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Abstract. The Piola identity div cof ∇f = 0 is a central result in the mathe-
matical theory of elasticity. We prove a generalized version of the Piola identity

for mappings between Riemannian manifolds, using two approaches, based on
different interpretations of the cofactor of a linear map: one follows the lines

of the classical Euclidean derivation and the other is based on a variational in-

terpretation via Null-Lagrangians. In both cases, we first review the Euclidean
case before proceeding to the general Riemannian setting.

1. Introduction. The Piola identity is a classical result in mathematical elasticity,
stating the following:

Let Ω ⊆ Rd be an open domain and let f : Ω→ Rd be a C2-map. Then,

div cof∇f = 0, (1.1)

where the cofactor of a matrix is the transpose of its adjugate, and the
divergence of the matrix-valued function cof∇f is taken row-by-row.

Equation (1.1) can be proved by a direct calculation; see e.g. [3, Ch. 8.1.4.b]
and [1, p. 39]. In essence, the analytical derivation boils down to the commuta-
tion of mixed partial derivatives. The downside of this “proof by computation”
is that it does not provide any insights on why does this specific combination of
second derivatives vanish. In particular, the cofactor of the gradient of a map has
a geometric interpretation as the action of that map on (d− 1)-dimensional surface
elements. Thus, one would hope for a more geometric interpretation of the Piola
identity (1.1).

A classical geometric derivation of the Piola identity can be found in the mechan-
ical literature [8, p. 310]. Let x ∈ Ω, and consider a d-dimensional ball B = Br(x)

of radius r centered at x. Denote by N̂ ∈ Rd the unit normal of ∂B and by dA its
surface form. If f is smooth and ∇f(x) is invertible, then for r small enough, f
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Figure 1. Illustration of the geometric setting of the Euclidean
Piola identity.

embeds B in Rd so that f(∂B) is a topological sphere. Denote by n̂ ∈ Rd the unit
normal of f(∂B) and by da its surface form (see Figure 1).

It is an immediate consequence of the divergence theorem that∮
f(∂B)

n̂ da = 0, (1.2)

which is an identity in Rd. Pulling back (1.2) with f and using a well-known
property of the cofactor of ∇f , one obtains

0 =

∮
f(∂B)

n̂ da =

∫
∂B

cof∇f(N̂) dA.

Applying the divergence theorem (row-by-row),∫
B

div cof∇f dV = 0,

where dV is the volume element in Ω. Letting r → 0, we obtain the desired result.
Note that this more geometric proof requires f to be a local diffeomorphism, a
condition which is not necessary for (1.1) to hold.

This paper is concerned with a generalization of the Piola identity to mappings
between Riemannian manifolds. Let (M1, g1) and (M2, g2) be smooth, oriented
d-dimensional Riemannian manifolds. Then, for every f ∈ C2(M1;M2), the Rie-
mannian Piola identity is

δ∇f∗TM2 Cof df = 0, (1.3)

where the cofactor of df is defined intrinsically (see Section 2.1 for details) and
δ∇f∗TM2 is the co-differential induced by the Riemannian connection on f∗TM2

(see Section 2.3). Equivalently, for every compactly-supported ξ ∈ Γ(f∗TM2),∫
M1

〈
Cof df,∇f

∗TM2ξ
〉
g1,g2

dVol1 = 0, (1.4)

where 〈·, ·〉g1,g2
is the inner-product on T ∗M1⊗ f∗TM2 induced by the metrics g1

and g2.
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The Piola identity for mappings between Riemannian manifolds was considered
by Marsden and Hughes [6, pp. 116–117]. Let f :M1 →M2 be a local diffeomor-
phism. For a vector field X on M2, its Piola transform [6, Def. 7.18], Piola(X), is
a vector field on M1,

Piola(X) = (Cof df)T (f∗X), (1.5)

where f∗X is the pullback of X. The identity derived in [6] (where it is termed the
Piola identity) is

div Piola(X) = ((divX) ◦ f) Det df, (1.6)

which is a relation between the divergence of X and the divergence of its Piola
transform (here and below we denote by Det the (intrinsic) determinant of a linear
map and by det the determinant of the matrix representing a map). We shall see
below that

div Piola(X) = ((divX) ◦ f) Detdf − 〈f∗X, δ∇f∗TM2 Cof df〉 , (1.7)

which together with (1.6) implies (1.3).
Marsden and Hughes further present a coordinate expression for the Riemannian

Piola identity (i.e., a differential relation for f , which does not involve its action
on vector fields). Their identity is however wrong; a derivation of the coordinate
expression is presented in Appendix B, and compared to the expression derived in
[6].

Perhaps surprisingly, we show that the coordinate expression can be reduced
into a form which does not involve the metrics g, h at all, and looks identical to the
Euclidean representation! After a second thought, this is not that surprising, as
the coordinate representation of f must satisfy an identity whose sole origin is the
commutation of second derivatives.

The goal of this paper is to clarify several aspects of both Euclidean and Rie-
mannian Piola identities, (1.1) and (1.3). We prove the Riemannian Piola identity
using two different approaches, based on two different characterizations of the co-
factor of a linear map.

The first proof follows the continuum-mechanical approach depicted above, which
is used to derive Property (1.6) of the Piola transform. It relies on a characterization
of the cofactor of a linear map via its action on (d−1)-dimensional surface elements.
As a side result, our proof sheds new light on the classical proof in the Euclidean
setting, showing that Eq. (1.2), which seems to be at the heart of the proof, is
totally immaterial to that proof.

The second proof was presented in [5]. It is based on a characterization of
the cofactor as the derivative of the determinant. This paper contains a simplified
Euclidean version of this proof, which motivates the steps in the more general setting
of Riemannian manifolds. We show that (1.3) is the Euler-Lagrange equation of
a null-Lagrangian (a functional for which every map is critical), hence holds for
every sufficiently regular map. A connection between the Piola identity and null-
Lagrangians was already established in Evans [3], where the existence of a null-
Lagrangian was inferred from the Piola identity. We advocate that it should be
viewed the other way around: the existence of a null-Lagrangian is the origin of
the Piola identity. In fact, the Riemannian Piola identity is immediate once the
null-Lagrangian has been identified, whereas its explicit derivation is quite tedious.
In both proofs, we start by reviewing the Euclidean case before proceeding to the
Riemannian case.
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This paper is structured as follows: In Section 2, we introduce the geometric
entities which play a part in the Riemannian Piola identity. Section 3 presents a
proof based on the Piola transform. In Section 4, we present a proof based on null-
Lagrangians. In Appendix A we prove a lemma generalizing to the setting of vector
bundles the well-known fact that the cofactor of a linear operator is the derivative
of its determinant. Finally, we write in Appendix B the Riemannian Piola identity
in coordinates.

2. Geometric preliminaries.

2.1. Determinant and cofactor of linear maps. The notions of determinant
and cofactor of a linear map are at the heart of the Piola identity and its proof.
While these notions are widely used in the context of a matrix representing a trans-
formation with respect to orthonormal bases, it is valuable to present their intrinsic,
coordinate-free definitions. For a d-dimensional oriented inner-product space V , we
denote by ?kV : Λk(V ) → Λd−k(V ) the Hodge-dual operators and by VolV the unit
volume form (i.e., VolV (e1, . . . , ed) = 1 for every positively-oriented orthonormal
basis of V ).

Definition 2.1 (determinant). Let V and W be oriented, d-dimensional inner-
product spaces. Let A ∈ Hom(V,W ). The determinant of A, DetA ∈ Hom(R,R) '
R, is defined by

DetA := ?dW ◦
∧d

A ◦ ?0
V ,

where
∧d

A = A ∧ . . . ∧A, d times, and we identify
∧0

V '
∧0

W ' R.

If (v1, . . . , vd) and (w1, . . . , wd) are positively-oriented orthonormal bases for V

and W respectively, and if Â is the matrix representing A with respect to these
bases, then ∧d

A(v1 ∧ · · · ∧ vd) = det Â w1 ∧ · · · ∧ wd, (2.1)

from which follows that DetA = det Â. That is, the definition of the determinant
of a linear map is consistent with the definition of the determinant of the matrix
representing it with respect to any pair of positively-oriented orthonormal bases.

As is well-known, the determinant of a linear operator satisfies the following:

Proposition 1. Let V and W be oriented, d-dimensional inner-product spaces. Let
A ∈ Hom(V,W ). Then,

DetA =
A∗VolW

VolV
.

The proof is immediate from the definition, and can be obtained by choosing
oriented orthonormal bases for V and W .

Definition 2.2 (cofactor). Let V and W be oriented, d-dimensional inner-product
spaces. Let A ∈ Hom(V,W ). The cofactor of A, Cof A ∈ Hom(V,W ), is defined by

Cof A := (−1)d−1 ?d−1
W ◦

∧d−1
A ◦ ?1

V ,

where we identify
∧1

V ' V and
∧1

W 'W .
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The intrinsic definition of the cofactor is consistent with the definition of the
matrix-cofactor. The matrix representing Cof A is the matrix-cofactor of the matrix
representing A, when the bases are positively-oriented and orthonormal.

While the determinant of a linear map encodes information about the action of
that map on d-dimensional volume elements, the cofactor encodes information about
the action of that map on (d − 1)-dimensional hyper-cubes. Since the Hodge-dual

operators are isometric isomorphisms, Cof A is essentially
∧d−1

A. For example, in
the isotropic case, where V = W and A = λ IV , we obtain Cof A = λd−1 IV .

The cofactor and the determinant of a linear operator satisfy several relations
which will be used throughout this paper. First,

DetA IV = AT ◦ Cof A = (Cof A)T ◦A (2.2)

is an intrinsic version of a well-known property of the matrix cofactor; it is essentially
the Laplace expansion of the determinant.

The next proposition provides another relation between the cofactor and the de-
terminant of a linear map. Before stating it, we recall that in a d-dimensional ori-
ented inner-product space, every unit vector v ∈ V induces an orientation on its (d−
1)-dimensional orthogonal complement, {v}⊥: an orthonormal basis (v1, . . . , vd−1)
for {v}⊥ is positively-oriented if (v, v1, . . . , vd−1) is a positively-oriented orthonor-
mal basis for V .

Proposition 2. Let Ṽ , W̃ be oriented, d-dimensional inner-product spaces. Let
v⊥ ∈ Ṽ and w⊥ ∈ W̃ be unit vectors, and denote by V = {v⊥}⊥ ⊆ Ṽ and

W = {w⊥}⊥ ⊆ W̃ their (d− 1)-dimensional orthogonal complements, with the ori-

entations induced by (Ṽ , v⊥) and (W̃ , w⊥). Let Ã ∈ Hom(Ṽ , W̃ ) satisfy Ã(V ) ⊆W ;

denote A = Ã|V ∈ Hom(V,W ). Then,

Cof Ã(v⊥) = DetAw⊥.

Proof. Let (v1, . . . , vd−1) and (w1, . . . , wd−1) be positively-oriented orthonormal
bases for V and W , respectively. Then,

Cof Ã(v⊥) = (−1)d−1 ?d−1

W̃

∧d−1
Ã ?1

Ṽ
(v⊥)

= (−1)d−1 ?d−1

W̃

∧d−1
Ã(v1 ∧ · · · ∧ vd−1)

= (−1)d−1 ?d−1

W̃

∧d−1
A(v1 ∧ · · · ∧ vd−1)

= (−1)d−1 ?d−1

W̃
DetA (w1 ∧ · · · ∧ wd−1)

= DetAw⊥,

where in the passage to the third line we used the fact that A = Ã|V , and the
passage to the fourth line follows from the intrinsic definition of the determinant.
The first and the last equalities follow from the fact that (v⊥, v1, . . . , vd−1) and

(w⊥, w1, . . . , wd−1) are positively-oriented orthonormal bases for Ṽ and W̃ .

2.2. Determinant and cofactor of linear bundle maps. In this section we ap-
ply the linear-algebraic constructs of the previous section to linear bundle maps be-
tween vector bundles. Let (M1, g1) and (M2, g2) be smooth, oriented d-dimensional
Riemannian manifolds. We denote by ?kM1

: Λk(TM1) → Λd−k(TM1) and ?kM2
:

Λk(TM2) → Λd−k(TM2) the Hodge-dual operators of the tangent bundles (note
that the Hodge-dual in Riemannian settings usually acts on the exterior algebra of
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the cotangent bundle). We denote by dVol1 and dVol2 the corresponding volume
forms.

Let f :M1 →M2 be a differentiable mapping; its differential is a linear bundle
map,

df : TM1 → f∗TM2.

The determinant of df ,

Det df = ?dM2
◦
∧d

df ◦ ?0
M1

is a function on M1, whereas its cofactor,

Cof df = (−1)d−1 ?d−1
M2
◦
∧d−1

df ◦ ?1
M1

is a section of T ∗M1 ⊗ f∗TM2. By Proposition 1, the determinant is the ratio of
the volume forms,

Det df =
f?dVol2
dVol1

.

Let M be a smooth, oriented d-dimensional manifold with boundary and let
p ∈ ∂M. A vector v ∈ TpM\ Tp∂M is called outward-pointing if for some ε > 0
there exists a smooth curve γ : (−ε, 0]→M such that γ(0) = p and γ̇(0) = v. Let
ξ be an outward-pointing vector field on ∂M; ξ induces an orientation on T∂M,
called the Stokes orientation: for p ∈ ∂M, (v1, . . . , vd−1) is a positively-oriented
basis for Tp∂M if (ξp, v1, . . . , vd−1) is a positively-oriented basis for TpM. This
orientation does not depend on the choice of the outward-pointing vector field ξ.
The Stokes orientation is naturally diffeomorphic-invariant in the following sense:

Lemma 2.3. Let f : M1 → M2 be an orientation-preserving diffeomorphism
between d-dimensional oriented manifolds with boundaries. Then

f |∂M1
: ∂M1 → ∂M2

is also an orientation-preserving diffeomorphism, where the orientations on the
boundaries are the induced Stokes orientations.

Proof. Let ξ be some outward-pointing vector field on ∂M1. Then df(ξ) is outward-
pointing on ∂M2. Let p ∈ ∂M1 and suppose that (v1, . . . , vd−1) is a positive basis
for Tp∂M1. By definition, (ξp, v1, . . . , vd−1) is a positive basis for TpM1. Since
f is orientation preserving, (dfp(ξp), dfp(v1), . . . , dfp(vd−1)) is a positive basis for
Tf(p)M2. Since dfp(ξp) is outward-pointing in Tf(p)M2, this implies (dfp(v1), . . . ,
dfp(vd−1)) is a positive basis for Tf(p)∂M2. Note that for every i = 1, . . . , d− 1,

dfp(vi) = dfp|Tp∂M1(vi) = d(f |∂M1)p(vi).

We may now apply Proposition 2 to maps between manifolds:

Proposition 3. Let (M1, g1) and (M2, g2) be smooth, oriented d-dimensional Rie-
mannian manifolds with boundaries and let f : M1 → M2 be a diffeomorphism.
Let ν1 and ν2 be the unique outward-pointing normal unit vector fields on ∂M1 and
∂M2. Then,

Cof df(ν1) = Det(df |T∂M1
)f∗ν2,

which is an identity between sections of f∗TM2.

Proof. This is an immediate application of Proposition 2, with Ṽ = TpM1, W̃ =

Tf(p)M2, v⊥ = (ν1)p, w
⊥ = (ν2)f(p) and Ã = dfp at every p ∈ ∂M1.
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The last relation between the cofactor and the determinant of a linear bundle
map states that the cofactor is the derivative of the determinant:

Lemma 2.4. Let E and F be oriented vector bundles of rank d over a smooth
manifold M, equipped with smooth metrics and metrically-compatible connections.
Let A : E → F be a smooth bundle map. Then, for every X ∈ Γ(TM1)

d(DetA)(X) = 〈Cof A,∇XA〉E,F ,

where DetA and Cof A are defined as in 2.1 and 2.2, using the metrics and orien-
tations on E,F , and ∇ is the tensor-product connection on E∗ ⊗ F induced by the
connections on E and F .

The proof is given in Appendix A.

2.3. The coderivative for vector-valued forms. Let (M, g) be a d-dimensional
oriented Riemannian manifold. Let E be a vector bundle over M (of arbitrary
rank n), endowed with a Riemannian metric h, and a metrically-consistent affine
connection ∇E . That is, for every pair of sections ξ, η ∈ Γ(E), and every vector
field X ∈ Γ(TM),

X(h(ξ, η)) = h(∇EXξ, η) + h(ξ,∇EXη).

We denote by Ω1(M;E) = Γ(T ∗M⊗E) the space of 1-forms onM with values
in E. For a section ξ of E, its covariant derivative

∇Eξ : X 7→ ∇EXξ

is an element of Ω1(M;E). Finally, the metrics on M and E induce a metric on
Ω1(M;E), denoted 〈·, ·〉g,h. With that, we recall the definition of the coderivative
for vector-valued forms:

Definition 2.5. The coderivative,

δ∇E : Ω1(M;E)→ Ω0(M;E) ' Γ(E)

is the adjoint of the connection ∇E : Γ(E)→ Ω1(M;E) with respect to the metric
〈·, ·〉g,h. That is, ∫

M1

〈σ, δ∇Eρ〉g,h dVol =

∫
M1

〈
∇Eσ, ρ

〉
g,h

dVol,

for all ρ ∈ Ω1(M;E) and compactly-supported σ ∈ Γ(E).

The coderivative of a vector-valued form has a well-known explicit formula. Let
ω ∈ Ω1(M;E). Given an orthonormal frame Ei for TM, δ∇E is given by

δ∇Eω = −
d∑
i=1

(∇Eiω)(Ei) = − trg(∇ω), (2.3)

where ∇ω is the connection induced on T ∗M⊗E by the Levi-Civita connection on
M and ∇E (see e.g. [2, Lemma 1.20] for a proof).

We will use the coderivative in the following setting: Let f : M1 → M2 be
smooth. Its differential df can be viewed as a vector-valued form

df ∈ Γ(T ∗M1 ⊗ f∗TM2) ' Ω1(M1; f∗TM2).

Then, Cof df ∈ Ω1(M1; f∗TM2) is of the same type as df . Hence, δ∇f∗TM2 Cof df
is well-defined according to Definition 2.5, with E = f∗TM2.
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3. The Piola transform approach. In this section we present a proof of the
Riemannian Piola identity (1.3) in the spirit of the continuum-mechanics approach
briefly reviewed in the Introduction. It is based on the property of the cofactor
established in Proposition 3. The crux of the proof is pulling back integrals from
the target manifold M2 to the source manifold M1 via the map f .

A limitation of this derivation is that it only works for local diffeomorphisms.
This is however not a severe limitation: every second-order equation satisfied by
all local diffeomorphisms extends automatically to smooth maps. This follows from
the facts that a kth-order differential equation for f can be viewed as an algebraic
equation for its k-jet [7], and that jets of invertible maps are dense in the space of
jets.

3.1. The Euclidean case.

Proposition 4. Let Ω1,Ω2 ⊆ Rd be open and bounded domains with a C2-boundary,
and let f : Ω̄1 → Ω̄2 be a C2-diffeomorphism. For every 1 ≤ i ≤ d,∫

Ω1

div
(

(cof∇f)
T
ei

)
dV = 0,

where (cof∇f)T ei is the i-th row of the cofactor matrix cof∇f and dV is the
standard volume form in Rd.

Proof. Without loss of generality, we may assume that f is orientation-preserving.
We denote by dS1 and dS2 the surface forms of ∂Ω1 and ∂Ω2. For every 1 ≤ i ≤ d,

0 =

∫
Ω2

div ei dV

=

∫
∂Ω2

〈ei, ν2〉 dS2

=

∫
∂Ω1

〈ei, ν2 ◦ f〉 f∗dS2

=

∫
∂Ω1

〈ei,Det (df |T∂Ω1) (ν2 ◦ f)〉 dS1

=

∫
∂Ω1

〈ei, cof∇f(ν1)〉 dS1

=

∫
∂Ω1

〈
(cof∇f)T (ei), ν1

〉
dS1

=

∫
Ω1

div
(

(cof∇f)
T
ei

)
dV.

(3.1)

The first equality holds because ei is divergence-free. The passage to the second
line follows from the divergence theorem. The passage to the third line is obtained
by a pullback (change of variables). The passage to the fourth line results from
the relation f∗dS2 = Det(df |T∂Ω1

) dS1. The passage to the fifth line follows from
Proposition 3. Finally, the last equality is obtained by another application of the
divergence theorem.

Corollary 1. With the same notation as above, let f : Ω̄1 → Ω̄2 be a C2 local
diffeomorphism. Then, the Euclidean Piola identity (1.1) holds.
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Proof. Since the claim is local, we may assume that f is a diffeomorphism. Let
p ∈ Ω1, and apply Proposition 4 on shrinking balls around p. The integrand vanishes
by a standard differentiation argument.

3.2. The Riemannian case. It is not immediately obvious how to generalize
Proposition 4 to maps between Riemannian manifolds. The first equality in (3.1) is
due to the “constantness” of the frame field {ei}, which in turn implies the vanish-
ing of the surface integral of the unit normal to the boundary. On a non-Euclidean
manifold, there is no such thing as a parallel frame-field, or any canonical notion of
a divergence-free frame field.

It turns out, however, that the existence of a parallel frame field is not really
needed for the proof of Proposition 4. A more careful examination of the proof re-
veals the occurrence of a cancellation, which as a result of, the particular properties
of the frame field {ei} are immaterial. We prove the Riemannian Piola identity in
two steps, the first of which was proved in [6]:

Proposition 5 (Marsden and Hughes). Let f : M1 → M2 be a local diffeomor-
phism between oriented, compact, d-dimensional Riemannian manifolds with bound-
aries. For any vector field X ∈ Γ(TM2),

div Piola(X) = ((divX) ◦ f) Det df,

where Piola(X) ∈ Γ(TM1) is defined by (1.5).

Proof. Since the claim is local, we may assume that f is a diffeomorphism.
Without loss of generality, we may assume that f is orientation-preserving (oth-

erwise, reverse the orientation of, say, M1). By Lemma 2.3, f |∂M1
: ∂M1 → ∂M2

is an orientation-preserving (with respect to the induced Stokes orientations) dif-
feomorphism. Denote by dS1 and dS2 the surface volume forms on M1 and M2

induced by dVol1 and dVol2. Note that

(f |∂M1
)∗dS2 = Det (d (f |∂M1

)) dS1 = Det ((df) |T∂M1
) dS1. (3.2)

Replicating the steps in (3.1)∫
M2

divX dVol2 =

∫
∂M2

〈X, ν2〉 dS2

=

∫
∂M1

〈f∗X, f∗ν2〉 f∗dS2

=

∫
∂M1

〈f∗X,Det (df |T∂M1
) (f∗ν2)〉 dS1

=

∫
∂M1

〈f∗X,Cof df(ν1)〉 dS1

=

∫
∂M1

〈Piola(X), ν1〉 dS1

=

∫
M1

div Piola(X) dVol1.

(3.3)

where in the passage to the third line we used (3.2), in the passage to the fourth
line we used Proposition 3, in the passage to the fifth line we used the definitions of
the transpose, and in the passage to the last line we used once again the divergence
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theorem. Pulling back the left-hand side, we obtain that∫
M1

((divX) ◦ f) Det df dVol1 =

∫
M1

div Piola(X) dVol1, (3.4)

Since this identity holds for M1 replaced by any open subset, the integrands are
equal, which completes the proof.

Proposition 6. Let f : M1 → M2 be a smooth map between oriented, compact,
d-dimensional Riemannian manifolds with boundaries. For any vector field X ∈
Γ(TM2),

div Piola(X) = ((divX) ◦ f) Det df − 〈f∗X, δ∇f∗TM2 Cof df〉 . (3.5)

Proof. Let ei be an orthonormal frame for TM1. Writing the expression for the
divergence with respect to an orthonormal frame, and applying the Leibniz rule,

div Piola(X) =

d∑
i=1

〈
∇TM1
ei

(
(Cof df)T (f∗X)

)
, ei
〉

=

d∑
i=1

〈(
∇ei (Cof df)

T
)

(f∗X) + (Cof df)T
(
∇f
∗TM2
ei (f∗X)

)
, ei

〉
.

(3.6)

Examining the first summand,

d∑
i=1

〈(
∇ei (Cof df)

T
)

(f∗X), ei

〉
=

d∑
i=1

〈
(∇ei Cof df)

T
(f∗X), ei

〉
=

d∑
i=1

〈f∗X, (∇ei Cof df) (ei)〉

= −〈f∗X, δ∇f∗TM2 Cof df〉 ,

(3.7)

where we used the fact that the transpose operator commutes with covariant deriv-
ative, and the expression (2.3) for δ∇f∗TM2 .

Examining the second summand in (3.6),

d∑
i=1

〈
(Cof df)T

(
∇f
∗TM2
ei (f∗X)

)
, ei

〉
=

d∑
i=1

〈
(Cof df)T f∗

(
∇TM2

f∗(ei)
X
)
, ei

〉
= Det df

d∑
i=1

〈
(df)−1f∗

(
∇TM2

f∗(ei)
X
)
, ei

〉
= Det df

d∑
i=1

〈
(df)−1 ◦ f∗

(
∇TM2X

)
◦ df(ei), ei

〉
= Det df tr

(
(df)−1 ◦ f∗

(
∇TM2X

)
◦ df

)
= Det df tr

(
f∗
(
∇TM2X

))
= ((divX) ◦ f) Det df,

(3.8)
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where in the passage to the second line we used (2.2), and in the passage to the
fifth line we used the cyclic invariance of the trace: tr(T−1ST ) = tr(S).

Equations (3.6), (3.7) and (3.8) yield the desired result.

Corollary 2. Let f : M1 → M2 be a local diffeomorphism between smooth, ori-
ented, d-dimensional Riemannian manifolds with boundaries. Then the Riemannian
Piola identity (1.3) holds.

Proof. Combining Proposition 5 and Proposition 6, if follows that for every vector
field X ∈ Γ(TM2),

〈f∗X, δ∇f∗TM2 Cof df〉 = 0.

Taking f∗X = δ∇f∗TM2 Cof df , the result follows.

4. Null-Lagrangian approach. Let X be a function space of smooth maps be-
tween two domains. A functional E : X → R is a null-Lagrangian if every smooth
map is a critical point of E, with respect to smooth homotopies relative to the
boundary. As a result, every function in X satisfies the Euler-Lagrange equation
corresponding to E. In this section we prove the Piola identity by showing that
it is the Euler-Lagrange equation of a null-Lagrangian. As in the previous section,
we start by considering the Euclidean setting, and then generalize the treatment to
mappings between Riemannian manifolds.

4.1. The Euclidean case. We begin by following the treatment of Iwaniec [4].

Lemma 4.1 (Iwaniec). Let Ω ⊆ Rd be open and bounded, and let f : Ω → Rd be
smooth. For every i = 1, . . . , d,

det∇f dV = det∇f dx1 ∧ dx2 · · · ∧ dxd

= df1 ∧ df2 · · · ∧ dfd

= (−1)i−1 d
(
df1 ∧ df2 ∧ · · · ∧ df i−1 ∧ f i ∧ df i+1 ∧ · · · ∧ dfd

)
.

Proof. The first equality is just a rewriting of the unit volume element as a wedge
product of the standard co-frame. The last equality follows directly from the Leibniz
rule for the exterior derivative and the fact d2 = 0. As for the middle equality,

df1 ∧ df2 · · · ∧ dfd =
∂f1

∂xj1

∂f2

∂xj2
. . .

∂fd

∂xjd
dxj1 ∧ dxj2 · · · ∧ dxjd

=
∑
σ∈Sd

∂f1

∂xσ(1)

∂f2

∂xσ(2)
. . .

∂fd

∂xσ(d)
dxσ(1) ∧ dxσ(2) · · · ∧ dxσ(d)

=
∑
σ∈Sd

∂f1

∂xσ(1)

∂f2

∂xσ(2)
. . .

∂fd

∂xσ(d)
sgn(σ) dx1 ∧ dx2 · · · ∧ dxd

= det∇f dx1 ∧ dx2 · · · ∧ dxd.

Corollary 3. The integral
∫

Ω
det∇f dV only depends on the value of f on ∂Ω.

Proof. Suppose that f |∂Ω = g|∂Ω. Using a telescopic sum,

(det∇f − det∇g) dV

= df1 ∧ df2 · · · ∧ dfn − dg1 ∧ dg2 · · · ∧ dgd
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=

d∑
i=1

dg1 ∧ · · · ∧ dgi−1 ∧ d(f i − gi) ∧ df i+1 ∧ · · · ∧ dfd

=

d∑
i=1

(−1)i−1d
(
dg1 ∧ · · · ∧ dgi−1 ∧ (f i − gi) ∧ df i+1 ∧ · · · ∧ dfd

)
.

Hence,∫
Ω

(det∇f − det∇g) dV

=

d∑
i=1

(−1)i−1

∫
Ω

d
(
dg1 ∧ · · · ∧ dgi−1 ∧ (f i − gi) ∧ df i+1 ∧ · · · ∧ dfd

)
=

d∑
i=1

(−1)i−1

∫
∂Ω

dg1 ∧ · · · ∧ dgi−1 ∧ (f i − gi) ∧ df i+1 ∧ · · · ∧ dfd = 0,

where the last equality follows from the assumption that f |∂Ω = g|∂Ω.

Corollary 3 immediately implies the following:

Corollary 4. The functional

E(f) =

∫
Ω

det∇f dV

is a null-Lagrangian.

Proposition 7. The Euler-Lagrange equation of the functional

E(f) =

∫
Ω

det∇f dV (4.1)

is div cof∇f = 0.

Proof. Let ft = f + tw for some smooth vector field w : Rd → Rd. Then,

d

dt

∣∣∣∣
t=0

E(ft) =

∫
Ω

d

dt

∣∣∣∣
t=0

det∇ft dV

=

∫
Ω

d

dt

∣∣∣∣
t=0

det(∇f + t∇w) dV

=

∫
Ω

〈cof∇f,∇w〉 dV

= −
∫

Ω

〈div cof∇f, w〉 dV,

where we used the well-known facts that the cofactor is the gradient of the deter-
minant and that the divergence is the (negative) adjoint of the gradient.

4.2. The Riemannian case. We now turn to the Riemannian case. Let M1 and
M2 be smooth, oriented, d-dimensional Riemannian manifolds, and set

E(f) =

∫
M1

f∗dVol2 =

∫
M1

Det df dVol1. (4.2)

We start by observing that there is an obstacle in generalizing the approach
used in Section 4.1: Corollary 3 does not hold for mappings between arbitrary
Riemannian manifolds. Consider the following counter-example: Let M1 be a
hemisphere and let M2 be a sphere. Let f1, f2 : M1 → M2 be two embeddings
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of the hemisphere in the sphere coinciding on the boundary; f1 maps M1 onto the
upper hemisphere ofM2 and f2 mapsM1 onto the lower hemisphere ofM2. Endow
M2 with a Riemannian metric, such that the volumes of the two hemispheres are
different. Then ∫

M1

Det df1 dVol1 6=
∫
M1

Det df2 dVol1

even though f1|∂M1 = f2|∂M1 . This shows that the “decomposition” technique used
in Lemma 4.1 to prove that the integral of the determinant is a null-Lagrangian does
not work for arbitrary manifolds. The obstruction to such a generalization turns
out to be of topological nature.

The statement that E(f) depends only on f |∂M1 is strictly stronger than the
statement that it is invariant under a homotopy relative to ∂M1. The relevant
generalization of Corollary 3 for mappings between manifolds is the following:

Lemma 4.2. Let M1 and M2 be smooth manifolds of dimensions m1 and m2,
respectively (possibly with boundaries). Suppose that M1 is compact and oriented.
Let ω ∈ Ωm1(M2) be an exact m1-form on M2. Let f0, f1 :M1 →M2 be smooth
maps coinciding on ∂M1. Then∫

M1

f∗0ω =

∫
M1

f∗1ω.

Comment: Every closed form on Rd is exact, and in particular, the standard volume
form dV . This gives an alternative proof for Corollary 3.

Proof. Let f : M1 → M2 be smooth. By assumption, ω = dη for some η ∈
Ωm1−1(M2). Using the commutation of exterior differentation and pullbacks,∫

M1

f∗ω =

∫
M1

f∗dη =

∫
M1

df∗η =

∫
∂M1

f∗η,

which only depends on f |∂M1 .

Lemma 4.2 can be used to prove that E is a null-Lagrangian as follows: Since
being a null-Lagrangian is equivalent to the satisfaction of the Euler-Lagrange equa-
tion by every map, this a local property. That is, it can be checked for maps between
small balls (or other manifolds diffeomorphic to Rd). Since f∗dVol2 is closed, it is
locally exact. Thus, Lemma 4.2 implies the null-Lagrangian property.

We provide here a different argument, which is also classical:

Lemma 4.3. Let M1 and M2 be smooth manifolds of dimensions m1 and m2,
respectively (possibly with boundaries). Suppose that M1 is compact and oriented.
Let ω ∈ Ωm1(M2) be a closed m1-form on M2. Let f0, f1 : M1 →M2 be smooth
maps that are homotopic relative to ∂M. Then,∫

M1

f∗0ω =

∫
M1

f∗1ω.

Proof. Let F : M1 × I → M2 be a smooth homotopy between f0 and f1 relative
to ∂M1, i.e., ft|∂M1

= f0|∂M1
for every t. Then,

0 =

∫
M1×I

F ∗dω

=

∫
M1×I

dF ∗ω
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=

∫
∂(M1×I)

F ∗ω

=

∫
M1×{1}

F ∗ω −
∫
M1×{0}

F ∗ω +

∫
∂M1×(0,1)

F ∗ω

=

∫
M1

f∗1ω −
∫
M1

f∗0ω,

The first equality follows from ω being closed, i.e., dω = 0. The passage to the
second line follows from the commutation of exterior differentiation and pullbacks.
The passage to the third line follows from Stokes’ theorem. The passage to the
fourth line follows from the decomposition of ∂(M1 × I) into three submanifolds.
Finally, in the passage to the fifth line we used the fact that F |M1×{0} = f0,
F |M1×{1} = f1, and the fact that since F is a homotopy relative to ∂M1, the
restriction of F ∗ω to ∂M1 × (0, 1) vanishes.

Corollary 5 (Pullbacks of closed forms are null-Lagrangians). Let M1, M2 and
ω be defined as in Lemma 4.3. Let E : C∞(M1,M2)→ R be given by

E(f) =

∫
M1

f∗ω.

Then E is a null-Lagrangian.

Proof. Let ft : M1 → M2 be a smooth variation relative to ∂M1 of f0 = f . By
Lemma 4.3, E(ft) = E(f0), hence E(ft) is constant.

In the case where m1 = m2, every m1-form onM2 is closed. Hence the functional
E defined by (4.3) is a null-Lagrangian.

Note that we limited our treatment to compact domains. For non-compact do-
mains, one has to restrict the functional to compact subsets of M1 and consider
compactly-supported variations.

We proceed to derive the Euler-Lagrange equation for the functional (4.3):

Proposition 8. Let M1 and M2 be smooth, oriented d-dimensional Riemannian
manifolds; The Euler-Lagrange equation for the functional

E(f) =

∫
M1

f∗dVol2 =

∫
M1

Det df dVol1 (4.3)

is δ∇f∗TM2 Cof df = 0

Proof. Let φ : M1 → M2 be a smooth map, and let V ∈ Γ(φ∗TM2). Let
φt : M1 → M2 be a smooth variation constant on ∂M1, such that φ0 = φ and
∂φt/∂t|t=0 = V . Our goal is to prove that

d

dt
E(φt)

∣∣∣∣
t=0

=

∫
M1

〈
δ∇φ∗TM2

(
Cof dφ

)
, V
〉
φ∗TM2

dVol1.

Denote by ψ :M1×I →M2 the map ψ(p, t) = φt (p). Let P :M1×I →M1 be
the projection P (p, t) = p. Consider the following two vector bundles overM1 × I:
(i) (P ∗ (TM1))

∗ ∼= P ∗ (T ∗M1), whose fiber over (p, t) is T ∗pM1, and (ii) ψ∗ (TM2),
whose fiber over (p, t) is Tφt(p)M2.

Note that (dφt)p : TpM1 → Tφt(p)M2, i.e., (dφt)p ∈ T ∗pM1⊗Tφt(p)M2. Running
over all the pairs (p, t) ∈ M1 × I we obtain a section of the vector bundle W =
(P ∗ (TM1))

∗ ⊗ ψ∗ (TM2).
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Now,

d

dt
E(φt)

∣∣∣∣
t=0

=

∫
M1

d

dt
Det(dφt)

∣∣∣∣
t=0

dVol1

=

∫
M1

〈
Cof(dφt),∇W∂

∂t
dφt

〉
P∗(TM1),ψ∗(TM2)

∣∣∣∣
t=0

dVol1

+

∫
M1

〈
Cof dφ, ∇W∂

∂t
dφt

∣∣∣
t=0

〉
TM1,φ∗TM2

dVol1,

(4.4)

where the second equality follows from an application of Lemma 2.4 (with A = dφt
and V = ∂/∂t).

It is well-known that

∇W∂
∂t
dφt

∣∣∣
t=0

= ∇φ
∗TM2V, (4.5)

(see e.g. [2, Proposition 2.4, Pg 14]). Eqs. (4.4) and (4.5) imply

d

dt
E (φt)

∣∣∣∣
t=0

=

∫
M

〈
Cof dφ,∇φ

∗TM2V
〉
TM1,φ∗TM2

dVol1

=

∫
M

〈
δ∇φ∗TM2

(
Cof dφ

)
, V
〉
φ∗TM2

dVol1,

where the last equality follows from Definition 2.5 of the coderivative.

Two comments are in order: (i) The identity (4.5) is fundamental in the compu-
tation of variations between manifolds. It is proved in [2, Proposition 2.4], relying
on the symmetry of the connection on TM2; it does not require metricity. (ii)
The application of Lemma 2.4 in (4.4) requires the connections on P ∗ (T ∗M1) and
ψ∗ (TM2) to be metrically-compatible. Since the Levi-Civita connections on TM1

and TM2 are metrically-compatible, so are all their induced connections. Thus,
both the metricity and the symmetry of the Levi-Civita connection on TM2 were
used in the proof of Lemma 8.

Appendix A. Proof of Lemma 2.4. Lemma 2.4 is concerned with the differen-
tiation of the determinant of a bundle morphism between vector bundles. Since the
intrinsic definition of the determinant (2.1) involves the Hodge-dual, we will need
Identity A.1 below regarding the behavior of the Hodge operator with respect to
covariant differentiation.

LetM be a smooth d-dimensional manifold. Let E be an oriented vector bundle
over M (of arbitrary finite rank n), endowed with a Riemannian metric h and a
metrically-compatible affine connection ∇E . Note that ∇E induces a connection on
Λk(E) (also denoted by ∇E); this induced connection is compatible with the metric
induced on Λk(E) by h. Denote by ?kE the fiber-wise Hodge-dual Λk(E)→ Λn−k(E)
(which is induced by the orientation on E and h). Then,

?kE (∇EXβ) = ∇EX(?kEβ) (A.1)

for every β ∈ Γ(Λk(E)) and X ∈ Γ(TM).
This follows from the fact ?kE is consistent with the metric, hence it is parallel

with respect to metrically-compatible connections. Indeed,

∇EX(?kEβ) = (∇X?kE)β + ?kE(∇EXβ) = ?kE(∇EXβ).

Proof of Lemma 2.4. Let e1, . . . , ed be a positive orthonormal frame of E.

Det(A) = ?dF ◦
∧d

A ◦ ?0
E(1) = ?dW

∧d
A
(
e1 ∧ · · · ∧ ed

)
= ?dF

(
Ae1 ∧ · · · ∧Aed

)
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Using the Leibniz rule for the wedge product, we get

V DetA = V ?dF
(
Ae1 ∧ · · · ∧Aed

) (1)
= ?dF∇V

(
Ae1 ∧ · · · ∧Aed

)
= ?dF

d∑
i=1

Ae1 ∧ · · · ∧ ∇V (Aei) ∧ · · · ∧Aed

= ?dF

d∑
i=1

Ae1 ∧ · · · ∧ (∇VA)ei ∧ · · · ∧Aed

+ ?dF

d∑
i=1

Ae1 ∧ · · · ∧A(∇V ei) ∧ · · · ∧Aed,

(A.2)

Where equality (1) follows from (A.1). (Here we used the metricity of the connection
on F ).

Analyzing the second summand, we get

?dF
∧d

A(

d∑
i=1

e1 ∧ · · · ∧∇V ei ∧ · · · ∧ ed) = ?dF
∧d

A
(
∇V (e1 ∧ · · · ∧ ei ∧ · · · ∧ ed)

)
= 0,

where in the last equality we used the metricity of the connection on E. After
eliminating the second summand, (A.2) becomes

V DetA

=

d∑
i=1

?dF (−1)i−1
(
(∇VA)ei ∧Ae1 ∧ · · · ∧ Âei ∧ · · · ∧Aed

)
= (−1)d−1

d∑
i=1

(−1)i−1 ?dF
(
(∇VA)ei ∧ ?1

F ?
d−1
F (Ae1 ∧ · · · ∧ Âei ∧ · · · ∧Aed)

)
= (−1)d−1

d∑
i=1

(−1)i−1
〈

(∇VA)ei, ?
d−1
F (Ae1 ∧ · · · ∧ Âei ∧ · · · ∧Aed)

〉
F

= (−1)d−1
d∑
i=1

〈
(∇VA)ei, ?

d−1
F

(∧d−1
A(?1

V ei)
)〉

F

=

d∑
i=1

〈(∇VA)ei,Cof A(ei)〉F = 〈Cof A,∇VA〉E,F .

Appendix B. Coordinate representation of the Riemannian Piola iden-
tity. For completeness, we formulate the Riemannian Piola identity in local coor-
dinates: Let Roman indices i, j, k denote coordinates on (M1, g) and Greek indices
α, β, γ denote coordinates on (M2, h). The functions gij and hαβ are the entries of
the metrics g and h, respectively, and Γαβγ are the Christoffel symbols of ∇M2 . The

coordinate representation of the differential df is ∂if
α; similarly, Cof df = (Cof df)αi ,

that is
Cof df = (Cof df)αi dx

i ⊗ f∗∂α.
Let ξ = ξα f∗∂α ∈ Γ(f∗TM2) be a compactly-supported section. In local coordi-
nates

∇f
∗TM2ξ = (∇f

∗TM2ξ)βj dx
j ⊗ f∗∂β ,
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where
(∇f

∗TM2ξ)βj = ∂jξ
β + (f∗Γβγδ)∂jf

γξδ.

Equation (1.4) reads∫
M1

gij(f∗hαβ) (Cof df)αi

(
∂jξ

β + (f∗Γβγδ)∂jf
γξδ
)
|g|1/2 dx = 0, (B.1)

where |g| is the determinant of the matrix representing the metric g.
We first note that

gij(f∗hαβ) (Cof df)αi = ((Cof df)T )jβ ,

and that

Det df =
|f∗h|1/2

|g|1/2
det[df ],

where [df ] stands here for the matrix whose entries are ∂if
α.

Hence, the coordinate representation of the Laplace expansion (2.2) is

gij(f∗hαβ) (Cof df)αi ∂jf
γ =
|f∗h|1/2

|g|1/2
det[df ] δγβ .

Secondly,

gij(f∗hαβ) (Cof df)αi =
|f∗h|1/2

|g|1/2
(cof[df ]T )jβ , (B.2)

where, as before, cof denote the matrix-cofactor. Thus, (B.1) reads∫
(cof[df ]T )jγ∂jξ

γ |f∗h|1/2 dx+

∫
(f∗Γββγ) det[df ]ξγ |f∗h|1/2 dx = 0.

Integrating by parts, and since this equation holds for every vector field ξ,

− 1

|f∗h|1/2
∂j

(
(cof[df ]T )jγ |f∗h|1/2

)
+ (f∗Γββγ) det[df ] = 0. (B.3)

Note that the metric and the connection on the source manifold do not appear in
this equation.

In [6, p. 117, bottom], the authors give the following coordinate expression for
the Riemannian Piola identity,

∂j

(
|f∗h|1/2 (cof[df ]T )δj

)
= 0,

which lacks the connection term; hence is invalid even in the Euclidean setting, if

choosing a coordinate system for which Γββγ 6= 0.

Eq. (B.3) can be further simplified: using the classical identity

f∗Γββγ =
1

|f∗h|1/2
f∗∂γ

(
|h|1/2

)
,

(B.3) reduces to

∂j
(
(cof[df ]T )jγ

)
= 0, (B.4)

Perhaps surprisingly, the coordinate representation of f satisfies a Piola identity
that makes no reference to the Riemannian structures ofM1 andM2. At a second
thought, this is not a surprise if we recall that the “proof by calculation” of the
Euclidean Piola identity boils down to the commutation of mixed derivatives, which
is satisfied by the local representation of a twice-differentiable function regardless of
any metric structure. Note, however, that in order to attribute to (B.4) an intrinsic
meaning one has to revert to the form (B.3).
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