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OPTIMAL CHOICES OF CORRELATION OPERATORS IN
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Abstract. We analyze Brownian simulation methods for systems of partial differential equations
coupled to convection-diffusion equations. In many situations the spatial correlation of Brownian
noise can be viewed as a free parameter. We formulate the choice of the noise correlation as an
optimization problem for mean error minimization. In contrast to earlier work which was restricted
to systems of finite dimensions, our formulation is performed in function space. We then provide an
approximation theorem that reduces the problem into the solution of finite-dimensional semidefinite
programming problems. Examples are given to illustrate our main results.
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1. Introduction. Brownian simulation is a technique for solving partial differ-
ential equations (PDEs) using random simulations of stochastic systems of equations.
The prominent forerunner in this context is Chorin’s method of random vortex meth-
ods, which approximates solutions of the Navier–Stokes equations in the regime of
slightly viscous flows [3]. In this system, the fluid is represented by a finite collection
of point vortices, whose motion is primarily determined by the induced flow field.
Viscous dissipation is incorporated by the addition of a Brownian velocity component
to each point vortex. Thus, the positions of the point vortices satisfy a system of
stochastic differential equations (SDEs), and the induced (stochastic) velocity field
approximates the solution of the Navier–Stokes equations. In the past 30 years, sto-
chastic particle methods have been applied to a variety of systems, and in many
instances, their convergence has been proved rigorously by probabilistic techniques
(see Talay [14] for a review).

Since the 1990s Brownian simulation techniques have become popular in the con-
text of non-Newtonian viscoelastic fluids. Many models of viscoelastic fluids are in
the form of a PDE that governs the flow field (the macroscopic dynamics) coupled
to a Fokker–Planck equation that governs the distribution of polymeric conformation
(the microscopic dynamics). The coupling between these equations is bilateral: the
flow field is forced by a term—the stress field—which is an average over the polymeric
conformation. Reciprocally, the microscopic dynamics are affected by the macroscopic
flow field. Such models are called micro-macro models; see Keunings [11] for a recent
review.

Except for very simple realizations, the coupled system cannot be solved either
analytically or numerically, due to its high dimensionality. Öttinger and coworkers
introduced in the early 1990s a simulation technique to approximate such systems (the
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322 RAZ KUPFERMAN AND YOSSI SHAMAI

so-called CONNFFESSIT method [12, 6]). Their idea was to simulate the Fokker–
Planck equation by a collection of randomly driven particles representing (in some
coarse-grained sense) the polymers. The stress field is approximated by an empirical
average over the state of those particles. In the CONNFFESSIT method each particle
is driven by an independent Brownian noise, resulting in spatially noisy output.

An alternative method was proposed in 1997 by Hulsen, van Heel, and van den
Brule, the Brownian configuration field (BCF) method [7]. Rather than simulating a
collection of particles, the BCF method simulates a collection of random functions of
space and time (random fields), each such field representing the local polymeric state.
Each random field satisfies a SPDE, driven by a Brownian noise that is spatially
constant. As a result BCF computations tend to generate solutions that are smooth
compared to the output of CONNFFESSIT (for the same computational cost). This
observation led in [13] to the speculation that BCF is a variance-reduced variant of
CONNFFESSIT, a speculation that was later refuted. The reality, as found in [8], is
that the use of spatially uniform Brownian motion reduces the variance of the velocity
but significantly increases the variance of the stress.

From a fundamental point of view, BCF and CONNFFESSIT differ in two main
aspects: (i) BCF is an “Eulerian” method, whereas CONNFFESSIT is a “Lagrangian”
method, and (ii) BCF uses a spatially uniform noise, whereas CONNFFESSIT uses
a spatially uncorrelated noise. In principle, one could design an Eulerian version of
CONNFFESSIT by the use of configuration fields that are driven by Brownian noise
that is spatially uncorrelated. This observation was made by Jourdain, Le Bris, and
Lelievre [8], who generalized the two Brownian simulation techniques to arbitrary
noise correlations. Furthermore, they formulated the choice of noise correlation as
an optimization problem for error minimization. Their optimization problem was
formulated in the context of specific discretization schemes and applied to particular
situations, e.g., Hookean and FENE fluids in planar shear flow.

In this paper we study the problem of variance reduction by optimal noise corre-
lation in a general context. We consider a class of systems in which a PDE is coupled
to a Fokker–Planck equation with bilateral interaction, along with a Brownian simu-
lation approximation that consists of a collection of N SPDEs driven by independent
Brownian noises with arbitrary spatial correlation. The N fields are weakly coupled
through their average. We then derive an expression for the mean error in the limit of
large N ; as expected, the error depends on the noise correlation. For a large class of
such systems the minimization of the mean error forms a convex optimization problem
that can be solved by standard methods. An important difference between [8] and
the present work is that we operate on the level of the PDE/SPDE rather than on
the level of a specific computational scheme. Thus we address the question of optimal
noise correlation for a given problem independently from its method of approximation.
Finally, we demonstrate our results by applying them to a number specific problems.

The structure of this paper is as follows: In section 2 we present the class of
models under consideration and show that they can be reformulated in a stochastic
setting, in a manner that is independent of the spatial correlation of the noise; the
noise need only satisfy a local normalization property. The stochastic formulation
leads naturally to an approximation scheme based on a Monte Carlo simulation of the
Brownian trajectories. While BCF corresponds to a particular choice of Brownian
processes, the CONNFFESSIT uncorrelated noise has to be interpreted as a limit
of such processes. We conclude this section with a subclass of such systems that are
closable and therefore amenable to rigorous analysis. In section 3 we analyze the error
of the Brownian approximation in the limit of large N . The error is dominated by the
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variance of the estimate, which scales like 1/N . This analysis is continued in section 4,
where we finally express the mean error in terms of the correlation operators of the
Brownian noise and the initial data. In section 5 the variance reduction optimization
problem is formulated. In particular, it becomes apparent that an optimizer does
not necessarily exist, since the domain of suitable correlations is neither closed nor
bounded. Since in most cases the optimization problem cannot be solved analytically,
we present in section 6 an approximation theorem, whereby the infimum of the error
can be attained as a limit of finite-dimensional optimization problems, each of which
is solvable by standard methods of semidefinite programming. Specific examples are
then presented in section 7, one of which is solvable analytically and another only
numerically. A discussion follows in section 8.

2. Problem statement. Consider a general class of autonomous equations of
the form

(2.1) η
∂u

∂t
= f(u, c),

where u = u(x, t) and c = c(x, t); the parameter η is either one or zero, depending on
whether (2.1) is an evolution equation for u, or a time-independent relation between
the functions u and c. For notational convenience, we consider systems in one space
dimension, x ∈ D ⊂ R, where D is a bounded interval, and we assume that u and c are
real-valued functions; our analysis applies with slight modifications to more general
situations. The function f = f(u(x, t), c(x, t)) is a sufficiently regular function of its
arguments and their spatial derivatives (e.g., a nonlinear differential operator). The
function c is given by an integral

(2.2) c(x, t) =

∫
R

g(q)ψ(q, x, t) dq,

where ψ(q, x, t) is a nonnegative integrable function, governed by a diffusion-transport
equation of the form

(2.3)
∂ψ

∂t
+ a(u)

∂ψ

∂x
= − ∂

∂q
[b(q, u)ψ] +

1

2

∂2ψ

∂q2
.

The functions a = a(u(x, t)) and b = b(q, u(x, t)) are sufficiently regular functions
of q, u(x, t) and spatial derivatives of u(x, t). The coupled system (2.1)–(2.3) is
supplemented with initial conditions,

(2.4) u(x, 0) = u0(x), ψ(q, x, 0) = ψ0(q, x),

and with suitable boundary conditions. Throughout this paper it is assumed that
the coupled system (2.1)–(2.3) is well-posed (see Constantin [4] for a global-in-time
existence theorem in a viscoelastic context).

In certain cases, an equation for c(x, t) can be derived from (2.3), yielding a closed-
form system of equations for u and c, without requiring the solution of ψ(q, x, t). Two
such examples are given below.

Example 2.1. Consider the system

0 = −u(x, t) − c(x, t) +

∫ 1

0

c(y, t) dy,
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c(x, t) =

∫
R

q2ψ(q, x, t) dq,

∂ψ

∂t
= −1

2

∂

∂q
[(s + u− 1)q ψ] +

1

2

∂2ψ

∂q2
,

where x ∈ [0, 1] and s(x) = sin(2πx); this system does not require boundary conditions.
A closed system of equations for u and c can be derived by multiplying the diffusion-
transport equation by q2 and integrating over q. This yields an evolution equation
for c,

∂c

∂t
= (s + u− 1) c + 1.

Example 2.2. The second example is inspired from the dumbbell model of visco-
elastic fluids [1]. The equation for the “flow field” u(x, t) is a viscous Burgers equation
with forcing,

(2.5)
∂u

∂t
+ u

∂u

∂x
=

∂2u

∂x2
+

∂c

∂x
,

where the “stress” c(x, t) is given by

c(x, t) =

∫
R

q2ψ(q, x, t) dq,

and the “polymer distribution” ψ(q, x, t) is governed by the Smoluchowski equation

∂ψ

∂t
+ u

∂ψ

∂x
=

∂

∂q
(qψ) +

1

2

∂2ψ

∂q2
.

Here again, multiplying the Smoluchowski equation by q2 and integrating over q we
obtain an evolution equation for c,

∂c

∂t
+ u

∂c

∂x
= −2c + 1,

and together with (2.5) this yields a closed-form system.
In cases where closed-form equations can be derived, the resulting set of equations

can often be solved by standard numerical methods (e.g., finite differences or finite
elements). Otherwise, one has to solve the high-dimensional coupled system (2.1)–
(2.3), a task which is often computationally prohibitive. A computational alternative
is the use of Brownian simulation techniques, which we review next.

The idea, which is rigorously established in Proposition 2.1, is to first interpret
the diffusion-transport equation (2.3) as a Fokker–Planck equation that governs the
probability density function (PDF) of a random function qt(x); ψ(q, x, t) is the prob-
ability density that qt(x) = q. The random function qt(x), which is viewed as an
H-valued stochastic process, where H = L2(D), is governed by the SPDE

(2.6) dqt + a(u)
∂qt
∂x

dt = b(qt, u) dt + dWt,

with random initial conditions q0(x), distributed according to the initial density
ψ0(q, x). Here Wt = Wt(x) is a standard H-valued Q-Wiener process, where Q :
H → H is the autocorrelation of Wt.
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We remind the reader that the autocorrelation Cor(X) of an H-valued random
variable X is defined by

〈Cor(X) a, b〉 = E [〈X, a〉 〈X, b〉] , a, b ∈ H,

where 〈·, ·〉 is the inner product in H. A Q-valued Wiener process Wt satisfies

1

t
E [〈Wt, a〉 〈Wt, b〉] = 〈Qa, b〉 ,

i.e., Cor(Wt) = Qt. A Q-valued Wiener process is said to be standard if

E[Wt(x)Wt(x)] = t

for every t and almost every x ∈ D. We refer the reader to Appendix B for a short
review on Hilbert space-valued Wiener processes and the corresponding stochastic
calculus.

The H-valued stochastic process qt(x) is then used to replace system (2.1)–(2.3)
by the conjugate stochastic system

(2.7)

η
∂u

∂t
= f(u, c),

c = E [g(qt)] ,

dqt + a(u)
∂qt
∂x

dt = b(qt, u) dt + dWt,

where the expectation E is both with respect to the random initial data and the
Brownian motion. The relation between the stochastic system (2.7) and the deter-
ministic system (2.1)–(2.3) is established by the following proposition.

Proposition 2.1. Let (u, c, qt) be a (strong) solution of the conjugate stochastic
system (2.7) on some time interval [0, T ]. Let ψ(q, x, t) be the marginal PDF corre-
sponding to qt(x). Then (u, c, ψ) is a solution for the coupled system (2.1)–(2.3) on
[0, T ].

Comment : The SPDE (2.7) induces an evolution on measures in function space.
The function ψ(q, x, t) is a marginal density of such a measure, namely,

ψ(q, x, t) =
∂

∂q
Pr(qt(·) : qt(x) ≤ q).

In particular, the initial distribution ψ0(q, x) does not uniquely determine the distri-
bution of the random function q0(x). For example, ψ0(q, x) does not determine the
correlation,

Cor(q0) = R.

Proof. By Itô’s formula (B.3), for every twice-differentiable compactly supported
function G : R → R and every x ∈ D,

(2.8) dG(qt(x)) = G′(qt(x)) dqt(x) +
1

2
G′′(qt(x)) dt.

Substituting the evolution equation of qt into (2.8) and taking expectations we obtain

∂

∂t
E [G(qt)] = −a(u)

∂

∂x
E [G(qt)] + E [G′(qt)b(qt, u)] +

1

2
E [G′′(qt)] .
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Writing the last equation in terms of ψ(q, x, t),

∂

∂t

∫
G(q)ψ(q, x, t) dq = −a(u)

∂

∂x

∫
G(q)ψ(q, x, t) dq +

∫
G′(q)b(q, u)ψ(q, x, t) dq

+
1

2

∫
G′′(q)ψ(q, x, t) dq,

and upon integration by parts,

∂

∂t

∫
G(q)

[
∂ψ

∂t
+ a(u)

∂

∂x
ψ +

∂

∂q
[b(q, u)ψ] − 1

2

∂2ψ

∂q2

]
dq = 0.

Finally, the arbitrariness of G implies that ψ satisfies (2.3).
The fact that the Brownian noise is standard was used in Itô’s formula, resulting

in a constant diffusion function. Note, however, that the equivalence between the
deterministic and the stochastic systems is unaffected by the correlation of qt, which
is determined by the noise correlation operators Q and the correlation R of the initial
data. Viewed that way, the coupled system (2.1)–(2.3) can be represented by a family
of stochastic conjugate systems (2.7) which vary in the correlation operators Q and R.

The stochastic representation (2.7) is naturally approximated by the method of
Brownian simulations. The SPDE (2.6) is simulated by a set of N realizations Qi

t(x),
i = 1, 2, . . . , N , of qt(x), and the expected value with respect to Brownian trajectories
is approximated by an empirical mean over the N realizations. Denoting by Ut(x) and
Ct(x) the (stochastic) numerical approximations to u(x, t) and c(x, t), the simulation
scheme takes the form

(2.9)

η
∂Ut

∂t
= f(Ut, Ct),

Ct =
1

N

N∑
i=1

g(Qi
t),

dQi
t + a(Ut)

∂Qi
t

∂x
dt = b(Qi

t, Ut) dt + dW i
t , i = 1, . . . , N,

where W i
t are N independent Q-Wiener processes and Qi

0(x) are N independent H-
valued random variables with correlation R. Note that the realizations Qi

t are weakly
coupled, as they interact through their empirical mean. Although the spatial corre-
lations of the noise and the initial data are immaterial for (2.7), they may influence
the error of the approximation. Our ultimate goal is to find the correlation operators
that minimize the error.

A class of semilinear problems. Examples 2.1 and 2.2 are amenable to closed-form
PDEs for u(x, t), c(x, t). While Brownian simulations are prominently designed for
systems that do not assume such closures, we will focus on closable systems, since
the existence of closed-form equations facilitates the analysis of Brownian simulation
methods. Specifically, we will examine the class of nonlinear systems for which

(2.10) b(q, u) = b(u)q and g(q) = q2,

where b is a function of u and its spatial derivatives. As above, the closure is derived
by first using Itô’s formula,

dq2
t = 2qt dqt + 1 = −a(u)

∂q2
t

∂x
dt + 2b(u)q2

t dt + 2qt dWt + dt,
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and then averaging:

∂

∂t
E[q2

t ] = −a(u)
∂

∂x
E[q2

t ] + 2b(u) E[q2
t ] + 1.

The resulting PDEs that govern (u, c) are

η
∂u

∂t
= f(u, c),

∂c

∂t
+ a(u)

∂c

∂x
= 2b(u)c + 1.

(2.11)

3. Error analysis. The Brownian simulation (2.9) provides approximations
Ut(x), Ct(x) to the solutions u(x, t), c(x, t) of (2.7). We define the errors

δut (x) = Ut(x) − u(x, t) and δct (x) = Ct(x) − c(x, t).

In the semilinear case (2.10) the errors are governed by the system of equations

η dδut = [f(u + δut , c + δct ) − f(u, c)] dt,

dδct +

[
a(u + δut )

∂(c + δct )

∂x
− a(u)

∂c

∂x

]
dt = 2 [(b(u + δut ) − b(u))c + b(u + δut )δct ] dt

+
2

N

N∑
i=1

Qi
t dW

i
t .

The error analysis is complicated by the fact that the processes Qi
t are dependent.

To bypass this difficulty we introduce a set of auxiliary stochastic processes qit, which
are independent realizations of the process qt, driven by the same noise processes as
the Qi

t, namely,

(3.1) dqit + a(u)
∂qit
∂x

dt = b(u)qit dt + dW i
t .

The deviations between the weakly dependent and the independent processes, δq
i

t =
Qi

t − qit, satisfy the system of equations

dδq
i

t +

[
a(u + δut )

∂δq
i

t

∂x
+ (a(u + δut ) − a(u))

∂qit
∂x

]
dt

=
[
b(u + δut )δq

i

t + (b(u + δut ) − b(u)) qit

]
dt.

(3.2)

Substituting Qi
t = qit + δq

i

t into the equation for δct yields

dδut = [f(u + δut , c + δct ) − f(u, c)] dt,

dδct +

[
a(u + δut )

∂(c + δct )

∂x
− a(u)

∂c

∂x

]
dt = 2 [(b(u + δut ) − b(u))c + b(u + δut )δct ] dt

+
2

N

N∑
i=1

qit dW
i
t +

2

N

N∑
i=1

δq
i

t dW i
t .

(3.3)
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Equations (3.1)–(3.3) govern the evolution of the errors. They do not form a closed
system because they also depend on the exact solutions u(x, t), c(x, t).

Since we expect (mean) errors to scale like N−1/2 for large N , we introduce the
normalized errors,

Δu
t =

√
N δut , Δc

t =
√
N δct , and Δqi

t =
√
N δq

i

t .

We then Taylor expand the functions f , a, and b about u, c, and qit and reorganize
the equations for the normalized errors in powers of 1/

√
N ,

dΔu
t =

[
∂f

∂u
(u, c)Δu

t +
∂f

∂c
(u, c)Δc

t +
1√
N

Ry

]
dt,

dΔc
t +

[
∂c

∂x
a′(u)Δu

t + a(u)
∂Δc

t

∂x

]
dt = 2 (b(u)Δc

t + cb′(u)Δu
t ) dt

+
2√
N

N∑
i=1

qit dW
i
t +

1√
N

dRc

dΔqi

t +

[
∂qit
∂x

a′(u)Δu
t + a(u)

∂Δqi

t

∂x

]
dt =

[
qitb

′(u)Δu
t + b(u)Δqi

t

]
dt +

1√
N

Rq dt,

where the residuals Ry, Rc, and Rq are quadratic expressions of Δu
t , Δc

t , and their
spatial derivatives; the first-order derivatives of f , a, and b are linear differential

operators acting on Δu
t , Δc

t , and Δqi

t .
To leading order in powers of 1/

√
N the errors satisfy the linearized stochastic

system

dΔu
t =

[
∂f

∂u
(u, c)Δu

t +
∂f

∂c
(u, c)Δc

t

]
dt,

dΔc
t +

[
a′(u)

∂c

∂x
Δu

t + a(u)
∂Δc

t

∂x

]
dt = 2 (b(u)Δc

t + cb′(u)Δu
t ) dt +

2√
N

N∑
i=1

qit dW
i
t ,

(3.4)

with qit defined by (3.1). The omission of the higher-order terms as N 	 1 can
be justified by a formal asymptotic analysis for the corresponding Fokker–Planck
equation.

System (3.4) is a nonautonomous linear stochastic system for the normalized
errors Δu

t and Δc
t . The explicit time dependence stems from the dependence on

the (deterministic) solutions u(x, t) and c(x, t). Henceforth we restrict ourselves to
stationary situations, assuming that u and c are initialized at steady state u∞(x),
c∞(x) (assuming that such a steady state exists and that it is stable). Such an
analysis is also relevant to situations in which one is interested in long time behavior.
The treatment of fully time-dependent cases is, in principle, not much harder.

A natural quantifier of the error is the mean-square deviation, e(t), defined by

e2(t) = E

∫
D

[
(Δu

t (x))2 + (Δc
t(x))2

]
dx.

Our goal is to minimize e(t) with respect to the choice of noise correlation operator Q
and initial data correlation R. In general, the optimal correlation operators depend
on the target time.
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4. Abstraction. To simplify notation, we consider an abstract version of the
linear stochastic system (3.1), (3.4) at steady state,

dξt = A(ξt) dt +
1√
N

N∑
i=1

qit dW
i
t ,

dqit = B(qit) dt + dW i
t , i = 1, . . . , n,

(4.1)

where ξt = ξt(x) represents the vector of errors (Δu
t (x),Δc

t(x)) and A,B are linear
differential operators. This system is supplemented with initial conditions

ξ0 = 0, qi0 = q0,

where q0 is an H-valued random variable with correlation operator R, satisfying
E[q2

0 ] = c∞. The “error” ξt is given by the Itô integral

ξt =
1√
N

N∑
i=1

∫ t

0

eA(t−s)qis dW
i
s .

The mean error is thus given by

e(t) = E

∫
D

ξ2
t (x) dx

=
1

N

N∑
i,j=1

∫ t

0

∫ t

0

E

〈
eA(t−s)

(
qisdW

i
s

)
, eA(t−s′)

(
qjs′dW

j
s′

)〉

=
1

N

N∑
i=1

∫ t

0

∫ t

0

E

〈
eA(t−s)

(
qisdW

i
s

)
, eA(t−s′)

(
qis′dW

i
s′
)〉

=

∫ t

0

∫ t

0

E

〈
eA(t−s) (qsdWs) , e

A(t−s′) (qs′dWs′)
〉
dx,

(4.2)

where in the passage from the second to the third line we used the fact that the W i
t ’s

(and correspondingly the qit’s) are independent, and in the passage to the fourth line
we used the fact that they are identically distributed, setting qt = q1

t and Wt = W 1
t .

As a first step toward the minimization of the error, we express the error in terms
of the correlation operators Q and R. We denote by H̃ the Hilbert space of H-valued
stochastic processes (see Appendix B). Let (ek) be an orthonormal basis in H; then

dWs =

∞∑
k=1

〈dWs, ek〉 ek,

where the series converges in H̃. Substituting this expansion into (4.2) gives

e(t) =
∑
i,j

∫ t

0

∫ t

0

E

〈
eA(t−s) (qsei) , e

A(t−s′) (qs′ej)
〉

E [〈dWs, ei〉 〈dWs′ , ej〉]

=
∑
i,j

∫ t

0

E

〈
eA(t−s) (qsei) , e

A(t−s) (qsej)
〉
Qij ds,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

330 RAZ KUPFERMAN AND YOSSI SHAMAI

where for every operator T : H → H we denote Tij = 〈ei, T ej〉. Expanding qsei and
qsej in the orthonormal basis we obtain

e(t) =
∑
i,j,k,l

∫ t

0

〈
eA(t−s)ek, e

A(t−s)el

〉
E [〈qsei, ek〉 〈qsej , el〉]Qij ds

=
∑
i,j,k,l

∫ t

0

Kkl(t− s) E [〈qs, eiek〉 〈qs, ejel〉]Qij ds,

where

K(t) = eA
∗teAt.

Next, expanding the products eiek and ejel in the orthonormal basis,

e(t) =
∑

i,j,k,l,m,n

∫ t

0

Kkl(t− s) (Cor(qs))mn 〈em, eiek〉 〈en, ejel〉Qij ds.

We further simplify this expression by defining for every function f ∈ H the corre-
sponding linear pointwise multiplication operator f̂ , defined by

f̂(g)(x) = f(x)g(x).

Then

e(t) =
∑
i,j,k,l

∫ t

0

[êiK(t− s)êj ]kl (Cor(qs))klQij ds.

Finally, since

qs = eBsq0 +

∫ s

0

eB(s−r) dWr,

it follows that (see Lemma B.1)

Cor(qs) = eBsReB
∗s +

∫ s

0

eB(s−r)QeB
∗(s−r) dr.

Substituting into the expression for e(t) we get, after straightforward manipulations,

e(t) = e1(t) + e2(t),

where

e1(t) =
∑
i,j,k,l

[∫ t

0

(
eB

∗sêiK(t− s)êje
Bs

)
kl
ds

]
RklQij ,

e2(t) =
∑
i,j,k,l

[∫ t

0

∫ s

0

(
eB

∗(s−r)êiK(t− s)êje
B(s−r)

)
kl
dr ds

]
QklQij .

It follows that we can express the total mean error in the following compact form:

e(t) = Tr [M1(t) (R⊗Q)] + Tr [M2(t) (Q⊗Q)] ,
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where the operators M1(t) and M2(t) are (formally) defined by

(M1(t))
ij
kl =

∫ t

0

(
eB

∗sêiK(t− s)êje
Bs

)
kl
ds,

(M2(t))
ij
kl =

∫ t

0

∫ s

0

(
eB

∗(s−r)êiK(t− s)êje
B(s−r)

)
kl
dr ds.

(4.3)

A comment on notation: the tensorial operator R ⊗ Q is defined on the Hilbert
space H ⊗H, which consists of formal linear combinations of the form

∞∑
i,j=1

αijei ⊗ ej ,

and the inner product is dictated by the requirement that the set ei ⊗ ej is an ortho-
normal set. For any element ei ⊗ ej ∈ H ⊗H, (R⊗Q)(ei ⊗ ej) is defined by

(R⊗Q)(ei ⊗ ej) = R(ei) ⊗Q(ej) =

∞∑
k,l=1

RikQjlek ⊗ el.

The operators M1(t) and M2(t) are operators on H ⊗H, defined via

M1,2(t)(ei ⊗ ek) =

∞∑
j,l=1

(M1,2(t))
ij
kl ej ⊗ el.

Finally, the trace of the linear operator M1,2 on H ⊗H is defined by

TrM1,2 =

∞∑
i,k=1

(M1,2)
ii
kk.

To conclude, the mean error at time t is given by the following expression:

Tr [M1(t) (R⊗Q)] + Tr [M2(t) (Q⊗Q)] ≡ F (t, R,Q).

We have thus explicitly expressed the error in terms of the correlation operators.

5. The optimization problem. To rigorously define an optimization problem
that minimizes the error F (t, R,Q) we need to specify the sets in which the correlation
operators R and Q take values.

The correlation of the Brownian process. We denote by Q the set of all correlation
operators Q corresponding to standard Wiener processes, i.e.,

(5.1) Q = {Q : there exists an H-valued standard Q-Wiener process} .

The set of correlation operators of H-valued Wiener processes coincides with the cone
C(H) of symmetric, self-adjoint nuclear operators (see Appendices A and B). The
requirement that the process be standard implies that

(5.2) Q = {Q ∈ C(H) : kQ(x, x) = 1 a.e.} ,

where kQ is the kernel of Q,

〈Qf, g〉 =

∫∫
D

kQ(z, y)f(y)g(z) dy dz.
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The correlation of the initial data. Similarly, we denote by R the set of all
correlation operators R compatible with the initial state of the H-valued random
variable q0, i.e.,

(5.3) R = {R ∈ C(H) : kR(x, x) = c∞(x) a.e.} .

Optimization. We are looking for the correlation operators Q ∈ Q and R ∈ R
that minimize the error F (t, R,Q). There is no guarantee, however, that such a
minimum exists, as the domains Q and R are not compact (in all natural topologies).
Thus, there may be no optimal choices of correlations, and one has to modify the
optimization problem as follows: find sequences of operators (Qn) ⊂ Q and (Rn) ⊂ R
such that

(5.4) lim
n→∞

F (t, Rn, Qn) = inf {F (t, R,Q) : R ∈ R, Q ∈ Q} .

Example 5.1. In this context, the noise correlation associated with CONNFFESSIT
[12] does not correspond to a Q-Wiener process but rather to a sequence of such pro-
cesses. Consider the sequence of finite rank operators

(5.5) Qn =
1

n
In,

where In is the identity on the linear span of e1, . . . , en; a Brownian simulation driven
by a Qn-Wiener process can be viewed as an approximation to CONNFFESSIT.
Although each of the Qn belongs to the set of admissible correlations Q, we have
Qn → 0 /∈ Q in the Hilbert–Schmidt topology, and Qn does not converge at all in
the space of nuclear operators. Hence the domain of the optimization problem is not
closed.

Example 5.2. Consider the sequence of finite-dimensional “alternating” opera-
tors, defined by

Qn =
1

n

n∑
i,j=1

(−1)i+j 〈·, ej〉 ei.

While Qn ∈ Q for every n, this sequence is unbounded in the norm topology, i.e.,
‖Qn‖ → ∞. This demonstrates that the domain of optimization Q is also unbounded.

6. Finite-dimensional approximation. Except for very simple situations, the
optimization problem (5.4) cannot be solved analytically. In this section, the infinite-
dimensional optimization problem is approximated by a finite-dimensional optimiza-
tion problem, which is shown to be solvable by standard methods. See Appendix A
for relevant background on operators in Hilbert spaces.

The approximation is based on the following steps:
1. The target function

(6.1) F (t, R,Q) = Tr[M1(t)(R⊗Q)] + Tr[M2(t)(Q⊗Q)],

with fixed t, is shown to be continuous in the L2(H) × L2(H) topology.
2. Sequences of sets of finite-dimensional operators Rn ⊂ R, Qn ⊂ Q are

introduced such that

(6.2) ∪∞
n=1 Qn = Q and ∪∞

n=1 Rn = R,

where the closure is with respect to the L2(H) topology.
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3. For every n, the optimization problem (5.4) is altered with R and Q replaced
by Rn, Qn. The optimal error obtained from the n-dimensional optimization
problem is

en = inf {F (t, R,Q) : R ∈ Rn, Q ∈ Qn} .

It is shown that

lim
n→∞

en = eopt = inf {F (t, R,Q) : R ∈ R, Q ∈ Q} .

4. It is shown that each n-dimensional optimization problem can be solved by a
standard algorithm.

1. Continuity of F . The target function F (t, R,Q) can be reorganized as follows:
for a nuclear operator T ∈ L1(H), we consider the family of operators PT (t),
(formally) defined by

(PT (s, t))ij = Tr
[
TeB∗sêiK(t)êje

Bs
]
,

where, as before, K(t) = eA
∗teAt. Substituting the expressions for M1(t) and

M2(t) and reorganizing summations we obtain that

F (t, R,Q) =

∫ t

0

Tr[PR(s, t− s)Q] ds +

∫ t

0

∫ s

0

Tr[PQ(t− r, t− s)Q] dr ds.

Since the mapping T → PT is linear, then for Q1, Q2 ∈ Q and R1, R2 ∈ R,

F (t, R2, Q2) − F (t, R1, Q1) =

∫ t

0

Tr[PΔR(s, t− s)Q2] ds

+

∫ t

0

Tr[PR1(s, t− s)ΔQ] ds

+

∫ t

0

∫ s

0

Tr[PΔQ(s− r, t− s)Q2] dr ds

+

∫ t

0

∫ s

0

Tr[PQ1
(s− r, t− s)ΔQ] dr ds,

where ΔQ = Q2 −Q1 and ΔR = R2 − R1. By (A.2) the trace of a product
is bounded by the product of the L2(H)-norms, and by (A.1) L2(H) is a
two-sided ideal in L(H). Hence

|F (t, R2, Q2) − F (t, R1, Q1)| ≤
∫ t

0

‖PΔR(s, t− s)‖2‖Q2‖2 ds

+

∫ t

0

‖PR1
(s, t− s)‖2‖ΔQ‖2 ds

+

∫ t

0

∫ s

0

‖PΔQ(s− r, t− s)‖2‖Q2‖2 dr ds

+

∫ t

0

∫ s

0

‖PQ1
(s− r, t− s)‖2‖ΔQ‖2 drds.

Our goal is to show that this can be bounded by an expression of the form

|F (t, R2, Q2) − F (t, R1, Q1)| ≤ m (‖ΔR‖2 + ‖ΔQ‖2),
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where the constant m may depend on t, R1, Q1, and Q2, as well as on the
operators A,B. To complete the proof of this assertion, it is sufficient to show
that for every S ∈ L2(H),

sup
0≤s,t≤T

‖PS(s, t)‖2 ≤ m1 ‖S‖2.

This requires mild assumptions on the operators K(t) as shown in the follow-
ing lemma.
Lemma 6.1. Suppose that K(t) is of the form

K(t)f =

∫
D

kK(·, y, t)f(y) dy,

and kK(x, y, t) is a continuous function of its arguments. Then for every
operator S ∈ L2(H),

‖PS‖2 ≤ m1‖S‖2,

where m1 = supD2×[0,T ] |kK(x, y, t)| · max[0,T ] ‖eBs‖2.

Proof. Since L2(H) is a two-sided ideal in L(H), then eBsSeB
∗s ∈ L2(H)

and

‖eBsSeB
∗s‖2 ≤ ‖eBs‖2‖S‖2.

Moreover, the operator eBsSeB
∗s can be represented as an integral opera-

tor with kernel kS ∈ L2(D2) with ‖eBsSeB
∗s‖2 = ‖kS‖L2(D2) (see Proposi-

tion A.2). Substituting this representation,

(PS(s, t))ij = Tr[eBsSeB
∗sêiK(t)êj ]

=

∞∑
k=1

〈
eBsSeB

∗sêiK(t)êjek, ek

〉

=

∞∑
k=1

∫∫∫
D

kS(x, y)ei(y)kK(y, z)ej(z)ek(z)ek(x) dz dy dx

=

∫∫
D

kS(x, y)kK(y, x)ej(x)ei(y) dx,

(6.3)

where in the last equality we used the identity

∞∑
k=1

ek(x)ek(y) = δ(x− y).

It follows that the operator PS has the explicit representation

PS(t) f =

∫
D

kS(y, ·)kK(·, y, t)f(y) dy.

Finally, as kK is continuous, PS is a Hilbert–Schmidt operator with

‖PS‖2 ≤ m1 ‖kS‖L2(D2) ≤ m1 ‖S‖2 .

To conclude we have shown the following.
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Proposition 6.2. If K(t) is a Hilbert–Schmidt operator with a continuous
kernel, then there exists a constant m that depends on t, A,B,R1, Q1, Q2 such
that

|F (t, R2, Q2) − F (t, R1, Q1)| ≤ m (‖ΔR‖2 + ‖ΔQ‖2),

which implies that F (t, ·, ·) is continuous in the L2(H) × L2(H) topology.
2. Construction of the approximating sets. We next construct the sequences of

sets Qn,Rn. We first start with Qn: Consider a uniform partition of D into n
intervals of size |D|/n; we denote the jth interval by Ij and the corresponding
indicator function by χj . We define

Qn =

{
Q ∈ Q : kQ(x, y) =

n∑
i,j=1

aijχi(x)χj(y)

}
,

that is, operators Q ∈ Q that have a correlation function kQ that is piecewise
constant with respect to the partitions.
Proposition 6.3. ∪∞

n=1 Qn = Q, where the closure is in L2(H).
Proof. We show that for every Q ∈ Q there exists a sequence of operators
Qn ∈ Qn that converges to Q in the Hilbert–Schmidt topology. Let xj ∈ Ij ,
j = 1, . . . , n, be n points for which kQ(xi, xj) is well defined for any 1 ≤
i, j ≤ n. (See Proposition A.3 for the existence of such set.) Let Qn be the
n-dimensional operator defined by

Qn f(·) =

∫
D

kQn
(·, y)f(y) dy,

where

kQn(x, y) =

n∑
i,j=1

kQ(xi, xj)χi(x)χj(y);

i.e., kQn is a simple function formed by a sampling of kQ at the points (xi, xj).
We now show that for every n, Qn ∈ Qn, and that Qn → Q in the Hilbert–
Schmidt topology. Note that kQn is a piecewise constant function, and

kQn(x, x) =

n∑
i,j=1

kQ(xi, xj)χi(x)χj(x) = kQ(xs, xs)χ
2
s(x) = 1,

where Is is the unique interval for which x ∈ Is. By Proposition A.3, there
is a representation

kQ(x, y) =

∫
D

l(x, z)l(y, z) dz,

where l is in L2(D2). It follows that

kQn(x, y) =

∫
D

ln(x, z)ln(y, z) dz,

where ln(x, y) =
∑n

i=1 l(xi, y)χi(x). Consequently, Qn is nonnegative and
self-adjoint. The convergence of Qn to Q in the Hilbert–Schmidt topology
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follows immediately from the convergence of kQn
to kQ in L2(D2) and from

Proposition A.2.
To define the sequence Rn, we introduce an invertible mapping g : Q → R
defined by its action on kernels,

g : kQ(x, y) �→ c1/2∞ (x)kQ(x, y)c1/2∞ (y).

We now define

Rn = {g(Q) : Q ∈ Qn} ,

which is indeed a subset of R consisting of n-dimensional operators. Given
R ∈ R, we set Rn = g(Qn), where Qn ∈ Qn converges to Q = g−1(R). The
convergence of Rn to R follows from the fact that the mapping g is continuous
with respect to the Hilbert–Schmidt topology, as long as ‖c∞‖∞ < ∞. This
proves the second part of (6.2).

3. Convergence. Given n, we consider the following finite-dimensional optimiza-
tion problem:

(6.4) Find Qn ∈ Qn and Rn ∈ Rn that minimize F (t, R,Q).

The minimum always exists since F is continuous with respect to R,Q and
Rn,Qn are compact. The optimal error with respect to the finite-dimensional
optimization problem is

en = min {F (t, R,Q) : R ∈ Rn, Q ∈ Qn} .

Proposition 6.4. en converges to eopt.
Proof. The proof follows immediately from (6.2) and the continuity of F .

4. The finite-dimensional optimization problem. We reformulate the finite-
dimensional optimization problem (6.4) in matrix language; every operator
S with ImS ⊆ Ln = Span {χ1, . . . , χn} corresponds to an n-by-n matrix [S]
defined by

[S]ij = n 〈χi, S χj〉 .

The mapping S �→ [S] is an isometry between the linear space of operators
T : Ln → Ln with the Hilbert–Schmidt topology, and Mn(R), endowed with
the Frobenius norm,

‖A‖2
2 =

n∑
i,j=1

A2
ij .

Under this isometry, the set of operators Qn corresponds to a set of matrices
Qn = {[Q] : Q ∈ Qn}, which coincides with the set of all nonnegative, sym-
metric n-by-n matrices [Q], such that [Q]ii = 1/n for 1 ≤ i ≤ n. Since every
operator R ∈ Rn is of the form R = g(Q), where Q ∈ Qn, the corresponding
matrix is therefore defined by

[R]ij =

n∑
k,l=1

[Q]kl

〈
ĉ1/2∞ χi, χk

〉〈
ĉ1/2∞ χj , χl

〉
= [ĉ1/2∞ Qĉ1/2∞ ], i, j = 1, . . . , n,
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where as before ĉ
1/2
∞ is a multiplication operator. The finite-dimensional

optimization problem can be formulated alternatively in matrix form.
Proposition 6.5. Let R ∈ Rn and Q ∈ Qn. Then

(6.5) F (t, R,Q) = Tr [[ΠnM1(t)Πn][R] ⊗ [Q]] + Tr [[ΠnM2(t)Πn][Q] ⊗ [Q]] ,

where Πn is the orthonormal projection from H ⊗H into Ln ⊗ Ln.
Proof. We complete the orthonormal set

√
nχ1, . . . ,

√
nχn into an orthonor-

mal basis (ek) in H. It follows that for every 1 ≤ i, j ≤ n,

Qij = 〈Qej , ei〉 = n 〈Qχi, χj〉 = [Q]ij .

Consequently, Rij = [R]ij for 1 ≤ i, j ≤ n and Rij = 0 otherwise. As
ImR, ImQ ⊆ Ln, the first term on the right-hand side of (6.1) is

∞∑
i,j,k,l=1

〈M1(t) ei ⊗ ej , ek ⊗ el〉RijQkl =

n∑
i,j,k,l=1

〈M1(t) ei ⊗ ej , ek ⊗ el〉RijQkl

=

n∑
i,j,k,l=1

〈M1(t) ei ⊗ ej , ek ⊗ el〉 [R]ij [Q]kl

=
∑

i,j,k,l=1

(M1(t))
ij
kl [R]ij [Q]kl

= Tr [[ΠnM1(t)Πn][R] ⊗ [Q]] .

The second term is treated similarly.
Consequently, the finite-dimensional optimization problem is equivalent to
solving the following problem: find [Q] ∈ Qn and [R] ∈ Rn that minimize
the function

(6.6) F (t, [R], [Q]) = Tr ([ΠnM1(t)Πn][R]⊗[Q])+Tr ([ΠnM2(t)Πn][Q]⊗[Q]) .

The optimization problem (6.6) can be identified with a convex optimization

problem in R
n4

of the following general form:

Minimize f(x, y) = yTAx + yTBy,

where A,B are matrices Mn(Rn4

), subject to the nonlinear constraints

x ∈ Rn, y ∈ Qn.

This problem is solvable via standard algorithmic methods (see Appendix C).

7. Examples. In this section we examine two model problems. The goal of
these examples is to demonstrate how our formalism applies in specific situations, as
well as to get more insight into the relation between differential operators and noise
minimizers.

7.1. A linear advection equation. Consider a function c(x, t), x ∈ [0, 1],
governed by the linear first-order PDE

∂c

∂t
+

∂c

∂x
= −2c + 1,
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with periodic boundary conditions and initial condition c(x, 0) = c0(x). While the
use of Brownian simulations for this problem is senseless, we provide this example as
a toy model for our formalism, since it is fully solvable by analytical means.

In the stochastic setting, c(x, t) can be expressed as

c(x, t) = E[q2
t ],

where qt is governed by the SPDE

dqt +
∂qt
∂x

dt = −qt dt + dWt,

with initial conditions that are consistent with the initial data c0 = 1/2 and periodic
boundary conditions. The Brownian simulation scheme takes the form

Ct =
1

N

N∑
i=1

(Qi
t)

2,

dQi
t = −

(
∂Qi

t

∂x
+ Qi

t

)
dt + dW i

t , i = 1, . . . , N.

Unlike in the general case, the Qi
t are independent. Since no linearization is required,

the normalized error, Δc
t(x, t) =

√
n(Ct(x) − c(x, t)), is governed by the system

dΔc
t = −

(
∂Δc

t

∂x
+ 2Δc

t

)
dt +

2√
N

N∑
i=1

Qi
t dW

i
t ,

dQi
t = −

(
∂Qi

t

∂x
+ Qi

t

)
dt + dW i

t , i = 1, . . . , N.

In the notation of (4.1), the operators A and B are given by

A = −2I − ∂

∂x
, B = −I − ∂

∂x
,

where I is the identity operator.
Take, for example, M1(t), which is given by (4.3). In the present case,

(M1(t))
ij
kl = e−4t

∫ t

0

e2s

∫ 1

0

ei(x + s)ej(x + s)ek(x)el(x) dx ds,

where x+ s is to be taken modulo one, and (ej) is an arbitrary basis in H. Thus, the
first term of the mean error reduces to

Tr[M1(t)(R⊗Q)] = e−4t

∫ t

0

e2s

∫ 1

0

kR(x + s, x + s)kQ(x, x) dx ds

= e−4t

(
e2t − 1

4

)
,

where we have used the fact that kQ(x, x) = 1 and kR(x, x) = 1/2.
Similarly,

Tr[M2(t)(Q⊗Q)] = e−4t

(
e2t − 1

2

)2

.
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Fig. 7.1. Numerical solution of system (7.1) discretized on an n = 32-point mesh and using
N = 2000 random fields. The correlation operator is of CONNFFESSIT type, represented by an
n-by-n correlation matrix with entries [Q]ij = n−1δij . The graph on the left shows the exact solution
c(x, t) at time t = 20 (solid line) along with the approximate solution Ct(x) (dots). The graph on
the right shows the time evolution of the normalized error (7.3).

It follows that the error is independent of the correlations of the noise and the initial
data. This is not surprising, since the dynamics can be represented as uncoupled SDEs
along characteristics, and hence the evolution on a given characteristic is unaffected
by the noise of another characteristic. Therefore the error is affected only by the
diagonal elements kQ(x, x), kR(x, x) of the correlation functions, which are fixed by
the constraints.

7.2. An integral equation. The next example is the integral system given in
Example 2.1. The corresponding Brownian simulation is

Ut(x) = −Ct(x) + Ct,

Ct(x) =
1

N

N∑
i=1

(Qi
t(x))2,

dQi
t(x) =

1

2
(s(x) + Ut(x) − 1)Qi

t dt + dW i
t ,

(7.1)

where x ∈ [0, 1] and for every function f , f̄ =
∫ 1

0
f(x) dx. As t → ∞, the deterministic

solution (u, c) converges to the attracting steady-state solution (u∞, c∞), given by

u∞ = −c∞ + c∞,

c∞ = −k∞ +
√
k2
∞ + 1,

(7.2)

with k∞ = 1
2 (1 − s− c∞).

Figures 7.1 and 7.2 show simulation results of this system discretized on an n = 32-
point mesh and using N = 2000 random fields. The initial conditions are taken to be
deterministic: Qi

0(x) = 1. Figure 7.1 corresponds to a CONNFFESSIT simulation,
where the (finite) correlation matrix has entries [Q]ij = n−1δij . The figure on the left
compares the exact solution c(x, t) (solid line) and the approximate solution Ct(x)
(dots) at time t = 20. Note how the use of a spatially uncorrelated noise gives rise to
a rough solution. The figure on the right shows the time evolution of the normalized
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Fig. 7.2. Same as Figure 7.1 for a BCF-type correlation operator, represented by an n-by-n
correlation matrix with entries [Q]ij = n−1.

error,

(7.3) N

∫ 1

0

(c(x, t) − Ct(x))2 dx.

The mean error oscillates in time at an average value of about 1.06.
In contrast, we display in Figure 7.2 the corresponding graphs for a spatially

uniform noise (BCF); i.e., the correlation matrix has entries [Q]ij = n−1. As expected,
the approximate solution remains smooth. The notable difference is the behavior of
the mean error, which assumes a much broader range of values, occasionally becoming
very small but also attaining values as large as 12. The time averaged mean error in
this particular realization is 1.47, i.e., larger than for the spatially uncorrelated noise.
Such a behavior is consistent with earlier studies of the BCF method, where solutions
were observed to strongly oscillate around the exact solution. The events where the
errors are vanishingly small correspond to the approximate solution “crossing” the
exact solution in the course of such oscillations.

We now turn to the error analysis. To linear approximation, the error Δc
t satisfies

the SPDE

dΔc
t = (s + u∞ − 1 − c∞)Δc

t + c∞Δc
t +

2√
N

N∑
i=1

qit dW
i
t ,

dqit =
1

2
(s + u∞ − 1) qit dt + dW i

t ,

so that in terms of the formalism (4.1), the operators A and B are given by

Af = (s + u∞ − 1 − c∞) f + c∞f,

Bf =
1

2
(s + u∞ − 1)f.

Note the factor 2 in front of the noise term, which implies that the error e(t) should
be multiplied by a factor of 4.

Our first observation is that both operators A and B are dissipative, which implies
that the entries (M1(t))

ij
kl decay exponentially in time. Hence, for large enough times
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Table 7.1

Normalized error for various mesh sizes: comparison between the (optimal) spatially uncorre-
lated noise and spatially uniform noise.

n CONNFFESSIT BCF
8 1.197 2.188
16 1.121 2.188
32 1.083 2.188

the error is dominated by the quadratic term e2(t). This is of no surprise, as (ergodic)
dissipative systems are insensitive to initial data at long times. The leading error
contribution is thus given by

e2(t) = 4

∞∑
i,j,k,l=1

(M2(t))
ij
klQijQkl,

where

(M2(t))
ij
kl =

∫ t

0

∫ s

0

(
eB

∗(s−r)êie
A∗(t−s)eA(t−s)êje

B(s−r)
)
kl
dr ds.

Using the fact that the operator B and êi commute, this can be brought to the
following simpler form:

e2(t) = 4

∞∑
i,j,k,l=1

QijQkl 〈eiek, G(t)ejel〉 ,

where

G(t) =

∫ t

0

∫ s

0

eB
∗(s−r)eA

∗(t−s)eA(t−s)eB(s−r) dr ds;

unlike M2(t), G(t) is an operator on H. The error can be estimated in the limit of
large t. First note that

B∗G(t) + G(t)B =

∫ t

0

eB
∗seA

∗(t−s)eA(t−s)eBs ds−
∫ t

0

eA
∗(t−s)eA(t−s) ds.

Since both A and B are dissipative, the first integral on the right-hand side vanishes
in the limit of large t. Multiplying the left-hand side by A∗ and A, respectively, we
end up with the following system of Lyapunov equations:

B∗G(t) + G(t)B = F (t),

A∗F (t) + F (t)A = I, t 	 1.
(7.4)

We have discretized the system (7.4) as described in section 6 and computed the
optimal correlation Qn for various values of the mesh size. The optimal correlation
was found to be the CONNFFESSIT correlation, [Q]ij = n−1 δij . In Table 7.1 we
display the computed values of the normalized error for various mesh sizes and for
both spatially uncorrelated and spatially uniform noise. The computed errors are in
agreement with the simulation results.
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An insight into why is CONNFFESSIT optimal is obtained by noting that e2(t)
can be represented in terms of the correlation functions,

e2(t) = 4

∫∫
D

k2
Q(x, y)kG(x, y) dx dy,

where kG is the kernel of G(t), which is a distribution rather than a function. Specif-
ically, kG is singular along the diagonal and a smooth, positive function off the diag-
onal. It follows that the minimizer kQ must vanish outside the diagonal.

8. Discussion. We derived an expression for the mean-square error in Brownian
simulations as a function of the spatial correlation of the noise. We formulated an op-
timization problem for the variance minimizing correlation, and showed that it can be
approximated by finite-dimensional convex optimization problems, solvable by stan-
dard methods. At this point, our analysis is restricted to a class of systems that are
closable and to steady-state situations. Our analysis can easily be extended to time-
dependent situations, with relatively minor technical complications. The extension to
nonclosable systems seems to be more complicated and remains to be done.

This paper exposes a theoretical framework for variance reduction in spatially
dependent Brownian simulations. In practice, one needs to solve a nontrivial opti-
mization problem for each given realization. Our belief is that the optimal correlation
does not depend on the fine details of the problem, but on coarser properties, such as
the type of equations. Understanding the relation between the type of equations and
the optimizer remains an open problem of much interest.

Appendix A. Operators on Hilbert spaces. In this section we review some
basic facts about operators on Hilbert spaces. In particular, we focus on two classes of
operators, namely, nuclear and Hilbert–Schmidt operators. While all of the contents
of this section can be found in [10], we summarize the facts that are essential to our
analysis.

For a Hilbert space H, the space of all bounded linear operators from H to itself
is denoted by L(H); it is a Banach space with respect to the norm topology. The
subspace K(H) ⊂ L(H) of compact operators consists of the closure of the finite-
dimensional operators in the norm topology.

Nuclear operators. An operator T ∈ L(H) is called nuclear if there exist sequences
(xn), (yn) ⊂ H such that

T =
∞∑
j=1

〈·, yj〉xj

and

∞∑
j=1

‖xj‖‖yj‖ < ∞.

The space L1(H) of nuclear operators is a Banach space with respect to the norm

‖T‖1 = inf

{ ∞∑
j=1

‖xj‖‖yj‖ : T =

∞∑
j=1

〈·, yj〉xj

}
.

It is a two-sided ideal in L(H), and for T ∈ L1(H) and S ∈ L(H),

‖TS‖1 ≤ ‖T‖1‖S‖ and ‖ST‖1 ≤ ‖T‖1‖S‖.
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The trace of a nuclear operator T ∈ L1(H) is defined by

TrT =
∞∑
j=1

〈Tej , ej〉 ,

where (ej) is an orthonormal basis in H. For every nuclear operator, this sum con-
verges and is independent of the choice of orthonormal basis.

A subset of the nuclear operators that is of particular importance is the cone C(H)
of nonnegative, self-adjoint nuclear operators. For every T ∈ C(H) the L1(H)-norm
and the trace are in fact equivalent, namely,

TrT = ‖T‖1.

Hilbert–Schmidt operators. An operator T ∈ L(H) is called Hilbert–Schmidt if,
for some orthonormal basis (ej),

∞∑
j=1

‖Tej‖2 < ∞.

The space L2(H) of Hilbert–Schmidt operators is a Hilbert space with the inner
product

〈T, S〉2 = Tr(T ∗S).

The corresponding norm is denoted by ‖ · ‖2. The space of Hilbert–Schmidt operators
is a two-sided ideal in L(H), and for T ∈ L2(H) and S ∈ L(H),

(A.1) ‖TS‖2 ≤ ‖T‖2 ‖S‖ and ‖ST‖2 ≤ ‖T‖2 ‖S‖.

Nuclear operators can be characterized by the following statement.
Proposition A.1. An operator T ∈ L(H) is nuclear if and only if there exist

operators T1, T2 ∈ L2(H) such that

T = T1T2

and

(A.2) ‖T‖1 ≤ ‖T1‖2‖T2‖2.

Moreover, a nonnegative, self-adjoint operator T ∈ L(H) is nuclear if and only if
T 1/2 is Hilbert–Schmidt and

‖T‖1 = ‖T 1/2‖2
2.

In particular, every nuclear operator is a Hilbert–Schmidt operator. In fact,

L1(H) ⊂ L2(H) ⊂ K(H),

and L1(H), L2(H) are dense subsets of K(H) with respect to the norm topology.
Now consider the particular case which is considered in this paper, where H =

L2(D) with D ⊂ R a bounded interval. Then Hilbert–Schmidt operators can be
characterized by the following statement.
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Proposition A.2. An operator T ∈ L(H) is Hilbert–Schmidt if and only if there
exists a kernel kT ∈ L2(D2) such that

Tf =

∫
D

kT (·, y)f(y) dy, f ∈ H.

Moreover, the mapping T �→ kT is an isometry, that is, ‖T‖2 = ‖kT ‖L2(D2).
The characterization of nuclear operators stated in Proposition A.1 can be refor-

mulated in terms of kernels.
Proposition A.3. An operator T ∈ L2(H) is nuclear if and only if there exist

kernels k1, k2 ∈ L2(D2) such that, for almost every x, y ∈ D,

kT (x, y) =

∫
D

k1(x, z)k2(y, z) dz.

Moreover, if T ∈ C(H), then one can take k1 = k2.
In particular, the kernel of an operator T ∈ L1(H) is defined almost everywhere

on its diagonal by

kT (x, x) =

∫
D

k1(x, z)k2(x, z) dz.

Moreover, it is integrable on the diagonal, and

TrT =

∫
D

kT (x, x) dx.

Appendix B. Hilbert space-valued stochastic processes. The notion of a
Hilbert space-valued stochastic process is a generalization of a stochastic process in R

n

and plays a fundamental role in the theory of SPDEs. Its correlation, rather than being
a matrix, is a linear operator in H. In this section we briefly review the definitions
and properties of Hilbert space-valued stochastic processes, and, in particular, Hilbert
space-valued Wiener processes, together with the associated stochastic calculus. We
focus on H = L2(D), where D is a finite interval in R.

An H-valued random variable is a measurable function X(ω) : Ω → H. For a
given pair of H-valued random variables X and Y , the correlation operator, Cor(X,Y ),
is defined by

Cor(X,Y )(f) = E[〈X, f〉Y ], f ∈ H.

The autocorrelation operator of X is Cor(X,X); it is a nonnegative, symmetric nuclear
operator (see Appendix A).

An H-valued stochastic process is a measurable function Xt(ω) : [0, T ] × Ω → H
such that, for every t ∈ [0, T ],

E

∫ t

0

‖Xs‖2
ds < ∞.

We denote by H̃ the Hilbert space of all H-valued stochastic processes, endowed with
the inner product

〈X,Y 〉H̃ = E

∫ T

0

〈Xs, Ys〉 ds.
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We will often abuse notation, denoting by ‖ ·‖ and 〈·, ·〉 the norms and inner products
of both spaces H and H̃, as long as it remains clear from the context.

Now let Q be a bounded operator in H. An H-valued stochastic process Wt is a
Q-Wiener process if the following hold:

1. W0 = 0.
2. Wt has continuous trajectories.
3. Wt has independent increments.
4. For every t ≥ s ≥ 0, Wt − Ws is a zero mean Gaussian H-valued random

variable with autocorrelation (t− s)Q.
As tQ is the autocorrelation of Wt, it follows that

E[〈Wt, f〉 〈Wt, g〉] = t 〈Qf, g〉 , f, g ∈ H,

and

E‖Wt‖2 = TrQt,

which implies that Q ∈ C(H).
Given an operator Q ∈ C(H), a Q-Wiener process can be constructed by tak-

ing a sequence of mutually independent real-valued Wiener processes, (W k
t ), and an

orthonormal basis (ek) in H, and by setting

(B.1) Wt =

∞∑
k=1

W k
t Q

1/2(ek).

For a detailed proof of the above statement, we refer the reader to [5].
In the case of H = L2(D), it is often more convenient to associate a correlation

function with a Q-Wiener process, rather than an operator: for almost every x, y ∈ D,
define kQ(x, y) by

kQ(x, y) =
1

t
E[Wt(x)Wt(y)].

One can easily verify that the correlation function kQ is a symmetric function with a
nonnegative diagonal such that∫

D2

k2
Q(x, y) dx dy < ∞,

and that it is the kernel corresponding to the correlation operator,

Qf(x) =

∫
D

kQ(x, y)f(y) dy.

An H-valued Q-Wiener process W (t) is said to be standard if, for almost every x ∈ D,

kQ(x, x) = 1.

The stochastic integral. The H-valued Itô integral can easily be constructed using
the representation (B.1) of the Q-Wiener process as a series of real-valued Wiener pro-
cesses. In general, the stochastic Itô integral takes values in another Hilbert space H ′.

Let L(H,H ′) denote the space of all bounded operators from H to H ′. A stochas-
tic process g : [0, T ) × Ω → L(H,H ′) is said to be adapted to an H-valued Q-Wiener
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process Wt if, for every t, g(t) is measurable with respect to the Brownian filtration
up to time t. Let ek be an orthonormal basis of eigenfunctions of Q, and let λk be the
corresponding eigenvalues. We then define the Itô integral of g with respect to Wt by

(B.2)

∫ t

0

g(s) dWs =

∞∑
k=1

∫ t

0

g(s)
(√

λkek

)
dW k

s ,

where the series is convergent in H̃ ′. For a detailed proof of the above statement, see,
e.g., [9].

Stochastic calculus in Hilbert spaces can be based on the series representation of
the Q-Wiener process combined with the stochastic calculus for real-valued Wiener
processes. A straightforward application is the following proposition.

Proposition B.1. Let Wt be an H-valued Q-Wiener process, and let X1
t , X

2
t be

two stochastic processes of the form

Xi
t =

∫ t

0

gi(s) dWs, i = 1, 2,

where gi are adaptable processes in L(H). Then the correlation function of X1
t , X

2
t is

given by

E
〈
X2

t1 , X
2
t2

〉
= E

∫ min(t1,t2)

0

Tr[g1(s)Qg∗2(s)] ds.

We proceed by stating the Hilbert space versions of Itô’s isometry and Itô’s for-
mula, which play a fundamental role in stochastic analysis. See [5] for detailed proofs
of these statements.

Theorem B.2. Itô’s isometry. For any adapted process g : [0,∞) → L(H),

E

∥∥∥∥
∫ t

0

g(s) dWs

∥∥∥∥
2

= E

∫ t

0

Tr [g(s)Qg∗(s)] ds.

Note that the left-hand side is a square of a norm in H, whereas the right-hand
side is a square of a trace norm in H.

Theorem B.3. Itô’s formula. Let F : H → R be a differentiable function such
that its partial derivatives ∇F and ∇2F are uniformly continuous on bounded subsets
of H. Consider the H-valued stochastic process X(t) defined by the SDE

dXt = a(Xt, t) dt + dWt,

which is a shorthand notation for

Xt = X0 +

∫ t

0

a(Xs, s) ds + Wt.

Then

dF (Xt) = 〈∇F (Xt) , dXt〉 +
1

2
Tr

[
∇2F (Xt)Q

]
dt.

As an application, consider the case where H = L2 (D) and F : R → R. Then



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CHOICES OF CORRELATION OPERATORS 347

dF (Xt) = F ′(Xt) dXt +
1

2
Tr [F ′′(Xt)Q] dt

= F ′(Xt) dXt +
1

2
F ′′(Xt) TrQdt.

Appendix C. Semidefinite programming. Semidefinite programming is a
class of convex optimization problems, which consist of minimizing a real-valued linear
function F , defined on Sd, the cone of nonnegative, semidefinite d-by-d matrices, and
subject to some additional affine constraints. A canonical formulation for semidefinite
programming (SDP) optimization problems is the following:

Minimize F (X) = Tr[RX]

subject to AX = B, X ∈ Sd,
(C.1)

where R, A, and B are given matrices.
The nonlinearity of the optimization problem (C.1) arises from the nonlinear

geometric structure of Sd. This nonlinear constraint X ∈ Sd can be represented
alternatively by a collection of d algebraic inequalities,

(C.2) detXi ≥ 0, i = 1, . . . , d,

where Xi denotes the ith principal submatrix of X, together with the linear constraint
of symmetry,

X = XT .

The standard algorithm for solving (C.1) can also be applied to convex functions
F (X). It consists of constructing a sequence of feasible (i.e., compatible with the
constraints) points Xn that converge to an optimal solution Xopt. To impose the
nonlinear constraints (C.2), one minimizes F + Φε, rather than F itself, where Φε(X)
is a one-parameter family of barrier functions, each of which diverges as X tends to
the boundary of Sd. More explicitly, Φε is a logarithmic barrier function, defined by

Φε(X) = −ε
∑

log det(Xi), t > 0.

When ε is small, an optimal solution of (C.1) is close to an optimal solution of (C.3),
with F replaced by F +Φε. Formally, every ε > 0 results in an optimal solution Xε

opt,
called a central path solution, and Xopt arises as a limit of the central path solutions
as ε → 0. The optimization problem (C.1) is therefore reduced to an optimization
problem depending on a parameter ε:

Minimize F (X) + Φε(X)

subject to AX = B, X = XT .
(C.3)

The optimization problem (C.3) can be solved with a standard Newton method. For
further reading about SDP algorithms, see [2].
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