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Abstract This paper is concerned with the dynamics of continua on differentiable mani-
folds. We present a covariant derivation of the equations of motion, viewing motion as a
curve in an infinite-dimensional Banach manifold of embeddings of a body manifold in a
space manifold. Our main application is the motion of residually-stressed elastic bodies,
where the residual stresses result from a geometric incompatibility between body and space
manifolds. We then study a particular example of elastic vibrations of a two-dimensional
curved annulus embedded in a sphere.
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1 Introduction

In the past decade, there has been a renewed interest in the mechanics of residually-stressed
elastic materials. This recent activity encompasses a wide scope of branches, ranging from
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the natural sciences (e.g., [3, 13, 29]), through engineering applications (e.g., [18]) and
up to pure mathematical questions. In the latter context, we mention the derivation of
dimensionally-reduced plate, shell and rod models [22, 26, 28], and homogenization the-
ories for topological defects [23–25]. Studies of the dynamics of residually stressed bodies
are concerned, in particular, with wave propagation analysis which has practical applications
as well as mathematical aspects (see [38], and [30]).

Mathematically, certain residually-stressed elastic bodies may be modeled as smooth
manifolds endowed with a Riemannian metric; the metric represents local natural distances
between neighboring material elements. A configuration is an embedding of the body man-
ifold into the ambient Euclidean space. The elastic energy associated with a configuration
is a measure of mismatch between the intrinsic metric of the body and its “actual” metric—
the pullback of the Euclidean metric by the configuration. The property of being residually-
stressed is a geometric incompatibility, reflected, in the traditional Euclidean settings, by the
non-flatness of the intrinsic material metric. Incompatible elasticity has a longstanding his-
tory, starting with the pioneering work of Kondo [19], Nye [32], Bilby [6] and Kröner [21].
The above mentioned recent work extends significantly the scope of applications, provides
a wealth of novel analytical tools, and raises new questions.

The present work considers the dynamics of pre-stressed bodies within the broader con-
text of continuum dynamics on manifolds. Thus far, there have been several dominant ap-
proaches for covariant theories of continuum dynamics:

1. Balance laws for extensive observables, such as mass, momentum and energy: these laws
are postulated along with invariances under certain types of spatial diffeomorphisms; see
for example the Green-Rivlin theorem [14] and its covariant generalization by Mars-
den [31]. Under certain regularity assumptions, the balance equations give rise to local
differential balance equations; see Marsden and Hughes [31] and Yavari, Marsden and
Ortiz [42].

2. Field theoretic approaches: one postulates the existence of an energy function, or a La-
grangian density function W, which depends on both intrinsic and “actual” metrics of the
body. The dynamical solution (which is a motion) is the minimizer of the corresponding
energy functional; see, e.g., Ebin [9], Marsden and Hughes [31] and Yavari and Marsden
[41].

3. Dynamics is viewed as statics in 4-dimensional space-time. See for example Appleby
and Kadianakis [5].

In the formulations based on the Green-Rivlin theorem, as presented in Marsden and
Hughes [31], the form of the energy balance has to be assumed a-priori. Moreover, one has
to assume the existence of an elastic energy. Such an approach is somewhat inconsistent with
the traditional approach to continuum mechanics, according to which balance laws have to
be formulated independently of constitutive theory. This approach also restricts the theory
to hyperelastic systems. The same comment applies to field theories based on a predefined
form of the Lagrangian.

In this paper, we present a global approach to continuum dynamics, with particular rele-
vance to elastodynamics. As noted above, our main application is geometrically incompat-
ible elastic media. The proposed formulation is a generalization of Newton’s classical me-
chanics to the infinite-dimensional continuum context. It applies to a rather general class of
problems, including non-conservative systems and singular systems (e.g., forces and stresses
are allowed to be measure-valued).

It is emphasized that our objective in this paper is to write the equations of continuum
dynamics on manifolds while following the tradition of continuum mechanics whereby the

Author's personal copy



Continuum Dynamics on Manifolds 63

equations of motion do not include any constitutive data representing material properties.
This is strictly disparate from other geometric analyses of continuum dynamics which in-
clude the constitutive data ab initio. See, for example, [16], where wave propagation in
elastic materials is studied from a geometric point of view so that a Riemannian metric or a
Finsler structure are induced by the elastic properties.

Writing the laws of dynamics requires a specification of a geometric model of space-
time. Here, space-time has a particularly simple structure: a Cartesian product S × I of
an m-dimensional space manifold S and a time interval I ⊂ R. Thus, given a compact d-
dimensional body manifold B, a natural choice for the configuration space, which we denote
by Q , is the space Q = Emb1(B,S) of C1 embeddings of B in S. A motion of the body B

in S is a curve ϕ : I → Q.
As S is generally not a linear space, neither is Q. However, Q turns out to be an infinite-

dimensional Banach manifold. The tangent space of Q at a configuration κ is identified with
the Banachable space of vector fields along κ

TκQ � Cr
(
κ∗T S

) � {ξ :B → T S | πS ◦ ξ = κ},
where πS : T S → S is the tangent bundle projection. Consequently, a generalized velocity
at a configuration κ is modeled by a vector field along κ , v ∈ C1(κ∗T S) � TκQ, whereas
a generalized force is modeled by a linear functional f ∈ (C1(κ∗T S))∗ � T ∗

κ Q. The action
f (v) is interpreted as virtual power or virtual work.

The dynamics of a system is induced by a Riemannian metric G and a connection ∇Q on
TQ. The metric assigns to a generalized velocity the corresponding generalized momentum
and the connection enables one to view the rate of change of the momentum as an element
of T ∗Q. Thus, the dynamic law, which is a generalization of Newton’s second law, states
that the total generalized force is equal to the covariant derivative of the momentum with
respect to time.

As shown in [35], since the topology of Q takes into account first derivatives, so do the
forces in T ∗Q; a generalized force f ∈ T ∗

κ Q may be represented as a function depending
linearly on generalized velocities and their first derivatives. In other words, there exists a
non-unique stress measure σ satisfying the principle of virtual work,

f (v) = σ
(
j 1(v)

)

for all generalized velocities v. Here, j 1 is the jet extension mapping of velocity fields, which
is the invariant representation of the value of a vector field along with its first derivative
(the local representation of the jet extension is presented below). Using the dual of the jet
mapping, one can write

f = j 1∗σ = σ ◦ j 1.

The representation of forces by stresses is a pure mathematical result based on the Hahn-
Banach theorem and the Riesz representation theorem of functionals by measures. In partic-
ular, it does not involve any physical notions such as balance of forces, equilibrium, external
forces and internal forces.

Traditional formulations of the dynamic law for continuous bodies are formulated in
terms of the resultants of the external forces, which are integrals of force densities over their
domain of definition (e.g., [40, p. 170]). Such formulations are not possible in the geometric
setting of manifolds, where forces are defined only in the context of their actions on virtual
velocity fields and where “rigid” velocity fields are not defined (see [12]).
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64 R. Kupferman et al.

We can now make the traditional assumption that the total force fT acting on a body is the
difference between the total external force fE and the total internal force fI . Typically, the
external force is given by a loading section Q → T ∗Q and the internal force is represented
by a stress σ , which, in turn, is usually determined by a constitutive relation. Thus,

fT = fE − j 1∗σ.

The dynamics law proposed in Sect. 3 is

fE − j 1∗σ = DP

dt
,

where P = G(V , ·) is the generalized momentum, that is, the metric dual of the velocity
V ; DP/dt is the covariant derivative of P along the motion. This law is equivalent to the
principle of virtual work

fE(w) − σ(j 1w) = DP

dt
(w)

(cf. [31, p. 168]). Having in mind systems such as a membrane over a deforming or growing
body, we consider the possibility that the metric itself is time dependent. (See, for example,
[43], which considers nonlinear elasticity in a deforming ambient space).

As a main application for this theory, we investigate the dynamics of residually-stressed
hyperelastic materials. We consider a quadratic hyperelastic constitutive model. We write
the equations of motion in explicit form for the case of a free boundary, yielding a nonlinear
wave equation. This example demonstrates one of the peculiarities of continuum mechanics
on manifolds. On a manifold, one cannot disassociate the derivative of a vector field from its
value. Consequently, the stress field contains, in addition to a term dual to the derivative of
the virtual velocity field, a term dual to the virtual velocity field itself. This term, sometimes
referred to as the self force, vanishes in our example if and only if the spatial metric g is
Euclidean (see [8]).

As a particular system, we consider the case where B and S are two-dimensional, az-
imuthally symmetric annuli of different constant curvatures. Recently, such systems were
studied experimentally by Aharoni et al. [4]. We present numerical calculations displaying
nonlinear waves for the case of a spherical annulus embedded in a sphere of different radius.

The structure of the paper is as follows: We start Sect. 2 with a brief description of
classical mechanics in a covariant setting. In Sect. 2.2, we present the geometric structure
of the configuration space Q, and introduce the representation of forces by stresses in both
singular and smooth settings. In Sect. 3 we formulate Newton’s second law for continuum
dynamics. To this end, one needs a metric and a connection for Q; these are defined in
Sect. 3.2 following Eliasson [11], under the assumptions that a metric and a connection are
given on the space manifold S and that B is endowed with a mass density, or a volume form.
In Sect. 4 we introduce the constitutive theory. We give special attention to the hyperelastic
case, for which we derive explicit expressions in local coordinates. Section 5 is devoted to
a quadratic hyperelastic constitutive model with a free boundary. In Sect. 6 we focus on
the particular case of an azimuthally symmetric annulus embedded in a sphere and present
numerical calculations.
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2 Mathematical Framework

Our first goal is to present a global covariant setting for continuum dynamics, based on a
geometric characterization of the infinite-dimensional configuration space. As a prelude, we
reformulate the classical Newtonian mechanics of particle systems in a general, yet fairly
simple, covariant form (see Abraham and Marsden [2] for a covariant Hamiltonian approach
to mechanics). As mentioned above, our approach is based on the assumption that space-
time has the structure of a Cartesian product; in particular, points is space have an invariant
meaning independently of time.

2.1 Covariant Description of Classical Mechanics

In classical mechanics, the configuration space is a smooth d-dimensional manifold, which
we denote by S. A point in S represents the positions of all the point particles of the system.
A virtual displacement at p ∈ S is an elements of TpS, i.e., a tangent vector at p. A force at
p ∈ S is an element of T ∗

p S, i.e., a cotangent vector at p. The action of a force f ∈ T ∗
p S on a

virtual displacement w ∈ TpS yields a scalar, f (w), called a virtual power.
A motion of the system is a smooth curve ϕ : I → S in the configuration space where I

is a time interval. The velocity associated with the motion ϕ is a map v : I → ϕ∗T S, defined
by

v = dϕ

dt
.

We adopt here the standard notation whereby ϕ∗T S is the pullback of the vector bundle T S

by ϕ; ϕ∗T S is a vector bundle over I , with the fiber (ϕ∗T S)t identified with the fiber Tϕ(t)S.
In order to define the acceleration vector field, i.e., in order to differentiate the velocity

v covariantly, we need a connection ∇S on S. The acceleration is then given by

a(t) = Dv

dt
= ∇S

v v.

Given a local coordinate system for S, the connection is represented by Christoffel symbols
Γ k

ij , which are functions on R
d . Let (ϕ1, . . . , ϕd) : I →R

d denote the local representative of
the motion. Then, the velocity and the acceleration take the respective forms

vi(t) = dϕi

dt
and ai(t) = d2ϕi

dt2
+ Γ i

jk(ϕ(t))
dϕj

dt

dϕk

dt
.

Here the indexes range between 1 and d , and the Einstein summation convention is assumed.
Let F : S → T ∗S be a force field, i.e., a section of the cotangent bundle (a one-form),

assigning a force to every configuration. Newton’s law states that the total force at the current
configuration equals the time derivative of the momentum, or in the case of constant mass,
to the product of the mass and the acceleration.

In a geometric setting, equating force with acceleration is meaningless, as the accelera-
tion is a tangent vector, whereas the force is a cotangent vector. To obtain a pairing between
the tangent and the cotangent bundles, a Riemannian metric g on T S is needed. Then, the
momentum P : I → ϕ∗T ∗S is defined by

P (t) = gϕ(t)

(
v(t), ·).
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66 R. Kupferman et al.

Newton’s equation of motion reads

DP

dt
(t) = F

(
ϕ(t)

)
.

In order to differentiate the momentum, we need a connection on T ∗S. Such a connection is
canonically induced by the connection on T S. If the metric g does not depend on time and
the connection ∇S is metrically-consistent, that is, ∇Sg = 0, then

DP

dt
(t) = gϕ(t)

(
a(t), ·).

In coordinates, Newton’s equation reads then

gli

(
ϕ(t)

)(d2ϕi

dt2
+ Γ i

jk

(
ϕ(t)

)dϕj

dt

dϕk

dt

)
= Fl

(
ϕ(t)

)
, 1 ≤ l ≤ d.

Note that the masses of the particles are incorporated in the metric g.
As a trivial example, consider a particle of mass m moving in S = R

3. The pairing be-
tween the tangent and cotangent bundles is induced by the Euclidean metric, gij = mδij

and the (Euclidean flat) connection is given by Γ i
jk = 0, leading to the classical “F = ma”

equation,

mδija
j (t) = Fi

(
ϕ(t)

)
, 1 ≤ i ≤ d.

Even though classical mechanics views the configuration space as a manifold, we observe
that there is a one-to-one correspondence between a manifold S and the space of functions
{X} → S, where {X} is a manifold consisting of a single point. In other words, the configu-
ration space can also be viewed as a space of functions between two manifolds (albeit one of
which is trivial). This perspective is the relevant one when we turn to continuum mechanics;
the point X is replaced by a body manifold B and configurations are functions from B to S.

2.2 Geometric Setting for Continuum Mechanics

In this section we present the constructs needed for a geometric formulation of continuum
mechanics; see Segev [35]. The body manifold B is a smooth, compact, d-dimensional
manifold with corners. The space manifold S is a smooth m-dimensional manifold without
boundary.

A configuration of class r is a Cr -embedding κ : B → S of the body manifold B in the
space manifold S. The configuration space,

Q= Embr (B,S),

is the space of Cr -embeddings of the body in space. We endow Q with the subspace topol-
ogy induced from the Whitney Cr -topology of Cr(B,S); loosely speaking, it is the topology
of uniform convergence of all derivatives up to order r . It is noted (see [15]) that Q is an
open subset of Cr(B,S) for r ≥ 1. The configuration space Q is not a vector space, since
addition is not defined on the manifold S. Moreover, even in the case where the space man-
ifold is a vector space, the set of embeddings is not a vector space. Nevertheless, Q can be
given a structure of an infinite-dimensional Banach manifold—a topological space locally
homeomorphic to a Banach space and equipped with a smooth structure (see, e.g., Palais
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Continuum Dynamics on Manifolds 67

[33], Abraham [1] and Eliasson [11]). The standard construction of local charts for Q relies
on the existence of a connection on S (see Krikorian [20] for an alternative approach). We
will henceforth assume that S is paracompact and therefore admits a partition of unity. Con-
sequently, there exists a connection for S. It is noted however that the differential structure
for Q does not depend on the choice of a connection. Since we will eventually take S to
be a Riemannian manifold (with the canonical Levi-Civita connection), we will assume the
existence of some connection ∇S for S.

For every κ ∈ Q, there exists a neighborhood Uκ ⊂ Q of κ and a canonical coordinate
chart χ : Cr(κ∗T S) → Uκ , where Cr(κ∗T S) is the Banachable space of vector fields along
κ (with the Cr -topology),

Cr
(
κ∗T S

) � {
v ∈ Cr(B, T S) | πS ◦ v = κ

}
,

and πS : T S → S is the projection of the tangent bundle on the base manifold. (By a Banach-
able space, we mean that Cr(κ∗T S) is a topological vector space admitting a (non-canonical)
complete compatible norm.)

For v ∈ Cr(κ∗T S), χ(v) ∈ Cr(B,S) is given by

χ(v)(p) = exp(vp)

where exp(vp) is the value at t = 1 of the unique geodesic γ : [0,1] → S satisfying the initial
condition γ̇ (0) = vp (this is where the connection ∇S enters). Thus, for every κ ∈ Q, the
tangent space TκQ can be identified with the Banachable space Cr(κ∗T S). As in the finite-
dimensional case, the tangent bundle TQ = ∪κ∈QTκQ is the bundle of virtual displacements,
or generalized velocities.

In the sequel, we use the following notational convention: Spaces of r-times differen-
tiable functions between two manifolds, e.g., B and S, are denoted by Cr(B,S). For spaces
of r-times differentiable sections of vector (or more generally, fiber) bundles, e.g., TB, the
first argument is omitted, thus we write Cr(TB), rather than Cr(B, TB).

A force of grade r is an element of the cotangent bundle T ∗Q. Let κ ∈ Q be a configu-
ration. As for the finite-dimensional case, the action f (w) of a force f ∈ T ∗

κ Q on a virtual
displacement, or generalized velocity w ∈ TκQ is called a virtual power.

While the definitions thus far may seem identical to the definitions in the previous section,
there exist fundamental differences between the finite- and the infinite-dimensional settings.
In the finite-dimensional case, every vector space V is (non-canonically) isomorphic to its
dual V ∗. Moreover, the topology does not depend on the chosen norm (all norms are equiv-
alent). In the infinite-dimensional case, this is no longer true; in particular, the cotangent
space T ∗

κ Q � (Cr(κ∗T S))∗ is not isomorphic to the tangent space TκQ � Cr(κ∗T S). This
difference has deep analytical implications. In fact, it is the origin of the introduction of
stresses and their basic properties.

Given a configuration κ ∈ Q, the cotangent space at κ is the space of continuous lin-
ear functionals f : Cr(κ∗T S) → R. As the topology of Q (and that of the model space
Cr(κ∗T S)) takes into account all the derivatives up to order r , so do continuous linear func-
tionals in T ∗

κ Q; given a force f ∈ T ∗
κ Q and a virtual displacement w ∈ TκQ at κ , their pairing

f (w) is a linear function of w and its first r derivatives.
The mathematical construct for encoding information about the value assumed by a func-

tion along with its first r derivatives at a point is that of jets (see, e.g., Saunders [34]). We
denote by J r(B,S) the set consisting of points p in B along with the equivalence class of
all functions κ : B → S assuming at p the same values in their first r derivatives in some
(hence, any) coordinate system. The equivalence class of a function f at a point p ∈ B is
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denoted by j r
pf . The set J r(B,S) of equivalence classes can be given the structure of a fiber

bundle over B, called the r-th jet bundle of functions from B to S.
The notion of a jet bundle is easily understood using a coordinate system. Let X =

(X1, . . . ,Xd) and x = (x1, . . . , xm) be coordinate systems for B and S; indexes of coor-
dinates in B will be denoted by Greek letters, whereas indexes of coordinates in S will be
denoted by Roman letters. An element of J r(B,S) is represented locally by the coordinates
Xα of a point X ∈R

d in the body manifold, the coordinates xi of a point x ∈R
m in the space

manifold, and symmetric, multilinear operators,

A1 :Rd →R
m, A2 :Rd ×R

d →R
m, . . . , Ar :Rd × · · · ×R

d

︸ ︷︷ ︸
r-times

→ R
m,

representing xi
,α , xi

,α1α2
, etc., where commas indicate partial differentiation. Given a function

κ ∈ Cr(B,S), we denote by j rκ ∈ C0(J r(B,S)) the section of the r-th jet bundle, returning,
for every p ∈B, the jet defined by the values of κ and its first r derivatives at p; the section
j rκ is called the r-th jet prolongation of κ . In coordinates, if κ :B → S is represented locally
by its components (κ1, . . . , κm), κi : Rd → R, then, the local representation of its r-th jet
prolongation, j rκ(p), is

(
Xα,κi(X), κi

,β(X), . . . , κi
,α1...αr

(X)
)
.

We note that the jet bundle of sections of a vector bundle is a vector bundle. We make use
of this property below.

Back to the action of a force on a virtual displacement, it follows from the Hahn-
Banach theorem that given a force f ∈ T ∗

κ Q , there exists a continuous linear functional
σ ∈ (C0(J r(κ∗T S)))∗ such that for every virtual displacement w ∈ TκQ � Cr(κ∗T S), the
action of a force f on w can be represented as

f (w) = σ
(
j rw

)
. (1)

We call σ a stress at κ , and denote the space (C0(J r(κ∗T S)))∗ of stresses at κ by Sκ .
We say that a stress σ at κ represents the force f if equation (1) holds for every choice of
virtual velocity w. Note however, that for a given force f , there may be more than one stress
representing it. This reflects the well-known static indeterminacy of continuum mechanics.

In general, stresses and forces, which are continuous linear functionals on differentiable
sections, may be singular. Locally, and in particular, if B can be covered by a single chart,
every stress σ can be represented by a collection {μi, μα

i , . . . ,μ
α1...αr

i } of measures by the
formula

σ(j rw) =
∫

B

wi dμi +
∫

B

wi
,α dμα

i + · · · +
∫

B

wi
,α1...αr

dμ
α1...αr

i .

We now restrict ourselves to first grade materials, i.e., r = 1, which is a conventional
modeling assumption in standard continuum mechanics, and in particular in bulk elasticity
theory and in tension field theory [39]. Furthermore, we restrict our consideration to smooth
stress measures, where σ (at some configuration κ) is given by

σ
(
j 1w

) =
∫

B

S
(
j 1w

)
,
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Continuum Dynamics on Manifolds 69

and S is a smooth d-form valued in the vector bundle (J r(κ∗T S))∗, which we call a vari-
ational stress density. As shown in [36, 37], we may decompose S into body and surface
terms as follows,

∫

B

S(j 1w) = −
∫

B

divS(w) +
∫

∂B

pσ S(w).

Here divS and pσ S are vector-valued forms,

divS ∈ Γ
(
Hom

(
κ∗T S,ΛdT ∗B

))
,

pσ S ∈ Γ
(
Hom

(
κ∗T S|∂B,Λd−1T ∗B

))
,

where for vector bundles π : E → M and π ′ : F → M , Γ (E) denotes the space of smooth
sections of E and Hom(E,F ) denotes the vector bundle whose fiber at m ∈ M is the space
of linear mappings Em → Fm so that Hom(E,F ) is isomorphic with E∗ ⊗M F (as in [27,
p. 285]).

In coordinates, the action of a variational stress on the jet extension of a virtual velocity
is of form

S
(
j 1w

) = (
Riw

i + Sα
i wi

,α

)
dX1 ∧ · · · ∧ dXd,

where Ri and Sα
i are functions of X. The vector-valued forms divS and pσ S are then given

by

divS(w) = (divS)iw
i dX1 ∧ · · · ∧ dXd,

pσ S(w) = (pσ S)α
i w

i dX1 ∧ · · · ∧ d̂Xα ∧ · · · ∧ dXd,

where

(divS)i = Sα
i,α − Ri and (pσ S)α

i = (−1)α−1Sα
i . (2)

Here, the notation d̂Xα indicates that the term dXα is omitted from the wedge product; in
the expression (−1)α−1Sα

i there is no summation over α.
The R-term in the action of a variational stress does not appear in conventional contin-

uum mechanics in Euclidean space as a result of the requirement of balance of forces. For
continuum mechanics on non-flat manifolds, it is sometimes referred to as the self-force,
see, e.g., Capriz [8]. We will see in Sect. 5 an example in which the R term appears as a
consequence of the non-flatness of the ambient space S.

Let κ ∈ Q. Suppose that a force f ∈ T ∗
κ Q is given by body and surface force densities

b ∈ Γ (Hom(κ∗T S,ΛdT ∗B)) and t ∈ Γ (Hom(κ∗T S|∂B,Λd−1T ∗∂B)), that is,

f (w) =
∫

B

b(w) +
∫

∂B

t (w),

Then, f is represented by a stress at κ with variational stress density S,

f (w) =
∫

B

S(j 1w),

if and only if

divS + b = 0 and pσ S|∂B = t.

Here, pσ S|∂B = ι∗∂Bpσ S is the restriction of forms, where ι∂B : ∂B→ B is the inclusion.
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3 Covariant Continuum Dynamics

In this section we present the equations of motion, generalizing Newton’s equations to the
continuum setting on manifolds. Newton’s second law states that the time derivative of the
momentum equals the total force acting on the body. We start by describing the total force
acting on a body. We derive expressions for the momentum of a motion and its covariant
derivative, given a general connection and a (possibly time-dependent) metric on Q. With
the proper notions at hand, the equations of motion are postulated. We conclude the section
by constructing a metric and a connection for Q in the case where B is endowed with a mass
form and S is a Riemannian manifold.

3.1 Force, Momentum and Newton’s Second Law

In classical mechanics, the total force is commonly divided into two components: external
forces representing ambient fields, and internal forces representing interactions among the
particles composing the system. In continuum mechanics, the force is divided into two com-
ponents as well: Let us fix a configuration κ of the body in space. We assume that the forces
are given by an external force fE and an internal force fI , such that the total force fT ∈ T ∗

κ Q

is given by

fT = fE − fI .

The reason for the negative sign in front of the internal force is that we view the internal
forces as exerted by the mass distribution. Thus, the forces acting on the mass distribution
appear with a negative sign.

Let σ ∈Sκ be a stress representing the internal forces, that is,

fI = j r∗(σ ) = σ ◦ j r .

Typically, σ will be determined by a constitutive relation. The total force acting on a body
is

fT = fE − j r∗(σ ).

Note that when the total force vanishes (i.e., in static equilibrium), the stress σ represents
the external force.

We further note that when the ambient space is Euclidean, (see Truesdell [40]) one for-
mulates the dynamic laws in terms of a resultant force, a notion that has no counterpart for
manifolds. It is possible, in the case of Euclidean spaces, to formulate the law for the ex-
ternal forces only because the work of the stresses for “uniform” velocity fields vanishes.
This is impossible on general manifolds, as follows from the basic notions of differential
geometry (see [7, p. 31]), and as understood for many years, [12], is the reason why virtual
work becomes a fundamental notion in such formulations.

Given the body and space manifolds, B and S, a motion of the body is a smooth curve in
the configuration space,

ϕ : I → Q,

where I ⊂ R is an interval. The velocity associated with the motion ϕ is a map V : I →
ϕ∗TQ defined by

Vt = dϕ

dt

∣∣
∣∣
t

.
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For every t , Vt is a vector field along ϕ(t). Given a time-dependent family of metrics {G(t)}
and a connection ∇Q for Q, the momentum, P : I → ϕ∗T ∗Q, is the dual image of the veloc-
ity under the (time-dependent) metric G(t),

Pt = Gϕ(t)(Vt , ·).
The connection ∇Q on TQ induces a connection ∇Q∗

on T ∗Q by Leibniz’ rule,

(∇Q∗
ξ Φ

)
(η) = ξ

(
Φ(η)

) − Φ
(∇Q

ξ η
)
, ξ, η ∈ Γ (TQ), Φ ∈ Γ

(
T ∗Q

)
.

The inertial force, i.e., the left-hand side of Newton’s equation (often defined with a minus
sign), is given by

DP

dt
= (∇Q∗

V P
)
t
.

If G is time-independent and ∇Q is metrically-consistent relative to G, then Newton’s “ma”
is recovered, namely,

DP

dt
= Gϕ(t)(At , ·).

where the acceleration A : I → ϕ∗TQ is defined by At = (∇Q
V V )t .

We now present the law of motion: Let G and ∇Q be as before, and ϕ : I → Q be a motion
of B in S. Assume that at time t ∈ I , ϕ(t) is subject to a force fT = fE − j r∗(σ ) ∈ T ∗

ϕ(t)Q.
Then ϕ(t) satisfies the law of motion

DP

dt

∣∣
∣∣
t

= fT . (3)

Equation (3) is a physical law relating the total force to the rate of change of the momentum;
it is not a differential equation. Turning this physical law into a differential equation for the
motion requires constitutive assumptions.

3.2 Metric and Connection for Q

The constructions of metrics and connections on infinite-dimensional manifolds is far more
involved than in the finite-dimensional case. Since the configuration space Q is infinite-
dimensional, it lacks a partition of unity, and it is not a-priori clear that there exist (globally
defined) metrics and connections for Q. In this section, we follow Eliasson [11] and Palais
[33]: we define a metric and a connection for Q using a canonical construction.

We start by noting that we may view C1(B, T S) as a vector bundle over C1(B,S). For
every f ∈ C1(B,S),

(
C1(B, T S)

)
f

= {
η ∈ C1(B, T S) | πS ◦ η = f

}
.

Moreover, as indicated in Sect. 2.2, there exists a canonical vector bundle isomorphism

C1(B, T S) � T C1(B,S) (4)

which identifies every η ∈ C1(B, T S) with a tangent vector at πS ◦ η, that is η ∈ C1((πS ◦
η)∗T S) � TπS◦ηC

1(B,S).
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Assume one is given a metric g on S and a positive, non-vanishing d-form θ on B, which
we call the mass form. Using the isomorphism (4), we define a metric G on Q by

Gκ (v,w) =
∫

B

gκ(·)(v,w) θ, (5)

where on the left-hand side we view v and w as elements of TκQ, and on the right-hand side
we view them as elements of Cr(κ∗T S).

The mass density of B is incorporated in the mass form θ . Locally,

θ = ρ dX1 ∧ · · · ∧ dXd,

where ρ : B → R+ is a mass density function. In general, (e.g., for growing bodies), ρ may
be time-dependent, inducing a family of time-dependent metrics {G(t)}t∈I on Q. In cases
where B is endowed with a Riemannian metric G, it is natural to define the mass density ρ

to be the density of θ with respect to the Riemannian volume form, i.e.,

θ = ρ
√

detGdX1 ∧ · · · ∧ dXd.

Even more generally, one might consider a metric on Q of the form

Gκ (v,w) =
∫

B

gκ(·)(v,w)θ +
∫

∂B

gκ(·)(v,w)θ∂ ,

where θ∂ is a surface form on ∂B. Metrics of this form are relevant to surface dynamics. In
this paper we consider metrics of the form (5), i.e., metrics not having singular boundary
contributions. The connection presented below turns out to be metrically-consistent with
metrics of that form.

Following Eliasson [11], we construct a connection for TQ. We start by defining the
notion of connection maps. Let M be a (possibly infinite-dimensional) manifold modeled on
a Banach space M̃ , and let πE : E → M be a vector bundle over M with fibers isomorphic to
a Banach space Ê. An element e ∈ E is represented locally by a pair (x, ξ), with x ∈ M̃ and
ξ ∈ Ê. Likewise, an element of the tangent bundle T E of E is represented by a quadruple
(x, ξ, y, η) with x, y ∈ M̃ and ξ, η ∈ Ê.

Definition 1 A connection map for E is a mapping K : T E → E, which in every coordinate
system has a local representative

K̃ : M̃ × Ê × M̃ × Ê → M̃ × Ê

of the form

K̃(x, ξ, y, η) = (
x,η + Γ (x)(y, ξ)

)
,

where Γ (x) : M̃ × Ê → Ê is a bilinear transformation called the local connector of K at x

(which should not be confused with our use of Γ to denote spaces of sections).

In the particular case where M is finite-dimensional and E = T M , the local connector
Γ is given by Christoffel symbols,

Γ (x)
(
viei,w

j ej

) = Γ k
ij (x)viwj ek.
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Given a connection map K , one can define a connection ∇ on E in the following way:
Given a section ξ ∈ Γ (E), set its covariant derivative as ∇ξ = K ◦ T ξ ∈ Γ (Hom(T M,E)).
That is, for p ∈ M and w ∈ TpM

(∇wξ)p = K
(
T ξ(w)

) ∈ Ep.

If a section ξ is represented by ξ̃ : M̃ → Ê, that is, locally ξ(x) = (x, ξ̃ (x)) then a simple
computation gives

∇wξ(x) = (
x,Dξ̃(x)(w) + Γ (x)(w, ξ̃ )

)
.

Turning back to the problem at hand, take E = T S and assume that a connection map
KS : T 2S → T S is given, with the corresponding connection denoted by ∇S . One can then
show (see [11] for details) that KS induces a connection map

C1
(
KS

) : T 2C1(B,S) � C1
(
B, T 2S

) → T C1(B,S) � C1(B, T S)

defined by

C1
(
KS

)
(A) = KS ◦ A, A ∈ C1

(
B, T 2S

)
.

Denote the restriction of C1(KS) to Q (which is an open subset of C1(B,S)) by KQ, and
the corresponding connection ∇Q. For a section ξ ∈ Γ (TQ), a configuration κ ∈ Q and a
tangent vector w ∈ TκQ,

(∇Q
w ξ

)
κ
= (

KQ ◦ (T ξ)κ

)
(w) = KS ◦ (

(T ξ)κ(w)
)
. (6)

Note that on the right-hand side, (T ξ)κ(w) : B → T 2S and KS : T 2S → T S, hence, we
obtain indeed a map B → T S, i.e., an element of TQ.

Since S is endowed with a metric g, there is a natural choice for ∇S—the Levi-Civita
connection. One can show that in this case, ∇Q is metrically-consistent with respect to G(t)

for every t ∈ I .
Next, we derive for later use a local expression for the inertia term DP/dt , using the

metric and the connection defined above. Local coordinate systems for Q and TQ are given
in terms of differential equations for the exponential map and Jacobi field respectively (see
Eliasson [11]) and therefore cannot be given explicitly in the general case. The advantage
of working with a connection map KQ, however, is that the covariant derivative can be
calculated pointwise (in B). We can therefore derive explicit expressions for the acceleration
in coordinate neighborhoods of B and S.

Let ϕ : I → Q be a motion and let V = dϕ

dt
: I → ϕ∗TQ be its velocity. The acceleration

A : I → ϕ∗TQ is given by

At = (∇Q
V V

)
t
= KS ◦ (

T V (∂t )
)
t
,

where ∂t is the standard base vector in R. Let (X1, . . . ,Xd) and (x1, . . . , xm) be coordinate
systems for B and S respectively. If ϕ is represented by a vector of functions ϕi : I ×
R

d → R, 1 ≤ i ≤ m, then V has a local representation V i = ∂ϕi/∂t ; for t ∈ I and p ∈ B

Vt(p) = ∂ϕi

∂t
(t,p)∂xi .
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It follows that T V (∂t )(t,p) ∈ T 2
vt (p)S is represented locally by

(
ϕi(t,p),V i(t,p),V i(t,p),

∂V i

∂t
(t,p)

)
.

By the definition of the connection, At(p) = KS(T V (∂t )(t,p)) is represented locally by

Ai(t,p) = ∂V i

∂t
(t,p) + Γ i

jk

(
ϕ(t,p)

)
V j (t,p)V k(t,p),

where Γ i
jk are the Christoffel symbols of ∇S.

As the inertial force is a one-form on Q (given by an integral functional), it is not possible
to obtain a local expression as we did for the acceleration. However, as the momentum P is
given by

P = G(V , ·) =
∫

B

g(V, ·)θ,

we obtain (by the metricity of ∇Q) that the inertial force is given by

DP

dt
=

∫

B

g(A, ·)θ +
∫

B

g(V, ·)θ̇ . (7)

It is possible to obtain a local representation of the integrands. Suppose that g and θ are
represented locally by

g = gij dxi ⊗ dxj and θ = ρ dX1 ∧ · · · ∧ dXd.

Then the integrands in (7) have the local form

g(At , ·)θ(t) + g(Vt , ·)θ̇ (t)

= gij

(
ρ

(
∂2ϕi

∂t2
+ Γ i

lk

∂ϕl

∂t

∂ϕk

∂t

)
+ ∂ρ

∂t

dϕi

dt

)
dxj ⊗ dX1 ∧ · · · ∧ dXd.

Note that if θ does not depend on time, then the inertial force is the dual image of the
acceleration under G, that is,

DP

dt

∣∣
∣∣
t

=
∫

B

g(A, ·)θ = (�GA)t ,

where �G : TQ → T ∗Q is the canonical map induced by G; unlike the finite-dimensional
case, it is not an isomorphism.

4 Constitutive Theory

As mentioned in Sect. 3.1, the total force at every configuration is decomposed into ex-
ternal and internal forces. In order to write the equations of motion, we need to know the
dependence of both internal and external forces on the configuration. Thus, the following
are assumed to be given:
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1. A loading, which is a one form Φ : Q → T ∗Q, assigning to every configuration κ ∈ Q an
external force Φκ ∈ T ∗

κ Q.
2. A constitutive relation Ψ : Q → S, assigning to every configuration κ ∈ Q a stress

Ψκ ∈ Sκ .

The total force at a given configuration κ ∈ Q (which is an element of T ∗
κ Q � C1(κ∗T S)∗)

is given by

(fT )κ = Φκ − Ψκ ◦ j 1.

The total virtual power performed on a virtual velocity w ∈ TκQ is therefore

(fT )κ(w) = Φκ(w) − Ψκ

(
j 1w

)
.

Substituting the total force into (3), we obtain the equation of motion

DP

dt
(w) = Φϕ(t)(w) − Ψϕ(t)

(
j 1w

)
, ∀t ∈ I, w ∈ Tϕ(t)Q. (8)

Generally, the constitutive relation and the loading may be singular, in which case (8)
may not have a local differential form. In the smooth case, where the external loading Φ

is represented by a body force density b and a surface force density t , and the constitutive
relation Ψ yields a stress that is represented by a variational stress density S, we obtain

∫

B

gϕ(t)(At ,w)θ +
∫

B

gϕ(t)(Vt ,w)θ̇

=
∫

B

bϕ(t)(w) +
∫

B

divSϕ(t)(w) +
∫

∂B

tϕ(t)(w) −
∫

∂B

pσ Sϕ(t)|∂B(w) (9)

for every t ∈ I and w ∈ Tϕ(t)Q. Since the global equation (9) holds for every vector field w,
one obtains the following differential system:

gϕ(t)(At , ·)θ + gϕ(t)(Vt , ·)θ̇ = bϕ(t) + divSϕ(t), (10)

which is an identity between vector-valued forms in B. The resulting boundary conditions
are

tϕ(t) = pσ Sϕ(t)|∂B.

Equation (9) is a covariant version of the principle of virtual work for the dynamic setting
under consideration.

A configuration κ is an equilibrium configuration if the total force vanishes, or in other
words, if the constant motion ϕ(t) ≡ κ is a solution of the evolution equation (8). The equi-
librium condition yields a boundary value problem,

divSκ + bκ = 0 in B,

tκ = pσ Sκ |∂B, on ∂B.

Remark 2 The force-free equation DP/dt = 0 may be dissipative if the mass density is
time-dependent. If the mass density does not depend on time, the force-free equation is

DP/dt = G(A, ·) = 0.
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Its solution is a geodesic flow of B in S. This is a covariant version of Newton’s law of
inertia in non-Euclidean continuum mechanics; every material element in a body free of
both internal and external forces moves at constant speed along an S-geodesics.

4.1 The Generalized Hyperelastic Case

A constitutive relation Ψ for a variational stress density S is said to be hyperelastic if S is
derived from an energy functional in the following way: Let

W : J 1(B,S) →R

be an energy density function, and let U : Q →R, given by

U(κ) =
∫

B

W(j 1κ) θ,

be the corresponding energy functional. Then, U induces a constitutive relation (T U)κ =
Ψκ ◦ j 1 for every κ ∈ Q. The variational stress density S of a hyperelastic system is given by

Sκ = δj1κW⊗ θ

where δj1κW is the fiber derivative of W along j 1κ . That is,

δj1κW = δW ◦ j 1k,

and δW is the restriction of TW to the vertical sub-bundle of T J 1(B,S) (no derivatives in
the B directions).

This definition of hyperelasticity is a generalization of the standard concept, in which
it is assumed that the energy density only depends on the derivative of the configuration.
As pointed out above, in a general geometric setting it is not possible to disassociate the
derivative of a map at a point from the value of the map at that point.

In the absence of a loading, that is, in the case of a free motion, the equation of motion
(8) takes the form

DP

dt
= −(T U)ϕ(t) = −

∫

B

δj1κW(·)θ. (11)

As in classical mechanics we have conservation of energy which is due to the metricity of
the connection ∇Q with respect to G:

Proposition 3 Let ϕ : I → Q be a free motion of a hyperelastic body, and suppose that
the metric G given by (5) is time-independent . Define the kinetic energy EK : TQ → R by
EK(w) = 1

2G(w,w). Then,

d

dt

(
EK(Vt ) + U

(
ϕ(t)

)) = 0.

Proof By the chain rule

d

dt
(U ◦ ϕ)(t) = (T U)ϕ(t) ◦ dϕ

dt
= (T U)ϕ(t)(Vt ).
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As ∇Q is metric with respect to G we have

d

dt
(EK(Vt )) = 1

2

d

dt
G(Vt ,Vt ) = G((∇Q

V V )t ,V ) = G(At ,Vt ) = DP

dt
(Vt ).

Hence, by (11)

d

dt
(EK(Vt ) + U

(
ϕ(t)

) = DP

dt
(Vt ) + (T U)ϕ(t)(Vt ) = 0. �

Locally, W is represented by a function R
m ×R

d×m →R, and for every w ∈ TκQ

Sκ

(
wi,wi

,α

) = (
Riw

i + Sα
i wi

,α

)
dX1 ∧ · · · ∧ dXd,

where

Ri = ρ
∂W

∂xi

(
j 1κ

)
and Sα

i = ρ
∂W

∂xi
,α

(
j 1κ

)
. (12)

In the absence of external loadings, and with the metric and connection G and ∇Q defined
as in Sect. 3.2, the equation of motion for ϕ : I → Q takes the following form: for every
vector field ξ : I → TQ along ϕ,

∫

B

g(At , ξt )θ +
∫

B

g(Vt , ξt )θ̇ =
∫

B

divSϕ(t)(ξt ) −
∫

∂B

pσ Sϕ(t)(ξt ). (13)

The corresponding differential equation has the local form

gij

(
∂2ϕi

∂t2
+ Γ i

lk

∂ϕl

∂t

∂ϕk

∂t
+ ρ̇

ρ

∂ϕi

∂t

)
= 1

ρ
∂α

(
ρ

∂W

∂x
j
,α

(
j 1ϕ

)
)

− ∂W

∂xj

(
j 1ϕ

)
, (14)

with boundary conditions

∑

α

(−1)α−1 ∂W

∂xi
,α

(
j 1ϕ

)
dX1 ∧ · · · ∧ d̂Xα ∧ · · · ∧ dXd = 0 on ∂B.

5 A Quadratic Constitutive Model

In most applications, the body manifold B of an elastic medium has an intrinsic geometry—
a Riemannian metric G—and the elastic energy density W(j 1

pκ) is a measure of the local
strain: it measures the local distortion induced by the current configuration κ ∈ Q at the point
p ∈ B. Moreover, the Riemannian metric G induces a natural (time-independent) volume
form on B which we denote by VolG. In coordinates, G = Gij dXi ⊗ dXj , and

VolG = √
detGdX1 ∧ · · · ∧ dXd.

A configuration κ ∈ Q induces on B a metric κ�g measuring “actual” distances and an-
gles in B induced by its embedding in S; this metric is known in continuum mechanics as
the right Cauchy-Green deformation tensor. In coordinates, the entries of κ�g are

(
κ�g

)
αβ

= (
κ∗gij

) ∂κi

∂Xα

∂κj

∂Xβ
,
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where κ∗gij (p) = gij (κ(p)).
A notational convention: we denote by κ∗g the section of κ∗(T ∗S ⊗ T ∗S) obtained by

pulling-back g, considered as a section of T ∗S⊗ T ∗S. This should not be confused with the
closely related pullback of g considered as a (0,2)-tensor on S, involving composition with
dκ: TB → κ∗T S, which we denote by κ�g.

The deviation ε = (κ�g − G)/2 of the actual metric κ∗g from the intrinsic metric G at a
point is a measure of local strain; it is known as the Green-St Venant strain tensor. The elastic
energy density is a function of this strain, vanishing at p ∈ B if and only if (κ�g)p = Gp .

The specific form of the energy density depends on the material under consideration.
A natural generalization of Hooke’s law assumes an elastic energy density that is quadratic
in the strain,

W
(
j 1κ

) = 1

2
Cαβγ δεαβεγ δ,

where Cαβγ δ is called the elasticity tensor. If material isotropy is assumed, then the d4

components of Cαβγ δ reduce to only two component,

Cαβγ δ = λGαβGγδ + μ

2

(
Gαγ Gβδ + GαδGβγ

)
.

The parameters λ and μ are known in the linearized three-dimensional Euclidean case as
Lamé first and second coefficients. For the very particular case where λ = 0 and μ = 4, the
elastic energy reduces to

W
(
j 1κ

) = ∥∥κ�g − G
∥∥2

,

where the norm ‖ · ‖ is induced by the metric G. In coordinates,

W
(
j 1κ

) = Gαγ Gβδ
((

κ�g
)
αβ

− Gαβ

)((
κ�g

)
δγ

− Gδγ

)

= Gαγ Gβδ

((
κ∗gij

) ∂κi

∂Xα

∂κj

∂Xβ
− Gαβ

)((
κ∗glk

) ∂κl

∂Xδ

∂κl

∂Xγ
− Gδγ

)
.

The derivatives of the energy density are

∂W

∂xi
,α

(
j 1κ

) = 4Gαγ Gβδ
(
κ∗gij

) ∂κj

∂Xβ

(
(
κ∗glk

) ∂κl

∂Xδ

∂κk

∂Xγ
− Gδγ

)
, (15)

and

∂W

∂xm

(
j 1κ

) = 2Gαγ Gβδ

(
κ∗ ∂gij

∂xm

)
∂κi

∂Xα

∂κj

∂Xβ

(
(
κ∗glk

) ∂κl

∂Xδ

∂κk

∂Xγ
− Gδγ

)
. (16)

Remark 4 The Ri terms in the variational stress density are non-zero since the metric of the
ambient space g has non-trivial spatial derivatives. In conventional elasticity theories, the
spatial metric is Euclidean and the R term vanishes.

We substitute these expression into Equation (12) for Ri and Sα
j , with ρ = √

detG, and
then into Equation (2) for the coordinate representation of divS, getting

(divS)i = ∂

∂Xα

(√
detG

∂W

∂xi
,α

)
− √

detG
∂W

∂xi
. (17)
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In summary, let κ0 ∈ Q be an initial configuration and let v0 ∈ TκQ be an initial velocity.
Assume free boundary conditions. Then, the coordinate form of the equations of motion is

√
detG

(
ϕ∗gij

)
(

∂2ϕj

∂t2
+ Γ

j

lk

∂ϕl

∂t

∂ϕk

∂t

)
= (

divS(ϕ)
)
i
, (18)

with boundary conditions

∑

α

(−1)α−1Sα
i (ϕ) dX1 ∧ · ∧ d̂Xα ∧ · · · ∧ dXd = 0 on ∂B,

and initial conditions

ϕ0 = κ0, and ϕ̇0 = v0.

6 An Example

Let the body manifold B be a two-dimensional spherical annulus, with a coordinate system

(R,Θ) ∈ [Rmin,Rmax] × [0,2π)

and periodicity in the second coordinate; we take an annulus rather than a disc just in order
to avoid the immaterial singularity of the polar coordinate system.

The body manifold is assumed to be endowed with an azimuthally-symmetric metric of
the form

G(R,Θ) =
(

1 0
0 Φ2(R)

)
.

For example, the choice of

Φ(R) = sin
√

KR√
K

with K > 0 corresponds to a spherical cap of constant Gaussian curvature K , whereas the
choice of

Φ(R) = sinh
√

KR√
K

(19)

corresponds to a hyperbolic cap of constant Gaussian curvature (−K).
The space manifold is a two-dimensional disc. Let

(r, θ) ∈ [0,∞) × [0,2π)

be a coordinate system for S, with periodicity in the second coordinate. The space manifold
is also endowed with an azimuthally-symmetric metric of the form

g(r, θ) =
(

1 0
0 φ2(r)

)
.

If (S, g) has positive Gaussian curvature then the range of r must be bounded.
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Fig. 1 The experimental setting
in [4]: the inset displays the cell’s
Gaussian curvature as a function
of the radius

Fig. 2 The gel in its final, stable
position. The dots trace out the
trajectory of the gel, from start
(bottom) to end (top)

The non-vanishing Christoffel symbols associated with the metric G are

Γ r
θθ (r, θ) = −φ(r)φ′(r) and Γ θ

rθ (r, θ) = φ′(r)/φ(r).

This setting encompasses a large family of elastic systems that have received much inter-
est in recent years, such as spherical caps embedded in the plane, a hyperbolic disc embed-
ded in the plane [10] or a flat surface embedded on a sphere [17].

An experimental setup, which is similar to the system under consideration here, is de-
scribed in a recent work by Aharoni et al. [4]. The experiment studies the motion of a
quasi two-dimensional reactive gel confined within a thin gap between two non-planar plates
(a curved version of a Hele-Shaw plate). This setting mimics a two-dimensional body mov-
ing in a non-flat two-dimensional space manifold. The plates were curved such that the top
part has an elliptic geometry and the bottom part has an hyperbolic geometry (Fig. 1).

This setup is immersed in a temperature-regulated water bath; by controlling the tem-
perature, the intrinsic curvature of the gel can be modified. When the curvature of the body
changes from hyperbolic to elliptic, the body migrates from the lower portion of the cell to
the upper portion (Fig. 2). It should be noted that these experiments correspond to a damped
regime, hence cannot be quantitatively compared to our computations below. Yet, unlike
Hamiltonian formulations, our approach can account for dissipation.

Consider now a time-dependent configuration preserving the azimuthal symmetry of the
system,

ϕr(R,Θ, t) = f (R, t) and ϕθ (R,Θ, t) = Θ,

for some function f : [Rmin,Rmax] × I → [0,∞).
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Substituting this ansatz into (15) and (16), we obtain

∂W

∂xr
,R

(
j 1ϕ

) = 4GRRGRR
(
ϕ∗grr

)∂ϕr

∂R

(
(
ϕ∗grr

)∂ϕr

∂R

∂ϕr

∂R
− GRR

)
= 4f ′(f ′2 − 1

)
,

where f ′ = f ′(R, t) denotes derivation with respect to R,

∂W

∂xθ
,Θ

(
j 1ϕ

) = 4GΘΘGΘΘ
(
ϕ∗gθθ

)∂ϕθ

∂Θ

((
ϕ∗gθθ

)∂ϕθ

∂Θ

∂ϕθ

∂Θ
− GΘΘ

)

= 4
(φ ◦ f )2

Φ2

(
(φ ◦ f )2

Φ2
− 1

)
,

and

∂W

∂xr

(
j 1ϕ

) = 2GΘΘGΘΘ

(
ϕ∗ ∂gθθ

∂r

)
∂ϕθ

∂Θ

∂ϕθ

∂Θ

(
(
ϕ∗gθθ

)∂ϕθ

∂Θ

∂ϕθ

∂Θ
− GΘΘ

)

= 4(φ ◦ f )(φ′ ◦ f )

Φ2

(
(φ ◦ f )2

Φ2
− 1

)
.

All the other derivatives are zero.
Substituting into (17) we obtain the divergence of the stress,

(divS)r = ∂

∂R

(
Φ

∂W

∂xr
,R

)
− φ

∂W

∂xr
,

(divS)θ = ∂

∂Θ

(
Φ

∂W

∂xθ
,Θ

)
= 0,

as well as the boundary term

(pσ S)r = ∂W

∂xr
,R

.

If φ = Φ , i.e., the two manifolds are compatible, then ϕr(R, t) = R is a stationary solu-
tion of this boundary value problem corresponding to an isometric embedding of B into S.
Otherwise, no isometric embedding exists, and the stress is non-zero even in the absence of
external loads.

Finally, substituting into the equations of motion (18) for i = r , we obtain

∂2f

∂t2
= 1

Φ

∂

∂R

(
Φ

∂W

∂xr
,R

)
− ∂W

∂xr
. (20)

Note that the acceleration in the radial direction is simply a second derivative because we
chose semi-geodesic coordinates for both B and S. The boundary conditions are

∂W

∂xr
,R

= 0,

which reduce to

f ′(Rmin, t) = f ′(Rmax, t) = 1.
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Fig. 3 Top: isometric immersion
of a spherical annulus of
Gaussian curvature K = 2 in
Euclidean space. Bottom:
equilibrium configuration of that
same annulus on a sphere of
Gaussian radius k = 0.5. The
stress at equilibrium is non-zero,
exhibiting compressive forces in
the outer parts

Fig. 4 Time evolution of the
inner-boundary to
outer-boundary distance for the
system described in Fig. 3

We next present a particular calculation for a spherical annulus embedded in a sphere.
The radial coordinate R of body manifold B range from Rmin = 0.2 to Rmax = 1.0. The
metric is of the form (19) with positive Gaussian curvature K = 2. The space manifold S is
a sphere with Gaussian curvature k = 0.5. The curvature discrepancy implies that the body
manifold cannot be embedded in the space manifold without stretching its outer part.

In Fig. 3 we show the equilibrium configuration. The top figure displays an isometric
embedding of the body manifold in three-dimensional Euclidean space. The bottom figure
displays an isometric embedding of its equilibrium configuration. Note that while the dis-
tance between the outer and inner boundaries in the body manifold is 0.8, the actual distance
between those boundaries at equilibrium is 0.716. The effect of embedding a spherical an-
nulus on a sphere of lesser curvature is compression.

Next, we perturb the equilibrium configuration and solve numerically the nonlinear wave
equation (20). Figure 4 displays the time evolution of the distance between the inner and
outer boundaries over 10 time units. As expected, we obtain oscillations. Note the multi-
modal nature of those oscillations, as expected from a nonlinear wave equation.

Acknowledgement We are grateful to the author of [4] for letting us report their, yet, unpublished results.
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