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Abstract. We consider various notions of strains—quantitative measures for

the deviation of a linear transformation from an isometry. The main approach,

which is motivated by physical applications and follows the work of [12], is to
select a Riemannian metric on GLn, and use its induced geodesic distance to

measure the distance of a linear transformation from the set of isometries. We

give a short geometric derivation of the formula for the strain measure for the
case where the metric is left-GLn-invariant and right-On-invariant. We proceed

to investigate alternative distance functions on GLn, and the properties of their
induced strain measures. We start by analyzing Euclidean distances, both

intrinsic and extrinsic. Next, we prove that there are no bi-invariant distances

on GLn. Lastly, we investigate strain measures induced by inverse-invariant
distances.

1. Introduction. In various physical and mathematical contexts, a natural ques-
tion arises: how to quantify the distortion of an invertible linear transformation
A ∈ GLn? That is, how far is A from being an isometry? In material science, the
local distortion of a map between two manifolds is known as a strain measure.

One can investigate various notions of strain measures. A natural approach is to
choose a distance function d on GLn, and define the strain measure as follows:

Strain(A) = dist(A,SOn) = inf
Q∈SOn

d(A,Q).

Since SOn is compact, the distance is realized for some Q ∈ SOn.
In material science, the configuration of a body is a map f from a body manifold

B to a space manifold S. If both manifolds are endowed with Riemannian metrics,
then one can define a local strain measure at every point p of the body manifold,

Strain(df) = dist(df, SOn),

where SOn here refers to the space of pointwise orientation-preserving isometries.
By choosing orthonormal frames at both p and f(p), invertible linear maps between
tangent spaces can be identified with GLn, whence the relevance of the proposed
framework to general Riemannian settings.

The notion of strain measure depends on the choice of a distance function d. In
physical applications, one expects this distance to satisfy certain symmetries with
respect to left- and right-multiplication—the former is related to symmetries of
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the ambient space whereas the latter is related to material symmetries. The most
common symmetry assumptions are frame-indifference, which is left-On-invariance,
and material isotropy, which is right-On-invariance.

Left- and right-On-invariance do not determine a unique distance on GLn, nor
do they determine a unique strain measure. The most common distance d is the
so-called Frobenius, or Euclidean distance,

dEuc(A,B) = ‖A−B‖F ,
where ‖A‖2F = tr(ATA). The Euclidean distance results in a strain measure given
by

StrainEuc(A) = ‖
√
ATA− I‖F .

The Euclidean strain measure suffers from well-known drawbacks. From a physi-
cal point of view, the main drawback is that StrainEuc(A) remains finite as A tends
toward singularity. The Euclidean strain “penalizes” extreme expansions, but does
not “penalize” extreme contractions.

The space GLn is a smooth submanifold of the space Mn of n×n matrices. Thus,
a natural way to define a distance d on GLn is via a Riemannian metric g. In this
context, the Euclidean distance dEuc is induced by the Euclidean metric on Mn,

gEuc
Z (X,Y ) = tr(XTY ), where X,Y ∈ TZMn 'Mn

For A,B ∈ Mn, dEuc(A,B) is the length of the segment [A,B] with respect to the
metric gEuc.

A note about terminology: to avoid confusion, we will use the term “distance”,
rather than “metric” in the context of a metric space. The term “metric” will be
reserved for Riemannian metrics.

From a mathematical point of view, a drawback of dEuc|GLn as a distance function
on GLn is that it is not an intrinsic distance. Since GLn is not convex, segments
[A,B], A,B ∈ GLn may not be contained in GLn.

The drawbacks of the Euclidean strain measure are at the heart of a series of
papers by Neff and co-workers [14, 7, 9, 12]. They endow GLn with a metric that
possesses an additional symmetry: in addition to the bi-On-invariance, they assume
left-GLn-invariance; this is perhaps the most symmetric choice, as it is well-known
that there are no bi-invariant metrics on GLn. This additional symmetry restricts
drastically the set of possible metrics. The left-GLn invariance implies that the
metric is fully determined by its value at the identity. The addition of right-On-
invariance yields a family of metrics depending only on three parameters.

In a prior related work by Mielke and co-workers [11, 6, 10], the authors analyze
the same family of left-invariant metrics on SLn. In particular they prove a formula
for the geodesics on SLn which is identical to 1

Another work on the geodesics appears in [1], where the authors derive a for-
mula for the geodesics for a family of left-invariant metrics intersecting the family
mentioned above, which is the main focus of this paper. (They took the standard
p-norm on TIGLn and used its left-translation as the metric. This includes only
the standard metric from our family, however it also contains some Finsler metrics
that are not Riemannian).

It was shown in [12] that the unique matrix in SOn that is the closest to A ∈ GL+
n

is its orthogonal polar factor O, where A = OP , with O ∈ SOn and P ∈ Psymn.
Moreover, a closed formula for the strain measure was derived,

Strain(A) = dist(A,SOn) = ‖ log
√
ATA‖, (1)
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where the logarithm of a symmetric positive-definite matrix is its unique symmetric
logarithm, and the norm ‖·‖ depends on two out of the three parameters mentioned
above (see (4) below). This strain measure diverges in singular limits. In particular,
it is inverse-invariant, i.e

Strain(A) = Strain(A−1).

In this paper we provide an elementary derivation of formula (1) for the strain
measure. Using geometric insights, the set of all possible minimizing paths from
a given A ∈ GL+

n to SOn is narrowed considerably. This helps determining the
minimal distance in an elementary way. In particular, our analysis clarifies the
different roles played by the various symmetries of the metrics.

In section 2, we introduce the family of left-GLn- right-On-invariant metrics.
We state a key property satisfied by these metrics—orthogonality relations—which
play a central role in the forthcoming analysis. We also describe the form of the
geodesics. Section 3 contains the derivation of the corresponding strain measure.
In Subsection 8, we shed light on the reasons for assuming On-invariance, rather
than SOn-invariance, which might have seemed a more natural assumption.

In Section 4, we turn to analyze extrinsic versus intrinsic distances, first in a
general Riemannian setting and then applied to the case of GLn viewed as a sub-
manifold of Mn endowed with the Euclidean metric. The main result is that while
the intrinsic distance differs from the extrinsic distance, the strain measures are the
same in both cases. In particular, we give a very short derivation of Grioli’s optimal-
ity theorem [5] (see also [13]), which says that for a given A ∈ GL+

n , its orthogonal
polar factor is the closest matrix to A in SOn with respect to the Frobenius norm.

In Section 5, we investigate how other natural symmetries on distance functions
affect the strain measure. We start by showing there are no bi-invariant distance
functions on GLn, hence there is an “upper limit” to the amount of symmetries a
distance function can possess (see Subsection 5.1).

Next, we show that an inverse-invariant strain measure is obtained if the dis-
tance/metric is inverse-invariant. We then describe two different techniques for
obtaining such distances/metrics via symmetrization, and analyze the resulting s-
train measures. In the case of symmetrizing a distance, we investigate the two
families of distances considered thus far: the Euclidean (intrinsic and extrinsic) dis-
tance, and the (intrinsic) distances induced by the metrics considered in Section 2.
In the case of the Euclidean distance, the result is an improved strain measure,
which penalizes expansions and contractions equally. In the other cases, the strain
measure is essentially the same as without the symmetrization.

Finally, we discuss the symmetrizations of all the metrics considered in Section 2.
The resulting strain measure is also essentially the same as the original. The proof
contains an analysis of metrics that are expressed as sums of two metrics, and
also sheds light on the key ingredients in the derivation of the strain measure in
Subsection 3.2.

2. Symmetries and geodesics.

2.1. Left-GLn- and right-On-invariant metrics. Throughout this paper, we
use the following notations:

GLn is the group of n×n invertible real matrices, GL+
n and GL−n are the connected

components of GLn, i.e., GL+
n is the subgroup of n × n invertible matrices with



440 RAZ KUPFERMAN AND ASAF SHACHAR

positive determinant, and GL−n is the subset of matrices with negative determinant.
We denote by

On = {Q ∈ GLn | QTQ = I} ⊂ GLn

the subgroup of orthogonal matrices, whereas SOn ⊂ GL+
n is the subgroup of special

orthogonal matrices, i.e those with determinant 1.
We will denote byMn the vector space of n×n real matrices, and by Psymn ⊂Mn

the cone of symmetric positive-definite matrices.
For readability, we will try to stick to the following choice of symbols:

A,B ∈ GLn

O,U ∈ On

Q ∈ SOn

X,Y ∈Mn

P ∈ Psymn.

Let g be a left-GLn- and right-On-invariant metric on GLn. A left-invariant
metric g on a Lie group G is determined by its restriction at the identity. For
A ∈ GLn, let LA : GLn → GLn denote left multiplication by A, i.e LA(B) = AB.
LA is a diffeomorphism and its differential (dLA)I : TIGLn → TAGLn is a vector
space isomorphism. For all X,Y ∈ TIGLn,

gI(X,Y ) = gA ((dLA)IX, (dLA)IY ) . (2)

Since GLn is an open subset of Mn, its tangent space at each point is canonically
identified with Mn as follows: Given A ∈ GLn, the identification iA : Mn → TAGLn
is iA(X) = [t 7→ A+ tX].

The action of the differential dLA on a tangent vector at B is

(dLA)BiB(X) = (dLA)B([B + tX]) = [AB + tAX] = ιAB(AX).

Using the above identification,

(dLA)BX = AX,

where the dependence of the right-hand side on B is implicit via the identification
of Mn with TABGLn.

Substituting this last identify for B = I into (2) we obtain that left-GLn-
invariance implies,

gI(X,Y ) = gA(AX,AY ) ∀A ∈ GLn.

Similarly, right-On-invariance implies

gA(X,Y ) = gAO(XO,Y O) ∀O ∈ On.

An immediate consequence of both left- and right-On-invariance, is that gI is
isotropic. For every U ∈ On:

gI(X,Y ) = gUT (UTX,UTY ) = gUTU (UTXU,UTY U) = gI(U
TXU,UTY U). (3)

In fact, the same argument shows that for any Lie group G and subgroup H ⊆ G,
a left-invariant metric g is right-H-invariant if and only if ge is invariant under
conjugation with elements in H.

From a representation theorem for isotropic operators [2], it follows that there
exist constants α, β ≥ 0 and γ ≤ 0, such that

gI(X,Y ) = α tr(X) tr(Y ) + β tr(symX symY ) + γ tr(skewX skew Y ), (4)
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where symX and skewX denote respectively the symmetric and skew-symmetric
parts of X.

Let sym ⊂ Mn and On ⊂ Mn denote the subspaces of symmetric and anti-
symmetric matrices in Mn

∼= TIGLn. The following lemma asserts that these sets
are orthogonally complementary with respect to gI :

Lemma 2.1. Let gI satisfy the isotropy condition (3). Then, sym and On are
orthogonally complementary.

Proof. The orthogonality of sym and On can be shown by an explicit substitution
in the form (4) of the metric, hence sym ⊆ O⊥n . The fact the these subspaces are
complementary follows from a dimensional argument,

dim sym + dimOn = n2 = dimTIGLn.

2.2. Geodesics. In this section we review the properties of geodesic curves in
(GLn, g).

Proposition 1 (g-geodesics starting at the identity). Let g be left-GLn, right-On-
invariant. Let gI be given by (4) and denote κ = (β − γ)/2β. Let γ : I → GLn be
the g-geodesic, satisfying the initial conditions

γ(0) = I and γ̇(0) = X0.

Then,

γ(t) = exp((1− κ)tX0 + κtXT
0 ) exp(κt(X0 −XT

0 )).

Proof. This was proved in [9] using an argument based on variations of energy. A
shorter alternative proof using Cartan’s moving frame method is given in Appen-
dix A.

Corollary 1 (g-geodesics). Under the same assumptions as above, let γ : I → GLn
be the g-geodesic satisfying the initial conditions

γ(0) = A and γ̇(0) = AX0.

Then,

γ(t) = A exp((1− κ)tX0 + κtXT
0 ) exp(κt(X0 −XT

0 )).

Proof. This follows from the fact that left multiplication is an isometry of (GLn, g).
It is a general property of Riemannian manifolds that isometries map geodesics into
geodesics.

Corollary 2. Let γ : I → GLn be the g-geodesic satisfying the initial conditions

γ(0) = Q and γ̇(0) = QV,

where Q ∈ On and V ∈ sym. Then,

γ(t) = Q exp(tV ).
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3. Geodesic distance from SOn. Every Lie group endowed with a left-invariant
metric is complete as a Riemannian manifold. That is, every geodesic extends
indefinitely. This follows from the fact that its isometry group acts transitively; see
[3, p. 154, Example 12]. By the Hopf-Rinow theorem, [3, p. 146] the length-distance
between any two points is realized by a minimizing geodesic.

Generally, there doesn’t seem to exist any explicit expression for the (possibly
many) geodesics connecting any two elements A,B ∈ GL+

n , nor for the resulting
distance between these elements. Yet, we are only interested in the distance of an
element A ∈ GL+

n from the subgroup SOn of isometries. As demonstrated in [12],
an explicit expression can be derived for that distance. In this section we offer a
simplified derivation of that expression.

3.1. Reduction to diagonal positive-definite matrices. The first step in cal-
culating the distance of A ∈ GL+

n from SOn is to show that it is sufficient to obtain
a formula for diagonal matrices. The following proposition holds for any bi-SOn-
invariant distance on GL+

n—not necessarily a distance induced by a Riemannian
metric.

Proposition 2. Let d be a bi-SOn-invariant distance on GL+
n ; we denote the cor-

responding distance between sets by dist. Let A ∈ GL+
n . If A = UΣV T is a singular

value decomposition (SVD) of A with U, V ∈ SOn, then

dist(A,SOn) = dist(Σ,SOn).

Moreover, if Q is a matrix closest to Σ in SOn, then UQV T is a matrix closest to
A in SOn.

Proof. We first note that for every A ∈ GL+
n , there exists an SVD such that

U, V ∈ SOn (see the comment after the proof of Corollary 3). Moreover, Σ is
unique (up to permutation), i.e., the singular values do not depend on the particu-
lar decomposition.

Assuming U, V ∈ SOn and using the bi-SOn-invariance,

dist(A,SOn) = min
Q∈SOn

d(A,Q) = min
Q∈SOn

d(UΣV T , Q)

= min
Q∈SOn

d(Σ, UTQV ) = dist(Σ,SOn).
(5)

The last equality holds since {UTQV | Q ∈ SOn} = SOn. Equation (5) implies that
Q ∈ SOn is a matrix closest to Σ in SOn if and only if UQV T is a matrix closest to
A in SOn.

3.2. Geodesic distance for diagonal matrices. By Proposition 2, we can fo-
cus our attention on finding the distance from SOn for diagonal positive-definite
matrices, Σ. Since GL+

n is complete, we look for a minimizing geodesic from Σ to
SOn. To do so, we are going to exploit the fact that any geodesic minimizing the
distance of a point to a submanifold intersects that submanifold perpendicularly.
More precisely:

Lemma 3.1. Let M be a complete Riemannian manifold. Let S ⊆M be a subman-
ifold, and let p ∈M \S. Assume q ∈ S is a point on S satisfying d(p, q) = dist(p, S)
(there is always such a point q if S is compact). Let α be a minimizing geodesic
connecting p and q. Then α is orthogonal to S at q.

See C.1 for a proof.
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Proposition 3. Let Σ = diag(σ1, . . . σn) be a diagonal matrix with positive entries.
Then,

dist(Σ,SOn) = d(Σ, I).

Moreover, I is the unique element of SOn minimizing the distance from Σ.

Proof. Let Q ∈ SOn satisfy

d(Σ, Q) = dist(Σ,SOn).

By the completeness of GL+
n , there exists a minimizing geodesic α : [0, 1] → GL+

n

from Q to Σ, i.e.,

α(0) = Q, α(1) = Σ and L(α) = ‖α̇(0)‖Q = d(Σ, Q).

Lemma 3.1 implies that α̇(0) ⊥ TQSOn.

Denoting α̇(0) = QV (where we think of V as an element of TIGL+
n
∼= Mn,

and QV is identified with d(LQ)I(V )), we obtain for any antisymmetric matrix
X ∈ On = TISOn:

gI(X,V ) = gQ(QX,QV ) = gQ(QX, α̇(0)) = 0,

where the last equality is valid since d(LQ)I(TISOn) = TQSOn, hence QX =
d(LQ)I(X) ∈ TQSOn.

Thus, V ∈ TIGL+
n is orthogonal to every anti-symmetric matrix, and by

Lemma 2.1, V ∈ sym. It follows from Corollary 2 that

α(t) = QetV .

By the definition of α, α(1) = Σ = QeV . Since V is symmetric, eV is symmetric
positive-definite, hence we obtain two polar decompositions of Σ,

Σ = IΣ and Σ = QeV .

By the uniqueness of polar decomposition for invertible matrices, we conclude that
Q = I, which completes the proof.

We proceed to derive an explicit formula for the distance of Σ from SOn. Since
Q = I,

eV = Σ = elog Σ,

where log Σ = diag(log σi). Since V and log Σ are symmetric, and since the matrix
exponential is injective on the space of symmetric matrices, it follows that V =
log Σ. Hence,

dist(Σ,SOn) = ‖α̇(0)‖I = ‖V ‖I = ‖ log Σ‖I .

Substituting the explicit form (4) of the metric gI ,

dist(Σ,SOn) =

√
α
(∑

log σi

)2

+ β
∑

(log σi)
2
. (6)

As a corollary, we get that α(t) = et log Σ is the unique minimizing geodesic con-
necting I to Σ.
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3.3. Geodesic distance for arbitrary matrices. Let A ∈ GL+
n be an arbitrary

matrix. If A = UΣV T is an SVD of A, then
√
ATA = V ΣV T , hence log

√
ATA =

V log ΣV T . By Proposition 2,

dist(A,SOn) = ‖ log Σ‖I = ‖V log ΣV T ‖I = ‖ log
√
ATA‖I , (7)

where the second equality follows from the invariance (3). Whenever we write log
of a symmetric positive-definite matrix, we refer to its unique symmetric logarithm.
Since the exponential map is a diffeomorphism from symn to Psymn there is no
ambiguity here. We have thus obtained an explicit expression for the distance of
any matrix A ∈ GL+

n from SOn by elementary means.
We have shown that for a diagonal positive-definite matrix Σ, Q = I is the unique

element in SOn satisfying dist(Σ,SOn) = d(Σ, Q). By Proposition 2, if A = UΣV T

is an SVD of A ∈ GL+
n with U, V ∈ SOn, then UV T is the unique matrix in SOn

that is closest to A.
Moreover:

Corollary 3 (The orthogonal polar factor is the minimizer). Let A ∈ GL+
n . Let

A = OP be the polar decomposition of A, O ∈ SOn and P ∈ Psymn. Then O is the
matrix closest to A in SOn.

Proof. By orthogonally diagonalizing P with P = ŨΣŨT , we obtain an SVD,

A = OŨΣŨT = UΣV T ,

where U = OŨ and V = Ũ . Note that by interchanging two columns if necessary,
we can assume Ũ ∈ SOn, hence V,U ∈ SOn. By the above discussion, UV T =
OŨŨT = O is the matrix closest to A.

Please note: the above argument shows that for A ∈ GL+
n there always exists an

SVD where both orthogonal matrices are in SOn.

3.4. On versus SOn-invariance. The analysis presented in Sections 2 and 3 as-
sumes that the metric g is left-GLn- and right-On invariant. Since we are interested
in intrinsic distances in GL+

n from the subgroup SOn, it may seem as if we could
perform the whole analysis in GL+

n rather than in GLn. In such case, it only makes
sense to require the Riemannian metric to be left-GL+

n and right-SOn invariant—
right On-invariance, for example, is meaningless. A natural question is the following:
would we obtain the same geodesic distances and the same strain measures if we
considered left-GL+

n and right-SOn-invariant metric on GL+
n ?

An inner-product gI satisfying condition (3) is called isotropic. In contrast, an
inner-product gI satisfying

gI(X,Y ) = gI(S
TXS,STY S), ∀S ∈ SOn (8)

is called hemitropic. If every hemitropic inner-product is isotropic, then our entire
analysis extends as is to SOn-invariant metrics on GL+

n . If, however, isotropy and
hemitropy are not equivalent, then our analysis has to be revisited, as the repre-
sentation of the inner-product (4) relies explicitly on the isotropic nature of the
inner-product gI .

Our analysis relies on the specific form (4) of the inner-product gI in two crucial
aspects: (i) in the derivation of an explicit formula for the geodesics, and (ii) in
obtaining the orthogonality of symmetric and anti-symmetric matrices. Since an
inner-product is of the form (4) if and only if it is isotropic, any hemitropic, but
non-isotropic inner-product is not of that form, hence our analysis is not applicable.
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It turns out that for all dimensions n 6= 4, there are no hemitropic non-isotropic
inner-products. For odd n this is trivial to see since −I ∈ On \SOn commutes with
every other matrix. The analysis for even dimensions is less trivial. A proof can
be found in [4] . Thus, our work holds as is with isotropy replaced by hemitropy
in any dimension other than 4. Understanding the implications of an hemitropy
assumption for n = 4 remains an open question.

4. Intrinsic versus extrinsic distances. Endowing GL+
n with distances induced

by Riemannian metrics is one type of choice for measuring the distortion of a linear
map. Another popular choice is the distance induced by the Frobenius inner-product

on Mn, or equivalently, the Euclidean metric on Mn identified with Rn2

. In fact, one
of the motivations in [12] for considering distances induced by Riemannian metrics
was the claimed inadequacy of the Euclidean metric. Note that the Euclidean metric
gives rise to two distinct distances on GL+

n : (i) an extrinsic distance, obtained by
restricting the Euclidean distance function to the subset GL+

n of Mn, and (ii) an
intrinsic length-distance determined by paths in GL+

n .
In this section we explore the distinction between extrinsic and intrinsic distances,

first in a general Riemannian context, and second, in the original Euclidean context.

4.1. The general Riemannian case. Let (M, g) be a Riemannian manifold. De-
note the induced Riemannian distance function by dM . Let S ⊂M be an embedded
connected submanifold.

There are two natural ways to induce a distance on S:

1. Intrinsic: Consider S as a Riemannian submanifold of M , i.e., endow S with
the pullback metric i∗g along the inclusion i : S → M . Denote by dint

S the
Riemannian distance function induced by i∗g.

2. Extrinsic: Consider S as a subspace of the metric space (M,dM ). Denote by
dext
S the restriction of dM to S × S.

An immediate observation is that dint
S ≥ dext

S . The question we pose is under
what conditions, dint

S = dext
S .

In general, both equality and inequality may hold: For M = S2 endowed with
the round metric and S a great circle, dint

S = dext
S . For M = R2 with the standard

Euclidean metric and S = S1, dint
S > dext

S .
To state our results we need the following classical definitions:

Definition 4.1. Let (M, g) be a Riemannian manifold. A subset C of M is said to
be a geodesically convex if, given any two points in C, there is a minimizing geodesic
(in M) contained within C joining these two points.

Definition 4.2. A submanifold S of a Riemannian manifold (M, g) is called totally
geodesic if any geodesic on the submanifold S with its induced Riemannian metric
is also a geodesic on the Riemannian manifold (M, g). (This condition is equivalent
to the vanishing of the second fundamental form of S in M .)

To prove our results we shall need the following lemma which roughly says that
paths that are close to being length-minimizers are within a narrow tubular neigh-
borhood of a (minimizing) geodesic.

Lemma 4.3 (Nearly length-minimizing paths are close to geodesics). Let (M, g)
be a complete Riemannian manifold, and let p, q ∈ M . Then, for any ε > 0 there
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exists a δ > 0 (possibly dependent on p and q) such that any path α joining p and
q satisfying

L(α) < d(p, q) + δ

is in an ε-neighborhood of a minimizing geodesic γ : I →M joining p and q. In
particular, there exists a reparametrization α ◦ ϕ : I →M of α satisfying

sup
t∈I

d (α ◦ ϕ(t), γ(t)) < ε.

In this lemma there is no submanifold, so the distance has only one possible
meaning— the Riemannian distance on M .

Proof. Assume by contradiction that the claim is false. Denote r = d(p, q). Then,
there exists an ε > 0 and a sequence of paths αn : I →M joining p and q, satisfying

L(αn) ≤ d(p, q) +
1

n
,

and αn is not in an ε-neighborhood of any minimizing geodesic.
Since L(αn)→ r, we can assume L(αn) ≤ 2r, thus Image(αn) ⊆ B̄M (p, 2r) (the

closed ball of radius 2r around p). By the completeness of M , it follows from the
Hopf-Rinow theorem that B̄M (p, 2r) is compact.

Reparametrize α1 by arclength, i.e assume I = [0, L(α1)], and that α1 : I → M
has a constant speed. For every n ∈ N, reparametrize αn : I →M such that it has
a constant speed cn = ‖α̇n‖. Then

2L(α1) ≥ 2r ≥ L(αn) = cnL(α1) ⇒ cn ≤ 2,

which implies that the αn are equicontinuous, since

d(α(t), α(s)) ≤ L(α[t,s]) ≤ 2(s− t).
By the Arzela-Ascoli theorem, there exists a subsequence (also denoted αn) con-

verging uniformly to a path α : I → M . By the lower-semicontinuity of the length
functional we deduce:

L(α) ≤ lim
n→∞

L(αn) = d(p, q).

This implies that α is a length-minimizing curve between p and q, hence its repara-
metrization by arclength α ◦ ϕ is a geodesic.

Finally, the uniform convergence αn → α yields a contradiction: there exists an
N such that for all n > N ,

sup
t∈I

d ((αn ◦ ϕ)(t), (α ◦ ϕ)(t)) < ε.

We next prove the following:

Proposition 4. Let S be a submanifold S of a Riemannian manifold (M, g). Then:

1. If S is a geodiscally convex subset of M , then dintS = dextS . The reverse im-
plication does not hold in general. The next assertion shows that the only
obstruction for the reverse direction to hold, is topological.

2. If S is topologically closed in M , then dintS = dextS if and only if S is a geodesi-
cally convex subset of M .

3. If dintS = dextS then S is a totally geodesic submanifold of M . The reverse
implication does not hold in general.

4. Let p, q ∈ S. Assume there exists a unique minimizing geodesic γ : I → M
connecting p and q. If γ ∩ (M \ S̄) 6= ∅ , Then dintS (p, q) > dextS (p, q).
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The last two statements hold also if we replace the existence of a unique geodesic
with the existence of finitely many geodesics.

Proof. 1. The fact that geodesic convexity implies equality of the distances is
immediate. A counter-example for the reverse implication is M = R2, S =
R2 \ (0, 0).

2. Assume dIntS = dExtS . Let p, q ∈ S. Let αn : I → S be a sequence of paths
satisfying L(αn) → d(p, q). Then, by a similar argument to the one in the
proof of Lemma 4.3, there is a subsequence αn converging uniformly to a
path α. By the lower-semicontinuity of the length, L(α) = d(p, q), so α is
minimizing, hence it is a reparametrization of a geodesic. Closedness of S
implies Image(α) ⊆ S.

3. Suppose that dint
S = dext

S , and let α be a geodesic in S. Then, it is locally
length-minimizing in S, and for small enough t,

L(α|[0,t]) = dint
S (α(0), α(t)) = dext

S (α(0), α(t)) = dM (α(0), α(t)).

So α|[0,t] is length-minimizing path between α(0), α(t) in M with parameter
proportional to arc length, hence it is a geodesic in M .

A counter-example for the reverse implication is M = S1, S = S1 \ {p}
(where p is an arbitrary point in S1). We will see another counter-example in
the next section: M = Mn and S = GL+

n .
4. By assumption, there exists t0 ∈ I such that γ(t0) ∈ M \ S̄. Since M \ S̄ is

open, there is some open ball of dM -radius ε, γ(t0) ∈ Bε ⊂M \ S̄.
By Lemma 4.3, ∃δ > 0 such that if α is a path between p, q, L(α) <

dM (p, q) + δ then α is in an ε-neighborhood of some minimizing geodesic
joining p and q. By our assumption, there is only one minimizing geodesic
between p and q in M , namely γ.

Thus, there exists a reparametrization of α, α ◦ ϕ : I → M , such that for
every t,

d
(
(α ◦ ϕ)(t), γ(t)

)
< ε.

In particular, d
(
(α ◦ ϕ)(t0), γ(t0)

)
< ε implies that (α ◦ ϕ)(t0) ∈ Bε ⊆M \ S̄.

This shows that any path α which is δ-close to being a minimizer intersect
M \ S̄. Hence dIntS (p, q) ≥ dExtS (p, q) + δ.

4.2. Euclidean distances in GL+
n . Next, we consider the particular case where

the Riemannian manifold is the vector space of n × n matrices endowed with the
Euclidean metric. This is the case considered classically in the context of elastic
strain measures, and whose shortcomings has motivated, in part, the consideration
of alternative measures of strain.

We start with a few definitions:

Definition 4.4 (Euclidean metric on Mn). We denote by (Mn, d
Euc) the space of

n × n real matrices endowed with the Euclidean distance. Note that the distance
dEuc can be derived from a Riemannian metric g given by

gZ(X,Y ) = tr(XTY ).

Definition 4.5 (Extrinsic Metric on GL+
n ). We denote by (GL+

n , d
ext) the metric

space of n × n invertible matrices with positive determinant, where dext is the

restriction of dEuc, with GL+
n viewed as a subset of Rn2

.
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Definition 4.6 (Intrinsic Metric on GL+
n ). Consider (GL+

n , g|GL+
n

) as an open sub-

manifold of the Riemannian manifold (Mn, g). That is, we endow GL+
n with the

pullback metric i∗g of the Euclidean metric g along the inclusion i : GL+
n → (Mn, g).

We denote by dint the distance function induced by the Riemannian metric i∗g.

We first observe that dint > dext for some pair of matrices. Indeed, for any
X,Y ∈Mn, the unique minimizing geodesic is the segment

[X,Y ] = {X + t (Y −X) : t ∈ [0, 1]}.

Since the sub-manifold GL+
n is not convex, there exist A,B ∈ GL+

n , such that the
segment [A,B] intersects GL−n . By Item 4 in Proposition 4,

dext(A,B) < dint(A,B).

However, we note the following:

Lemma 4.7. Let A,B ∈ GL+
n . If [A,B] ⊂ GL+

n , then dint(A,B) = dext(A,B).

Proof. This is obvious, since [A,B] is an extrinsic length-minimizing path which
stays in the submanifold.

We next observe that both right- and left-multiplications by elements of SOn are
isometries of (GL+

n , i
∗g). Hence, they are isometries of the metric space (GL+

n , d
int)

(any Riemannian isometry is an isometry of the induced distance function). It
follows that dint is both left- and right-SOn invariant.

In particular, let A = UΣV T be an SVD of A ∈ GL+
n . By Proposition 2,

dint(A,SOn) = dint(Σ,SOn),

hence, as before, the problem of computing the distance of A ∈ GL+
n from SOn

(and finding the minimizer) can be reduced to positive-definite diagonal matrices
Σ. We now give a short proof that I is the unique matrix closest to Σ with respect
to the extrinsic distance, that is,

dext(Σ,SOn) = dext(Σ, I) = ‖Σ− I‖F .

Indeed, since

‖A−Q‖2F = ‖A‖2F + ‖Q‖2F − 2〈A,Q〉F = ‖A‖2F + n− 2 tr(ATQ), (9)

it follows that given A ∈Mn, minimizing ‖A−Q‖2F over Q ∈ SOn is equivalent to
maximizing the linear functional ϕA(Q) = 〈A,Q〉F = tr(ATQ). For diagonal and
positive-definite Σ,

ϕΣ(Q) = tr(ΣTQ) =

n∑
i=1

σiQii ≤
n∑
i=1

σi = tr(ΣT ) = ϕΣ(I),

where the inequality follows from the fact that Q is orthonormal, hence |Qij | ≤ 1.
The unique maximizer is Q = I, hence I is the unique matrix closest to Σ.

Theorem 4.8. Let Σ ∈ GL+
n be a diagonal matrix with strictly positive entries on

the diagonal. Then the unique minimizer of the intrinsic distance of Σ from SOn

is I, and

dint(Σ,SOn) = dext(Σ,SOn).
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Proof. Since Psymn is closed under convex combinations, it follows that [Σ, I] ⊆
GL+

n . By Lemma 4.7, it follows that dint(Σ, I) = dext(Σ, I).
The inequality dint ≥ dext implies that

distint(Σ,SOn) ≥ distext(Σ,SOn).

Hence,

distext(Σ,SOn) = dext(Σ, I) = dint(Σ, I) ≥ distint(Σ,SOn) ≥ distext(Σ,SOn).

So, I is a minimizer and distint(Σ,SOn) = distext(Σ,SOn).

The uniqueness of the minimizer for distint follows from the uniqueness of the
minimizer for distext: Let Q ∈ SOn be a minimizer for the distance distint of Σ
from SOn. Then,

distext(Σ,SOn) = distint(Σ,SOn) = dint(Σ, Q) ≥ dext(Σ, Q),

hence Q is also a minimizer for distext, and by the uniqueness of the extrinsic
minimizer, Q = I.

Corollary 4. Let A ∈ GL+
n . Then

dint(A,SOn) = dext(A,SOn),

and the closest matrix to A in SOn with respect to both distances is the same—it is
the orthogonal polar factor of A. Moreover,

dint(A,SOn) = ‖
√
ATA− I‖F . (10)

Proof. This is an immediate consequence of Proposition 2 applied to both distances,
together with Theorem 4.8. The fact that the orthogonal polar factor is the unique
minimizer follows from the same considerations as in the proof of Corollary 3.

5. Additional results concerning invariant distances.

5.1. Bi-invariance. As always in mathematics, the most symmetric structures are
the most easy to handle. In [12], the authors consider either left- and right-GLn-
invariance as natural requirements on a metric on GLn. Their choice is motivated
by physical considerations.

A natural question is: does there exist a distance function on GLn that is more
symmetric than the ones we have considered? In this section we show here that
there are no bi-invariant distance functions on GLn that are compatible with the
standard topology. (The fact there is no bi-invariant Riemannian metric is common
knowledge.)

Theorem 5.1. There is no bi-invariant distance function on GLn generating the
standard topology on GLn (the subspace topology induced by the inclusion GLn →
Rn2

).

Proof. The essential point is the existence of a non-trivial conjugacy class whose
closure contains the identity. Assume, by contradiction, there is a bi-invariant
distance function d compatible with the standard topology. Consider the following
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matrices:

D =


2−1 0 · · · 0
0 2−2 · · · 0
...

...
. . .

...
0 0 · · · 2−n

 and A =



1 1 0 · · · 0
0 1 1 · · · 0

0 0 1
. . . 0

...
...

...
. . .

...
0 0 0 · · · 1

 .

An explicit calculation yields,

D−nADn =



1 2−n 0 · · · 0
0 1 2−n · · · 0

0 0 1
. . . 0

...
...

...
. . .

...
0 0 0 · · · 1

 .

Since d generates the standard topology on GLn, it follows that

lim
n→∞

d(D−nADn, I) = 0.

On the other hand, bi-invariance implies that for every n,

d(D−nADn, I) = d(D−nADn, D−nIDn) = d(A, I) 6= 0,

which is a contradiction.

As an immediate corollary we obtain the classical result:

Corollary 5. There is no bi-invariant Riemannian metric on GLn.

5.2. Inverse-invariance. When it comes to physical applications, a major draw-
back of the Euclidean strain measure is that it does not diverge in the limit where
the linear map is singular. From a physical viewpoint, we expect a strain measure
dist(A,SOn) to diverge when A either tends to infinity (expansion), or when it tends
toward singularity (contraction). The strain measure is said to be inverse-invariant
if

Strain(A) = Strain(A−1), (11)

for every A ∈ GL+
n .

As noted in the Introduction, the strains obtained via the metrics considered in
Section 2 are all inverse-invariant. The essential reason behind this phenomenon,
is the extreme symmetry of these metrics. Specifically, we have the following very
general assertion:

Proposition 5. Let G be a group and H ⊆ G a subgroup. Let d be a left-G-
right-H-invariant distance function on G. Then,

dist(g,H) = dist(g−1, H).

Moreover, if h is a closest element to g in H, then h−1 is a closest element to
g−1 in H.

Proof. Using the assumed invariances,

dist(g,H) = inf
h∈H

d(g, h) = inf
h∈H

d(e, g−1h) = inf
h∈H

d(h−1, g−1) = dist(g−1, H)

The equality d(g, h) = d(g−1, h−1) (for h ∈ H) implies the correspondence be-
tween closest elements to g and g−1.
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Note how this observation implies, without any computation, that certain strain
measures are inverse-invariant (the actual form of the strain measures is irrelevant).

Another means for obtaining inverse-invariant strain measures is to consider dis-
tance functions d on GLn that are inverse-invariant, i.e.,

d(A,B) = d(A−1, B−1). (12)

Indeed, the inverse-invariance of the distance implies the inverse-invariance of the
strain measure, as

dist(A,SOn) = dist(A−1,SO−1
n ) = dist(A−1,SOn).

As we will see, the requirement for inverse-invariance of the distance is far less
restrictive than left-GLn- and right On-invariance.

In a search for maximally-symmetric distance functions, we first look for inverse-
invariant distances (or metrics) possessing additional symmetries. In Proposition-
s 9–10 we prove that in any Lie group G, a left-invariant metric (distance) is
inverse-invariant if and only if it is bi-invariant. Since there are no bi-invariant
metrics/distances on GLn, it follows that no left-GLn- and inverse-invariant met-
ric/distance exists either.

In particular, it follows that the distance functions induced by the metrics con-
sidered in Sections 2 and 3 are not inverse-invariant. That is, the inverse-invariance
of the strain measure does not result from the inverse-invariance of the distance,
but rather from the left-GLn and right-SOn invariance of the metrics, as shown in
Proposition 5 (also observed in [12, Section 3.2 Eq. (23)]).

There is a systematic way of constructing inverse-invariant distances from arbi-
trary distances. Denote the inverse automorphism by i. Since i is a diffeomorphism
of finite order, given any distance d on GLn, it is possible to construct an inverse-
invariant distance via symmetrization,

d̃(A,B) = d(A,B) + d(A−1, B−1).

It is easy to see that d̃ generates the same topology as d, and it is of course inverse-
invariant.

A similar construction can be carried out for Riemannian metrics on GLn. Given
any metric g, the metric g + i∗(g) is inverse-invariant, and induces the standard
topology on GLn, as does any Riemannian metric.

In the following subsections, we analyze how these two different methods for gen-
erating inverse-invariant distances affect the strain measure. We will see that if we
start from distances/metrics having certain symmetries, then their symmetrizations
possess corresponding symmetries as well.

5.2.1. Inverse-invariant distances. The next lemma considers a setting that gener-
alizes our treatment of left-GLn- and right-On invariant distance functions.

Lemma 5.2. Let G be a group and let H ⊆ G be a subgroup. Let d be a left-G-
and right-H-invariant distance function on G. Let d̃ be its symmetrization. Then,

distd̃(g,H) = 2 distd(g,H).

Moreover, an element h ∈ H is a closest element in H to g with respect to d if and
only if it is a closest element with respect to d̃.
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Proof. The assumed symmetries imply d(g, h) = d(g−1, h−1) for any g ∈ G and
h ∈ H (see the proof of Proposition 5). Hence,

distd̃(g,H) = inf
h∈H

d̃(g, h)

= inf
h∈H

d(g, h) + d(g−1, h−1)

= inf
h∈H

2 d(g, h)

= 2 distd(g,H).

To prove the second part, note that for h ∈ H, d̃(g, h) = distd̃(g,H) if and only if
2 d(g, h) = 2 distd(g,H).

The above lemma implies that there is not much interest in symmetrizing left-
G- and right-H-invariant distance functions, since the symmetrizations give rise to
essentially identical notions of distance from H.

We turn to analyze symmetrization within the context of intrinsic versus extrinsic
Euclidean distances. As above, we provide a slightly more general treatment that
considers the relevant symmetries. Since this setting possesses less symmetries
than the one considered above, we will have to use properties that are specific to
the Euclidean distance; in particular, SVD plays an important role.

Lemma 5.3. Let G be a group and let H ⊆ G be a subgroup. Let d be a bi-H-
invariant distance on G. Then, its symmetrization d̃ is also bi-H-invariant.

Proof. For every h ∈ H,x, y ∈ G,

d̃(hx, hy) = d(hx, hy) + d(x−1h−1, y−1h−1) = d(x, y) + d(x−1, y−1) = d̃(x, y).

Right-H-invariance is proved similarly.

In our context, since both intrinsic and extrinsic Euclidean distances are bi-SOn

invariant, their symmetrizations are also bi-SOn invariant.
By Proposition 2, distd̃(A,SOn) = distd̃(Σ,SOn), where A = UΣV T is any SVD

of A. By the results in Section 4.2, I is the closest matrix to both Σ and Σ−1 with
respect to both intrinsic and extrinsic Euclidean distances.

Hence, for every Q ∈ SOn,

d̃(Σ, Q) = d(Σ, Q) + d(Σ−1, Q−1) ≥ d(Σ, I) + d(Σ−1, I) = d̃(Σ, I),

from which follows that I is the matrix in SOn that is the closest to Σ with respect
to d̃, and

distd̃(A,SOn) = distd̃(Σ,SOn) = d̃(Σ, I) = d(Σ, I) + d(Σ−1, I)

= distd(A,SOn) + distd(A
−1,SOn).

Again, we obtain that the matrix in SOn that is the closest to A is the orthogonal
polar factor of A.

The symmetrization of the Euclidean distance gives a truly different notion of
strain measure, as it penalizes equally both expansions and contractions. Thus,
it can be considered an improved strain measure. At the same time, it preserves
the symmetries pertinent to the Euclidean metric—frame invariance and material
isotropy.
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5.2.2. Inverse-invariant metrics. We now turn to the symmetrization of Riemann-
ian metrics on GLn. Given any metric g, the metric g̃ = g + i∗(g) is inverse-
invariant. It is common knowledge (see sketch of proof in [15]) that the space of
inverse-invariant metrics for any Lie group is infinite-dimensional, hence, we have
to address the question of finding natural inverse-invariant metrics. We note that
in general, the distance function induced by the symmetrized metric g̃ is not the
symmetrization of the distance function induced by g. Hence, the analysis of the
previous subsection is not applicable.

We start by showing that the symmetrized metric inherits some of the symmetries
of the original metric.

Lemma 5.4. Let G be a Lie group and let H ⊆ G be a subgroup. Let g be a
bi-H-invariant metric on G. Its symmetrization g̃ is also bi-H-invariant.

Proof. Let h ∈ H. Then

L∗h(g + i∗g) = L∗hg + L∗h(i∗g) = g + (i ◦ Lh)∗g.

Since i ◦ Lh = Rh−1 ◦ i,

L∗h(g + i∗g) = g + (Rh−1 ◦ i)∗g = g + i∗(R∗h−1g) = g + i∗g.

The proof that R∗h(g + i∗g) = g + i∗g is similar.

It follows that the symmetrizations of all the metrics considered in sections 2 and
4.2 are bi-On invariant.

In the remaining part of this section we study the symmetrization of the metrics
considered in Section 2.

As mentioned above, the symmetrized metrics, unlike the original metrics, are not
left-GLn invariant, hence, our analysis of the geodesics is not applicable. However,
the symmetrized metrics share three important properties with the original metrics:

1. (GL+
n , g̃) is complete.

2. The symmetric and the skew-symmetric matrices are orthogonal with respect
to g̃I .

3. α(t) = etV is a g̃-geodesic for any symmetric matrix V .

We start by showing the orthogonality of symmetric and skew-symmetric matri-
ces. For any A ∈ symn and B ∈ On,

(i∗g)I(A,B) = gI(diI(A), diI(B)) = gI(−A,−B) = 0,

hence

g̃I(A,B) = gI(A,B) + (i∗g)I(A,B) = 0.

We proceed to prove the completeness of (GL+
n , g̃). First note that completeness

of g implies completeness of i∗g, since i : (GLn, i
∗g) → (GLn, g) is an isometry.

So, it suffices to prove that if two Riemannian manifolds (M, g1) and (M, g2) are
complete then so is (M, g1 + g2).

Lemma 5.5. Let M be a smooth manifold, and let g1, g2 be Riemannian metrics
on M . If either (M, g1) or (M, g2) is complete, then (M, g1 + g2) is complete.
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Proof. Let p, q ∈M . For any path α from p to q,

Lg1+g2(α) =

∫ √
g1(α̇(t), α̇(t)) + g2(α̇(t), α̇(t))

≥
∫ √

g1(α̇(t), α̇(t))

= Lg1(α).

Similarly Lg1+g2(α) ≥ Lg2(α). Without loss of generality, Assume that (M, g1) is
complete. For any p, q ∈M ,

dg1(p, q) = inf
α:p 7→q

Lg1(α) ≤ inf
α:p 7→q

Lg1+g2(α) = dg1+g2(p, q)

By the Hopf-Rinow theorem, a Riemannian manifold (M, g) is complete if and only
if closed and g-bounded sets are compact. Let A ⊆ M be a closed and (g1 + g2)-
bounded set. Boundedness implies that there exists a point p ∈ M and a number
R > 0, such tha dg1+g2(a, p) ≤ R for every a ∈ A.

Since dgi(a, p) ≤ dg1+g2(a, p) ≤ R, it follows that A is also g1-bounded. Since
(M, g1) is complete, A is compact, hence g1 + g2 is complete as well.

It remains to show that α(t) = etV is a geodesic for symmetric V . We first note
that α(t) = i(etV ) = e−tV is a geodesic of i∗g, since i : (GLn, i

∗g)→ (GLn, g) is an
isometry. Reversing time, we get that α(t) = etV is a geodesic of both g and i∗g.
Note that every geodesic is parametrized by a parameter proportional to arclength,
i.e., its speed ‖α̇(t)‖ is constant. In this particular case, the speeds are the same
when measured with respect to both metrics, since gI = (i∗g)I , hence ‖α̇(0)‖ is
independent of the metric chosen. It turns out that in this particular situation, α
is a geodesic with respect to the metric g + i∗g.

Lemma 5.6. Let M be a smooth manifold, and let g1, g2 be Riemannian metrics
on M . Assume β(t) is a geodesic for both g1 and g2, and that its speed is the same
with respect to both metrics. Then β(t) is also a (g1 + g2)-geodesic.

Proof. The inequality:
√
a+ b ≥ 1√

2
(
√
a+
√
b) implies that for any path α in M ,

Lg1+g2(α) =

∫ √
g1(α̇(t), α̇(t)) + g2(α̇(t), α̇(t))

≥ 1√
2
·
( ∫ √

g1(α̇(t), α̇(t)) +

∫ √
g2(α̇(t), α̇(t))

)
=

1√
2
· (Lg1(α) + Lg2(α)).

(13)

Since β is a geodesic with respect to both g1 and g2, it is locally length-minimizing
with respect to both metrics; for small enough t, Lgi(β|[0,t]) = dgi(β(0), β(t)) = tc,
for some constant c. Let α be any path connecting β(0), β(t). By our assumption,√
g1(β̇(t), β̇(t)) =

√
g2(β̇(t), β̇(t)) = c. Note that

Lg1+g2(β|[0,t]) =

∫ t

0

√
g1(β̇(t), β̇(t)) + g2(β̇(t), β̇(t))
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=
√

2ct =
1√
2
· (tc+ tc)

=
1√
2
·
(
dg1(β(0), β(t)) + dg2(β(0), β(t))

)
≤ 1√

2
· (Lg1(α) + Lg2(α)) ≤ Lg1+g2(α)

,

where the last inequality uses (13). Thus, β locally minimizes length with respect
to g1 + g2, hence it is a geodesic. (Note it is parametrized proportional to arclength
with respect to g1 + g2.)

Next, we imitate from Section 3 the argument for finding the geodesic distance
from SOn. By Lemma 5.4, we can use Proposition 2 to reduce again the question
to diagonal matrices. Since the derivation of the strain measure uses only the three
properties of the metric mentioned above, it works in exactly the same manner for
the symmetrized metric.

There is just one delicacy. The proof hinges on the fact that α(t) = QetV is a
g̃-geodesic for any symmetric V and Q ∈ SOn (note that at this stage we don’t yet
know that Q = I). From Lemma 5.6 follows that etV is a g̃-geodesic. Since (Lem-
ma 5.4 again) g̃ is bi-On-invariant it follows that α is also a g̃ geodesic. Following
the rest of the proof, the only difference is at the final stage, when evaluating the
speed ‖α̇(0)‖I , where g̃I -is scaled by

√
2,

‖V ‖I =
√
gI(V, V ) + (i∗g)I(V, V ) =

√
2 · gI(V, V ).

Hence, the strain measure is multiplied by a factor of
√

2.

Appendix A. Calculating the geodesics.

A.1. Analysis of the geodesic equations. Let gI be an inner-product on Mn =
TIGLn given by the form (4), and let g be the Riemannian metric on GLn which is
the left-translation of gI .

First, we need the following result.

Proposition 6. For every X,Y ∈ TIGLn,

gI(X, [Y,X]) =
β − γ

2β
gI([X,X

T ], Y ).

(Here [X,Y ] denotes the standard matrix commutator, i.e [X,Y ] = XY − Y X.)

Proof. Note first that

gI(X, [Y,X]) = β tr(symX sym[Y,X]) + γ tr(skewX skew[Y,X]),

and

gI([X,X
T ], Y ) = β tr(sym[X,XT ] symY ).

Now,

tr(symX sym[Y,X]) =
1

4
tr((X +XT )(Y X −XY +XTY T − Y TXT ))

=
1

2
tr([X,XT ]Y ) =

1

2β
gI([X,X

T ], Y ),
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and

tr(skewX skew[Y,X]) =
1

4
tr((X −XT )(Y X −XY −XTY T + Y TXT ))

= −1

2
tr([X,XT ]Y ) = − 1

2β
gI([X,X

T ], Y ),

hence

gI(X, [Y,X]) =
β − γ

2β
gI([X,X

T ], Y ).

Let {aα} be a gI -orthonormal basis for (TIGLn, g). Since g is left-invariant, eα =
d(Lg)e(aα) is an orthonormal frame for (TGLn, g). Let {ϑα} be the orthonormal
co-frame,

ϑα|A = gA(eα|A, ·) = gA(iA(Aaα), ·),
which implies that

ϑα|A(iA(AX)) = gI(aα, X).

The Riemannian connection is represented by an anti-symmetric matrix of 1-
forms, {ωαβ}, defined by

∇eαeβ = ωγβ(eα) eγ ,

and satisfying Cartan’s first structural equation,

dϑα + ωαβ ∧ ϑβ = 0.

Noting that,

dϑα(eµ, eν) = (ϑα(eν)) eµ − (ϑα(eµ)) eν − ϑα([eµ, eν ])

= δαν eµ − δαµ eν − ϑα([eµ, eν ])− g(eα, [eµ, eν ]),

and that
g(eα, [eµ, eν ]) = gI(aα, [aµ, aν ]), (14)

we get
−gI(aα, [aµ, aν ]) + ωαν(eµ)− ωαµ(eν) = 0.

Equality (14) holds because Lie brackets of left-invariant vector fields are left-
invariant, together with the well-known fact that the Lie algebra commutator of
GLn is merely the standard matrix commutator in Mn, i.e [eµ, eν ](e) = [aµ, aν ] [8,
p. 193].

Rotating the indexes,

−gI(aµ, [aα, aν ]) + ωµν(eα)− ωµα(eν) = 0

−gI(aν , [aµ, aα]) + ωνα(eµ)− ωνµ(eα) = 0.

Adding the three equations and renaming the indexes,

2ωγβ(eα) = gI(aα, [aγ , aβ ]) + gI(aγ , [aα, aβ ]) + gI(aβ , [aγ , aα]).

That is,
∇eαeβ = Γγαβ eγ ,

where

Γγαβ =
1

2
(gI(aα, [aγ , aβ ]) + gI(aγ , [aα, aβ ]) + gI(aβ , [aγ , aα]))

are constant coefficients.
Consider now a geodesic curve, γ : I → GLn, where

γ̇(t) = pα(t) eα|γ(t).



GEODESIC DISTANCE TO SOn 457

The geodesic equation for the coefficients pα(t) is

ṗγ(t) + Γγαβ p
α(t) pβ(t) = 0.

Exploiting the symmetries of Γ and the symmetry of the geodesic equation,

ṗγ(t) + gI(aα, [aγ , aβ ]) pα(t) pβ(t) = 0.

This is a set of n2 quadratic equations with constant coefficients.
Multiplying this equation by aγ , setting X(t) = pα(t)aα, which is a curve in

TIGLn,

Ẋ(t) + gI(X(t), [aγ , X(t)])aγ = 0,

which by Proposition 6,

0 = Ẋ + gI(X, [aγ , X])aγ = Ẋ +
β − γ

2β
gI([X,X

T ], aγ)aγ ,

namely,

Ẋ = κ(XTX −XXT ), (15)

where

κ =
β − γ

2β
.

Equation (15) is an ordinary differential system in the vector space Mn.
The geodesic γ : I → GLn is related to X(t) via,

γ̇(t) = iγ(t)(γ(t), γ(t)X(t)). (16)

A.2. Solution of geodesic equations. The factor (β − γ)/2β has for effect to
rescale time. We start by ignoring it.

Proposition 7. The solution to

Ẋ = XTX −XXT X(0) = X0,

where X : I →Mn is

X(t) = exp(t(XT
0 −X0))X0 exp(t(X0 −XT

0 )).

Proof. Clearly, the initial conditions are satisfied. Differentiating with respect to t
we get

Ẋ(t) = exp(t(XT
0 −X0))(XT

0 −X0)X0 exp(t(X0 −XT
0 ))

+ exp(t(XT
0 −X0))X0(X0 −XT

0 ) exp(t(X0 −XT
0 ))

= exp(t(XT
0 −X0))(XT

0 X0 −X0X
T
0 ) exp(t(X0 −XT

0 )).

It only remains to insert exp(t(X0 −XT
0 )) exp(t(XT

0 −X0)) inside the products in
the middle term to get

Ẋ(t) = XT (t)X(t)−X(t)XT (t).

Please note that this exponential is the “standard” matrix exponential, i.e., the
one obtained from integral curves of left-invariant vector fields. It is not the expo-
nential map of the g-geodesics.

Corollary 6. The solution to (15) is

X(t) = exp(κt(XT
0 −X0))X0 exp(κt(X0 −XT

0 )).
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Proposition 8. Let γ : I → GLn be the g-geodesic,

γ̇(t) = iγ(t)(γ(t), γ(t)X(t)).

satisfying the initial conditions

γ(0) = e and γ̇(0) = X0.

Then,

γ(t) = exp((1− κ)tX0 + κtXT
0 ) exp(κt(X0 −XT

0 )).

Proof. Clearly, the initial conditions are satisfied. Differentiating with respect to t
we get

γ̇(t) = (Tγ)t(∂t)

= (Tγ)t([t+ s])

= [γ(t+ s)]

= [γ(t) + exp((1− κ)tX0 + κtXT
0 )X0 exp(κt(X0 −XT

0 )) s]

= iγ(t)

(
γ(t), exp((1− κ)tX0 + κtXT

0 )X0 exp(κt(X0 −XT
0 ))
)

= iγ(t)(γ(t), γ(t)X(t)).

Appendix B. Inverse-invariant metrics on Lie groups.

Proposition 9. Let G be a Lie group. A left- (or right-)invariant metric on G is
inverse-invariant if and only if it is bi-invariant.

Proof. Note that inv = Rs−1 ◦ inv ◦Ls−1 ,

Rs−1 ◦ inv ◦Ls−1(g) = Rs−1 ◦ inv(s−1g) = Rs−1(g−1s) = g−1.

By the chain rule,

(d inv)s = (dRs−1)e ◦ (d inv)e ◦ (dLs−1)s.

Since (d inv)e : TeG→ TeG is the additive inverse operation (v 7→ −v),

(d inv)s = −(dRs−1)e ◦ (dLs−1)s.

It follows at once that a bi-invariant metric is inverse-invariant.
Conversely, assume the metric is both left- and inverse-invariant. Then ∀s ∈ G ,

(dRs)e is an isometry, hence the metric is right-invariant as well.

Proposition 10. Let G be a Lie group. A left- (or right-)invariant distance func-
tion d on G is inverse-invariant if and only if it is bi-invariant.

Proof. Assume d is left- and inverse-invariant. Since inv = Rs−1 ◦ inv ◦Ls−1 , d is
also right-invariant.

Conversely, assume d is bi-invariant. Then,

d(x, y) = d(1, x−1y) = d(y−1, x−1) = d(x−1, y−1).

In fact, Proposition 10 implies Proposition 9 by virtue of the Myers-Steenrod
theorem whereby every isometry of d is a Riemannian isometry.
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Appendix C. A minimizing geodesic from a point to a submanifold is
orthogonal to the submanifold. We prove the following lemma, which plays a
central role in the derivation of the geodesic distance.

Lemma C.1. Let M be a complete Riemannian manifold. Let S ⊆M be a subman-
ifold, and let p ∈M \S. Assume q ∈ S is a point on S satisfying d(p, q) = dist(p, S)
(there is always such a point q if S is compact). Let α be a minimizing geodesic
connecting p and q. Then α is orthogonal to S at q.

Proof. The proof is based upon a “variation of energy” technique, and is essentially
taken from a discussion in [16].

Assume α : [0, a] → M is a minimizing geodesic joining the points p and q. Let
v ∈ TqS and φ : (−ε, ε) → S be a differentiable curve such that φ(0) = q and
φ′(0) = v.

Consider a variation f : (−ε, ε) × [0, a] → M , such that f(0, ·) = α, f(·, 0) = p
and f(·, a) = φ. Let

E(s) =

∫ a

0

∣∣∣∣∂f∂t (s, t)

∣∣∣∣2 dt
be the energy associated with f . We are going the use the following inequality,
relating the length of a curve c : [0, a]→M and its energy (see [3, p. 194]),

L2(c) ≤ aE(c).

Equality holds if and only if c is parametrized proportional to arclength.
In particular,

L2(fs) ≤ aE(fs). (17)

Note that since Image(φ) ⊆ S, then for any s ∈ (−ε, ε),
L(f0) = L(α) = d(p, q) = d(p, S) ≤ d(p, φ(s)) = d(fs(0), fs(a)) ≤ L(fs). (18)

Finally, since α = f0 is a geodesic, its parametrization is proportional to ar-
clength, so by the above comment,

L2(f0) = aE(f0). (19)

Combining (17),(18) and (19), we obtain

aE(f0) = L2(f0) ≤ L2(fs) ≤ aE(fs).

Thus E(fs) as a function of s has a minimum at s = 0, therefore E′(0) = 0. By the
first variation of energy formula (see [3, p. 195]),

1

2

dE′(fs)

ds

∣∣∣∣
s=0

= 〈v, α′(a)〉.

Since v is an arbitrary vector in TqS, the proof is complete.
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