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Abstract. A two-dimensional Riemannian manifold can be immersed isometrically in the plane
if and only if its Gaussian curvature vanishes identically, i.e., if it is flat. Given a non-flat surface,
we are looking for its best approximation by a flat surface, where the deviation between the given
and approximate surfaces is the L2 distance between the metrics. Questions of that type arise in
nonlinear elasticity theory, and in particular, in a recent theory of so-called “incompatible elasticity”;
in elasticity, the square of the L2 distance between the metrics is an elastic energy. In this paper
we prove that a non-flat two dimensional surface cannot be arbitrarily well approximated by flat
surfaces, and for the case of non-negative curvature, we lower bound the elastic energy by quantities
that depend on the geometric properties of the manifold, and notably the Gaussian curvature.
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1. Introduction. Consider the following problem: let (M , ḡ) be a two-dimensional
Riemannian manifold diffeomorphic to a disc; the metric ḡ is assumed to be of class
C2. As is well-known, this Riemannian manifold can be immersed isometrically in
the Euclidean plane if and only if ḡ is flat, that is, if the corresponding Gaussian
curvature vanishes identically. If this weren’t the case, then it is natural to ask how
“close” is (M , ḡ) to manifolds (M , g), where the metric g is flat. Equivalently, what
is the minimum amount of deformation associated with an immersion of M in the
Euclidean plane?

Such optimization problem depends on the choice of distance between manifolds.
In this work, the distance is quantified by the mean-square difference between the
two metrics g and ḡ. Specifically, let F : M → R2 be a C3 diffeomorphism. If R2 is
endowed with the standard Euclidean inner-product, the mapping F induces a metric
g = dF ⊗ dF on M . We define the amount of deformation as the square distance,

Eḡ[g] = ‖g − ḡ‖2ḡ, (1.1)

where the norm is induced by the inner-product for tensors,

〈h1, h2〉ḡ =
∫

M

ḡ(h1, h2) dµ,

and µ is the surface measure induced by ḡ.
This differential geometric problem arises from a recent theory of so-called incom-

patible elasticity [4, 3]. Incompatible elasticity is a physical model for elastic bodies
that do not possess a stress-free rest configuration, even when relieved from any ex-
ternal force or constraint. This is in contrast with standard elasticity theories whose
premise is that an elastic body has, in the absence of external forces, a stress-free
rest configuration. A lack of stress-free configuration occurs in situations where the
body has an intrinsic structure—a metric—which is not isometrically immersible in
the ambient Euclidean space. Thus, every actual configuration will necessarily induce
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a metric that differs from the intrinsic reference metric, i.e., will involve a strain,
which in turn will induce stresses. Expression (1.1) is the elastic energy, expressed
as a function of the actual metric g. For this energy to be zero, the metric g must
almost-everywhere coincide with the reference metric ḡ. This, however, cannot hap-
pen if ḡ is non-flat. The premise of the theory is that the configuration that the body
assumes at equilibrium in the absence of external forces is one that minimizes the
elastic energy (1.1).

Note that expression (1.1) is not symmetric with respect to g, ḡ. The reason
for this asymmetry is that we view ḡ as the intrinsic geometry of the manifold, and
therefore define all norms with respect to it.

A number of questions arise from the outset, regarding the well-posedness of this
new theory. First, it is assumed that an energy minimizer exists, that is, that there
exists one (or more) configurations whose metric minimizes (1.1). Even before that,
there is an implicit assumption that a non-immersible metric cannot be approached
(in the above sense) by immersible metrics, i.e., that it is not possible to construct a
sequence of immersions with induced metrics gn, such that

lim
n→∞

Eḡ[gn] = 0.

This last statement, a forteriori the existence of an energy minimizer, is far from
trivial. The energy Eḡ[g] is a weighted L2 distance between metrics, but the condition
that g be immersible, i.e., flat, is a constraint on second derivatives of g (the vanishing
of the Gaussian curvature). As a rule, a sequence of functions could converge in L2,
while the corresponding sequence of second derivatives behaves very differently than
the second derivative of the limit.

Physical bodies are three-dimensional, and indeed, incompatible elasticity was
formulated in three dimensions. Note that the setting leading to (1.1) can be for-
mulated in any dimension. In this paper we focus on the two-dimensional case; this
corresponds to the problem of plane stress considered in [4, 3]. A notable difference
between two and three dimensions is that every two-dimensional Riemannian mani-
fold can be identified as a Riemann surface [1], i.e., it carries a conformal structure.
Taking advantage of this analytical structure, we obtain the following results: (i) The
energy (1.1) is bounded away from zero for every non-flat ḡ. (ii) If the Gaussian
curvature of ḡ is non-negative, then we lower bound the elastic energy in terms of
geometric properties of the surface.

The role of the sign of the Gaussian curvature is in fact indicative of shortcomings
of the elastic model derived in [4]. This is addressed in the Discussion, where we
propose other models, which although physically more plausible, seem less analytically
tractable from the point of view of analysis.

2. Preliminary analysis. The above optimization problem was presented in an
intrinsic, parametrization-independent formulation. Much simplification is gained by
the choice of a convenient parametrization. Two-dimensional simply-connected sur-
faces admit an isothermal parametrization, that is, there exists a surface parametriza-
tion φ : M → Ω, for which the metric induced by ḡ on Ω, i.e., ḡ ◦ (dφ−1 ⊗ dφ−1) has
the matrix representation

[ḡij ](x, y) =
(
eλ 0
0 eλ

)
, (2.1)

where λ = λ(x, y) is a C2-function. In this parametrization, the mapping F : M → R2

is represented by a C3 diffeomorphism f = (f1, f2) : Ω → R2, given by f = F ◦ φ−1,
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and the metric g is represented by a matrix

[gij ](x, y) =
2∑

m=1

∂ifm ∂jfm.

Henceforth, we identify the metrics ḡ and g with their parametric representations [ḡij ]
and [gij ].

The condition that f be a diffeomorphism implies that det∇f has fixed sign;
without loss of generality we take this sign to be positive. With this restriction, the
matrix g determines f up to a rigid transformation. Since the energy functional (1.1)
is invariant under rigid transformations, we may as well assume that Eḡ[g] = Eḡ[f ].
Finally, the energy (1.1) takes the explicit form

Eḡ[f ] =
∫

Ω

2∑
i,j=1

(
e−λ

2∑
m=1

∂ifm ∂jfm − δij

)2

dµ, (2.2)

where dµ = eλ dxdy.
The Gaussian curvature of an isothermal metric (2.1) is given by K[ḡ] = − 1

2∆λ,
where ∆ is the Laplace-Beltrami operator,

∆ = e−λ
(
∂2

∂x2
+

∂2

∂y2

)
.

Thus, the condition that ḡ be non-flat correspond to the condition that λ be non-
harmonic in Ω.

We denote by F the set of C3 diffeomorphisms f : Ω → R2 such that det∇f
has fixed positive sign. The solution to the elastic problem corresponds to finding
a mapping f ∈ F which minimizes the energy functional (2.2). In principle, C3

diffeomorphisms are a too restrictive, and we should be content with homeomorphisms
f for which the energy (2.2) is finite, namely, within the Sobolev space W 1,4. For
the sake of the current analysis, it is sufficient to restrict the homeomorphisms to any
function space that is dense in W 1,4, for example, C3 functions.

We now take advantage of the conformal structure of the parametrization, and
complexify the representation by setting z = x + iy and f = f1 + i f2. Likewise, we
define the standard complex derivatives,

fz =
1
2

(fx − ify) and fz̄ =
1
2

(fx + ify) .

The condition that f be orientation preserving is

|fz̄| < |fz| everywhere in Ω. (2.3)

The matrix g takes the form

g =
(
|fz + fz̄|2 2=(fzfz̄)
2=(fzfz̄) |fz − fz̄|2

)
,

and upon substitution into (2.2), we obtain

Eḡ[f ] = 2
∫

Ω

(
e−λ|fz|2 + e−λ|fz̄|2 − 1

)2
dµ+ 8

∫
Ω

e−2λ|fz|2|fz̄|2 dµ. (2.4)
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The fact that Eḡ[f ] > 0 for all f ∈ F can be easily seen from (2.4), which is a sum
of two non-negative terms. For the energy to vanish, both terms have to be zero, and
hence

fz̄ = 0 and |fz|2 = eλ everywhere in Ω.

Thus, f is holomorphic and λ = log |fz|2. Since the logarithm of the modulus of
an holomorphic function is harmonic, this cannot hold, unless λ is harmonic (which
contradicts our assumption on λ).

3. A lower bound. In the present and next sections we prove that the energy
functional Eḡ[f ] is uniformly bounded away from zero for all f ∈ F . We do so in
several steps: first, we bound the energy from below by a sum of two non-negative
terms, one that depend only on fz, and one that depends only on fz̄. For non-flat ḡ,
the two terms cannot vanish simultaneously. We use harmonic analysis to show that if
the second term is sufficiently small, then the first term has to exceed a certain bound.
A uniform bound is obtained by a balance between the smallness of the second term
and the magnitude of the first term. Specifically, denoting the surface area by

a =
∫

Ω

dµ,

we show in this section that the energy is bounded from below in terms of

d = inf
{

1
a

∫
Ω

(
e−λ/2|w| − 1

)2

dµ : wz̄ = 0
}
, (3.1)

which quantifies an L2 distance between eλ/2 and the set of analytic functions. In the
next section we show that d is strictly positive, and obtain an explicit bound in the
case where the Gaussian curvature is non-negative.

Applying the orientation preservation condition (2.3) on the second term of (2.4),
we obtain

Eḡ[f ] ≥ 2
∫

Ω

(
e−λ|fz|2 + e−λ|fz̄|2 − 1

)2
dµ+ 8

∫
Ω

e−2λ|fz̄|4 dµ.

Using the inequality 2(a+ b)2 + 8b2 ≥ a2 + 6b2 we get

Eḡ[f ] ≥
∫

Ω

(
e−λ|fz|2 − 1

)2
dµ+ 6

∫
Ω

e−2λ|fz̄|4 dµ.
(3.2)

The presence of L4-like norms is inconvenient. Applying the Cauchy-Schwarz inequal-
ity gives ∫

Ω

e−2λ|fz̄|4 dµ ≥
1
a

(∫
Ω

e−λ|fz̄|2 dµ
)2

.

Note also the pointwise bound

(
e−λ|fz|2 − 1

)2 ≥ (e−λ/2|fz| − 1
)2

.
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Substituting these two inequalities into (3.2) gives the following lower bound

Eḡ[f ] ≥
∫

Ω

(
e−λ/2|fz| − 1

)2

dµ+
6
a

(∫
Ω

e−λ|fz̄|2 dµ
)2

. (3.3)

Theorem 3.1. There exists a numerical constant C, such that for every f ∈ F ,

Eḡ[f ]
a
≥ C min(d4, 1)

where d is defined by (3.1).
Proof. We start with some preliminaries. First, note that

fz = f̄z̄ and ∆f = e−λfzz̄. (3.4)

Every function f has a unique decomposition,

f = u+ v,

where u is harmonic and equals to f on ∂Ω. It follows that v vanishes on the boundary.
Integrating by parts, and using (3.4) and the fact that u is harmonic, gives∫

Ω

e−λuzvz dµ =
∫

Ω

e−λuz̄vz̄ dµ = 0,

which implies that ∫
Ω

e−λ|fz|2 dµ =
∫

Ω

e−λ
(
|uz|2 + |vz|2

)
dµ. (3.5)

Also, integrating twice by parts and using (3.4), we get that∫
Ω

e−λ|vz|2 dµ =
∫

Ω

e−λvz v̄z̄ dµ =
∫

Ω

e−λvz̄ v̄z dµ =
∫

Ω

e−λ|vz̄|2 dµ.

Using the orthogonality (3.5) of u and v, the first term in the energy bound (3.3)
can be further bounded from below as follows,∫

Ω

(
e−λ/2|fz| − 1

)2

dµ =
∫

Ω

(
e−λ|fz|2 − 2e−λ/2|fz|+ 1

)
dµ

≥
∫

Ω

(
e−λ|uz|2 + e−λ|vz|2 − 2e−λ/2 (|uz|+ |vz|) + 1

)
dµ

≥
∫

Ω

(
e−λ/2|uz| − 1

)2

dµ+
∫

Ω

e−λ|vz|2 dµ− 2a1/2

(∫
Ω

e−λ|vz|2 dµ
)1/2

,

(3.6)

where we have also used the triangle and the Cauchy-Schwarz inequalities. The second
term in (3.3) can be lower bounded as follows

6
a

(∫
Ω

e−λ|fz̄|2 dµ
)2

≥ 6
a

(∫
Ω

e−λ|vz̄|2 dµ
)2

=
6
a

(∫
Ω

e−λ|vz|2 dµ
)2

.
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Substituting these inequalities back into (3.3), and noting that the left-hand side of
(3.6) is non-negative, yields

Eḡ[f ]
a
≥ max

(
1
a

∫
Ω

(e−λ/2|uz| − 1)2 dµ+ ρ2 − 2ρ, 0
)

+ 6ρ4, (3.7)

where

ρ2 = ρ2(v) =
1
a

∫
Ω

e−λ|vz|2 dµ.

The energy per unit area can now be bounded from below by the infimum of (3.7)
over all independent choices of u and v, with for only constraint that u be harmonic.
Denoting w = uz, we observe that w analytic if and only if u is harmonic. Thus,
minimizing (3.7) with respect to the choice of w,

Eḡ[f ]
a
≥ max

(
d+ ρ2 − 2ρ, 0

)
+ 6ρ4,

where d is given by (3.1).
It remains to minimize the right hand side with respect to the choice of v, or

equivalently, with respect to the choice of ρ. For sufficiently small values of d, the
minimum is obtained by taking ρ to be the smallest number for which the first term
vanishes, i.e., ρ = 1 −

√
1− d. Then, Eḡ[f ]/a ≥ 6ρ4. For values of d above some

threshold, the first term is positive, and the minimum is obtained by minimizing the
polynomial 6ρ4 + ρ2 − 2ρ. Omitting straightforward technicalities,

E[f ] ≥ aφ(d),

where

φ(d) =

{
d− 0.491 0.607 ≤ d
6(1−

√
1− d)4 0 ≤ d ≤ 0.607.

It is easily verified that, as claimed, there exists a constant C, such that φ(d) ≥
C min(d4, 1).

The definition (3.1) of d involves the isothermal parameter λ, and may therefore
seem parametrization-dependent. Note, however, that λ is uniquely defined up to
an additive harmonic function. Thus, e−λ is uniquely defined up to a multiplicative
log-harmonic function. Since every log-harmonic function is a modulus of an analytic
function, it follows that d is independent of parametrization.

The minimal energy can be upper bounded by the infimum of (2.4) over the set
of holomorphic functions,

inf
F
Eḡ[f ]/a ≤ 2 inf

{
1
a

∫
Ω

(
e−λ/2|w| − 1

)2

dµ : w is holomorphic
}
.

As the set of holomorphic functions is not dense in the space of analytic functions,
the above term may take a value strictly larger than d.

4. Approximation of log-harmonic functions. In this section we prove that
d, given by (3.1), is strictly positive. For elliptic surfaces we derive a lower bound
that only depends on the intrinsic geometry of the manifold (M , ḡ) (the Gaussian
curvature).
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Theorem 4.1. d > 0.
Proof. Suppose, by contradiction, that d = 0. Then there exists a sequence of

analytic functions w(n) such that

lim
n→∞

∫
Ω

(
e−λ|w(n)| − 1

)2

dµ = 0.

As the sequence w(n) is bounded in L2, it has a weakly converging subsequence (not
relabeled) in L2, w(n) ⇀ w.

Next, let x ∈ Ω and let B(x, r) be a ball of radius r > 0 contained in Ω. By the
mean-value property for analytic functions,

w(n)(x) =
1

|B(x, r)|

∫
B(x,r)

w(n)(y) dµ(y),

and as the right-hand side converges as n → ∞, then the sequence w(n) converges
pointwise to a function ŵ, defined by

ŵ(x) =
1

|B(x, r)|

∫
B(x,r)

w(y) dµ(y),

and the right-hand side is independent of r. Taking the limit r → 0, by the Lebesgue
differentiation theorem we obtain that w(x) = ŵ(x) a.e, which implies

ŵ(x) =
1

|B(x, r)|

∫
B(x,r)

ŵ(y) dµ(y).

It follows that ŵ is harmonic in Ω. Finally,

0 = lim
n→∞

∫
Ω

(
e−λ/2|w(n)| − 1

)2

dµ =
∫

Ω

lim
n→∞

(
e−λ/2|w(n)| − 1

)2

dµ

=
∫

Ω

(
e−λ/2|ŵ| − 1

)2

dµ,

or

λ = −2 log |ŵ|,

which contradicts our assumption on λ.
Theorem 4.2. Suppose that the Gaussian curvature of the manifold, K = − 1

2∆λ,
is non-negative. Let G ⊂ Ω be a compact subset. Then,

d ≥ min

{
(1/2a)

(∫
G
K dµ

)2
C(G) +

∫
Ω
K2 dµ

, 1

}
,

where C(G) is a constant that tends to infinity as G→ Ω.
Proof. Let w be analytic in Ω. As is well known, if w has an infinite number of

zeros in G, then it is identically zero in Ω. In which case,

1
a

∫
Ω

(
e−λ/2|w| − 1

)2

dµ = 1.
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We now assume that w has a finite number of zeros in every compact subset of Ω.
Then it is convenient to consider the function

h = log |w|,

defined for every point x ∈ Ω for which w(x) 6= 0. We observe that w is analytic if and
only if h is harmonic. By defining h(x) = −∞ whenever w(x) = 0, h is a continuous
function in the extended sense. Let φ : Ω → R be a smooth non-negative function
such that (i) φ = 1 in G, (ii) 0 ≤ φ ≤ 1 in Ω and (iii) both φ and ∇φ vanish on ∂Ω.
Integrating twice by parts we obtain∫

Ω

∆φ
(
eh−λ/2 − 1

)
dµ =

∫
Ω

φ∆eh−λ/2dµ =
∫

Ω

φ
(
e−λ/2|∇(h− λ)|2 +K

)
eh−λ/2 dµ.

(4.1)

Thus, ∫
Ω

∆φ
(
eh−λ/2 − 1

)
dµ ≥

∫
Ω

φKeh−λ/2 dµ

=
∫

Ω

φK
(
eh−λ/2 − 1

)
dµ+

∫
Ω

φK dµ

≥
∫

Ω

φK
(
eh−λ/2 − 1

)
dµ+

∫
G

K dµ,

where we have used the properties of φ and the non-negativity of K. It follows that∫
Ω

(∆φ− φK)
(
eh−λ/2 − 1

)
dµ ≥

∫
G

K dµ.

By the Cauchy-Schwartz inequality,(∫
Ω

(∆φ− φK)2dµ

)1/2(∫
Ω

(
eh−λ/2 − 1

)2

dµ

)1/2

≥
∫
G

K dµ. (4.2)

Squaring and using the non-negativity of K,

1
a

∫
Ω

(
eh−λ/2 − 1

)2

dµ ≥
(1/a)

(∫
G
K dµ

)2
2
∫

Ω
(∆φ)2 dµ+ 2

∫
Ω

(φK)2 dµ
.

Since 0 ≤ φ ≤ 1 and K is non-negative, then

1
a

∫
Ω

(
eh−λ/2 − 1

)2

dµ ≥
(1/2a)

(∫
G
K dµ

)2
C(G) +

∫
Ω
K2 dµ

,

where

C(G) = sup
∫

Ω

(∆φ)2 dµ,

and the supremum is over all functions φ that satisfy the required properties. Since
the left-hand side of the above inequality is independent of h we recover the desired
result. Note that C(G) tends to infinity as G approaches Ω.

The assumption that K be non-negative was explicitly used in the above proof,
which cannot be adapted to the case where, for example, K is everywhere negative.
Indeed, inequality (4.2) is useless in this case. The fundamental difference between
positive and negative Gaussian curvatures is discussed in the next section.
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5. Discussion. In this paper we prove that a non-flat two-dimensional Rieman-
nian manifold cannot be approximated, to arbitrary precision, by a flat manifold,
where the distance is the mean square difference between the metrics. This problem
(as well as its three dimensional counterpart) arises in elasticity theory, where bodies
are assumed to have an intrinsic metric, which may be non-flat, whereas any actual
immersion in the ambient Euclidean space is necessarily flat. In the physical context,
the distance between the metrics is an elastic energy, and the minimization problem
is that of finding a static equilibrium that minimizes the energy cost.

In the case where the manifold is elliptic, i.e., the Gaussian curvature is positive,
we were able to derive an explicit lower bound for the elastic energy, which relates to
the mean value of the Gaussian curvature. The question is why did we fail to obtain
a similar result in the case of a hyperbolic surface?

We believe that this failure is not due to some technical shortcoming, but rather
reflects an important property of the elastic energy (1.1). The immersion of an elliptic
surface in the plane involves mainly elongation, whereas the immersion of a hyperbolic
surface in the plane involves mainly contraction. The elastic energy density in (1.1)
penalizes differently elongations versus contractions. The energy density remain finite
even for extreme contractions, where det∇f tends to zero. On the other hand, it
diverges for extreme elongations, where det∇f tends to infinity. In fact, even a
sequence of immersions that tends to a point, such that g → 0, involves a finite
energetic cost, which from the physical point of view is absurd.

Indeed, quadratic models of the type proposed in [4] are intended to be valid only
for (uniformly) small strains, i.e., when g is everywhere close enough to ḡ. For large
strains, it is customary to require the energy density to diverge at the boundaries of
the set F , and in particular, as g tends to singularity. Clearly, there are infinitely
ways of producing an elastic energy that is quadratic at small strains, and satisfies
the physical requirements at large strains. Identifying the right choice is a modeling
issue, which furthermore may vary from one material to another.

A closely related issue is that of showing the existence of an energy minimizer.
Numerical investigations with the energy (1.1) indicate that for sufficiently non-flat
reference metrics ḡ, minimizing sequences tend to the boundaries of the set F , and
no minimizer exists. This model shortcoming is also related to unphysical behavior
at large strains (there is a large amount of literature on conditions that ensure the
existence of a minimizer, see e.g., [2]).

Two alternative expressions for the elastic energy that might remedy the short-
comings associated with the energy (1.1) are (i) adding to (1.1) a term that measures
the deviation of g from ḡ with respect to the metric g (or equivalently, measures the
distortion of the co-tangent bundle of M ),

E[g] = Eḡ[g] +
∫

M

g(g − ḡ, g − ḡ) dµ.

This correction almost symmetrizes the energy with respect to g and ḡ (only the sur-
face measure is in both terms induced by the manifold (M , ḡ)). (ii) Use a logarithmic
energy density, say,

E[g] = ‖ log(ḡ−1g)‖22.

Both alternatives exhibit the desired behavior at large strains. However, we were
unable to adapt our analysis for these functionals. In particular, the harmonic pro-
jection, which was at the heart of our analysis cannot be applied with the modified
energy functionals.
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As a last comment, we note that our analysis uses explicitly the choice of an
isothermal parametrization. Even though every two-dimensional Riemannian surface
admits an isothermal parametrization, it is not clear how to repeat our analysis for
an arbitrary parametrization. This observation is relevant to the three-dimensional
setting where an isothermal parametrization not necessarily exists.
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