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Bending energy of buckled edge dislocations
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The study of elastic membranes carrying topological defects has a longstanding history, going back at least to
the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their
in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching
modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending
energy associated with strain-free configurations diverges logarithmically with the size of the system.
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I. INTRODUCTION

The energetics of two-dimensional (2D) elastic membranes
with defects has been studied extensively in the past several
decades (e.g., [1,2]). In a crystalline setting, one may model
a 2D solid with a single disclination by a triangular lattice
perturbed by a unique vertex of degree either 5 (positive
disclinations) or 7 (negative disclinations) [3]. Likewise, a
2D solid with a single dislocation can be modeled by a
triangular lattice perturbed by a 5-7 pair. In a continuum
setting, the geometry of the elastic membrane is modeled by
a Riemannian metric describing local equilibrium distances
between neighboring material elements. The ordered state is
modeled by a Euclidean metric, implying that the membrane
can be embedded locally in Euclidean plane without stretching.
Defects are modeled by singularities in the metric [4]: A
disclination corresponds to a Dirac measure–valued Gaussian
curvature, whereas a dislocation corresponds to a dipole of
Gaussian curvature. The presence of defects constitutes a
metric incompatibility between the intrinsic geometry of the
membrane and the planar geometry.

When confined to planar configurations, an elastic mem-
brane with defects of either type will necessarily be metrically
distorted. In a crystalline setting, distortions manifest as a
stretching or a compression of lattice bonds; in a continuum
setting, distortions manifest as deviations of the actual metric
of the embedded membrane from its reference metric. The
elastic energy of a configuration is a measure of this metric
distortion. It is evidently model dependent; however, prototyp-
ical models assume an elastic energy that scales quadratically
with the local distortion.

In this paper we focus on membranes with single dislo-
cations. It is well known that the elastic (stretching) energy
ES of planar configurations is bounded from below by a term
depending quadratically on the magnitude of the dislocation
(the Burgers vector) and diverging logarithmically with both
the linear size of the system R and the radius r0 of a core
region around the defect, which can be either removed from
the model or regularized; this scaling is sharp, in the sense
that an upper bound with the same scaling can be obtained for
low-energy configurations.

If allowed, thin membranes can buckle in the 3D ambient
space [1–3]. Buckling allows for the full relaxation of the
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stretching energy ES ; in geometric terms, this means that
up to some finite core, a surface with a dislocation can
be embedded in 3D Euclidean space isometrically. From an
energetic point, stretching energy ES is being traded for
a bending energy EB , which is a higher-order measure of
distortion, where the relevant small parameter is typically
the ratio of the membrane thickness t and the system size
L; in certain cases, e.g., in graphene, an effective measure
of plate thickness is defined by the ratio of bending and
stretching moduli. The bending energy is related to the
so-called Willmore functional, i.e., the surface integral of
the membrane’s mean curvature squared. There exists vast
literature on the dimensional reduction of 3D elasticity into
so-called plate, shell, and membrane models, starting from
phenomenological arguments [5], through asymptotic analyses
[6,7], and, more recently, rigorous limit theorems [8,9]; in
the metrically incompatible context, an asymptotically based
argument was presented in [10], followed by rigorous analyses
in [11,12].

A question of both fundamental and practical importance
(e.g., the melting transition in 2D membranes [2,13]) is
whether low-energy configurations of buckled dislocations
remain finite as R tends to infinity. A natural reference
system is that of a disclination, which may also be embedded
isometrically in 3D Euclidean space, however, with a bending
energy diverging logarithmically with the R; see [14,15] for
recent rigorous analyses departing from 3D models. Heuristic
arguments have suggested that in dislocations, which are
bound pairs of disclinations of opposite signs, the logarithmic
contributions may cancel out, giving rise to an energy bound
independent of R. Numerical simulations were performed in
[3], supporting these heuristics.

It should be noted that there is a certain degree of
fuzziness in the statement that low-energy configurations are
independent of R. Starting either from a full 3D model or from
a Koiter plate model [7],

Etotal = ES + t2EB,

two distinct limits may be considered: the plate limit t → 0
and the “thermodynamics” limit R → ∞. It is not at all clear
that these two limits are interchangeable. If t is taken to
zero first for finite R and a removed core, theorems establish
that the low-energy states are isometric immersions, i.e.,
states of zero stretching energy. After rescaling the energy
by t2, the leading-order energy is the bending energy, now
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restricted to the space of isometric immersions. A key question
is whether the minimal bending energy remains finite as
R → ∞. Alternatively, one may let R → ∞ first for finite t .
Assuming that finite-energy states exist (possibly combining
both stretching and bending contributions), one could study
the t → 0 limit. A third alternative would be to let t → 0 and
R → ∞ simultaneously, assuming a certain relation between
both variables.

It is not clear to what extent these distinct alternatives have
been recognized in the literature. Most references mention
the fact that out-of-plane buckling allows for the complete
elimination of stretching energy. It seems a common belief
that the bending energy of strain-free buckled dislocations is
either R independent or at least diverges with R slower than
logarithmically.

We prove that this is not the case; we show that the bending
energy can be bounded from below by a term diverging
logarithmically with R, which is, in this sense, similar to a
disclination (even though the two cases differ substantially,
as will be discussed). Specifically, our main result is the
following.

Theorem 1. Consider a 2D annulus of inner radius r0 and
outer radius R, endowed with a metric representing an edge
dislocation with the Burgers vector b. Then the bending energy
of isometric immersions of that surface into R3 is bounded
from below by

EB � b2

128π3r2
0

log
R

r0
. (1)

This result is somewhat surprising if one compares discli-
nations and dislocations from a dimensional perspective. Take
a plane with a disclination of magnitude α and consider an
annular slice of radius r and width �r; a simple dimensional
argument shows that when embedded isometrically in R3,
its minimum bending energy scales like (α/r)�r (see also
Appendix E), hence the logarithmic divergence with the size
of the system. A similar dimensional argument for a narrow
annular slice of a dislocated plane yields a minimum bending
energy of order (b2/r3)�r [see (9) below]; one would naively
expect the bending energy to be size independent. A more
subtle analysis is needed to show that the propagation of
curvature in a locally Euclidean surface yields a bending
energy that is logarithmically diverging with the size of the
system.

II. GEOMETRY OF AN EDGE DISLOCATION

The geometry of a single edge dislocation can be defined
independently of any parametrization [16,17]. The membrane
is modeled as a 2D Riemannian manifold (M,g) having
an annular topology. The metric g is locally Euclidean:
Every point p ∈ M has an open neighborhood isometrically
embeddable in the Euclidean plane. A locally Euclidean
geometry implies a flat (Levi-Cività) connection ∇M or,
equivalently, a locally path-independent parallel transport. The
difference between a disclination and a dislocation is that in
the latter case, the net curvature “at the core of the annulus” is
zero (trivial holonomy), namely, parallel transport is globally
path independent. We denote the parallel transport by �

q
p :

TpM → TqM for p,q, ∈ M. The presence of a dislocation is

FIG. 1. Image of a buckled membrane with an edge dislocation.

additionally reflected by a nonzero circulation: There exists a
∇M-parallel vector field b ∈ �(T M) such that for every closed
loop γ : I → M encircling the core (homotopic to the inner
boundary) and for every reference point p ∈ M,∫

I

�
p

γ (t)(γ̇ (t))dt = bp,

where the evaluation of a vector field at a point is denoted by
a subscript, as in bp (this integral is the continuum counterpart
of the lattice step counting in crystalline solids). Finally,
the size of the system is imposed by setting the geodesic
curvatures of the inner and outer boundaries to be close to
r0 and R, respectively. In edge dislocations, as opposed to
screw dislocations, the magnitude of the Burgers vector cannot
exceed the perimeter 2πr0 of the inner boundary.

While the geometry of an edge dislocation is well defined
(up to immaterial details) by the above characterization, a co-
ordinate representation is often more suitable for calculations.
A convenient coordinate representation is the following. We
use polarlike coordinates

(r,ϕ) ∈ [r0,R] × [0,2π ),

where periodicity in ϕ is assumed. In these coordinates, the
metric g is given by

g(r,ϕ) = dr ⊗ dr + [r0 + (r − r0)κ]2dϕ ⊗ dϕ,

where κ(ϕ) = 1 + B cos ϕ and |B| < 1/2 is a dimensionless
parameter related to the ratio of the Burgers vector and the
core size. We note that the frame field {e1,e2}, with

e1 = ∂r , e2 = [r0 + (r − r0)κ]−1∂ϕ,

is orthonormal. The geodesic curvature of constant-r curves
is kg(ϕ) = κ(ϕ)/r and their perimeter is 2πr . One may
furthermore verify that the Gaussian curvature vanishes
locally, i.e., the manifold is locally Euclidean, and that the
holonomy is trivial. Finally, the Burgers vector equals b =
−2πr0J1(B)e2, where J1 is the Bessel function of the first
kind (see Appendix A for details).

A configuration of (M,g) is an immersion x : M → R3,
where R3 is endowed with the standard Euclidean metric; an
image of a configuration of an edge-dislocated paper sheet is
shown in Fig. 1. Denoting by H : M → R the mean curvature
of x(M) in R3, the bending energy associated with x is given
by

EB(x) =
∫

M

H 2dVg, (2)
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where dVg is the area element induced by g. Here we focus
on membranes with effectively zero thickness, where only
bending deformations are allowed. Therefore, our goal is to
find a lower bound for EB over all isometric immersions x :
M → R3.

III. PROOF OF THEOREM 1

In this section we derive the lower bound (1). First, there
is an analytical subtlety that needs to be addressed: The
functional (2) is naturally defined on the space of Sobolev
functions W 2,2(M;R3); correspondingly, derivatives should be
interpreted in a weak sense. Hornung [18] (building upon the
work of Pakzad [19]) proved that the set of smooth isometric
immersions is dense in the W 2,2 topology within the set of
W 2,2 isometric immersions. Thus, the infimum of EB over
smooth isometric immersions is the same as its infimum over
W 2,2 isometric immersions. In other words, the bending energy
for isometric immersions cannot be lowered by deteriorating
the regularity. In practical terms, this implies that we may
restrict our analysis to smooth maps.

We fix r ∈ [r0,R] and consider the constant-r curve in arc-
length parametrization γ : [0,2πr) → M; clearly, γ̇ = e2. By
the definition of the Burgers vector,∫ 2πr

0
�

γ (0)
γ (t) (e2)dt = bγ (0). (3)

On the other hand, we denote by �
y
x : TxR

3 → TyR
3 the

parallel transport in R3; since R3 is defect-free,∫ 2πr

0
�

x(γ (0))
x(γ (t)) [dxγ (t)(e2)]dt = 0. (4)

Operating with dxγ (0) on (3) and subtracting (4), we obtain∫ 2πr

0
Q(t)(e2)dt = dxγ (0)(bγ (0)), (5)

where

Q(t) = dxγ (0) ◦ �
γ (0)
γ (t) − �

x(γ (0))
x(γ (t)) ◦ dxγ (t).

Taking (Euclidean) norms in (5) and using the fact that dx is
an isometry,

|b| �
∫ 2πr

0
|Q(t)|dt, (6)

where the norm of K(t) ∈ Hom(Tγ (t)M,Tx(γ (0))R
3) is induced

by g and the Euclidean metric; note that we write |b| rather
than |bγ (0)|, since b is a parallel field, hence its norm is the
same everywhere.

We proceed to estimate the integrand on the right-hand side
of (6). Differentiating |Q(t)|2 with respect to t ,

d|Q|2
dt

= 2
2∑

i=1

(Q(ei),dxγ (0) ◦ �
γ (0)
γ (t) ◦ ∇M

e2
(ei))

− 2
2∑

i=1

(Q(ei),�
x(γ (0))
x(γ (t)) ◦ x∗∇R3

e2
◦ dxγ (t)(ei)),

where x∗∇R3
is the pullback of the Euclidean connection.

Substituting the definition of the second fundamental form of

x(M) in R3,

II(u,v) = (
x∗∇R3)

u
dx(v) − dx

(∇M
u v

)
, u,v ∈ T M,

and the expression for the Cartan-Christoffel symbols
[Eq. (A2)], we obtain after straightforward manipulations

d|Q|2
dt

= 2
2∑

i=1

(Q(ei),�
x(γ (0))
x(γ (t)) ◦ II(e2,ei)).

Using the Cauchy-Schwarz inequality and the fact that �
y
x is

an isometry,

d

dt
|Q| � | II |. (7)

Since the surface is locally Euclidean, the norm of the second
fundamental form coincides with the absolute mean curvature
|H |. Furthermore, since Q(0) = 0, it follows from (7) that

|Q(t)| �
∫ t

0
|H (γ (s))|ds �

∫ 2πr

0
|H (γ (s))|ds.

Substituting into (6),

|b|
2πr

�
∫ 2πr

0
|H (γ (s))|ds. (8)

Squaring and applying once again the Cauchy-Schwarz in-
equality, we finally obtain

|b|2
8π3r3

�
∫ 2πr

0
H 2(γ (s))ds. (9)

Equation (9) is a lower bound on the integral of the mean
curvature square along a constant-r loop. Since the left-hand
side decays like 1/r3, integration over r yields a lower bound
for EB independent of R; this situation is very different from in
disclinations, where a similar analysis yields a left-hand side
proportional to 1/r [see Eq. (E1)], hence a bending energy with
lower bound diverging logarithmically with R. Note that the
difference between the two cases could have been anticipated
by a simple dimensional argument.

Nevertheless, it would be premature to infer that the bending
energy can be bounded independently of R. We have only
learned that a diverging lower bound cannot be obtained by
segmenting the annulus into annular stripes and summing up
energy bounds for each stripe.

We proceed to the second part of the analysis, which
consists of relating the bending content of the inner boundary
with the bending content of loops inside the body. We denote
by x0(s) ∈ R3, s ∈ [0,2πr0), the configuration of the inner
boundary in arc-length parametrization and by t(s) = x′

0(s)
the unit tangent. As is well known (e.g., [20]), a locally flat
surface in R3 is a developable surface: It can be partitioned
into flat points (where H = 0) and nonflat points, the latter
constituting an open set. Through every nonflat point passes a
unique asymptotic line, a geodesic (in M) which maps under x
into a geodesic (in R3). Asymptotic lines do not intersect and
do not terminate until hitting the boundary.

The immersion x induces a semigeodesic parametrization of
an open submanifold M′ of M. Specifically, we let A ⊂ [0,2π )
be the set of values s for which x0(s) is a nonflat point and
set M′ to be the union of the asymptotic lines emanating from
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FIG. 2. Partition of M into flat and nonflat points. Here M′ is
the set of nonflat points connected by asymptotic lines to the inner
boundary and M′′ is the set of nonflat points connected by asymptotic
lines only to the outer boundary.

A (see Fig. 2). We parametrize M′ with s ∈ A and with the
arc length ρ along the asymptotic line; ρ ranges from 0 to
some ρmax(s) ranging between R and R + r0 and depending
on the angle between ∂s and ∂ρ . For every s ∈ A we let
n(s) ∈ R3 be a unit vector along the embedded asymptotic
line emanating through x0(s). The restriction of x to M′ is
given, by construction, by

x(ρ,s) = x0(s) + ρn(s). (10)

We proceed to claim that with no loss of generality, we may
assume that M′ contains all the nonflat points in M. Indeed,
consider, for example, the region marked M′′ in Fig. 2 and
assume that it is a connected component of the set of nonflat
points; as proved in [20], such a set, along with its boundary, is
a union of M geodesics, mapped by x into straight lines. This
region can be flattened without affecting the mean curvature
in any other region, i.e., the bending energy can be reduced,
without changing the restriction of x to M′.

The metric induced by an immersion of the form (10) has
entries

E = 1, F = t · n, G = 1 + 2ρt · n′ + ρ2|n′|2,
where we used the fact that n · n′ = 0 (see, e.g., [21] for
a standard notation of the first and second fundamental
forms). The unit vector n cannot be chosen independently
of x0; it follows from the Brioschi formula that the Gaussian
curvature vanishes if and only if t, n, and n′ are coplanar (see
Appendix B).

The second fundamental form of x(M′) in R3 is not an
isometric invariant. By construction, the entries e and f of
the second fundamental form vanish. The third entry g can be
expressed as a function of ρ and the functions t · n and t′ · n as
a function of s; it follows directly from the Codazzi-Mainardi
compatibility conditions (see [21], p. 111) that g/

√
EG − F 2

is independent of ρ, i.e., it is constant along asymptotic
lines; expressing the mean curvature H in terms of the two
fundamental forms, we obtain (see Appendix C) that

H
√

EG − F 2 is independent of ρ. (11)

It remains to combine (11) together with the lower bound (8)
to obtain a lower bound for the total bending energy. As shown
in the Appendix D, a combination of the two yields the lower
bound (1).

IV. DISCUSSION

We proved that the minimal bending energy of a strain-free
buckled dislocation diverges logarithmically with the size of
the system. This result may be surprising for two reasons: (i)
The conjecture whereby the logarithmic divergence associated
with two disclinations of opposite signs may cancel out turns
out to be incorrect (ii) the scaling of the energy bound is
the same as for disclinations. Note, however, the substantial
difference between the two cases: For disclinations, the
energetic contribution of a stripe at a distance r from the core
scales like O(1/r), whence the logarithmic divergence. For
dislocations, the energetic contribution of a stripe scales like
O(1/r3); the logarithmic divergence results from the propa-
gation of curvature within the manifold. While the main focus
here has been on the R dependence of the bending energy,
note the substantial difference in the dependence on r0: For
disclinations, the bending energy of an isometric immersion
is bounded from below by C log R

r0
, where the dimensionless

prefactor C depends on the magnitude of the disclination.
Thus, increasing r0 while retaining the defect intensity fixed
has a mild effect in the case of a disclination, whereas for
dislocations, the bending energy decreases quadratically with
r0. The distinction between disclinations and dislocations has
a practical implication: If a cone is segmented into a set of
narrow circular conical stripes, the total energy of all the
segments when separated from each other is equal to the energy
of the cone as a whole. This is not the case for a dislocation,
where segmentation results in energetic relaxation.

Another interesting observation is the different scalings of
bending and stretching energies in dislocations, assuming that
the core radius r0 and the Burgers vector b are of the same
order. Then

ES = 0 ⇒ t2EB ∼ t2 log
R

b
,

EB = 0 ⇒ ES ∼ b2 log
R

b
.

As to be expected, buckling is preferable only as long as the
body is thin, i.e., t is smaller than all other intrinsic lengths.

As revealed in the Introduction, the order in which the
limits h → 0 and R → ∞ are taken is substantial. The case
where t → 0 first and then R → ∞ is well understood. A
limiting behavior, which is not yet understood, is the case of
finite thickness and infinite radius, letting then t → 0. For
such a case to make sense, one would first need to show
that there exist configurations for which combined stretching
and bending remain finite as R → ∞. While the existence of
such configurations is not doubted in the physics literature, a
rigorous existence proof is still lacking.

ACKNOWLEDGMENTS

I am indebted to Michael Moshe for introducing me to
this problem and for his invaluable advice. I have benefited

063002-4



BENDING ENERGY OF BUCKLED EDGE DISLOCATIONS PHYSICAL REVIEW E 96, 063002 (2017)

from discussions with Cy Maor and from his critical reading
of the manuscript. This research was partially funded by the
Israel Science Foundation (Grant No. 661/13) and by a grant
from the Ministry of Science, Technology and Space, Israel
and the Russian Foundation for Basic Research, the Russian
Federation.

APPENDIX A: CARTAN’S MOVING FRAMES FOR (M,g)

The metric structure of (M,g) is conveniently analyzed
using Cartan’s formalism (see, e.g., [22], p. 359). We start by
noting that the following frame field is orthonormal:

e1 = ∂r , e2 = [r0 + (r − r0)κ]−1∂ϕ.

Its dual coframe is

ϑ1 = dr, ϑ2 = [r0 + (r − r0)κ]dϕ.

The Levi-Cività connection is defined by an antisymmetric
family of 1-forms ωβ

α , where

∇Xeα = ωβ
α (X) eβ. (A1)

In two dimensions, the connection is determined by a 1-form
ω1

2, satisfying Cartan’s first structural equations

dϑ1 + ω1
2 ∧ ϑ2 = 0, dϑ2 − ω1

2 ∧ ϑ1 = 0.

A straightforward calculation yields ω1
2 = −dK , where

K(ϕ) = ϕ + b sin ϕ. Since dω1
2 = 0, it follows from Cartan’s

second structural equations that (M,g) is locally flat.
A direct substitution of the expression for ω1

2 into (A1)
yields the Cartan-Christoffel symbols

∇e1e1 = 0, ∇e1e2 = 0 ∇e2e1 = κ

r0 + (r − r0)κ
e2,

∇e2e2 = − κ

r0 + (r − r0)κ
e1, (A2)

from which follows at once that ∇M-parallel vector fields are
spanned by the orthonormal frame field

cos Ke1 + sin Ke2, − sin Ke1 + cos Ke2.

The fact that this frame is smooth across ϕ = 0,2π implies the
triviality of the holonomy.

Finally, to obtain the Burgers vector, consider the loop
γ (t) = (r0,t) for t ∈ [0,2π ]. Then

γ̇ (t) = ∂ϕ = r0e2.

Taking for a reference point p = (r0,0), we obtain that

�
p

γ (t)(γ̇ (t)) = −r0 sin K(t)e1|p + r0 cos K(t)e2|p.

The Burgers vector at p is∫ 2π

0
�

p

γ (t)(γ̇ (t))dt = −r0

∫ 2π

0
sin(t + B sin t)dt e1|p

+ r0

∫ 2π

0
cos(t + B sin t)dt e2|p

= −2πr0J1(B)e2|p.

Since the Burgers vector is a parallel vector field [16], this
equality is independent of the reference point p.

APPENDIX B: COMPATIBILITY CONDITIONS FOR
EQ. (10)

Consider a surface of the form

x(ρ,s) = x0(s) + ρn(s) (B1)

parametrized by the coordinate s taking values in some open
set A ⊂ [0,2π ) and the coordinate ρ ∈ [0,ρmax(s)]. Since

∂f

∂ρ
= n,

∂f

∂s
= t + rn′, (B2)

where t(s) = x′
0(s), it follows that the entries of the first

fundamental form are

E = 1, F = t · n, G = 1 + 2ρt · n′ + ρ2|n′|2, (B3)

where we used the fact that n · n′ = 0.
By the Brioschi formula (see [21], p. 112), the condition

for the Gaussian curvature to vanish is

− 1
2Gρρ(EG − F 2) + 1

4G2
ρE = 0,

where we used the fact that E is constant and that F does not
depend on ρ. Substituting (B3),

− |n′|2[1 + 2ρt · n′ + ρ2|n′|2 − (t · n)2]

+ (t · n′)2 + ρ2|n′|4 + 2ρt · n′|n′|2 = 0,

which simplifies into

(t · n)2 +
(

t · n′

|n′|
)2

= 1. (B4)

Since n and n′/|n| are orthonormal and since t is a unit vector,
(B4) implies that t is coplanar with n and n′.

APPENDIX C: DERIVATION OF EQ. (11)

Consider the surface (B1) satisfying the compatibility
condition derived in the preceding appendix (i.e., t, n, and n′
are coplanar). We denote the entries of the second fundamental
form by

e = ∂2x
∂ρ2

· N, f = ∂2x
∂ρ ∂s

· N, g = ∂2x
∂s2

· N,

where

N = ∂ρx × ∂sx
|∂ρx × ∂sx|

is the unit normal to the surface. Substituting (B2),

N = n × t

|n × t| .

Since ∂2x/∂ρ2 = 0, it follows that e = 0. Likewise,

f = n′ · n × t

|n × t| = 0

because t, n, and n′ are coplanar. With that, the Codazzi-
Mainardi compatibility conditions reduce to

∂g

∂ρ
= g�2

12,
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where

�2
12 = −FEs + EGρ

2 detJ = 1

2

∂

∂ρ
log(detJ ),

and we define

detJ = EG − F 2 = 1 − (t · n)2 + 2ρt · n′ + ρ2|n′|2

= [1 − (t · n)2 − ρ (t′ · n)]2

1 − (t · n)2
, (C1)

where in the last passage we used the fact that the collinearity
of t, n, and n′ implies that (t · n′)2 = |n′|2[1 − (t · n)2] and the
fact that t · n′ = −t′ · n. It follows at once that

∂

∂ρ

g√
detJ

= 0. (C2)

The mean curvature H is given by

H = 1

2 detJ Tr

{(
G −F

−F E

)(
e f

f g

)}
= Eg

2 detJ ,

which combined with (C2) implies that H
√

detJ is indepen-
dent of ρ.

APPENDIX D: DERIVATION OF THE BOUND (1)

We start with Eq. (11), with the determinant of the first
fundamental form given by (C1), and Eq. (8) for r = r0,

|b|
2πr0

�
∫ 2πr0

0
|H (0,s)|ds. (D1)

The domain of integration on the right-hand side can be
restricted to the set A ⊂ [0,2πr0] corresponding to the nonflat
points along the boundary.

We fix ρ > 0. Using the ρ invariance of H
√

detJ ,∫ 2πr0

0
|H (0,s)|ds

=
∫ 2πr0

0
|H (0,s)|

√
detJ (0,s)√
detJ (0,s)

ds

=
∫ 2πr0

0
|H (ρ,s)| 4

√
detJ (ρ,s)

4
√

detJ (ρ,s)√
detJ (0,s)

ds.

Squaring, using the Cauchy-Schwarz inequality, and substitut-
ing (D1), we obtain

|b|2
4π2r2

0

� α(ρ)
∫ 2πr0

0
H 2(ρ,s)

√
detJ (ρ,s)ds,

where

α(ρ) =
∫ 2πr0

0

√
detJ (ρ,s)

detJ (0,s)
ds. (D2)

Integrating over ρ between zero and R,

EB(x) � |b|2
4π2r2

0

( ∫ R

0

dρ

α(ρ)

)
.

To obtain a logarithmic bound, it remains to bound α(ρ) from
above by a term linear in ρ. It follows from (C1) that

√
detJ (ρ,s)

detJ (0,s)
= |1 − (t · n)2 − ρ (t′ · n)|

[1 − (t · n)2]3/2
.

Thus, we need to bound |t′ · n| from above and 1 − (t · n)2

away from zero.
To bound the second, we consider a loop in the interior

of the annulus. Rather than (ρ,s) = (0,s) being an arc-length
parametrization of the inner boundary (r = r0), we let (0,s),
s ∈ [0,4πr0), be a parametrization of the loop r = 2r0. Thus,
x0(s) is the configuration of that loop, with t(s) and n(s) defined
with respect to it. The analysis remains essentially unchanged,
up to the fact that (i) Eq. (8) is evaluated at r = 2r0, (ii) ρ

ranges between ρmin(s) and ρmax(s), where ρmin is between
(−2r0) and (−r0) and ρmax is between R − r0 and R, and
(iii) the upper integration limit in (D2) is 4πr0, resulting in a
numerical prefactor

EB(x) � |b|2
16π2r2

0

(∫ R−r0

−r0

dρ

α(ρ)

)
. (D3)

The key is that now t(s) · n(s) cannot be arbitrarily close
to 1; otherwise the asymptotic line through (0,s) will not
intersect the inner boundary. Since x : M → R3 is an isometric
immersion,

t(s) · n(s) = g(0,s)(∂s,∂ρ),

i.e., the angle in R3 between t(s) and n(s) is equal to the
angle in M between the s and ρ parametric lines at (0,s). An
elementary calculation shows that the angle between ∂s and ∂ρ

is bounded from below by π/3, hence

1 − (t · n)2 � 1 − cos2 π

3
= 3

4
.

Finally, |t′ · n| is bounded by the geodesic curvature of x0, i.e.,
by 1/r0. It follows that

α(ρ) �
∫ 4πr0

0

1 + ρ/r0

1/2
ds = 8π (r0 + ρ).

Substituting into (D3), we finally obtain

EB(x) � |b|2
128π3r2

0

log
R

r0
.

APPENDIX E: BENDING ENERGY OF A BUCKLED
DISCLINATION

A lower bound for the bending energy of a buckled
disclination can be obtained by an approach similar to that
used for dislocations. A disclination can by parametrized using
polarlike coordinates (r,ϕ) with the metric

g(r,ϕ) = dr ⊗ dr + α2r2dϕ ⊗ dϕ.

Here 0 < α < 1 corresponds to a positive disclination and
α > 1 to a negative disclination. It is easy to see that

e1 = ∂r , e2 = 1

αr
∂ϕ

is an orthonormal frame field. The dual coframe is

ϑ1 = dr, ϑ2 = αrdϕ.

The solution of Cartan’s first structural equations is

ω1
2 = −αdϕ.
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The Cartan-Christoffel symbols are

∇e1e1 = 0, ∇e1e2 = 0, ∇e2e1 = 1

r
e2,

∇e2e2 = −1

r
e1.

The perimeter of a constant-r loop is 2παr .
Consider a vector v ∈ T(r,0)M transported along the natu-

rally parametrized constant-r curve

γ (t) = (r,t/αr), t ∈ [0,2παr].

Then γ̇ (t) = (e2)γ (t). Denoting by (�γ )t0 the parallel transport
along γ , we obtain that

(�γ )t0(e1) = cos(t/r)e1 − sin(t/r)e2,

(�γ )t0(e2) = sin(t/r)e1 + cos(t/r)e2.

In particular, for t = 2παr ,

(�γ )2παr
0 (e1) = cos(2πα)e1 − sin(2πα)e2,

(�γ )2παr
0 (e2) = sin(2πα)e1 + cos(2πα)e2.

On the other hand, we denote by (�x◦γ )t0 the parallel
transport operator in R3 along x ◦ γ . Clearly,

(�x◦γ )2παr
0 = id.

It follows that

Q(v) = [dxγ (2παr) ◦ (�γ )2παr
0 − (�x◦γ )2παr

0 ◦ dxγ (0)](v)

= [A(α) − I ]dxγ (0)(v),

where A(α) is a rotation by an angle of 2πα. It follows that

|Q| = |A(α) − I |.

The evaluation of |Q| proceeds along the exact same line as
for dislocations, yielding

|A(α) − I | �
∫ 2παr

0
|H (γ (t))|dt.

Squaring and using the Cauchy-Schwarz inequality, we finally
obtain

|A(α) − I |
2παr

�
∫ 2παr

0
H 2(γ (t))dt. (E1)
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