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We consider the dynamics of systems in the presence of inertia and colored multiplicative noise.
We study the limit where the particle relaxation time and the correlation time of the noise both tend
to zero. We show that the limiting equation for the particle position depends on the magnitude
of the particle relaxation time relative to the noise correlation time. In particular, the limiting
equation should be interpreted either in the Itô or Stratonovich sense, with a crossover occurring
when the two fast time scales are of comparable magnitude. At the crossover the limiting stochastic
differential equation is neither of Itô nor of Stratonovich type. Our findings are supported by
numerical simulations.

I. INTRODUCTION

Many problems of physical interest are described in
terms of variables with widely separated characteristic
time scales. Often one is interested in obtaining a coarse
grained, macroscopic description for the slow variables
alone. The fast variables are eliminated through a pro-
cess of adiabatic elimination. A simple example is the
derivation of the Smoluchowski equation from the full
phase space dynamics (i.e. Kramers’ equation) through
elimination of the momentum variables [4]. The formal-
ism is very well developed for the case of additive noise.
However, in the presence of multiplicative noise it is not
a priori clear whether the limiting equation should be
interpreted in the Itô or Stratonovich sense [16]. In par-
ticular, if the noise is colored, with short correlation time,
the double limit of eliminating momentum variables and
noise correlation requires careful analysis. This is the
so called Itô to Stratonovich problem [15]. Despite its
importance, it has not yet been fully analyzed. In [6] a
one-dimensional case is treated through an asymptotic
study of the corresponding Fokker–Planck equation.

Dynamical equations subject to multiplicative noise
have been studied extensively over the last twenty years
[3, 7], in particular in connection to noise induced phase
transitions and to the dynamics of fronts. The starting
point for investigations along these lines is a first order in
time (ordinary or partial) stochastic differential equation
in position space subject to multiplicative white noise.
This model leads to very rich and interesting dynamics,
yet it seems that from a physical and modelling point
of view it would often be more natural to consider sys-
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tems with inertia and subject to colored multiplicative
noise. To our knowledge, so far there has been a lim-
ited number of investigations in this direction. There
is some work, however, studying the effect of inertia, or
colored noise separately. As examples we mention the
study of the effect of non–zero noise correlation time on
noise induced phase transitions in [10] and the study of
the effect of inertia on the dynamics of fronts which was
undertaken in [17]; there it was shown that inertial ef-
fects of any magnitude suppress the external white noise
influence on the velocity of fronts, essentially because no
Stratonovich correction appears when inertia is present.

In this article we undertake a systematic study of the
problem of adiabatic elimination for systems where in-
ertia as well as multiplicative noise with finite correla-
tion time are taken into account. The presence of iner-
tia induces another characteristic time scale in the sys-
tem, that of the particle relaxation time. We show that
the limiting equation describing the dynamics in posi-
tion space, when both particle relaxation time and noise
correlation time tend to zero, depends on the relative
magnitude of the two fast time scales of the system. In
particular, when the particle relaxation time is large com-
pared to the noise correlation time then the multiplica-
tive noise in the limiting stochastic differential equation
should be interpreted in the sense of Itô. This includes
the case studied in [17] where the noise has zero correla-
tion time. On the contrary, when the particle relaxation
time is small compared to the correlation time of the
noise, then the limiting SDE should be interpreted in the
Stratonovich sense. This regime includes the non–inertial
case for which it is well known that the limit as the noise
correlation time tends to zero leads to the Stratonovich
interpretation of SDEs e.g. [20], [1, sec. 10.3]. The tran-
sition between Itô and Stratonovich limits occurs when
the particle relaxation time and the noise correlation time
are comparable in magnitude. In this case the limiting
equation cannot be interpreted in either the Itô or the
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Stratonovich sense and the correction to the Itô stochas-
tic integral depends on the specific details of the colored
noise (see equation (12) below).

A time discrete problem in which two time scales res-
onate and lead to a non–Stratonovich correction to the
stochastic integral in the continuous limit has been re-
cently analyzed in [5].

We emphasize that the results reported in this paper
are provable and hold for a much wider class of systems
than the ones considered here. For brevity of exposition
we will present only formal calculations in the simplest
possible setting. The details of the rigorous strong con-
vergence theorems will be presented in [13].

This paper is organized as follows: in section II we
present the model equations that we will consider, to-
gether with the appropriate rescaling. We derive the
limiting equations that hold in the various parameter
regimes and we present simple heuristics which justify
the limits and which are made rigorous in [13]; we also
present some numerical experiments that exemplify our
analytical findings. In section III we present some ex-
tensions of the results of section II. In section IV we
present an alternative derivation of the limiting equa-
tions based on asymptotic analysis of the Chapman–
Kolmogorov equation. Finally, section V is devoted to
discussion and conclusions.

II. ONE DIMENSIONAL DYNAMICS

Consider the following Langevin equation with multi-
plicative colored noise:

τ ẍ = f(x)η0(νt)− ẋ. (1)

The parameter τ is the nondimensional relaxation time
of the particle velocity, and f(x) is a sufficiently smooth
function which is bounded, together with its first two
derivatives. Dots denote differentiation with respect
to time. The colored noise η0(t) is an Ornstein–
Uhlenbeck (OU) process which —when the initial data
is stationary— is a Gaussian process with 〈η0(t)〉 =
0, 〈η0(t)η0(s)〉 = λ

2αe−α|t−s|. It satisfies the equation
[21]

η̇0 = −α η0 +
√

λ ξ

where ξ(t) is the standard white noise process in one
dimension with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t− s).

We are interested in studying the long time behavior
of solutions to equation (1) in the limit when τ as well
as the parameter 1/ν, which controls the relaxation time
of the colored process, tend to zero. To this end, we
rescale the nondimensional parameters of the problem as
τ = εc τ0, ν = ν0

εa , where τ0, ν0 are O(1) numbers and
ε � 1. We also rescale time by t = T

εb . The equation of
motion becomes, after multiplying through by ε−b:

εc+bτ0x
′′ = f(x)

η0( ν0
εa+b T )
εb

− x′

where primes denote differentiation with respect to T .
We set ν0 = 1 for notational simplicity, chose b = 1, a =
1, c > −1 [22] and use the original notation t for time to
obtain:

τ0ε
γ ẍ =

f(x)η0( t
ε2 )

ε
− ẋ (2)

with γ = c+1 > 0. Using the scaling properties of Brow-
nian motion [8, p. 104], we can rewrite η0(t/ε2) = η(t)
where the rescaled OU process η(t) satisfies the equation:

η̇ = − α

ε2
η +

√
λ

ε
ξ. (3)

In view of (3) the equation of motion (2) can be written
as

τ0ε
γ ẍ =

f(x)η(t)
ε

− ẋ. (4)

From the exact solution of equation (3) it is easy to con-
clude that η(t) = O(1)[23]. From equations (3) and (4)
it becomes evident that the particle velocity relaxation
time is O(εγ), whilst the noise correlation time is O(ε2).
It is therefore expected that resonance phenomena will
appear when γ = 2.

We are interested in obtaining the limiting equation
for the particle position as ε → 0. We use the variation
of constants formula to solve for the particle velocity.
Letting ẋ(t) = y(t), x0 = x(0) and y0 = y(0), we obtain

ẋ(t) = y0 exp
(
− t

τ0εγ

)
+

1
τ0εγ

∫ t

0

exp
(
− t− s

τ0εγ

)
f(x(s))η(s)

ε
ds.

(5)

From this equation, after an integration by parts, we
obtain an integral equation for the particle position:

x(t) = x0 + τ0ε
γy0

[
1− exp

(
− t

τ0εγ

)]
+
∫ t

0

f(x(s))η(s)
ε

ds

−
∫ t

0

exp
(
− t− s

τ0εγ

)
f(x(s))η(s)

ε
ds.

(6)

Clearly, we have τ0ε
γy0(1 − e−

t
εγ ) = O(εγ) as ε → 0.

Next, upon using equation (5) we can obtain sharp esti-
mates on the moments of the particle velocity [13]. These
estimates enable us to conclude that, roughly speaking,
the particle velocity is of order O(ε−min(1,γ/2)). Using
these estimates one can show that∫ t

0

exp
(
− t− s

τ0εγ

)
f(x(s))η(s)

ε
ds = O(εmax(γ/2,γ−1)).

Thus the contribution to the limiting equations (equa-
tions (8), (11) and (12) below) comes only from the first
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integral on the right hand side of equation (6). In order
to analyze this term we integrate by parts once using Itô
formula to obtain∫ t

0

f(x(s))η(s)
ε

ds =

√
λ

α

∫ t

0

f(x(s))ξ(s) ds

+
ε

α

∫ t

0

f ′(x(s))y(s)η(s) ds + O(ε).

(7)

We will use the notation J(t) for the second term on the
right hand side of equation (7).

We consider first the case γ ∈ (0, 2). We use the afore-
mentioned estimates on the moments of the particle ve-
locity, together with the fact that η(t)/ε =

√
λ

α ξ(t)− ε
α η̇(t)

to show that J(t) = O(ε1−γ/2). Thus, for γ ∈ (0, 2) and
ε sufficiently small the particle position x(t) satisfies the
following equation:

ẋ =

√
λ

α
f(x) ξ + O(εmin(1−γ/2,γ/2)).

Consequently, as ε → 0, x(t) converges to X(t) which
satisfies the following Itô SDE:

Ẋ =

√
λ

α
f(X) ξ. (8)

The fact that for γ < 2 we obtain the limiting equation
(8) can be explained intuitively as follows: in this pa-
rameter regime the particle relaxation time—which is of
the order of εγ—is large compared to the relaxation time
of the noise and consequently the particle experiences a
rough noise with practically zero correlation time. This
means that for γ < 2 the OU process is not viewed from
the point of view of the particle as a smooth approx-
imation to white noise and this results in the limiting
equation being an Itô SDE.

Now we proceed with the case γ ≥ 2. We perform an
integration by parts on J(t) in (7) and use the estimates
on the moments of the particle position, together with
standard tools from stochastic calculus, to obtain:

ε

α

∫ t

0

f ′(x(s))y(s)η(s) ds =
1
α

∫ t

0

f ′(x(s))f(x(s))η2(s) ds− τ0ε
γ−1

∫ t

0

f ′(x(s))y(s)η(s) ds + O(εγ−1). (9)

Another integration by parts [24] yields:∫ t

0

f ′(x(s))f(x(s))η2(s) ds =
λ

2α

∫ t

0

f ′(x(s))f(x(s)) ds + O(ε). (10)

Furthermore, using the fact that, for γ ≥ 2, y(t)η(t) =
O(ε−1) we conclude that∫ t

0

f ′(x(s))y(s)η(s) ds = O(ε−1),

since f ′(x) is assumed to be bounded. From this we
conclude that the last integral on the right hand side of
equation (9) is of order O(εγ−2). Now it is evident that,
for γ > 2 and for ε sufficiently small, the particle position
satisfies the equation:

ẋ =
λ

2α2
f ′(x)f(x) +

√
λ

α
f(x) ξ + O(εmin(γ−2,1)).

We take the limit ε → 0 to obtain the limiting Itô SDE
for γ > 2:

Ẋ =
λ

2α2
f ′(X)f(X) +

√
λ

α
f(X) ξ. (11)

In this parameter regime the particle relaxation time is
small compared to that of the noise. Consequently, for
γ > 2, the rescaled OU process is indeed a smooth Gaus-
sian approximation to white noise giving a Stratonovich
correction to the drift and leading to the Itô SDE (11), in
agreement with standard theorems [1, sec. 10.3 ], [2, 20]:
the case γ → ∞ leads to the case of tracer particles
whose relaxation time is zero and covered precisely by
these standard theorems.

Now we consider the case γ = 2. We combine equations
(9) and (10) with γ = 2 to obtain:

ε

α

∫ t

0

f ′(x(s))y(s)η(s) ds = −τ0ε

∫ t

0

f ′(x(s))y(s)η(s) ds +
λ

2α2

∫ t

0

f ′(x(s))f(x(s)) ds + O(ε).
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We solve the above equation for the integral on the left hand side:

ε

∫ t

0

f ′(x(s))y(s)η(s) ds =
λ

2α(1 + ατ0)

∫ t

0

f ′(x(s))f(x(s)) ds + O(ε).
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FIG. 1: Difference between the solution of the limiting equa-
tion and the equation of motion for γ = 1, for ε = 0.1.

Substituting this expression into the last integral in (7)
we conclude that the particle position, when γ = 2 and
ε is sufficiently small, is given by the Itô equation:

ẋ =
λ

2α2(1 + τ0α)
f ′(x)f(x) +

√
λ

α
f(x) ξ + O(ε).

We pass to the limit to obtain the limiting Itô SDE for
γ = 2:

Ẋ =
λ

2α2(1 + τ0α)
f ′(X)f(X) +

√
λ

α
f(X) ξ. (12)

For the case γ = 2 the particle relaxation time is compa-
rable in magnitude to the noise correlation time and a res-
onance mechanism prevails which results in the limiting
stochastic differential equation containing a correction to
the drift which is not the standard Stratonovich one. The
drift correction depends on the friction coefficient of the
OU process α as well as the particle relaxation time τ0.
We also remark that we can formally derive the limit-
ing equations (8) and (11) from (12) through varying τ0:
taking the limit τ0 → ∞ in (12)—which corresponds to
the regime γ < 2—we obtain the Itô equation (8); on the
other hand, the limit τ0 → 0—which corresponds to the
case γ > 2—leads to the Stratonovich equation (11).

From the above discussion it is clear that the rate at
which the particle position x(t) converges to the solution
X(t) of the limiting equation depends crucially on γ. In
particular, the convergence rate deteriorates as γ tends
to 2− and 2+. This is to be expected, since the limiting
equation depends discontinuously on γ and has a jump
at γ = 2. For γ = 2 the convergence rate is quadratic,
when measured in mean square.

We exemplify the above theoretical findings with some
simple numerical experiments for the specific choice
f(x) = x. For this function the limiting equations can
be solved explicitly. We solve numerically the equation
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FIG. 2: Difference between the solution of the limiting equa-
tion and the equation of motion for γ = 2, for ε = 0.1.
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FIG. 3: Difference between the solution of the limiting equa-
tion and the equation of motion for γ = 3, for ε = 0.1.

of motion (4) for various values of γ. In Figures 1a, 2a
and 3a we present the difference between the solutions of
the limiting equations and the equations of motion mea-
sured in mean square for γ = 1, 2 and 3, respectively.
In Figures 1b, 2b and 3b we present sample paths of the
solution of the equation of motion, as well as the path-
wise error of the limiting equation, for the same values
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of γ. From these graphs we see that x(t) and X(t) are
very close—in particular for γ ≥ 2— even pathwise and
not only in the mean square sense. The proof of this
fact is based on the calculations presented in this section
together with some non–trivial estimates. The resulting
theorem holds for the case where the colored noise is infi-
nite dimensional and is presented in [13]. We also observe
that the solution of the equation of motion is smoother
than the solution of the limiting equation. This is to be
expected since X(t) is a Markovian approximation to the
non Markovian process x(t) and hence, less smooth [11,
ch. 10].

In figure 4 we present the numerically calculated con-
vergence rate showing excellent agreement between the
theoretical prediction and numerical observations. The
error, when measured in mean square, is of the form
C1 εγ + C2 ε2−γ when γ < 2, C3 ε2 for γ = 2 and
C4 ε2 + C5 ε2(γ−2) when γ > 2. Consequently, except
for γ = 2, nonlinear regression analysis is needed in or-
der to calculate the convergence rate which is 2− γ and
2(γ − 2) for 1 ≤ γ ≤ 2 and 2 < γ ≤ 3, respectively.

III. EXTENSION TO HIGHER DIMENSIONS
AND GENERALIZATIONS

The systematic adiabatic elimination procedure de-
scribed in the previous section can be extended in a

straightforward way to cover the case of a particle mov-
ing in Rd under the influence of a sufficiently smooth and
uniformly bounded potential and for infinite dimensional
colored multiplicative noise. Let us consider the following
rescaled equations of motion:

εγ ẍi = −∂V (x)
∂xi

+
fij(x)ηj(t)

ε
− ẋi, i = 1, . . . d.

Here and below double or triple appearance of an index
denotes summation. The processes {ηj(t)}∞j=1 are a set
of independent OU processes:

η̇j = −αj

ε2
ηj +

√
λj

ε
ξj , j = 1, . . . ,∞

where 〈ξj(t)〉 = 0, 〈ξi(t)ξj(s)〉 = δijδ(t − s). Then,
under various technical conditions on the functions
{fij(x)}d,∞

i,j=1 and the spectrum of the noise {λj}∞j=1, one
can prove that the governing equations make sense and
that, as ε → 0, the particle position x(t) converges to
X(t) which satisfies the following SDE:

Ẋi =



−∂V (x)
∂xi

+
√

λj

αj
fij(X) ξj : γ < 2 Itô

−∂V (x)
∂xi

+ λj

2α2
j (1+τ0αj)

∂fij(X)
∂Xk

fkj(X) +
√

λj

αj
fij(X) ξj : γ = 2

−∂V (x)
∂xi

+ λj

2α2
j

∂fij(X)
∂Xk

fkj(X) +
√

λj

αj
fij(X) ξj : γ > 2 Stratonovich

.

The above limiting equations are derived without any
specific assumptions on the functions {fij(x)}d,∞

i,j=1, other
than them being sufficiently smooth and bounded. How-
ever, there are instances where the Stratonovich correc-
tion vanishes identically and the limiting equations are
the same independently of γ. To see this, we rewrite the
drift correction to the Itô stochastic differential in the
form:
∂fij(X)

∂Xk
fkj(X) =

∂(fij(X)fkj(X))
∂Xk

− fij(X)
∂fkj(X)

∂Xk
(13)

Now, when the noise is isotropic we have that
fij(X)fkj(X) ∝ δik and consequently the first term on
the right hand side of equation (13) vanishes. Further-
more, the second term on the right hand side of the above
equation will also vanish identically when the noise is
divergence free, i.e. when ∂fkj(X)

∂Xk
= 0. As an exam-

ple where this is indeed the case we mention a model
for the motion of an inertial particle moving in a ran-
dom incompressible velocity field on the two dimensional
unit torus: such a model was introduced in [19] and an-
alyzed in [14, 18]. This model comprises Stokes’ law,
equation (1), for the motion of the particles and the ve-
locity field is given by an infinite dimensional OU process
[18], v(x, t) =

∑
k k⊥φk(x)ηk(t) where k⊥ = (k2, −k1)T

and φk(x), k1, k2 = 1, . . . ,∞ are the eigenfunctions of
the Laplacian in two dimensions with periodic boundary
conditions. In this setting, the limit that we study in this
paper corresponds to that of a rapidly decorrelating fluid
when the inertia of the particles also tends to zero. For
this problem, which was our initial motivation for the un-
dertaking of this work, the isotropy and incompressibility
of the velocity field result in the Stratonovich correction
vanishing identically and the limiting equation being that
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of Itô for all γ > 0 [13, 19]. Of course the assumptions
that one has to impose on the spectrum of the noise are
more severe for γ ≥ 2.

IV. ALTERNATIVE DERIVATION OF THE
LIMITING EQUATIONS

In this section we present an alternative derivation
of the limiting equations for the one–dimensional case,
based on a singular perturbation expansion of the as-
sociated Chapman-Kolmogorov equation. The singular
perturbation approach is rigorously justified by general
theorems of Kurtz [9], see also [12]. A similar derivation,
which uses the Fokker-Planck picture can be found in [6].

We start with equations (3),(4), which we write as a
first-order system,

ẋ =
1√
τ0εγ

v

v̇ =
f(x)η

ε
√

τ0εγ
− v

τ0εγ

η̇ = − α

ε2
η +

√
λ

ε
ξ.

(14)

Note that v(t) differs from y(t) = ẋ(t) by an ε-dependent
scaling factor. As has already been mentioned, the OU
process η(t) satisfies η(t) = O(1). Considering then the
equation for v(t), we observe that γ = 2 is a threshold
value: for γ > 2, the fastest component is v(t) which
remains exponentially close to the ”slow manifold” v(t) ≈
εγ/2−1√τ0f(x(t))η(t). Thus, as in Section II, we separate
the analysis into the cases γ = 2, γ < 2, and γ > 2.

A. The case γ = 2

For γ = 2, the Chapman-Kolmogorov equation for
u(t, x, v, η) takes the form

∂u

∂t
=

1
ε2

L0u +
1
ε
L1u, (15)

where

L0 = −αη
∂

∂η
+

λ

2
∂2

∂η2
+
(

f(x)η
√

τ0
− v

τ0

)
∂

∂v
,

L1 =
v
√

τ0

∂

∂x
.

Here the dynamics in v and η have comparable rates,
whereas the dynamics in x are an order of magnitude
slower.

In order to analyze equation (15) we expand its solu-
tion in a power series, u = u0 + εu1 + . . . . Substituting
this expansion in the equation gives a hierarchy of equa-

tions:

L0u0 = 0,

L0u1 = −L1u0,

L0u2 = −L1u1 +
∂u0

∂t
.

The leading order equation, L0u0 = 0 implies that
u0 = u0(t, x). The next equation in the hierarchy,
L0u1 = −L1u0, can be solved explicitly,

u1(t, x, v, η) =
(
√

τ0v +
f(x)η

α

)
∂u0

∂x
+ c(t, x).

The third equation, L0u2 = −L1u1+ ∂u0
∂t , is solvable only

if the right hand side integrates to zero (with respect to
both v and η) against densities ρ invariant under the
Fokker-Planck operator L∗0, which implies

∂u0

∂t
=
∫ ∞

−∞

∫ ∞

−∞
L1u1ρ dvdη. (16)

The only density invariant under L∗0 is the Gaussian den-
sity ρ(v, η) ∼ N (0,Σ) with covariance matrix

Σ =
λ

2α

(
τ0f2(x)
1+τ0α

√
τ0f(x)

1+τ0α√
τ0f(x)

1+τ0α 1

)
.

Substituting ρ, u1 and L1 into the solvability condition
(16) yields

∂u0

∂t
=

λτ0f
2(x)

2α(1 + τ0α)
∂2u0

∂x2
+

λf(x)
2α2(1 + τ0α)

∂

∂x

[
f(x)

∂u0

∂x

]
=

λ

2α2
f2(x)

∂2u0

∂x2
+

λ

2α2(1 + τ0α)
f(x)f ′(x)

∂u0

∂x
.

We identify the latter as the Chapman-Kolmogorov equa-
tion for the reduced Itô SDE

Ẋ =
λ

2α2(1 + τ0α)
f(X)f ′(X) +

√
λ

α
f(X)ξ,

which coincides with (12).

B. The case γ < 2

For γ < 2, we have fast dynamics in both v and η, but
the dynamics in η are faster. This calls for a perturbative
expansion in two independent small parameters, ε and
εγ/2.

The Chapman-Kolmogorov equation takes then the
form

∂u

∂t
=

1
ε2

L0u +
1

ε εγ/2
L1u +

1
εγ

L2u +
1

εγ/2
L3u, (17)

where

L0 = −αη
∂

∂η
+

λ

2
∂2

∂η2
L1 =

f(x)η
√

τ0

∂

∂v

L2 = − v

τ0

∂

∂v
L3 =

v
√

τ0

∂

∂x
.
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The solution u = u(t, x, v, η) is then expanded in a double
power series:

u = u0 + εu1 + ε2u2 + . . . ,

where for every k = 0, 1, . . . ,

uk = uk,0 + εγ/2uk,1 + εγuk,2 + . . . .

Substituting this double expansion into (17) we get a
double hierarchy of equations,

0 = L0u0,k, k = 0, 1, . . .

0 = L1u0,0

0 = L0u1,0 + L1u0,1

0 = L0u1,1 + L1u0,2

0 = L2u0,0

0 = L1u1,0 + L2u0,1 + L3u0,0

∂u0,0

∂t
= L0u2,0 + L1u1,1 + L2u0,2 + L3u0,1

... =
....

The first line implies that for k = 0, 1, . . . , u0,k =
u0,k(t, x, v), where as the second (or the fifth) line im-
plies that u0,0 = u0,0(t, x). From the third and fourth
lines we deduce that

u1,k(t, x, v, η) =
f(x)η
α
√

τ0

∂u0,k+1

∂v
+ ck(t, x, v).

The sixth line implies, equating powers of η, that u1,0

does not depend on v, hence c0(t, x, v) = 0. Moreover, it
follows that

∂u0,1

∂v
=
√

τ0
∂u0,0

∂x
,

and

u0,1(t, x, v) =
√

τ0v
∂u0,0

∂x
+ e(t, x).

Finally applying the solvability condition on the seventh
line gives,

∂u0,0

∂t
=

λf2(x)
2α2τ0

∂2u0,2

∂v2
− v

τ0

∂u0,2

∂v
+ v2 ∂2u0,0

∂x2
+

v
√

τ0

∂e

∂x
.

The last step is to observe that this equation requires
a solvability condition with respect to the v variables.
Defining

G0u =
λf2(x)
2α2τ0

∂2u

∂v2
− v

τ0

∂u

∂v
,

we have

G0u2,0 =
∂u0,0

∂t
− v2 ∂2u0,0

∂x2
− v
√

τ0

∂e

∂x
,

which is solvable only if the right hand side integrates
to zero (with respect to v) against densities ρ that are
invariant under G∗

0, i.e.,

G∗
0ρ =

λf2(x)
2α2τ0

∂2ρ

∂v2
+

1
τ0

∂(vρ)
∂v

= 0.

The only invariant density being

ρ =

√
α2

πλf2(x)
exp

(
− α2η2

λf2(x)

)
,

the solvability condition reduces to

∂u0,0

∂t
=

λf2(x)
2α2

∂2u0,0

∂x2
,

which is the Chapman-Kolmogorov equation for the Itô
SDE

Ẋ =

√
λ

α
f(X)ξ.

C. The case γ > 2

For γ > 2 we have fast dynamics in both v and η with
the dynamics in v being faster. We will proceed as in the
previous subsection, by expanding the solution in two in-
dependent small parameters, ε and εγ/2. The case when
γ/2 is an integer, when there is no need for an expan-
sion in two independent parameters, can be treated simi-
larly. The basic ingredient of the analysis–independently
of whether γ/2 is an integer of not– is the invertibility
of the operator L0: the condition that the solutions of
equation L0f = g should be smooth, defined for all v in
(−∞,∞) ensures that this equation has a unique solu-
tion.

The Chapman–Kolmogorov equation takes the form:

∂u

∂t
=

1
εγ

L0u +
1

ε εγ/2
L1u +

1
εγ/2

L2u +
1
ε2

L3u, (18)

where

L0 = − v

τ0

∂

∂v
L1 =

f(x)η
√

τ0

∂

∂v

L2 =
v
√

τ0

∂

∂x
L3 = −αη

∂

∂η
+

λ

2
∂2

∂η2
.

Notice that the ordering of the two last terms on the
right hand side of (18) depends on γ: for 2 < γ < 4 the
term 1

ε2 L3 comes before 1
εγ/2 L2u, whereas for γ > 4 the

ordering is as shown in equation (18). However, as the
subsequent analysis will show, the ordering of these two
terms does not have any effect on the form of the limiting
equation.

The solution u = u(t, x, v, η) is then expanded in a
double power series:

u = u0 + εu1 + ε2u2 + . . . ,
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where for every k = 0, 1, . . . ,

uk = uk,0 + εγ/2uk,1 + εuk,2 + . . . .

Substituting this double expansion into (18) we get a
double hierarchy of equations [25],

0 = L0uk,0, k = 0, 1, 2,

0 = L1u0,0,

0 = L0u0,1 + L2u0,0 + L1u1,0,

0 = L0u1,1 + L2u1,0 + L1u2,0

0 = L3u0,0

0 = L3u1,0 + L1u0,1

∂u0,0

∂t
= L0u0,2 + L1u1,1 + L2u0,1 + L3u2,0

... =
....

(19)

The first line in (19) implies that uk,0 = uk,0(x, η, t), for
k = 0, 1, 2. Now the second line in (19) is identically
satisfied. Moreover, the fifth line implies that u0,0 =
u0,0(x, t). The third line in the above equation, since
u1,0 is independent of v, becomes:

L0u0,1 = − v
√

τ0

∂u0,0

∂x
,

from which we conclude that

u0,1 = v
√

τ0
∂u0,0

∂x
+ c0,1(x, η, t).

Similarly, we from the fourth line in (19) we obtain:

u1,1 = v
√

τ0
∂u1,0

∂x
+ c1,1(x, η, t).

The equation for u1,0 becomes

L3u1,0 = −f(x)η
∂u0,0

∂x
.

For this equation to be solvable, the right hand side has
to integrate (with respect to η) to zero against densities
that are invariant under the Fokker–Planck operator L∗3,
which is the adjoint of L3. The unique invariant density
for this operator is

ρ(η) =
√

α

πλ
exp

(
−αη2

λ

)
,

Now, since
∫∞
−∞ ηρ(η) dη = 0, the solvability condition

for the equation for u1,0 is satisfied and we obtain

u1,0 = f(x)
η

α

∂u0,0

∂x
.

We combine this with the expression for u1,1 that we
obtained previously to deduce

u1,1 = v
√

τ0
η

α

∂

∂x

(
f(x)

∂u0,0

∂x

)
.

Let us now consider the last line in (19). We use our
findings so far to write this equation in the form:

− v

τ0

∂u0,2

∂v
= −η2

α
f(x)

∂

∂x

(
f(x)

∂u0,0

∂x

)
− v2 ∂2u0,1

∂x2
− v
√

τ0

∂c0,1

∂x
− L3u2,0 +

∂u0,0

∂t
.

The only way for the above equation to have smooth
solutions defined for all v in (−∞,∞) is for the constant
term in v to vanish [26]:

−η2

α
f(x)

∂

∂x

(
f(x)

∂u0,0

∂x

)
− L3u2,0 +

∂u0,0

∂t
= 0.

This is an equation for u2,0 in η. The solvability condition
for this equation reads∫ ∞

−∞

[
−η2

α
f(x)

∂

∂x

(
f(x)

∂u0,0

∂x

)
+

∂u0,0

∂t

]
ρ(η) dη = 0,

from which we deduce:
∂u0,0

∂t
=

λ

2α2
f(x)

∂

∂x

(
f(x)

∂u0,0

∂x

)
.

This is the Chapman–Kolmogorov equation for the
Stratonovich SDE:

Ẋ =
λ

2α2
f(X)f ′(X) +

λ

α
f(X)ξ.

which is precisely equation (11).

V. CONCLUSIONS

We have shown that the interplay between inertial ef-
fects and colored multiplicative noise has a profound ef-
fect on the form of the Smoluchowski equation which
describes the dynamics of the particle in the limit when
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particle relaxation time and noise correlation time tend
to zero. In particular, the multiplicative noise in the lim-
iting equation should either be interpreted in the Itô or
the Stratonovich sense, depending on whether the noise
correlation time tends to zero faster or slower than the
particle relaxation time. Furthermore, when the two fast
time scales of the problem are comparable in magnitude
then a different limiting equation emerges which cannot
be interpreted in either the Itô or the Stratonovich sense.

The solution of the limiting SDE can have very dif-
ferent properties depending on the way we choose to in-
terpret the multiplicative noise. For example, the noise
can influence the velocity of kinks in stochastic reaction
diffusion equations with multiplicative noise only when
the equation is interpreted in the Stratonovich sense [17].
Hence, our findings suggest that great care has to be
taken in any adiabatic elimination procedure for systems
where more than one fast time scale is present.
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