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Abstract We consider the geometric homogenization of edge-dislocations
as their number tends to infinity. The material structure is represented by
1-forms and their singular counterparts, de-Rham currents. Isolated dislo-
cations are represented by closed 1-forms with singularities concentrated on
submanifolds of co-dimension one (the defect locus), whereas a continuous
distribution of dislocations is represented by smooth, non-closed 1-forms. We
prove that every smooth distribution of dislocations is a limit, in the sense
of weak convergence of currents, of increasingly dense and properly scaled
isolated edge-dislocations. We also define a notion of singular torsion-current
(associated with isolated dislocations), and prove that the torsion currents
converge, in the homogenization limit, to the smooth torsion field which is
the continuum measure of the dislocation density.

1 Introduction

Models of dislocations. The study of material defects, and notably dislo-
cations, is a central theme in material science. The modeling of solid bodies,
with or without defects, often follows a paradigm in which the elemental
object is that of a body manifold: solid bodies are modeled as geometric
objects—manifolds—and their internal structure is represented by additional
structures such as a frame field, a metric or an affine connection. The mechan-
ical properties of the body enter through a constitutive relation, whose
structure is correlated with the geometric structure of the body.
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There have been two distinct approaches to the modeling of body mani-
folds with dislocations:

1. Isolated dislocations: One starts with a defect-free body, which is ei-
ther modeled as a subset of Euclidean space or as a perfect lattice1. De-
fects are introduced by Volterra cut-and-weld protocols [1] (see Figure 1)
resulting in a locally flat manifold with singularities. The singularities are
identified as the defect loci and the presence of dislocations is detected
by measuring a non-trivial circulation, known as the Burgers vector,
along closed paths encircling the defect loci.

Fig. 1 Left: An edge-dislocation generated by a cut-and-weld protocol in a continuum
setting. Right: An edge-dislocation generated by removing a half-plane in a lattice.

2. Distributed dislocations: The body is modeled as a smooth manifold
endowed with a flat (curvature-free) affine connection. The density of the
dislocations is identified with the torsion tensor of the affine connection
[2, 3, 4, 5]. If, in addition, one adds a basis of the tangent space at one
point, then the affine connection induces a smooth frame field, which
is the kinematic model, for example, in [6]. In later literature [7], the
continuum model is that of a Weitzenböck manifold, which is a smooth
manifold endowed with a Riemannian metric and a metrically-consistent,
curvature-free affine connection. Note that a frame field induces an in-
trinsic metric and a material connection, so that all three descriptions
are essentially identical.

Homogenization. A longstanding problem has been to rigorously justify,
in the spirit of homogenization theories, the continuum model of distributed
dislocations as a dense limit of properly scaled isolated dislocations. In par-
ticular, one would like to understand how torsion, which is the continuum
measure of the dislocation density, emerges in the homogenization limit.

1 A perfect lattice may be related to a smooth Euclidean structure by assigning
lengths and angles to inter-particle bonds and letting the lattice size tend to infinity
with the inter-particle bonds scaled appropriately.
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In order to obtain a body manifold endowed with a smooth geometric
structure as a limit of body manifolds endowed with localized defects, we
must first cast these two seemingly-distinct models into the same framework.
One possible approach is to “remove” small neighborhoods of the isolated
dislocations. Thus, bodies with isolated and smoothly distributed dislocations
are both modeled as smooth Weitzenböck manifolds, where in the former case,
the bodies are multiply-connected; see [8, 9] for a homogenization of defects
using this approach.

Another possible approach is to account for the localized defects using sin-
gular geometric fields, which is the approach used in this work. As described
above, the internal structure of a d-dimensional body M can be modeled by
a frame field, {ei}di=1, or equivalently, by its dual coframe, which is a set of
d 1-forms, {ϑi}di=1. Every smooth 1-form ω ∈ Ω1(M) induces a distribution
for the tangent bundle

ker(ω) ⊂ TM, ker(ω)p = ker(ωp) ≤ TpM.

Under certain integrability conditions [10, Chap. 19], ker(ω) induces a fo-
liation (or layering) of M as a union of Bravais hypersurfaces, which are
tangent to ker(ω) at every point. These surfaces represent the infinitesimal
atomic/molecular layers composing the body. Henceforth, we call a 1-form
inducing a foliation a layering form.

Bodies with localized defects are modeled using singular layering forms,
which are represented by the distributional counterpart of differential forms—
de Rham currents. As pointed out by Epstein and Segev [11], even a single
layering form may detect the presence of defects. Following [11], we define:

A body with dislocations is a d-dimensional manifold M endowed with a pos-
sibly singular layering form ω on M, viewed as a de-Rham (d− 1)-current,

Tω : Ωd−1
c (M)→ R, Tω(η) =

∫
M

ω ∧ η, (1)

where Ωk
c (M) is the space of smooth, compactly-supported k-forms on M.

The defect density associated with ω is represented by the boundary
current ∂Tω, which is defined in the next section.

A layering form ω models a density of Bravais surfaces. Given a vector vp ∈
TpM, ω(vp) is interpreted as the signed number of Bravais planes intersecting
vp. For a closed curve C ⊂M, the Burgers scalar∮

C

ω

is interpreted as the signed number of Bravais hyperplanes intersecting C.
In particular if the Burgers scalar along C is non-vanishing, there is a dis-
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crepancy in the layering structure, that is, a defect. By Stoke’s theorem, the
defect density may be identified with the exterior derivative dω.

Since a defect-free structure is represented by a closed layering form, iso-
lated dislocations are represented by layering forms ω that are closed every-
where except in a set Γ ⊂ M, which we identify as the locus of the disloca-
tions. Moreover, the existence of non-trivial Burgers scalars around Γ implies
that ω must be singular at Γ .

To conclude, both isolated and smoothly-distributed dislocations are rep-
resented by de-Rham currents; in the smooth case, the currents are induced
by smooth layering forms and in the isolated case, by closed forms with singu-
larities. We may now state our main homogenization theorem (see Theorem
6.1 below) in terms of convergence of currents:

Let M be a compact, orientable two-dimensional surface, possibly with bound-
ary. Let ω ∈ Ω1(M) be a (generally non-closed) layering form on M. Then,
there exist sequences ωn and Γn such that

1. Γn is a finite disjoint union of segments in M and is bounded away from
∂M.

2. ωn are closed C1-bounded layering forms on M \ Γn.

3. ωn converge to ω in the sense of currents. That is, Tωn
→ Tω as n→∞.

We prove this homogenization theorem in three main steps:

Step I: A single dislocation. Given a (generally non-closed) layering
form β on the unit square M = [0, 1]2, we construct in Section 3 a closed
layering form ν on M \Γ , where Γ is a segment. The layering form ν has the
same circulation around ∂M as β. The layering form ν induces a 1-current
Tν on M; its boundary is a 0-current supported on Γ . Thus, we may view
the layering form ν as representing a singular edge-dislocation, whose locus
is Γ , and whose intensity is equal to the integrated intensity of the layering
form β.

Step II: Homogenization for the square. In Section 4, we prove that
every (possibly non-closed) layering form β ∈ Ω1(M) can be approximated by
a sequence of closed layering forms νn, representing an n-by-n array of edge-
dislocations (M is still the unit square). We construct νn by gluing together
properly rescaled versions of the form ν constructed in Section 3. We then
prove that Tνn converges as n→∞ to the 1-current Tβ .

Step III: The general case. In Section 6, we prove a homogenization
theorem for a general compact and orientable surface M. We show that for
every layering form β ∈ Ω1(M), there exists a sequence νn of closed layering
forms supported everywhere except for a lower-dimensional submanifold, such
that Tνn converges to Tβ . The proof relies on a classical classification theo-
rem for two-dimensional manifolds, along with gluing techniques for 1-forms
(presented in the appendix). The homogenization problem is thus reduced to
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two elemental building blocks: the closed disk and a “pair of pants” for which
homogenization follows from the homogenization theorem for the square.

Singular torsion. In Section 5, we generalize the analysis to the case
where M is a d dimensional manifold equipped with a full lattice structure,
that is, a frame field {ei}di=1 or equivalently, the dual coframe of d layer-
ing forms {ϑi}di=1. A frame-coframe pair induces a path-independent parallel
transport Πq

p : TpM → TqM between every two points p, q ∈ M. The corre-
sponding material connection∇ is flat but may be non-symmetric; the torsion
tensor is given by

τ = ei ⊗ dϑi,

and it is non-zero if the layering forms ϑi are not closed. In the case of
isolated dislocations, the torsion is identically zero in the smooth set and
not defined on the singular set. Note, that the above expression for τ cannot
be interpreted as a de-Rham current on M (it behaves like a product of a
Heaviside function and a delta function).

Using the distant parallelism induced by the frame field (defined also for
isolated dislocations) we define a notion of singular torsion for a singular
frame as a vector valued de-Rham current. We show how the singular torsion
generalizes the notion of a smooth torsion field and prove a homogenization
theorem for the torsion tensor; If a sequence of coframes {ϑin} converges in the
sense of currents to a smooth coframe {ϑi}, then the corresponding singular
torsions converge to the smooth torsion associated with the limit.

There are several differences between the present work and the earlier
work in [8, 9, 12, 13]: In the earlier work, the loci of the dislocations were
“removed”, yielding a geometric convergence of smooth multiply-connected
manifolds to a smooth simply-connected limit. Furthermore, the mode of con-
vergence was a strong Lp-convergence of frame fields, which is stronger than
the weak convergence of currents; a stronger convergence is particularly im-
portant for obtaining a convergence of the associated mechanical models. On
the other hand, the current approach is more physical, as it accounts explic-
itly for the singular region; also, our notion of singular dislocations chimes
in with the classical case of cone singularities, i.e., disclinations. Finally, the
emergence of torsion in the continuous case no longer occurs “out of the
blue”, but is shown to be a bone fide limit of singular torsion fields.

Three points should be emphasized: (i) This work focuses on the geometry
of bodies with dislocations. There exists a wealth of literature addressing the
mechanics of dislocations, which we don’t mention here. (ii) A body manifold
is our elemental object of consideration, and it should not be confused with
a (deformed) configuration, which is an embedding of that manifold in the
ambient space. Since the body manifold and the deformed configuration are
diffeomorphic, the same defect structure would be observed in the deformed
configuration. (iii) In our model, the locus of a dislocation is a submanifold
of co-dimension one, whereas it is often described in the literature as a sub-
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manifold of co-dimension two, e.g., a point in 2d. Geometrically, a dislocation
is a curvature dipole, or a pair of disclinations of opposite signs (e.g., a 5-7
pair in a hexagonal lattice). Since the Frank vector of a positive disclination
is bounded by 2π, one cannot obtain a non-zero point dislocation as a limit
of disclination dipoles, as in the case of electrostatics.

This paper is organized as follows. In Section 2 we review the definition
of de-Rham currents on manifolds, which are the kinematic variables of our
model. Section 3 is devoted to the first step of our homogenization proof—
the construction of a layering form representing a single dislocation. The
second step—the homogenization construction for the square—is conducted
in Section 4. We then consider in Section 5 the notion of singular torsion and
its homogenization. Finally, we extend in Section 6 the homogenization proof
to general compact orientable surfaces.

2 De-Rham currents

We start by reviewing the definition of de-Rham currents on manifolds. For
a full introduction, see the classical monographs of Federer [14] or de-Rham
[15]; see [16, 17] for more recent reviews.

Let M be a smooth, compact, orientable d-dimensional manifold with
boundary. For every 1 ≤ k ≤ d, let Ωk(M) denote the space of smooth
k-forms on M and let

Ωkc (M) =
{
ω ∈ Ωk(M) : supp(ω) b M

}
denote the C∞(M)-module of smooth k-forms compactly-supported in M.
Choose a Riemannian metric g on M, and define for every compact K b M

a family of seminorms φkK,j : Ωkc (M)→ R+ by

φkK,j(ω) = sup
0≤i≤j

‖Diω‖K ,

where Diω : M → Hom(⊗iTM, ΛkT ∗M) is the i-th differential of ω (not to
be confused with the exterior derivative), and

‖Diω‖K = sup
p∈K
‖(Diω)p‖,

where ‖ · ‖ is the norm on Hom(⊗iTM, ΛkT ∗M) induced by the metric g.
Since M is compact, a different choice of g gives equivalent seminorms. As a
result, it makes sense to say that a k-form is Cj-bounded without reference
to any particular metric (recall that in a topological vector space a set is



Homogenization of edge-dislocations as a weak limit of de-Rham currents 7

bounded if every open neighborhood of zero can be inflated to include that
set).

The seminorms {φkK,j}∞j=1 turn

ΩkK(M) = {ω ∈ Ωkc (M) : supp(ω) ⊂ K}

into a Fréchet space, that is, a locally-convex topological vector space which is
complete with respect to a translationally-invariant metric [18, p. 9]. Endow
Ωkc (M) with the finest topology for which the inclusion maps

ΩkK(M) ↪→ Ωkc (M)

are continuous for all compact K b M. A sequence ωn ∈ Ωkc (M) converges in
this topology to 0 if and only if there exists a compact set K b M such that
supp(ωn) ⊂ K for all n large enough, and ωn → 0 in the ΩkK(M) topology.

Definition 2.1 (de-Rham current). A de-Rham k-current is a continu-
ous linear functional on Ωkc (M). The vector space of de-Rham k-currents is
denoted by Dk(M).

A linear functional T : Ωkc (M)→ R is a k-current if and only if there exists
for every K b M an NK ∈ N and a constant CK > 0, such that for every
ω ∈ ΩkK(M),

|T (ω)| ≤ CK φkK,NK
(ω).

(See e.g. [18, Th. 6.8] in the context of distributions in Rd.) We endow Dk(M)
with the weak-star topology: a sequence of k-currents Tn converges to a k-
current T if

lim
n→∞

Tn(ω) = T (ω)

for every ω ∈ Ωkc (M). The support of a k-current T ∈ Dk(M) is defined by
supp(T ) = M \A(T ), where A(T ) is the annihilation set of T , i.e., the union
of all open subsets U ⊂M for which T (α) = 0 whenever supp(α) ⊂ U .

Example 2.1. Every locally-integrable k-form β on Ω defines a (d−k)-current
Tβ ∈ Dd−k(M) by

Tβ(α) =

∫
M

β ∧ α, α ∈ Ωd−kc (M).

In other words, currents may be viewed as generalized differential forms.

Example 2.2. Let S ⊂ M be a k-dimensional oriented submanifold. Then, S
induces a k-current [S] ∈ Dk(M) given by

[S](α) =

∫
S

α, α ∈ Ωkc (M).
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In other words, currents also generalize the concept of a submanifold.

Definition 2.2 (Boundary of current). The boundary operator of a
k-current is a map ∂ : Dk(M)→ Dk−1(M), defined by

∂T (α) = T (dα), α ∈ Ωk−1c (M).

Since d2 = 0, it immediately follows by duality that ∂2 = 0. Moreover, it
follows from integration by parts and Stokes theorem that

∂Tβ = (−1)k−1Tdβ

for every smooth k-form β.

3 Layering form for an edge-dislocation

Let V be a vector space. A covector ω ∈ V ∗ induces a family of hyperplanes
(Bravais planes),

Ht = {v ∈ V : ω(v) = t}, t ∈ R

foliating V (i.e., forming a disjoint cover of V ). The action of ω on a vector
v ∈ V can be interpreted as the “number of hyperplanes intersected by v”. In
a smooth manifold M, the role of the covector is played by a 1-form foliating
M : given a 1-form ν and an oriented curve C ⊂M, the integral∫

C

ν

can be interpreted as the (signed) “number” of ν-hyperplanes intersected by
C.

Definition 3.1 (Layering form). Let M be a smooth manifold. A 1-form
ν ∈ Ω1(M) is called a layering form if it foliates M. That is, if M is the disjoint
union of smooth hypersurfaces—leaves—such that the tangent bundle of each
leaf coincides with the kernel of ν.

A sufficient and necessary condition for a 1-form ν to induce a smooth
layering structure is that locally

dν = α ∧ ν

for some (d− 1)-form α [10, Chap. 19]. In particular, for a simply-connected
two-dimensional manifold, every non-vanishing 1-form induces a smooth lay-
ering structure.
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If ν is a closed layering form, dν = 0, it follows from Stokes’ theorem that
for every simple, oriented, closed curve C ⊂M, the “number” of hyperplanes
intersected by C vanishes, ∫

C

ν =

∫
ΣC

dν = 0, (2)

where ΣC ⊂M is any two-dimensional submanifold of M bounded by C. In
other words, there are no “extra” layers, and the layering structure is defect-
free. In view of (2), we may interpret dν as a defect density associated with
the layering form ν.

Definition 3.2 (Continuously-distributed dislocations). Let M be a
smooth simply-connected manifold. A smooth layering form is said to repre-
sents a continuous distribution of dislocations if there exists a closed curve
C, such that ∫

C

ν 6= 0.

The quantity on the left-hand side is called the Burgers scalar, or the
circulation of the layering form ν around the loop C. We consider Burgers
scalars, rather than Burgers vectors, since we account for only one layering
form. When representing the structure by a co-frame, one obtains d Burgers
scalars, which are the components in the local frame of the Burgers vector.

Clearly, ν represents a continuous distribution of dislocations if and only
if it is non-closed.

Definition 3.3 (Singular dislocation). Let M be a smooth manifold and
let Γ ⊂M be a hyper-surface. A layering form ν on M\Γ is said to represent
a dislocation concentrated on Γ , if ν is closed and there exists a closed curve
C ∈M \ Γ , such that ∫

C

ν 6= 0.

Suppose that ν ∈ Ω1(M \ Γ ) represents a dislocation concentrated on
Γ . Since ν is closed, its Burgers scalar vanishes for every contractible loop.
Therefore, M \Γ is necessarily not simply-connected, i.e., the removal of the
dislocation locus Γ changes the topology of the manifold. Let C be a loop in
M encircling Γ (Figure 2), such that∫

C

ν 6= 0.

Since ν is closed on M\Γ , the circulation remains unchanged under homotopic
variations of C, and in particular, as C shrinks to Γ . Hence, ν is necessarily
singular at Γ .
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Γ

C

Fig. 2 A body endowed with a layering form ν with a singular dislocation located
on a hypersurface Γ . The circulation of ν is homotopic-invariant for loops encircling
the locus of the dislocation.

We next consider a two-dimensional manifold M endowed with a non-
closed smooth layering form β (representing a continuous distribution of dis-
locations). We construct a layering form ν representing a singular dislocation
concentrated on a curve Γ ⊂M, which approximates β is a sense made pre-
cise. In a sense, this construction concentrates the “defectiveness” of β onto
the submanifold Γ . This construction will be used in the next section to prove
the homogenization theorem.

Consider then a topological rectangle, i.e., a manifold that can be parametrized
as follows:

M = [0, 1]2 = {(x, y) : 0 ≤ x, y ≤ 1}.

We denote the left, right, top and bottom edges of M by Mleft, Mright, Mtop

and Mbottom, respectively. The locus of the singular dislocation will be the
closed parametric segment

Γa = [1/2− a/2, 1/2 + a/2]× {1/2} ⊂M, (3)

where 0 < a < 1 is a parameter (see Figure 3).

Γa
Mleft Mright

Mtop

Mbottom

Fig. 3 The topological rectangle M and the locus Γa of the dislocation.
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Proposition 3.1. Let β ∈ Ω1(M) be a nowhere-vanishing (generally non-
closed) layering form. Then, there exists a continuously-differentiable layering
form νa on M \ Γa satisfying the following properties:

(a) νa is C1-bounded (see definition in Section 2).

(b) νa is closed.

(c) νa coincides with β on Mleft and Mright.

(d) νa has the same circulation as β around ∂M,∫
∂M

νa =

∫
∂M

β.

(e) The horizontal components of νa and β coincide,

νa(∂x) = β(∂x),

whenever |x− 1/2| > a/2.

Proof. We construct νa as the (continuous) differential of a discontinuous
function f . First, define f0 : ∂M→ R by fixing q0 = (1, 1/2) and letting

f0(q) =

∫ q

q0

β,

where the integration from q0 to q is counter-clockwise along ∂M. If the
circulation of β around ∂M is non-zero, then f0 is discontinuous at q0. How-
ever, its differential is well-defined and smooth at q0 as it coincides with the
tangential component of β (see Figure 4).

Γa q0

q

f0(q) =
∫ q
q0
β

Fig. 4 The first stage in the construction of f : the 1-form β is integrated along ∂M.

Next, consider the vertical strip of width a,
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Ma = {(x, y) ∈ [0, 1]2 : |x− 1/2| < a/2},

and define f̄ : M \Ma → R by integrating β horizontally, from the bound-
aries inward,

f̄(x, y) =

{
f0(0, y) +

∫
[(0,y),(x,y)]

β, x < 1/2− a/2
f0(1, y) +

∫
[(1,y),(x,y)]

β, x > 1/2 + a/2

(see Figure 5).

Γa q0

q p
f̄(p) = f0(q) +

∫ p
q
β

Fig. 5 The second stage in the construction of f : f̄ is defined on the set |x− 1/2| >
a/2 by integrating the horizontal component of β from the nearest vertical boundary
point. The dashed segment connecting Γa to q0 is the discontinuity line of f .

It remains to define f on Ma/Γa. Denote by pL, pR : M → R the second-
order Taylor expansions of f̄ about xL = 1/2−a/2 and xR = 1/2+a/2 along
the x-direction, i.e.,

pL(x, y) = f̄(xL, y) +
∂f̄

∂x
(xL, y)(x− xL) +

1

2

∂2f̄

∂x2
(xL, y)(x− xL)2

pR(x, y) = f̄(xR, y) +
∂f̄

∂x
(xR, y)(x− xR) +

1

2

∂2f̄

∂x2
(xR, y)(x− xR)2.

Let r ∈ C∞(R) be a monotonically-increasing function satisfying,

r(t) = 0 ∀t ≤ −1/2 and r(t) = 1 ∀t ≥ 1/2.

We extend f̄ to M\Γa by interpolating between pL and pR, using the smooth
“connecting” function r (see Figure 8),

f(x, y) =

{
f̄(x, y) |x− 1/2| ≥ a/2
(1− r(x−1/2a ))pL(x, y) + r(x−1/2a )pR(x, y) |x− 1/2| < a/2.

(4)
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Γa q0

f = (1− r)pL + 1 pR

Fig. 6 The third stage in the construction of f : f is extended from f̄ to the set
|x− 1/2| ≤ a/2 by interpolation.

We obtain νa = df by differentiating (4). For x > a/2 + 1/2, an explicit
calculation yields

df(x,y) = β1(x, y) dx+

(
β2(1, y) +

∫ x

1

∂β1
∂y

(x′, y)dx′
)
dy, (5)

where β1 and β2 are the components of β,

β = β1 dx+ β2 dy.

Similarly, for x < 1/2− a/2,

df(x,y) = β1(x, y) dx+

(
β2(0, y) +

∫ x

0

∂β1
∂y

(x′, y)dx′
)
dy. (6)

While f has a discontinuity along the segment [1/2 + a, 1] × {1/2}, its one-
sided derivatives along this segment are continuous, as they are expressed in
terms of the smooth layering form β. Moreover,

df |Mleft
= β|Mleft

and df |Mright
= β|Mright

,

proving Property (c). Likewise, for |x− 1/2| ≥ a/2,

df(∂x) = β1 = β(∂x),

proving Property (e).

For (x, y) ∈Ma,
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df(x,y) =
1

a
r′
(
x−1/2
a

)
(pR(x, y)− pL(x, y))dx

+

[(
1− r

(
x−1/2
a

)) ∂pL
∂x

(x, y) + r
(
x−1/2
a

) ∂pR
∂x

(x, y)

]
dx

+

[(
1− r

(
x−1/2
a

)) ∂pL
∂y

(x, y) + r
(
x−1/2
a

) ∂pR
∂y

(x, y)

]
dy.

(7)

The layering form df is continuous at x = 1/2± a/2. For example,

lim
x↗1/2+a/2

df(x,y) =
∂pR
∂x

(1/2 + a/2, y) dx+
∂pR
∂y

(1/2 + a/2, y) dy

=
∂f̄

∂x
(1/2 + a/2, y) dx+

∂f̄

∂y
(1/2 + a/2, y) dy

= df̄(1/2 + a/2, y).

A second differentiation shows that νa is continuously-differentiable at x =
1/2± a/2. This together with (7) proves Property (a) and consequently also
Property (b).

It remains to prove Property (d). From our construction of f0 on ∂M,∫
∂M

df = lim
ε→0

(f(1, 1/2− ε)− f(1, 1/2 + ε))

= lim
ε→0

(f0(1, 1/2− ε)− f0(1, 1/2 + ε))

=

∫
∂M

β,

which concludes the proof.

ut

Regardless of the particular construction of νa, since νa is closed in M\Γa,
it follows that ∮

C

νa = 0

along every contractible loop C in M\Γa. Let g be a metric on M, and denote
by Γ εa , ε > 0, a family of ε-tubular neighborhoods of Γa. By Stokes’ law, for
every small enough ε > 0,

0 =

∫
M\Γ ε

a

dνa =

∫
∂M

νa −
∫
∂Γ ε

a

νa.

Since νa has the same circulation as β along ∂M,∫
∂Γ ε

a

νa =

∫
∂M

β.
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Letting ε→ 0, we obtain ∫
Γa

[νa] =

∫
∂M

β, (8)

where [νa] is the discontinuity jump of νa along Γa, whose sign is determined
by the orientation of M (hence of Γ εa ) and Γa. Note that the one-sided limits
of νa at Γa exist since νa is C1-bounded. Moreover, since M is compact, the
limit leading to Identity (8) does not depend on the choice of the metric g.
We conclude that if β (hence, νa) has non-vanishing circulation along ∂M
then [νa] 6= 0, that is, νa is discontinuous along Γa.

Remark 3.1. The singular set Γa of νa is uncountable. Generally, if M is a
compact two-dimensional manifold with or without boundary, Γ is a sub-
manifold of M, and ν is a C0-bounded closed 1-form on M \ Γ , such that
there exists a closed curve C for which∮

C

ν 6= 0,

then Γ cannot be a finite set. Suppose, by contradiction that Γ = {p1, p2, . . . , pk}
is finite, and assume without loss of generality that all the points in Γ are en-
closed by the curve C. Assuming as above a metric g, setting Γ ε = ∪iBε(pi),
and performing the same calculation,

k∑
i=1

∮
∂Bε(pi)

ν = −
∮
C

ν.

If ν is bounded, then the left-hand side vanishes as ε→ 0, yielding a contra-
diction. The physical interpretation of this observation is that in our setting
there is no such thing as an edge-dislocation supported at a point (or on a
line in three dimensions).

The 1-form νa (which is only defined on M \ Γa) induces a 1-current on
M,

Tνa(α) =

∫
M

νa ∧ α α ∈ Ω1
c (M).

Its boundary is the 0-current,

∂Tνa(f) = Tνa(df) =

∫
M

νa ∧ df f ∈ C∞c (M).

Integrating by parts on M \ Γ εa snd taking ε→ 0 (as above), we obtain

∂Tνa(f) =

∫
Γa

f [νa],

where for |x− 1/2| < a/2,
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[νa](x) = lim
ε→0

(df(x, 1/2 + ε)− df(x, 1/2− ε))

=
1

a
r′
(
x−1/2
a

)
lim
ε→0

(pR(x, 1/2 + ε)− pR(x, 1/2− ε))

=
1

a
r′
(
x− 1/2

a

) ∫
∂M

β,

where we substituted (7), used the facts that pL is continuous at y = 1/2
and that the discontinuity of pR at y = 1/2 equals the circulation of β,

To conclude, νa represents a layering form on M having an edge-dislocation
concentrated on the hyper-surface Γa. The locus of the dislocation is revealed
by the boundary of the differential current induced by νa. Note that M\Γa is
defect-free only to the extent detectable by νa. Generally, M\Γa may contain
defects detected by other layering forms.

4 Homogenization of distributed edge-dislocations

In this section we show how a non-closed layering from (representing continuously-
distributed dislocations) can be approximated, in the sense of currents, by an
n-by-n array of singular edge-dislocations, each of magnitude of order 1/n2.
We construct the approximation by “gluing” properly rescaled copies of the
layering form νa constructed in Proposition 3.1.

For (x0, y0) ∈ R2, denote by τ(x0,y0) : R2 → R2 the translation operator

τ(x0,y0)(x, y) = (x+ x0, y + y0).

Likewise, for λ > 0, denote by Sλ : R2 → R2 the scaling operator

Sλ(x, y) = (λx, λy).

Let n ∈ N be given; for every 0 ≤ k, j < n, let

Mn;kj = S1/n ◦ τ(k,j)(M)

be translated and rescaled copies of M, forming an n-by-n tiling of M. By
construction,

ιn;kj = S1/n ◦ τ(k,j) : M→Mn;kj (9)

are diffeomorphisms (see Figure 7). Similarly, let

Γn;kj = ιn;kj(Γa/n)

be segments of lengths a/n2 located at the centers of each square. Finally,
denote by
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Γn =

n−1⋃
k,j=0

Γn;kj

the union of those segments.

Fig. 7 The diffeomorphism ιn;kj for n = 4, k = 1 and j = 2

Let β ∈ Ω1(M) be a layering form. Let

βn;kj = (ιn;kj)
?β|Mn;kj

∈ Ω1(M), (10)

be the pullback2 of β (restricted to Mn;kj) to M and let µn;kj ∈ Ω1(M\Γa/n)
be the singular layering form defined in Proposition 3.1, with βn;kj playing
the role of β and the parameter a is scaled by a factor of 1/n. We approximate
β by a sequence of singular layering forms,

νn ∈ Ω1(M \ Γn),

by pushing forward µn;kj into Mn;kj ,

νn|Mn;kj
= (ιn;kj)?µn;kj . (11)

Proposition 4.1. Equation (11) for 0 ≤ k, j < n defines a layering form νn
on M \ Γn, satisfying

(a) νn is C1-bounded.

(b) νn is closed.

(c) νn has the same circulation as β in each sub-domain: for every 0 ≤ k, j ≤
n− 1,

2 For a smooth map f : M → N between two manifolds and a k-form β ∈ Ωk(N),
we denote by f∗β ∈ Ωk(M) its pullback,

(f∗β)p(v1, . . . , vk) = βf(p)(dfp(v1), . . . , dfp(vk)).

If f is a diffeomorphism, then k-forms can also be pushed forward.
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∂Mn;kj

νn =

∫
∂Mn;kj

β.

(d) νn coincides with β on the vertical segments Lk = {k/n} × [0, 1] for
0 ≤ k ≤ n.

Proof. We first show that νn is well-defined and satisfies Property (a). Since
the µn;kj are smooth and C1-bounded, νn is smooth and C1-bounded in the
interior of each Mn;kj \ Γn;kj . It remains to prove that it is continuously-
differentiable on the “skeleton” ∪k,j∂Mn;kj . Note that

∂Mn;kj = ιn;kj(Mleft) ∪ ιn;kj(Mright) ∪ ιn;kj(Mtop) ∪ ιn;kj(Mbottom).

By (10), since the diffeomorphism ιn;kj is a combination of a translation
and a scaling,

βn;kj(∂x) =
1

n
β(∂x) ◦ ιn;kj and βn;kj(∂y) =

1

n
β(∂y) ◦ ιn;kj ,

which are equalities between functions on M. In particular, since ιn;k j+1(x, 0) =
ιn;kj(x, 1) and ιn;k j−1(x, 1) = ιn;kj(x, 0), it follows that for every x, y ∈ [0, 1],
and v ∈ {∂x, ∂y}

βn;k j+1(v)(x, 0) = βn;kj(v)(x, 1)

βn;k+1 j(v)(0, y) = βn;kj(v)(1, y)

By the same argument, for w ∈ {∂x, ∂y}

Lwβn;k j+1(v)(x, 0) = Lwβn;kj(v)(x, 1)

Lwβn;k+1 j(v)(0, y) = Lwβn;kj(v)(1, y),

where Lw is the Lie derivative along w. By (5), (6) and (7), the construction
of µn;kj only depends on βn;kj (and the smooth function r). Moreover, µn;kj
and its derivative on every side of ∂M depend only on βn;kj and its derivatives
on that side. As a result, for every x, y ∈ [0, 1], and v, w = {∂x, ∂y},

µn;k j+1(v)(x, 0) = µn;kj(v)(x, 1)

µn;k+1 j(v)(0, y) = µn;kj(v)(1, y)

Lwµ
n
k j+1(v)(x, 0) = Lwµn;kj(v)(x, 1)

Lwµ
n
k+1 j(v)(0, y) = Lwµn;kj(v)(1, y).

Since the relation between µn;kj and νn is once again a pullback under a
combination of scaling and translation, we obtain that νn is continuously-
differentiable along the skeleton.

We proceed to prove Property (d): by Property (c) of Proposition 3.1:
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νn|ιn;kj(Mleft) = (ιn;kj)?µn;kj |ιn;kj(Mleft)

= (ιn;kj)?βn;kj |ιn;kj(Mleft)

= (ιn;kj)?(ιn;kj)
?β|ιn;kj(Mleft)

= β|ιn;kj(Mleft),

i.e., νn coincides with β on the vertical components of the skeleton.

Property (b) is immediate as µn;kj are closed and closedness is invariant
under pullback. Finally, Property (c) follows from Property (d) in Proposi-
tion 3.1: using the change of variables formula and the fact that µn;kj and
βn;kj have the same circulation along ∂M,∫

∂Mn;kj

νn =

∫
ιn;kj(∂M)

((ιn;kj)
−1)?µn;kj

=

∫
∂M

µn;kj =

∫
∂M

βn;kj =

∫
∂Mn;kj

β.

ut

As in the case of a single dislocation, we define for each n the 1-current
induced by νn:

Tνn(α) =

∫
M

νn ∧ α, α ∈ Ω1
c (M).

Its boundary ∂Tνn is a 0-current given by

∂Tνn(f) =

n−1∑
k,j=1

∫
Γn;kj

f [νn]Γn;kj
, f ∈ C∞c (M),

where [νn]Γn;kj
is the discontinuity jump of νn along Γn;kj , given by

[νn]Γn;kj
(x, (j + 1/2)/n) =

n

a
r′
(
nx− k − 1/2

a

) ∫
∂Mn;kj

β.

We view νn as a layering form on M having n2 edge-dislocations concentrated
on Γn. The loci of the dislocations are revealed by the boundary of the dif-
ferential current induced by νn. Once again, M \Γn is defect-free only to the
extent detectable by νn.

Theorem 4.1 (Homogenization). The sequence νn of layering forms con-
verges to β in the sense of currents: for every α ∈ Ω1

c (M),

lim
n→∞

∫
M

νn ∧ α =

∫
M

β ∧ α,
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or equivalently,

lim
n→∞

Tνn−β(α) = lim
n→∞

∫
M

(νn − β) ∧ α = 0. (12)

Proof. Choose any metric on M; for concreteness we take the Euclidean met-
ric associated with the parametrization.

If β = β1 dx+ β2 dy, then

‖β(x,y)‖2 = β2
1(x, y) + β2

2(x, y).

For every α ∈ Ω1
c (M),

Tνn−β(α) =

n−1∑
k,j=0

∫
Mn;kj

(νn − β) ∧ α

=

n−1∑
k,j=0

∫
ιn;kj(M)

((ιn;kj)
−1)?(µn;kj − βn;kj) ∧ α

=

n−1∑
k,j=0

∫
M

(µn;kj − βn;kj) ∧ (ιn;kj)
?α,

(13)

where the second equality follows from the definitions of νn and βn;kj , and
the third equality follows from the change of variables formula. Fix 0 ≤ k, j ≤
n− 1. Since ιn;kj involves a contraction by a factor of n,∥∥(ιn;kj)

?α|Mn;kj

∥∥
∞ ≤

1

n
‖α‖∞.

It follows that∣∣∣∣∫
M

(µn;kj − βn;kj) ∧ (ιn;kj)
? α

∣∣∣∣ ≤ 1

n
‖α‖∞ sup

‖ξ‖∞=1

∣∣∣∣∫
M

(µn;kj − βn;kj) ∧ ξ
∣∣∣∣

≤ 1

n
‖α‖∞

∫
M

|µn;kj − βn;kj | dx ∧ dy.

Combining with (13),

|Tνn−β(α)| ≤ n ‖α‖∞ sup
0≤k,j<n

∫
M

|µn;kj − βn;kj | dx ∧ dy.

Next, writing βn;kj explicitly,

(βn;kj)(x,y) =
1

n
β1

(
x+ k

n
,
y + j

n

)
dx+

1

n
β2

(
x+ k

n
,
y + j

n

)
dy.
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By (6), for x < 1/2− a/2n,

(µn;kj)(x,y) =
1

n
β1

(
x+ k

n
,
y + j

n

)
dx

+

(
1

n
β2

(
k

n
,
y + j

n

)
+

∫ x

0

1

n2
∂β1
∂y

(
x′ + k

n
,
y + j

n

)
dx′
)
dy,

so that

n |µn;kj − βn;kj |(x, y) ≤
∣∣∣∣β2(x+ k

n
,
y + j

n

)
− β2

(
k

n
,
y + j

n

)∣∣∣∣
+

1

n

∫ x

0

∣∣∣∣∂β1∂y

(
x′ + k

n
,
y + j

n

)∣∣∣∣ dx′
≤ 1

n

(∥∥∥∥∂β2∂x

∥∥∥∥
∞

+

∥∥∥∥∂β1∂y

∥∥∥∥
∞

)
.

The same bound is obtained for x > 1/2 + a/2n. Finally, for |x − 1/2| <
a/2n, using (7), and noting that pL and pR are O(1/n), we obtain that

n |µn;kj − βn;kj |(x, y) ≤ C

a
‖r′(x)‖∞,

where C > 0 is some constant. Putting it all together,

|Tνn−β(α)| ≤ n ‖α‖∞ sup
0≤k,j<n

∫
M\Ma/n

|µn;kj − βn;kj | dx ∧ dy

+ n ‖α‖∞ sup
0≤k,j<n

∫
Ma/n

|µn;kj − βn;kj | dx ∧ dy

≤ ‖α‖∞
n

(∥∥∥∥∂β2∂x

∥∥∥∥
∞

+

∥∥∥∥∂β1∂y

∥∥∥∥
∞

+ C̃ ‖r′(x)‖∞
)
,

where in the estimation of the third term we used the fact that the volume
of Ma/n is O(1/n). Letting n→∞ we obtain the desired result. ut

5 Singular torsion and its homogenization

Thus far, we analyzed a lattice structure through a single layering form,
representing a single family of Bravais surfaces. In d dimensions, a lattice
structure is fully determined by a set of d linearly-independent layering forms,
i.e., by a coframe {ϑi}. Denote by {ei} the frame field dual to {ϑi}.

A frame-coframe structure induces a path-independent parallel transport,
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Πq
p : TpM→ TqM given by Πq

p = ei|q ⊗ ϑi|p. (14)

The latter induces a connection ∇ having trivial holonomy, which locally
implies zero curvature. By construction, the frame field {ei} and its dual
{ϑi} are ∇-parallel sections,

∇ei = 0 and ∇ϑi = 0.

The torsion tensor associated with ∇ is a TM-valued 2-form τ , given by

τ(ei, ej) = ∇eiej −∇ejei − [ei, ej ] = [ej , ei].

Since for every 1 ≤ i, j, k ≤ d,

dϑi(ej , ek) = ej(ϑ
i(ek))− ek(ϑi(ej))− ϑi([ej , ek])

= ϑi([ek, ej ])

= ϑi(τ(ej , ek)),

we conclude that dϑi = ϑi ◦ τ , or equivalently,

τ = ei ⊗ dϑi, (15)

where we adopt henceforth Einstein’s summation rule, whereby repeated up-
per and lower indexes imply a summation. In particular, torsion vanishes if
and only if dϑi = 0 for all 1 ≤ i ≤ d, or equivalently, if [ei, ej ] = 0 for all
1 ≤ i, j ≤ d.

The question we are addressing henceforth is in what sense is the smooth
torsion τ given by (15) a limit of singular torsions associated with singular
dislocations. For example, let M, β and νn be defined as in the previous
section, and suppose that

ϑ1n = νn and ϑ2n = dx

is a sequence of coframe fields (namely, νn are dx are linearly-independent
everywhere in M). By the analysis of the previous section (and trivially for
ϑ2),

lim
n→∞

Tϑ1
n

= Tβ and lim
n→∞

Tϑ2
n

= Tdx,

i.e.,
lim
n→∞

{ϑ1n, ϑ2n} = {β, dx}

in the sense of weak convergence of currents.

Since the coframe field {ϑ1n, ϑ2n} consists of closed layering forms, the in-
duced torsion on M \ Γn vanishes identically for every n,

τn = eni ⊗ dϑin = 0,
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which, if dβ 6= 0, does not converge to the torsion

τ =
1

β2
∂y ⊗ dβ

associated with the limiting coframe field in any classical sense (we used here
the fact that the frame dual to {β, dx} is {∂y/β2, ∂x − β1/β2 ∂y}).

The question is how to cast a weak convergence of torsion in the frame-
work of de-Rham currents. Torsion is a tangent bundle-valued 2-form. While
it is possible to define currents associated with tangent bundle-valued forms,
see e.g. [19], this approach doesn’t seem applicable here. A simple heuristic
argument shows that if we try to interpret torsion as a distribution for a dis-
continuous coframe field, we obtain the product of a discontinuous section ei
and the derivative dϑi of a discontinuous section (loosely speaking, a product
of a Heaviside function and a delta-function), which is not well-defined.

A hint toward a correct interpretation of singular torsion is obtained by
considering Burgers circuits: Let C be a simple, oriented, regular closed curve
in M. The Burgers vector associated with the curve C is a parallel vector field
B [20], whose value at a reference point p is given by

Bp =

∮
C

Πp
γ (dγ),

where Πp is the parallel-transport to p, which by (14) is given by

Πp = ei|p ⊗ ϑi,

and γ is a parametrization for C. Interpreting Πp as a TpM-valued 1-form,
we rewrite the Burgers vector Bp in a more succinct form,

Bp =

∮
C

Πp.

Applying Stokes’ theorem,

Bp =

∫
Σ

dΠp,

where ∂Σ = C. Hence,

Bp = ei|p
∫
Σ

dϑi.

Thus, having chosen a reference point p, the Burgers vector for a loop C is
an integral over the area enclosed by this loop of a Burgers vector density

ei|p ⊗ dϑi,

which is a TpM-valued 2-form; it is nothing but the torsion τ , whose output,
once acting on a bivector, is parallel-transported to the reference point p. We
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henceforth denote by
τp = Πp ◦ τ = ei|p ⊗ dϑi

the torsion transported to p. The notion of singular torsion may now be
easily defined as the distributional counterpart of τp by replacing dϑi with
the boundary current ∂Tϑi . However, we first need to define the notion of a
singular frame. Rather than choosing the most general possible framework, we
adopt a possibly restrictive but yet sufficiently rich and physically-motivated
approach:

Definition 5.1. Let M be a compact d-dimensional manifold. A collection
{ϑi}di=1 of 1-forms is called a singular coframe for M if for every 1 ≤ i ≤ d,
there exists a compact (d− 1)-dimensional submanifold Γi ⊂M, such that

1. Each ϑi is a C1-bounded 1-form on M \ Γi.
2. {ϑip} is a basis for T ∗pM for every p ∈M \ Γ where Γ = ∪iΓi.
3. M \ Γ is path connected and ∂M ∩ Γ = ∅.

A closed singular coframe is a singular coframe {ϑi} satisfying dϑi = 0
on M \ Γi for every 1 ≤ i ≤ d.

Recall that if a layering form ω ∈ Ω1(M) is closed, its induced layering
structure (foliation) is defect free. A closed singular coframe therefore corre-
sponds to isolated defects which are concentrated on a set of measure zero.

Definition 5.2. Let {ϑi} be a singular coframe field on M and let p ∈M\Γ
be an arbitrary reference point. The torsion current, is a TpM-valued (d−
2)-current given by,

T = ei|p ∂Tϑi .

For a smooth coframe {ϑi}, the torsion current is given by

T(α) = ei|p ∂Tϑi(α) = ei|pTdϑi(α) = Tτp(α), α ∈ Ωd−2c (M). (16)

In other words, in the smooth case, the torsion current T is the TpM-valued
(d− 2)-current induced by the smooth TpM-valued 2-form τp.

In the case of a closed singular coframe (isolated defects), the singular
torsion is supported on the singular hyper-surfaces {Γi} and is given explicitly
by

T[p](η) =

d∑
i=1

(∫
Γi

[ϑi]Γi
∧ η
)
ei(p), (17)

where [ϑi]Γi
is the discontinuity jump of ϑi along Γi and η ∈ Ωd−2c (M).

For a general (non-closed) singular frame {ϑi}, the torsion current naturally
decomposes into a smooth component as in (16) and a singular component
as in (17).
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We have thus obtained the following corollary:

Corollary 5.1 (Homogenization of torsion). Let {ϑin} be a sequence of
(possibly) singular coframes and p ∈M a reference point, satisfying:

1. There exists a (possibly) singular frame {ϑi} such that {ϑin} converges to
{ϑi} in the sense of currents. That is

Tϑi
n
→ Tϑi as n→∞, ∀ 1 ≤ i ≤ d.

2. The point p is outside the singularity sets of {ϑin} and {ϑi} and (ϑin)p →
ϑip (pointwise) for every 1 ≤ i ≤ d.

Let
Tn = eni |p ∂Tϑi

n
and T = ei|p ∂Tϑi

be the corresponding TpM-valued (d − 2)-torsion currents. Then, Tn → T in
the sense of currents.

In particular, if {ϑin} are singular closed frames for every n and the limiting
frame {ϑi} is smooth, then Tn and T are given by (17) and (16) respectively.
The limiting smooth torsion is thus obtained as a limit of singular torsion
currents supported on singular sets of measure zero.

For example, given a smooth coframe {ϑ1, ϑ2} for the unit square M =
[0, 1]2, we have by Theorem 4.1 a sequence of closed singular frames {ϑ1n, ϑ2n}
corresponding to an array of dislocations which converge to the coframe
{ϑ1, ϑ2} in the sense of currents. The corresponding torsion currents Tn act
on functions by integration along the dislocation segments of the n×n dislo-
cation array corresponding to ϑ1n, and converge to a smooth current T acting
on functions by integration over the whole of M.

6 Homogenization for general surfaces

In this section, we extend the homogenization Theorem 4.1 to arbitrary com-
pact, orientable, smooth two-dimensional manifold with boundary. We re-
strict our attention to manifold without corners. The results in this section
rely on the gluing constructions for 1-forms developed in Appendix A.

Theorem 6.1. Let M be a compact, orientable two-dimensional manifold,
possibly with boundary. Let ω ∈ Ω1(M) be a (generally non-closed) layering
form on M. Then there exists sequences ωn and Γn such that

1. Γn is a finite disjoint union of simple non-closed curves in M and is
bounded away from ∂M.
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2. ωn are closed C1-bounded 1-forms on M \ Γn.

3. ωn converge to ω in the sense of currents. That is, Tωn
→ Tω as n→∞.

4. ωn|∂M = ω|∂M.

We say that a manifold M satisfies the homogenization property if
Theorem 6.1 holds for M and in addition LXωn|∂M = LXω|∂M for every
vector-field X ∈ Γ (M). The latter condition is technical and is required
below for gluing together manifolds with boundaries.

Remark 6.1. Note that in Theorem 6.1, the layering forms ωn coincide with ω
along the entire boundary of M, whereas in the case of a rectangle (Section 4),
the layering forms coincide only on part of the boundary. In general, if M

has a corner, then the tangent to the boundary at the corner spans the entire
tangent space; thus, if ωn coincides with ω in a neighborhood of the corner,
then its derivatives are fully determined by those of ω and it might not be
closed as required by the construction.

A key observation is the following:

Lemma 6.1. Let M1 and M2 be compact diffeomorphic two-dimensional
manifolds with boundaries. Then, Theorem 6.1 holds for M1 if and only if it
holds for M2.

Proof. Suppose that Theorem 6.1 holds for M1. Let f : M2 → M1 be a
diffeomorphism and let ω2 ∈ Ω1(M2). Applying Theorem 6.1 for ω1 = f?ω2 ∈
Ω1(M1), we obtain a sequence ω1,n ∈ Ω1(M1 \ Γn1 ) satisfying properties
(1− 3). Define

ω2,n = f?ω1,n ∈ Ω(M2 \ Γn2 ), (Γn2 = f(Γn1 )).

Since f is a diffeomorphism, Γn2 is a finite disjoint union of segments bounded
away from ∂M2 (Property 1). Property 2 follows from the fact that pullback
and exterior differentiation commute,

dω2,n = d(f?ω1,n) = f?(dω1,n) = 0.

By the change of variable formula (for forms), for every η ∈ Ω1
c (M2),

Tω2,n
(η) =

∫
M2

ω2,n ∧ η =

∫
M1

ω1,n ∧ f?η = Tω1,n
(f?η).

Since Tω1,n
(f?η)→ Tω1

(f?η),

lim
n→∞

Tω2,n
(η) = lim

n→∞
Tω1,n

(f?η) = Tω1
(f?η) = Tf?ω2

(f?η) = Tω2
(η),

proving Property 3. Finally, Property 4 follows from the fact that for every
n,
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ω2,n|∂M2
= f∗(ω1,n|∂M1

) = f∗(ω1|∂M1
) = ω2|∂M2

.

ut

The well-known classification theorem for orientable compact surfaces
states that every closed, compact, orientable, connected surface is diffeomor-
phic to either the sphere S2 or the n-fold torus Tn (a sphere with n handles).
Likewise, any compact, orientable, connected surface M with boundary is
diffeomorphic to either S2 or Tn, with k holes, namely,

M = S2 \ qki=1Ui or M = Tn \ qki=1Ui,

where Ui are disjoint open sets diffeomorphic to a disc; see e.g. [21] for a proof
using Morse theory. Moreover, each of those surfaces can be constructed by
gluing together a finite number of two building blocks: a closed disc, and a
“pair-of-pants”.

To prove a homogenization for compact, orientable surfaces with or with-
out boundary we adopt the following strategy: We first prove the homoge-
nization property for the two above-mentioned building blocks. Then, using
a gluing lemma (Lemma A.2), we deduce the homogenization property for
S2 and Tn with k holes. We finally obtain the general case by combining
Lemma 6.1 and the classification theorem of surfaces.

We start by constructing a layering form containing a single dislocation
on the unit disk

D =
{

(x, y) ∈ R2 : x2 + y2 ≤ 1
}
.

Lemma 6.2. Let ω ∈ Ω1(D) and let Γa = [−a, a]× {0}, where 0 < a < 1/2.
Then there exists a closed, C1-bounded 1-form ωa ∈ Ω1(D \ Γa) satisfying

(a)
∫
∂D

ω =
∫
∂D

ωa.

(b) ω|∂D = ωa|∂D.

(c) (L∂rωa) |∂D = (L∂rω) |∂D.

Proof (sketch). The proof follows the same lines as the proof of Proposi-
tion 3.1. We construct ωa as the differential of a discontinuous function
f : D → R. First fix q0 = (0, 1) ∈ ∂D and define f0 : ∂D → R by

f0(q) =

∫ q

q0

ω,

where the integration is counter-clockwise along ∂D. As in the case of a
square, f0 is discontinuous at q0 but its differential is well-defined. Next,
define f : D \ Γa → R as follows: for every q = (q1, q2) ∈ ∂D, let lq be the
segment connecting q to (aq1, 0) ∈ Γa (see Figure 8). Then every p ∈ D lies
on a unique segment lq, and we may define
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f(p) = f0(q) +

∫
[q,p]

ω, p ∈ lq.

A straightforward computation as in the proof of Proposition 3.1 shows that
ωa = df satisfies the desired properties. ut

q0

q

p

lq

Γa

D

f(p) = f0(q) +
∫
[q,p]

ω

Fig. 8 Construction of a layering form on a disk containing a single dislocation.

We next prove the homogenization property for the closed disk.

Lemma 6.3. The homogenization property holds for the disk

D =
{

(x, y) ∈ R2 : x2 + y2 ≤ 1
}
.

Proof. Let ω ∈ Ω1(D). For every n ∈ N, let Dn = 1
nD and let Bi,n, 1 ≤ i ≤ 4,

be the sectors given by

Bi,n = {(r cos θ, r sin θ) : 1/n ≤ r ≤ 1, iπ/4 ≤ θ ≤ (i+ 1)π/4} .

Then Bi,n ' [0, 1]2 and D ' Dn ∪4i=1 Bi,n (see Figure 9). Let φ : B1,n →
[0, 1]2 be a diffeomorpism which preserves the left/right and upper/lower
edges/arcs. Then its rotations φi = φ ◦ R(i−1)π/4 : Bi,n → [0, 1]2 (i = 2, 3, 4)
are diffeomorphisms as well. Using Proposition 4.1, we may construct singular
closed layering forms ωi,n on Bi,n which combine together into a singular
layering form ω̃n on D\Dn, whose singularity set of ω̃n is a union of segments
and it coincides with ω on ∂D\ 1

nD. Finally, by Lemma 6.2, we may complete
ω̃n into a singular layering form ωn on D. That

Tωn
→ Tω

follows from Theorem 4.1 (applied separately for each sector). ut
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DnDn

B1,nB2,n

B3,n B4,n

Fig. 9 The disk D is decomposed four sectors (diffeomorphic to a square) and a
small disk. A layering form containing an “array of dislocations” is constructed in
each sector, and glued together to obtain ωn.

We next prove the homogenization property for a pair-of-pants which is
diffeomorphic to the three-holed sphere (see Figure 10).

|||

| || ⋃
'

Fig. 10 A pair-of-pants. It can be obtained by gluing hexagons along three pairs of
edges. The remaining pairs of (colored) edges are glued at their ends thus forming
three boundary circles.

Lemma 6.4. The homogenization property holds for a pair-of-pants.

Proof. First, note that the hexagon, denoted by O, also satisfies the homog-
enization property as well as the gluing conditions as in Lemma 6.3. The
proof is almost identical to the proof for the disk (taking 6 rather than 4 sec-
tors). Let M be a pair-of-pants. It can be obtained by identifying three pairs
of edges of two hexagons O1 and O2 (see Figure 10). Hence, a layering form
ω ∈ Ω1(M) induces layering forms ω̃1 and ω̃2 on O1,2 satisfying (trivially) the
gluing conditions of Lemma A.2. Since the homogenization property holds for
each hexagon, there exist approximating sequences ω̃i,n for ω̃i (i = 1, 2) which
satisfy the gluing conditions and therefore form together an approximating
sequence ωn for ω. ut

We next prove the following gluing argument.



30 Raz Kupferman and Elihu Olami

Proposition 6.1. Suppose that the homogenization property holds for com-
pact orientable surfaces M1 and M2. Let Ai ⊂ ∂Mi be connected compo-
nents of the boundaries and h : A1 → A2 a diffeomorphism. Finally, let
ιAi

: [0, 1) × Ai → Mi be collar neighborhoods for Ai. Then the glued mani-
fold

M = M1 qh M2

satisfies the homogenization property (see the appendix for the definition of
collar neighborhoods and gluing constructions).

Proof (sketch). Let ω ∈ Ω1(M). Then ω induces layering forms ωi ∈ Ω1(Mi)
satisfying the gluing conditions, so that the restriction of ω and its first deriva-
tives to Mi coincides with those of ωi. Apply the homogenization property
to obtain sequences of closed singular layering forms ωi,n, so that Tωi,n

con-
verges weakly to Tωi . We may choose the ωi,n such that their values and their
Lie derivatives coincide with those of ωi at Ai. By the gluing Lemma A.2,
ω1,n and ω2,n induce a closed and singular C1-bounded layering form ωn on
M = M1 qh M2. It follows directly from the construction that the sequence
ωn satisfies the required properties. ut

Remark 6.2. We are mostly interested in the case where M1 and M2 are
submanifolds of M with a common boundary (circle) component A = A1 =
A2 ' S1. In such a case, one can take a collar neighborhood induced by a
vector field X ∈ Γ (TM) which is transversal to A. Taking, h = IdA : A1 →
A2 one obtains M ' M1 qh M2. In other words, it is not necessary in this
case to specify the collar neighborhoods and the boundary identifications,
and the conditions for the gluing lemma to apply are satisfied automatically.

By applying Proposition 6.1 inductively we may finally prove Theorem 6.1:

Proof (of Theorem 6.1). Let M be a compact, orientable surface (possibly
with boundary). By the classification of surfaces, we may decompose M into
a finite number of pairs of pants and disks (glued along circles). By Lemmas
6.3 and 6.4, the homogenization property holds for the disk and for the pair-
of-pants. Hence, given ω ∈ Ω1(M), we may inductively apply Proposition 6.1
(on larger and larger components of M) to obtain the desired sequence ωn.
The convergence Tωn

→ Tω follows immediately from the construction and
the compactness of M. ut
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A Gluing constructions

The homogenization procedure presented in Sections 4 and 6 relies on gluing
diffeomorphic copies of single isolated dislocations and their structure forms.
To this end, we review some basic definitions and facts, following [10, Chap. 9]
and prove a gluing lemma for 1-forms.

Let M be a smooth manifold with boundary. A neighborhood of ∂M is
called a collar neighborhood if it is the image of a smooth embedding
ι : [0, 1) × ∂M ↪→ M sending (identically) {0} × ∂M to ∂M. It follows from
the theory of flows that every smooth manifold with boundary admits a collar
neighborhood; see [10, Theorem 9.25].

Let M1 and M2 be smooth manifolds with boundary of the same dimen-
sion, and let A ⊂ ∂M1, and B ⊂ ∂M2 be nonempty connected (possibly
closed) submanifolds. Suppose that h : B → A is a diffeomorphism. h defines
an equivalence relation on the disjoint union M1qM2 whereby p ∼h q if and
only if p = h(q). Let

M1 qh M2 := {[p]h | p ∈M1 qM2} ,

where [p]h is the ∼h-equivalence class of p. Then, M1 qhM2 is a topological
manifold (possibly with boundary and corners); it admits a smooth structure
such that the natural embeddings

M1 ↪→M1 qh M2, M2 ↪→M1 qh M2,

are smooth, [M1]h ∪ [M2]h = M1 qh M2 and [M1]h ∩ [M2]h = [A]h = [B]h.
We will denote by

π : M1 qM2 →M1 qh M2

the projection map sending every point p ∈M1 qM2 to its equivalence class
[p]h ∈M1 qh M2.

The construction of the smooth structure relies on gluing collar neighbor-
hoods of A and B along h. In particular the smooth structure depends on
the chosen collar neighborhoods; see [10, Theorem 9.29] for details.

Let ιA : [0, 1)×A→M1 and ιB : [0, 1)×B →M2 be collar neighborhoods
for A and B; define also the inclusions ηA : A ↪→ M1 and ηB : B ↪→ M1 by
ηA(p) = ιA(0, p) and ηB(p) = ιB(0, p); see diagram below.
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M2 M1

B A[0, 1)×B [0, 1)×A

M1 qM2

M1 qh M2

h //

ηB

��
ηA

��

proj. // proj.oo

ιB
%%

ιA
yy

inc.
��

inc.
��

π

��

For later use, we note that

π ◦ ηB = π ◦ ηA ◦ h,

hence, differentiating, for p ∈ B,

dπηB(p) ◦ (dηB)p = dπηA(h(p)) ◦ (dηA)h(p) ◦ dhp. (18)

The collar neighborhoods define a decomposition of TM1 and TM2 at A
and B: for example,

TM1|η(A) = TM
‖
1 ⊕ TM⊥1 ,

where
TM

‖
1 = (ηA)?TA,

and
TM⊥1 = span(nA),

where
nA = (ιA)?(∂t)|A×{0} (19)

is a vector field normal to TM
‖
1 with respect to the collar neighborhood ιA.

Similar definitions apply for the tangent bundle of M2 at B.

We turn to characterize tangent vectors on the quotient space M1 qhM2.
Suppose first that p ∈M1 qM2 \ (A∪B). Then, π is a local diffeomorphism
in a neighborhood of p, hence dπp is a linear isomorphism. In other words,
tangent vectors at [p]h can be identified with tangent vectors at p.

In contrast, let p ∈ B, i.e.,

π−1(π(p)) = {h(p), p},

and let v ∈ Tπ(p)(M1 qhM2). Then, dπ−1(v) = {v1, v2}, where v1 ∈ Th(p)M1

and v2 ∈ TpM2. Each of the two vectors can be written in the form
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v1 = (ηA)?(v
‖
1) + v⊥1 nA and v2 = (ηB)?(v

‖
2) + v⊥2 nB ,

where v
‖
1 ∈ TA, v

‖
2 ∈ TB and v⊥1 , v

⊥
2 ∈ R.

We state without a proof:

Lemma A.1. The following relations hold:

v
‖
1 = h?(v

‖
2), (20)

and
v⊥1 = −v⊥2 . (21)

Moreover,
π?(nA) = −π?(nB). (22)

Our next goal is to glue together 1-forms along A ⊂ ∂M1 and B ⊂ ∂M2:

Lemma A.2 (Gluing of forms).

Let ω1 ∈ Ω1(M1) and ω2 ∈ Ω1(M2) satisfy the following conditions:

(i) Equality of tangential component:

h?(η?Aω1) = η?Bω2 (23)

(this is an equality of 1-forms on B).

(ii) Matching of normal component:

ω1(nA) ◦ h = −ω2(nB) (24)

(this is an equality of functions on B).

(iii) Matching of normal derivative:

(LnA
ω1(nA)) ◦ h = −LnB

ω2(nB),

and
h? (η?A(LnA

ω1)) = −η?B(LnB
ω2),

where L is the Lie derivative and nA and nB are extended to neigborhoods
of A ⊂M1 and B ⊂M2 via (19).

Then, there exists a 1-form ω on M1 qh M2 which is C1 with respect to the
smooth structure induced by ιA and ιB, such that the restrictions of ω to M1

and M2 coincide with ω1 and ω2.

Proof. Let ω1qω2 ∈ Ω1(M1qM2) be the induced form on the disjoint union.
We first show that Conditions (i) and (ii) imply that ω1 q ω2 projects to a
well defined 1-form ω on M1 qh M2.
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Consider first p ∈M1 qM2 \ (A∪B), and let v ∈ Tπ(p)(M1 qhM2). Since
π−1(π(p)) = {p} and dπp is an isomorphism, we may define

ωπ(p)(v) = (ω1 q ω2)p(dπ
−1(v)).

Next, let p ∈ B and let v ∈ Tπ(p)(M1qhM2). Now π−1(π(p)) = {h(p), p} and
dπ−1(v) = {v1, v2}, where v1 ∈ Th(p)M1 and v2 ∈ TpM2. In order to define
ωπ(p)(v) unambiguously, it suffices to show that ω1(v1) = ω2(v2).

Write as above
v1 = dηA(v

‖
1) + v⊥1 (nA)h(p)

v2 = dηB(v
‖
2) + v⊥2 (nB)p,

where v
‖
1 ∈ Th(p)A and v

‖
2 ∈ TpB. Then,

ω1(dηA(v
‖
1)) = η?Aω1(v

‖
1)

(20)
= η?Aω1(dh(v

‖
2)) = h?η?Aω1(v

‖
2)

(23)
= η?Bω2(v

‖
2) = ω2(dηB(v

‖
2)),

and

ω1(v⊥1 (nA)h(p)) = v⊥1 ω1(nA)h(p)
(21)
= −v⊥2 ω1(nA)h(p)

(24)
= v⊥2 ω2(nB)p = ω2(v⊥2 nB)p.

We have thus proved that ω is well defined. It remains to show that ω (or
equivalently Φ?ω) is continuously differentiable. For (t, p) ∈ (−1, 1)× A and
α∂t ⊕ v ∈ T ((−1, 1)×A) ' Tt(−1, 1)⊕ TpA,

(Φ?ω) |(t,p)(α∂t ⊕ v) =

{
ω1|ιA(−t,p)(−αnA + v) t < 0

ω2|ιB(t,p)(αnB + dh(v)) t ≥ 0.

Conditions (i) then implies that the tangential (to A) derivatives of Φ?ω
are continuous and Condition (iii) shows (by a similar calculation) that it
is continuously differentiable in the ”t” direction (one-sided limits coincide).
This completes the proof. ut
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