constraints. This statement is equivalent to
saying that ḡ is Euclidean. In many cases of interest, however,
the reference metric is non-Euclidean, leading to a theory of
incompatible elasticity.

Incompatible elasticity was first introduced decades ago
by Kondo [12], Bilby [13], Kröner [14] and Wang [15] in
the context of defects in crystalline solids. In the afore-
mentioned literature, incompatibility was associated with
a non-Riemannian notion of parallelism. In our approach,
incompatibility is a purely metric notion that reflects the
inability to embed the material manifold isometrically in
Euclidean space.

The elastic model is fully determined by a constitutive
relation, which relates the internal stresses to the strain field.
In the case of a hyper-elastic material, the constitutive relation
can be derived from an energy functional, which is an additive
measure of a local energetic cost of deviations of the actual
metric from the reference metric. In the case of an amorphous
solid, we assume that the microscopic structure of the solid
is fully encoded by the reference metric ḡ, in which case the

elastic energy is of the form,

E =
∫

B

W (g(x); ḡ(x)) dVolḡ , (2)

where dVolḡ is the Riemannian volume element, and W is a
non-negative energy density, which vanishes at x if and only
if g(x) = ḡ(x). Given a reference metric ḡ, and a specific form
of the energy density W , the actual metric g at equilibrium is
the one minimizing (2).

Incompatibility manifests in that g cannot be equal to
ḡ everywhere simultaneously. Incompatibility occurs when
the reference curvature of ḡ is non-zero. In two-dimensional
systems, the reference curvature is determined by a scalar
field, the Gaussian curvature K̄G. Thus, K̄G can be viewed as
a source of residual stresses. This observation is the key to the
description of localized defects by a metric structure in which
K̄G is everywhere zero, except in the loci of the defects.

III. METRIC DESCRIPTION OF 2D DEFECTS

Two-dimensional reference metrics can be written using
isothermal coordinates [16],

ḡ = e2ϕ(x)h, (3)

where h is the Euclidean metric and ϕ is called the conformal
factor. The relation between the conformal factor ϕ and
the reference Gaussian curvature is given by Liouville’s
equation [17],

K̄G = −e−2ϕ(x)�ϕ(x). (4)

Localized defects are hence represented by a metric of
the form (3), with a conformal factor ϕ that is harmonic
everywhere except at the loci of the defects, where ϕ is singular.

Consider first a single defect located at the origin. Harmonic
functions with singularities at the origin can be expanded in a
multipole expansion. The monopole term,

ϕM(x) = α

2π
ln |x|,

corresponds to a singular reference curvature of the form,

K̄M = α e−2ϕM(x) δ(x),

and represents a disclination. The dipole term,

ϕD(x) = p · x
2π |x|2 ,

where p is a vector, corresponds to a singular reference
curvature of the form,

K̄D(x) = e−2ϕD(x) p · �∇δ(x),

and represents a dislocation.
There is a fundamental difference between defects repre-

sented by monopole and dipoles terms, and defects represented
by higher multipoles (e.g., Eshelby inclusions or Stone-Wales
defects). In the latter case, if the locus of the defect is removed
(thus, creating a void), the material can relax to a strain-free
configuration. In the former case, the defect is topological in
the sense that it persists even if its locus is removed. Thus,
higher-order multipoles can be generated by local plastic
deformations, whereas the formation of disclinations and
dislocations is necessarily nonlocal.
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A useful property of the metric description of defects
using a conformal factor is the ability to account easily for
multiple localized defects. Any locally Euclidean metric with
N singular defects can be represented by a metric (3), with a
conformal factor of the form,

ϕ(x) =
N∑

i=1

ϕi(x − xi), (5)

where xi is the coordinate of the ith defect and ϕi is a harmonic
function singular at the origin.

This incompatible elasticity model is valid for any material
whose elastic state is well approximated by metric quantifiers,
whether it is crystalline or amorphous. When it comes to
singular defects, the modeling of the material’s geometry by a
locally Euclidean metric is only valid up to a cutoff distance
related to the core of the defect. As a result, our analysis of
defect interaction is only valid as long as the distance between
defects is significantly larger than the size of the cores.

IV. THE INCOMPATIBLE STRESS FUNCTION

The Euler-Lagrange equations obtained by minimizing the
elastic energy functional (2) are

∇̄μσμν + (
	ν

αβ − 	̄ν
αβ

)
σαβ = 0, (6)

where

σμν = ∂W (g; ḡ)

∂εμν

= 2
∂W (g; ḡ)

∂gμν

(7)

is the stress tensor. 	 and 	̄ are the Christoffel symbols [18]
associated with g and ḡ, respectively. The operator ∇̄ is the
covariant derivative with respect to ḡ, namely,

∇̄μσμν = ∂μσμν + 	̄
μ
μβσβν + 	̄ν

μβσ βμ.

For traction boundary conditions,

nασαβ = tβ, (8)

where t is the traction vector and n is the unit normal to the
boundary.

Equation (6) is a momentum balance law, and as such is
independent of the material’s constitutive law. The latter enters
in the relation (7) between the stress and the configuration.
The equilibrium equations (6), together with the constitutive
law (7) and the boundary conditions (8), form a closed system
of equations.

The dependent variable whose solution is sought is con-
ventionally taken to be the configuration. We adopt a different
approach, and express the elastic problem as a system of
equations in which the unknown is the actual metric g.
The actual metric determines the configuration modulo rigid
transformation; thus, such a change of variables is legitimate
as long as the boundary conditions do not depend on position.

Any two-dimensional divergence-free tensor field can be
expressed as the curl of the gradient of a scalar function.
Equation (6), like any momentum balance law, states that the
stress is divergence-free. Our definition of the stress tensor
yields a divergence operator that involves the Riemannian
structure of both material and spatial manifolds. As a result,
the representation of the stress as the curl of a gradient of a

scalar function involves both metrics ḡ and g as well: Every
stress field satisfying (6) can be represented as (see [6])

σμν =
(

1√|ḡ|ε
μα

)(
1√|g|ε

νβ

)
∇α∇βψ, (9)

where ε is the Levi-Civita antisymmetric symbol, ∇ is the
covariant derivative with respect to the actual metric, and | · |
denotes the determinant.

We call the scalar function ψ the incompatible stress
function (ISF). It is a generalization of the Airy stress
function for the case of a non-Euclidean reference metric. The
representation (9) involves no approximation, and in particular,
does not pertain to a linear theory.

A constitutive relation establishes a relation between the
actual metric g (which determines the strain u) and the stress
σ ,

u = F (σ ). (10)

In view of (9), a constitutive relation determines equivalently
a relation between the ISF and g,

g = ḡ + 2F

(
1√|ḡ| |g|ε

μαενβ∇α∇βψ

)
. (11)

Since g is an actual metric corresponding to a planar
configuration, it must be Euclidean. This yields through (11) a
geometric constraint on the ISF. We have thus reduced the full
elastic problem into that of finding an ISF corresponding to a
Euclidean g. If the body is simply connected, the condition that
g be Euclidean reduces to the vanishing of a scalar field—the
actual Gaussian curvature KG. Thus, the elastic problem is
reformulated as the following:

Find ψ such that KG = 0 with g given by (11).

This reformulation captures both elastic nonlinearity and
geometric incompatibility. It is valid for any constitutive
relation, as the latter only affects the relation between ψ and
g.

V. HOOKEAN SOLIDS

The constitutive law for a Hookean solid is

σαβ = 1
2Aαβγ δ(gγ δ − ḡγ δ), (12)

where A is the elastic tensor. For a homogeneous and isotropic
material,

Aαβγ δ = Y

1 − ν2
((1 + ν)ḡαβ ḡγ δ + νḡαγ ḡβδ),

where Y is the Young modulus and ν is the Poisson ratio.
Inverting (12), we express the actual metric in terms of the

stress,

gαβ = ḡαβ + 2Aαβγ δσ
γ δ, (13)

where

Aαβγ δ = 1

Y
((1 + ν)ḡαγ ḡβδ − ν ḡαβ ḡγ δ).

Substituting the representation (9) of the stress into (13),

gμν = ḡμν + 2Aμναβ√|ḡ|√|g|ε
αγ εβκ∇γ ∇κψ. (14)
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This expression for g is implicit as g appears on the right-hand
side both through its determinant as in the definition of the
covariant derivative ∇.

VI. APPROXIMATE SOLUTION FOR HOOKEAN SOLIDS

The reformulation of the elastic problem derived in the
previous section still results in a highly nonlinear problem. In
order to devise approximation schemes, one needs to identify
a natural dimensionless parameter that can be used in a
perturbative expansion. Since our problem results from ge-
ometric incompatibility, the expansion parameter is expected
to quantify the magnitude of the geometric incompatibility.

When g is smooth, every open set of sufficiently small
diameter can be embedded in Euclidean space “almost iso-
metrically.” Physically, this means that a small enough sample
has a configuration that is almost strain-free. This suggests that
for the case of a smooth reference metric, a natural expansion
parameter is a product of the diameter of the body and a
characteristic curvature.

Let η be a small dimensionless parameter that measures the
amount of geometric incompatibility. We expand the ISF in
powers of η,

ψ = η ψ (1) + η2 ψ (2) + · · · .

Equation (14) induces a similar expansion for g,

g = ḡ + η g(1) + η2 g(2) + · · · ,

which in turn induces an expansion for the actual Gaussian
curvature,

KG = K̄G + η K
(1)
G + η2 K

(2)
G + · · · .

Since to leading order in η, g, and ∇ are equal to ḡ and ∇̄,
it follows from (14) that

gμν = ḡμν + 2η

|ḡ|Aμναβεαγ εβκ ∇̄γ ∇̄κψ
(1) + O(η2). (15)

The Gaussian curvature is obtained from the metric by

KG = 1
2gαγ gβδRαβγ δ,

where Rαβγ δ is the Riemann curvature tensor [18].
To leading order in η, the condition that KG = 0 yields an

equation for the leading-order term of the ISF,

YK̄G = �̄�̄ψ (1) + 2K̄G�̄ψ (1) + (1 + ν)ḡμν(∂μK̄G)(∂νψ
(1)).

(16)

Here �̄ is the reference Laplace-Beltrami operator,

�̄f = 1√|ḡ|∂μ(
√

|ḡ| ḡμν∂νf ).

Equation (16) together with the boundary conditions determine
ψ (1) up to immaterial gauge transformations. It is a first-
order approximation, applicable to weak incompatibility. For
stronger incompatibility higher-order approximations may be
needed. A general scheme for obtaining higher-order terms of
the ISF is presented in [6].

In the “compatible” case K̄G = 0. Then (16) reduces, as
expected, to the biharmonic equation, which is the equation

satisfied by the classical Airy stress function. If K̄G is of order
η, (16) reduces to

1

Y
��ψ (1) = K̄G. (17)

Equation (17) is linear both in ψ (1) and in K̄G. Therefore, the
ISF in the presence of multiple defects is the sum of ISF’s
associated with each defect separately.

Finally, given the solution for the first-order ISF ψ (1), the
stresses can be calculated to first order in η from (9),

σμν = 1

|ḡ|ε
μαενβ∇̄α∇̄βψ (1). (18)

Since from now on we consider an O(η) approximation, we
will omit the superscript (1) in the ISF.

VII. INTERACTING DEFECTS

In this section we calculate the ISF for systems with
reference metrics representing materials with defects, i.e., with
reference metrics of the form (3) and a conformal factor ϕ

of the form (5). Since K̄G diverges at the defects loci, it
is not clear a priori what constitutes a weak incompatibil-
ity. Every localized distribution of Gaussian curvature can
be approximated by a smooth distribution. By considering
defects whose magnitudes induce length scales that are small
compared to the core diameter, we may obtain a reference
Gaussian curvature that is everywhere of order η and vanishes
outside of the defects’ core. Under this assumption, the far
field stress induced by a singular defect is identical to that
induced by the regularized curvature distribution.

To find the elastic interaction between defects we calculate
the total elastic energy stored in the medium at equilibrium
in the presence of defects. The energy functional for Hookean
solids is

E = 1

2

∫
Aμνρσ σμνσ ρσ

√
|ḡ| dS. (19)

Substituting (18),

E = 1

2

∫
1

|ḡ|2 Aμνρσ εμαενβεργ εσδ(∇̄α∇̄βψ)(∇̄γ ∇̄δψ)

×
√

|ḡ| dS. (20)

Integrating twice by parts,

E = 1

2

∫
ψ ∇̄γ ∇̄δ

(
1

|ḡ|2 Aμνρσ εμαενβεργ εσδ(∇̄α∇̄βψ)
√

|ḡ|
)

× dS. (21)

Note that A, ḡ, and ∇̄ depend explicitly on ϕ. Using once again
the fact that K̄G is small, and expanding the integrand in (21)
to lowest order in η, we obtain

E = 1

2

∫
ψ

(
1

Y
��ψ

)
dS = 1

2

∫
ψ K̄G dS. (22)

Equation (22) bears a strong analogy to electrostatics. The
Gaussian curvature K̄G plays the role of an electric charge,
whereas the ISF plays the role of an electric potential. Like in
the electrostatic analog, the self-interaction of a charge with
its induced potential diverges, and should be ignored when
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FIG. 1. (Color online) Illustration of two quadrupoles induced by
a unidirectional contraction of two small regions.

considering long-range interactions. Note also that (22) is valid
both for smooth and singular metrics.

To calculate pairwise interactions between defects, we
consider a material containing two defects of arbitrary type.
Its reference curvature can be represented as sum

K̄G = K̄1 + K̄2.

The stress function decomposes into

ψ = ψ1 + ψ2.

The elastic energy without the self-interaction terms is

U = 1

2

∫
(ψ1K̄2 + ψ2K̄1) dS =

∫
ψ1K̄2 dS, (23)

where the last step follows from integration by parts, as∫
ψ1 (��ψ2) dS = ∫

(��ψ1) ψ2 dS. Thus, the pairwise in-
teraction energy between defects depends explicitly on the
reference curvatures associated with each defect, and on the
ISFs induced by those curvatures.

Before proceeding to the calculation of interaction energies,
let’s establish some notations. Henceforth x denotes the
material coordinates and x̂ is the corresponding unit vector
from the origin to that point. Given two defects, the vector r
denotes their separation and r̂ is the corresponding unit vector.
The charge of a dipole is represented by the vector d. The
charge of a quadrupole is represented by the tensor,

Q = Q

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
,

where θ is the quadrupole orientation relative to the x axis
(Fig. 1).

Another type of singularity is point defects, corresponding
to an isotropic expansion or contraction of a disk. We denote
the charge of a point defect by P ; it is positive for expansion
and negative for contraction.

In Table I we list the reference curvatures for the most
ubiquitous types of defects. The corresponding ISF is obtained

TABLE I. Reference curvatures and ISFs for various types of
defects. The bottom line corresponds to an external stress field σ .

Type K̄ ψ

Dipole d · ∇δ(x) (Y/4π ) (d · x) ln |x|
Quadrupole 1

4 (∇T · Q · ∇)δ(x − r) (Y/16π ) (x̂T · Q · x̂)
Point −2P �δ(x) −(YP /2π ) ln |x|
External 0 1

2 (xT · Cof(σ ) · x)

by solving (17); it is determined modulo immaterial solutions
of the homogeneous biharmonic equation. The function Cof(·)
appearing in the case of an external field is the cofactor of a
matrix.

To obtain the interaction energy between two defects one
needs to substitute in (23) the ISF associated with one defect
and the reference curvature associated with the other. In
Table II we list the interaction energy between pairs of defects
and between defects and an external load. For brevity we
denote 〈A〉 ≡ r̂T · A · r̂.

The interaction energy between a pair of dipoles (i.e.,
dislocations) agrees with the classical result of Nabarro [4].
It should be noted, however, that in contrast with Nabarro’s
result, our results are limited to effectively 2D systems, that
is, all vectors in Table II are two-dimensional. Moreover,
as known for linearized models of isotropic Hookean solids,
pairs of point defects do not interact with each other [19]. It
should be emphasized that such results are model dependent—
point defects, for example, might interact under a different
constitutive relation.

VIII. APPLICATIONS

A. Localized plastic deformations

Consider an amorphous material subject to an external shear
stress. If the response is purely elastic, elastic deformations
result in stored elastic energy. If, however, plastic deformations
are allowed (in our language, the reference metric ḡ can
change), then the stored elastic energy can be reduced. In
fact, the elastic energy can be totally eliminated by forming
a spatially uniform distribution of defects of the quadrupolar
type.

TABLE II. Interaction energies between pairs of defects and
between a defect and an external stress field.

Defect types U

Dipole-dipole −(Y/4π ) (d1 · d2 ln |r| + (d1 · r̂)(d2 · r̂))

Quad-quad (Y/16πr2) (2〈Q1〉〈Q2〉 − 〈Q1Q2〉)
Dipole-quad (Y/8πr) (r̂T · Q · d − 〈Q〉(r̂T · d))

Point-dipole (YP /πr) (r̂T · d)

Point-quad (YP /2πr2)〈Q〉
Point-point 0

External dipole 0

External quad −Q

4

(
σ xx

0 − σ
yy

0

)
cos 2θ − Q

2 σ
xy

0 sin 2θ

External point −2P
(
σ xx

0 + σ
yy

0

)
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Indeed, the stress field induced by a single quadrupole
located at (x0,y0) with orientation θ = π/4 is

σxx = ∂yyψQ(x − x0,y − y0),

σ yy = ∂xxψQ(x − x0,y − y0), (24)

σxy = −∂xyψQ(x − x0,y − y0),

where ψQ is given in Table II. The stress field induced by a
uniform distribution of identical quadrupoles is obtained by
integrating (24) with respect to x0 and y0. For a quadrupole
charge density q we obtain

σxx = 0,

σ yy = 0, (25)

σxy = −Yq

4π
,

which is a pure shear stress. Thus, given an external shear stress
σ 0, a uniform distribution of quadrupoles with orientation θ =
π/4 and charge density,

q = 4πσ 0

Y
,

results in a stress-free state, indicating that the formation of
quadrupoles is an energetically favorable response to external
shear.

A material that does not allow for plastic deformations is
an elastic solid, whereas a material that allows for continuous
plastic deformations is liquidlike. Plasticity models assume
that plastic deformations only occur beyond a stress thresh-
old [20]. Thus, a defect will only form at a location in which
the stress exceeds the threshold. The formation of a new defect
changes the ambient stress field. While the total elastic energy
is always reduced by the formation of a new defect, local
stresses may grow, leading to the formation of new defects.

Consider a pair of quadrupoles in an external shear stress
field. The total interaction energy is

U = −σ0Q1

2
sin 2θ1 − σ0Q2

2
sin 2θ2

+ YQ1Q2

16πr2
cos(2θ1 + 2θ2 − 4φ), (26)

where Qi are the quadrupoles charges, θi are their orientations
relative to the shear direction, σ0 is the external shear stress,
and r = (r cos φ,r sin φ) is their spatial separation vector.

The first two terms represent the interaction of the
quadrupoles with the external shear stress. The fact that they
can be negative indicates that it is energetically favorable to
generate quadrupoles as a response to external shear. The
minimum energy state for the first two terms is obtained for
θ1 = θ2 = π/4. The third term is the quadrupole-quadrupole
(Q-Q) interaction. It can be minimized simultaneously with
the first two terms by taking φ = 0. This implies that in the
minimum energy state the line separating the quadrupoles is
parallel to the direction of the shear whereas the principal axis
of the quadrupolar moments is at an angle of π/4 with the
shear direction. The same considerations remain valid with N

quadrupoles: A state of minimal energy is obtained when all
the quadrupoles lie on a line parallel to the direction of the
shear and are oriented at an angle of π/4.

This result is in agreement with Dasgupta et al. [21], which
showed, both analytically and numerically, that in the limit of
large external loads, localized plastic deformations form along
a line parallel to the external shear. Moreover, it was suggested
that the formation of a linear array of quadrupoles initiates the
failure process of the material.

Another known property of solids is the avalanche-like
behavior of plasticity: The nucleation of a small number of
localized plastic deformations initiates a rapid formation of
more localized plastic deformations, leading eventually to
failure. To explain this phenomenon we assume that a localized
plastic deformation will form at a point only if the local stress
exceeds a critical threshold σcrit (see [20]).

The stress field induced by a single quadrupole is

σxx = −3Q sin(4θ )

2πr4
,

σ yy = 3Q sin(4θ )

2πr4
, (27)

σxy = 3Q cos(4θ )

2πr4
.

This stress enhances the external shear stress along the θ =
0,π/2 directions, and reduces the shear stress along the θ =
±π/4 directions. Once several quadrupoles have formed along
the θ = 0 axis, which as we saw is the energetically favorable
configuration, their presence reduces total shear stress almost
everywhere, but it builds up an even stronger shear stress on
the line that connects them, thus increasing the probability of
defect formation along that same line. This observation might
explain the avalanche of defect formation preceding failure.

B. Interacting active cells

Living cells adhering to a substrate exert force on the
substrate when undergoing conformal changes [7,8]. If the
substrate is elastic, it mediates mechanical interactions be-
tween deforming cells. There exists an extensive literature on
this subject (see, e.g., [9]).

Consider a single cell adhered to a 2D elastic substrate.
When the cell deforms, it causes the substrate under its
“footprint” to deform as well, thus constituting a local source
of stress. Assuming the unperturbed substrate to be Euclidean,
such a source of stress can be modeled as a singularity in the
reference curvature.

If the size of a cell is significantly smaller than intercellular
separations, one can approximate the reference metric by
its lowest-order multipoles. Since the cells’ conformational
changes induce local metric perturbations, there are neither
monopoles not dipole charges, hence the lowest-order mul-
tipoles correspond to quadrupoles and point defects. Under
these assumptions, the reference curvature induced by a single
cell located at the origin is of the form,

KCell = 1
4 (∇T · D · ∇)δ(x),

where

D = 2P

(
1 0
0 1

)
+ Q

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
.

Here P is the charge of a point defect, induced by a change
in the area of the cell’s footprint. The parameter Q is the
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FIG. 2. (Color online) A schematic illustration of modes of deformation of a contracting cell. (a) A deformation that almost preserves area,
but significantly changes the eccentricity. In this case P � Q. (b) A deformation that almost preserves the eccentricity but significantly changes
the area. In this case Q � P . Contraction and expansion correspond to negative and positive values of P , respectively. (c) A deformation that
changes both eccentricity and area, that is, P ≈ Q.

quadrupole charge associated with the eccentricity of the cell’s
deformation (see Fig. 2).

Consider two deforming cells adhering to a Hookean
substrate. By Table II, the interaction energy between the cells
is

UCells = YQ1Q2

16πR2
(cos(2ξ1 + 2ξ2) + 2ρ1 cos(2ξ2)

+ 2ρ2 cos(2ξ1)), (28)

where P1,P2,Q1,Q2 are the point charges and quadrupole
charges associated with the deformations, ρi = −Pi/Qi are
dimensionless measures of the isotropy of the deformations,
R is the distance between the cells, and ξ1 and ξ2 are the
orientations of the two quadrupoles with respect to the line
separating them.

Different behaviors are expected for different values of
the deformation parameters ρ1 and ρ2. If both cells deform
almost isotropically, 1 � |ρi |, then the interaction energy is
dominated by the last two terms in (28) (Q-P interactions).
If the cells contract (0 < ρi), then the principal axes of
deformation are ξ1,2 = π/2, i.e., perpendicular to the line
separating the cells. If the cells expand (ρi < 0) then the
principal axes of deformation are ξ1,2 = 0, i.e., parallel to the
line separating the cells.

If both cells deform almost unidirectionally, |ρ| � 1, then
the interaction energy is dominated by the first term in (28)
(Q-Q interaction). Then the preferred orientations satisfy ξ1 +
ξ2 = π/2, which is a degenerate solution. Considering also the

FIG. 3. (Color online) Contour plots of the energy-minimizing
cell orientations ξ1 and ξ2 as functions of ρ1 and ρ2.

Q-P interactions removes this degeneracy: For ρj < ρi the
energy minimizing orientations are ξi = 0 and ξj = π/2.

The difference between the limiting regimes suggests the
existence of a phase diagram for cells’ orientations. In Fig. 3
we show the energy-minimizing value of ξ1 as a function of ρ1

and ρ2. The corresponding phase diagram is shown in Fig. 4.
In the blue domain, which corresponds to the case where

both cells deform almost isotropically, the principal axes
of deformation of the two cells are parallel to each other,
and perpendicular to the line connecting them. The yellow
regions, which corresponds to the case where the two cells
deform differently, displays one quadrupole parallel to the line

FIG. 4. (Color online) A phase diagram for the interaction be-
tween two deforming cells adhering to a Hookean elastic substrate,
as a function of the deformations isotropies ρ1 and ρ2. For ρ’s in the
blue region, the cells are parallel to each other, and perpendicular to
the line separating them. For ρ’s in the yellow regions the cells are
perpendicular to each other, where one is parallel to the line separating
them. The green region does not correspond to a well-defined phase.
The orientations vary smoothly inside this region, and continuously
at the phase separating curves.
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separating them and the other perpendicular to it. The green
region does not correspond to a well-defined interaction phase.

IX. DISCUSSION

Localized sources of stress appear in a variety of physical
systems. Examples of such stress sources are defects in
crystalline material, local plastic deformations in amorphous
materials, and living contracting cells attached to elastic sub-
strate. Despite the similarity between these systems, their study
in the existing literature involves different approaches and
methodologies. Defects, for example, are usually described
as deviations from an ordered state, whereas contracting cells
are commonly modeled as localized forces.

In the current work we present a unified framework for local
sources of stress in effectively 2D elastic media. Sources of
stress are viewed as singularities in a reference curvature field,
which can be interpreted as ”elastic charges.” This approach,
which was demonstrated for Hookean solids, can be applied
to other constitutive laws.

While the resulting set of equations is implicit and non-
linear, we derived a perturbative approximation, which in
principle, can be carried to any desired order.

The first-order problem has a structure reminiscent of
electrostatics. Each defect has a “charge” which induces a

specific “potential.” The elastic energy density is the product
of the local charge and potential. This formulation opens
the way to handle many different elastic problems in a
surprisingly simple way. The applicability of the formulation
is not limited to the problems solved in this paper. We believe
our approach to be applicable to many other settings, such as
multiple interacting strain sources and problems that involve
non-simply connected bodies.

A potential extension of this work is interactions between
3D defects. While a 2D defect is characterized by a singular
reference Gaussian curvature, a 3D defect should be character-
ized by a singular Riemann curvature tensor. The analysis of
3D defects, however, requires the extension of the current tools
for solving elastic problems in 3D geometrically incompatible
elastic materials.
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