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Abstract In non-linear incompatible elasticity, the configurations are maps from a non-
Euclidean body manifold into the ambient Euclidean space, Rk . We prove the �-convergence
of elastic energies for configurations of a converging sequence, Mn → M, of body man-
ifolds. This convergence result has several implications: (i) it can be viewed as a general
structural stability property of the elastic model. (ii) It applies to certain classes of bodies
with defects, and in particular, to the limit of bodies with increasingly dense edge-dislocations.
(iii) It applies to approximation of elastic bodies by piecewise-affine manifolds. In the context
of continuously-distributed dislocations, it reveals that the torsion field, which has been used
traditionally to quantify the density of dislocations, is immaterial in the limiting elastic model.

Mathematics Subject Classification 74B20 · 74Q15 · 53Z05

1 Introduction

One of the central notions in geometric theories of continuum mechanics, is that of a body
manifold, M, whose points represent material elements. Mathematically, a body manifold
is a topological, or differentiable manifold. Different types of continuum systems are char-
acterized by different geometric structures imposed on the body manifolds. Body manifolds
of elastic solids are commonly smooth manifolds endowed with a Riemannian metric, i.e.,
Riemannian manifolds. A configuration of a body is an embedding of the body manifold
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into the ambient k-dimensional Euclidean space. In hyper-elastic materials, both static and
dynamics properties of the material are dictated by an elastic energy, which is an integral
measure of local distortions of the configurations.

In classical elasticity, the body manifold is assumed to be Euclidean, implying that it
can be identified with a subset � of Euclidean k-dimensional space. The natural inclusion
ι : � ↪→ R

k is called a rest, or a reference configuration, and it is a state of zero elastic energy.
In the last several years, there has been a growing interest in bodies that are pre-stressed. Pre-
stressed bodies are modeled as Riemannian manifolds (M, g), where the reference metric
g is non-flat, i.e., has a non-zero Riemann curvature tensor. Thus, it cannot be embedded
isometrically into Euclidean space. In particular, there is no notion of reference configuration.

The elastic theory of pre-stressed bodies is commonly known as the theory of non-
Euclidean, or incompatible elasticity. In its simplest versions, assuming material isotropy, the
elastic energy associated with a configuration u : M → R

k is a distance of that configuration
from being an isometric embedding (see e.g. [10,21,24]). A prototypical energy density is
dist p(du, SO(g, e)) for some p > 1, where e is the Euclidean metric in R

k and SO(g, e)

is the set of orientation and inner-product preserving maps TM → R
k [21,24]. A precise

definition of this distance is given in the next section.
The theory of incompatible elasticity has numerous applications. It was proposed orig-

inally in the 1950s in the context of crystalline defects (see e.g. Kondo [18] and Bilby
and co-workers [4,5]). Then, the non-Euclidean metric structure associated with the defects
is singular. In recent years, incompatible elasticity is motivated by studies of growing tis-
sues, thermal expansion, and other mechanisms involving differential expansion of shrinkage
[1,2,10,13,28]; in these systems the intrinsic geometry is typically smooth.

In the context of crystalline defects, an important field of interest concerns distributed
defects. Models of continuously-distributed defects were developed during the 1950s and
1960s. Body manifolds of bodies with distributed defects are endowed with structure addi-
tional to a metric. For example, bodies with continuously-distributed dislocations are modeled
by Weitzenböck manifolds (M, g,∇), where ∇ is a flat connection consistent with g (that
is, a metric connection), whose torsion tensor represents the distribution of the dislocations
[4,19,27]; see also the more recent literature [25,33].

The modeling of a body with distributed dislocations by a Weitzenböck manifold is phe-
nomenological, rather than mechanical. In particular, it is not associated with a class of
constitutive relations (or elastic energies), and it is not clear how does ∇ manifest (if at all)
in the response to deformation and loading (as pointed out in Sect. 1a in [32]). This is in
contrast to bodies with finitely many dislocations, which can be modeled as (singular) Rie-
mannian manifolds with no additional structure (no torsion field), and for which standard
elastic energies are applicable [26].

There exists a vast literature on the mechanics of bodies with dislocations. However, those
typically either use different phenomenological models for describing the dislocations (see
e.g. [7]), or assume general classes of elastic energies that may or may not relate to the
connection (e.g. [8], which does not use Weitzenböck manifolds explicitly, however their
choice of crystalline structure is equivalent to a choice of a flat connection), or only rely on
the Riemannian part when considering mechanical response [33].

In [14,16] we showed that Weitzenböck manifolds (with non-zero torsion) can be obtained
as rigorous limits of (torsion-free) singular Riemannian manifolds. Thus, the phenomeno-
logical model of a body with continuously distributed dislocations is a limit of bodies with
finitely-many singular dislocations, as the density of the dislocations tends to infinity. This
new notion of converging manifolds calls for a rigorous derivation of a mechanical model for
bodies with continuously-distributed dislocations: Assuming a mechanical model for bodies
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with finitely-many singular dislocations, is there a limiting mechanical model for the limiting
Weitzenböck manifolds?

The main question addressed in this paper is the following: Given a sequence of converging
manifolds endowed with elastic energies depending continuously (in a precise sense) on
the metric structure, what can be said about the �-limit of these energies? To minimize
technicalities, we consider systems free of external forces or constraints (note that the non-
Euclidean structure renders such systems non-trivial). Body forces and boundary conditions
can be included, if needed, in a standard way (see Sect. 5).

Our main result (Theorem 1) can be summarized as follows:

Let (Mn, gn) be a sequence of body manifolds, with corresponding elastic energy
densities W(Mn ,gn) satisfying boundedness and coercivity conditions, and depending
continuously on the metric gn (see Sect. 3 for a precise definition). If (Mn, gn) →
(M, g) uniformly (see Definition 4), then the elastic energies �-converge to the relax-
ation of an energy with density W(M,g); if (Mn, gn) → (M, g) in a weaker sense (see
Definition 5), then the relaxation of W(M,g) is an upper-bound to every �-convergent
subsequence.

As mentioned above, it is shown in [14,16] that any 2D Weitzenböck manifold (M, g,∇)

can be obtained as a limit of bodies with finitely many dislocations (Mn, gn,∇n), where ∇n is
the Levi-Civita connection. The convergence of the Riemannian part, (Mn, gn) → (M, g), is
with respect to the weaker notion of convergence. Yet, a slight modification of our construction
yields uniform convergence.

For a Weitzenböck manifold (M, g,∇) to constitute an adequate elastic model for a
body with distributed dislocations, one would expect to have an elastic energy E(M,g,∇)

associated with it. Since (M, g,∇) is an effective limit model of bodies with finitely many
defects, E(M,g,∇) should be a limit of the energies associated with these bodies. In the case
where ∇ = ∇LC is the Levi-Civita connection, the body has no continuously-distributed
dislocations, so it is natural to choose E(M,g,∇LC ) = E(M,g), where E(M,g) is a standard
non-Euclidean elastic energy [say, with density dist p(du, SO(g, e))]. Our analysis shows that
in this case E(M,g,∇) (or more accurately, its relaxation) would be independent of ∇ even if
it is not the Levi-Civita connection (and thus contains torsion).

This paper is concerned with isotropic materials, in which the elastic energy is derived
from the Riemannian metric of a body manifold (the reference metric), which is fixed. In
other models, involving anisotropy or defect dynamics, the connection ∇ (or equivalently its
torsion field) can still play a role in a limit energy functional. This lies outside the scope of
this paper, and it is a natural topic for further research.

In addition, our main theorem implies the structural stability of non-Euclidean elas-
ticity under certain perturbations of the reference metric, as well as the convergence of
certain approximation methods, based on locally-Euclidean approximations of body mani-
folds. These applications are elaborated in the discussion (Sect. 5).

The structure of the paper is as follows: In Sect. 2, we define notions of convergence for
body manifolds, and define an L p-topology for functions defined on converging manifolds. In
Sect. 3, we define a class of elastic energy functionals for configurations of body manifolds,
and prove, in particular, that the energy densities dist p(·, SO(g, e)) belong to this class.
While the definitions in this section are straightforward, it is the first time (to the best of
our knowledge) that a convergence analysis relies on a precise quantitative relation between
the metric structure and the elastic energy density. In Sect. 4 we state and prove the main
�-convergence result, and in Sect. 5 we discuss applications and limitations of our results,
as well as some open questions.
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2 Settings

2.1 Definitions and notations

Let (V, g) and (W, h) be two oriented k-dimensional inner-product spaces. For a linear map
A : V → W we denote by |A|∞ the operator norm of A, that is

|A|∞ = sup
0 �=v∈V

|A(v)|h
|v|g ,

and by |A|2 = tr(AT A) the inner-product (Frobenius) norm induced by g and h. Note that

|A|∞ ≤ |A|2 ≤ k |A|∞. (1)

When the exact norm is irrelevant or clear from the context, we simply write |A|.
We denote by distg,h (resp. dist∞g,h) the distance function on L(V,W ) with respect to the

inner-product (resp. operator) norm induced by g and h. We extend it to subsets of L(V,W )

as a Hausdorff distance.
We denote by SO(g, h) the set of inner-product and orientation-preserving isomorphisms

(V, g) → (W, h). The distortion of a map A ∈ L(V,W ) is defined as

Dis A = distg,h(A, SO(g, h)). (2)

All the above is extended to vector bundles equipped with inner-products in the standard
way. If A is orientation preserving, and σ1, . . . , σk are the singular values of A, then Dis A =√

(σ1 − 1)2 + · · · + (σk − 1)2.
Throughout the paper, we consider derivatives of maps F : M → N in the following

way: Pointwise, for every p ∈ M, we consider (dF)p : TpM → TF(p)N as a map between
vector spaces. Globally, dF is considered as a map TM → F∗TN , where F∗TN is a vector
bundle over M, with the fiber (F∗TN )p identified with the fiber TF(p)N . This way dF is
a bundle map over M, thus separating its linear part from its nonlinear part (the projection
of dF on the base space). Likewise, we denote by F∗ the pullback of tensor fields (such as
Riemannian metrics), considered as sections of tensor products of TN and T ∗N . This should
not be confused with the closely related pullback involving composition with dF , which we
denote by F�. For example, if h is a Riemannian metric on N , then F∗h is an inner product
on the vector bundle F∗TN , whereas F�h is an inner product on TM (hence a Riemannian
metric on M, unlike F∗h), which is defined by

F�h(v,w) = F∗h(dF(v), dF(w)),

for every two vector fields v,w ∈ �(TM), whereas for every p ∈ M we have,

F∗hp(dFp(vp), dpF(wp)) = hF(p)(dFp(vp), dpF(wp)).

2.2 Body manifolds and their morphisms

Body manifolds are a general notion in mechanics, whose precise definition depends on the
specific context. In this section we define the class of manifolds to which our results refer.
Since we are interested in bodies with defects, our concept of body manifold allows for
singularities, which implies that we cannot require a smooth structure on the entire manifold.

Definition 1 A body manifold is a quadruple (M, d,M̃, g), where M is a k-dimensional
compact, oriented, connected topological manifold with corners and d is a distance function
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on M. M̃ ⊂ M is an open smooth submanifold, such that M\M̃ has a k-dimensional
Hausdorff measure zero with respect to d . g is a Riemannian metric on M̃, consistent with
the distance d in the following sense: for every p, q ∈ M, d(p, q) is the infimum over the
lengths

Len(γ ) =
∫

I

√
g(γ̇ (t), γ̇ (t)) dt.

of continuous paths γ : I → M that are a.e. smooth. In particular, γ (t) ∈ M̃ for all t except
perhaps for a set of measure zero.

The consistency between g and d ensures that there are no “shortcuts” through the non-
smooth parts of the body, i.e. that the Riemannian metric induces the distance. Note also that
the Riemannian metric induces a measure on M̃—the volume form. This measure can be
extended into a measure μ on M by setting μ(M\M̃) = 0. Since d and g are consistent,
the null sets of μ coincide with the null sets of the k-dimensional Hausdorff measure.

Example 1 1. The trivial example: Every compact, oriented, connected Riemannian man-
ifold with corners (M, g) is a body manifold with M̃ = M and d induced by the
Riemannian metric.

2. A cone is a body manifold: it is a two-dimensional topological manifold hemeomorphic
to a disc, endowed with a locally Euclidean metric everywhere but at one point—the tip
of the cone. In the mechanical context, a cone is a disclination-type defect.

3. Every piecewise-affine manifold is a body manifold. The smooth component M̃ may be
disconnected. Piecewise-affine manifolds are prevalent in mechanics in the context of
numerical approximations.

We now define morphisms between body manifolds: these are bi-Lipschitz homeomor-
phisms that are local diffeomorphisms whenever the differential is defined (the smooth parts
need not be diffeomorphic).

Definition 2 Let (M, dM,M̃, gM) and (N , dN , Ñ , gN ) be body manifolds. A morphism
between those manifolds is a bi-Lipschitz homeomorphism F : M → N , such that the
restriction of F to M̃∩ F−1(Ñ ) (which is a set of full measure, since F−1 is Lipschitz) is a
smooth embedding.

Example 2 1. Every diffeomorphism between Riemannian manifolds is a body manifold
morphism.

2. A cone can be parametrized by polar coordinates, (r, θ), with a metric whose components

g(r, θ) =
(

1 0
0 α2r2

)
, 0 < α �= 1,

are defined for every r > 0. The identity map into a Euclidean disc is a body manifold
morphism. Note that the smooth parts of the cone and the disc are not diffeomorphic.

3. Maps from smooth Riemannian manifolds to piecewise-affine approximations are body
manifold morphisms.

Elasticity is concerned with material response to distortions. In our context, where a body
has a two metric structure—a distance function and a Riemannian metric—we distinguish
between local and global distortions of body manifold morphisms:
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Definition 3 Let (M, dM,M̃, gM) and (N , dN , Ñ , gN ) be body manifolds and let F :
M → N be a morphism. The local distortion of F is the distortion of the linear map dF as
defined in (2), i.e., it is the map Dis dF : M̃ ∩ F−1(Ñ ) → [0,∞),

Dis dF = distgM,F∗gN (dF, SO(gM, F∗gN )).

The global distortion of F is a non-negative number defined as

Dis F = sup
p,q∈M

|dM(p, q) − dN (F(p), F(q))|.

2.3 Convergence of body manifolds

In this section we define two modes of convergence for body manifolds, which, loosely
speaking, correspond to uniform and non-uniform convergence of the Riemannian metrics.

Definition 4 (Uniform convergence of bodymanifolds) Let (Mn, dn,M̃n, gn) be a sequence
of body manifolds and let (M, d,M̃, g) be a body manifold. We say that the sequence
Mn converges uniformly to M, if there exists a sequence of body manifold morphisms
Fn : M → Mn , such that the local distortion vanishes uniformly,

lim
n→∞ ‖Dis dFn‖∞ = 0. (3)

Definition 5 (Mean convergence of body manifolds) Let (Mn, dn,M̃n, gn) be a sequence
of body manifolds and let (M, d,M̃, g) be a body manifold. We say that the sequence
Mn converges in the mean to M, if there exists a sequence of body manifold morphisms
Fn : M → Mn , such that

1. Fn are uniformly bi-Lipschitz, i.e. there exists a constant C > 0, independent of n, such
that

|(dFn)p|, |((dFn)p)−1| < C, (4)

for every p ∈ M where dFn is defined. (Note that (dFn)−1 = F∗
n (d(F−1

n )).)
2. Fn are approximate distance-preserving as maps between metric spaces: the global dis-

tortion vanishes asymptotically,

lim
n→∞ Dis Fn = 0. (5)

3. Fn are asymptotically rigid in the mean:

lim
n→∞

∫

M
Dis dFn dVolg = 0. (6)

4. The volume forms converge uniformly:

dVolF�
n gn

dVolg
→ 1 in L∞. (7)

To simplify notations, we will denote the body manifolds (Mn, dn,M̃n, gn) and
(M, d,M̃, g) by Mn and M, whenever no confusion should arise.

These definitions, and especially the definition of mean convergence, may seem a bit
convoluted, so we first provide the rationale behind them. As our main motivation for this
work is the convergence of bodies with dislocations, we consider notions of convergence
that (i) are satisfied by converging bodies with dislocations considered in [14,16] (further
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details are given in the examples section below); and (ii) are strong enough to imply the
�-convergence of associated elastic energies.

The crux in each type of convergence is the way Dis Fn converges to zero. When the
convergence is in L∞ (uniform convergence), it follows automatically that Fn are uniformly
bi-Lipschitz and that the volume forms converge uniformly; these properties are needed
for our �-convergence proof. When Dis Fn → 0 only in L1 (mean convergence) both the
uniform by-Lipschitz property and volume convergence are not guaranteed, hence have to be
imposed explicitly, as Conditions (4) and (7) (which are satisfied by our main examples, see
below). Future improvements of the �-convergence proof may allow to relax these conditions.

Condition (5) is of “global” nature, and unlike the other conditions, does not involve
the differentials dFn explicitly. Furthermore, it plays no explicit role in the �-convergence
proof; its role is to “enforce” Gromov-Hausdorff convergence (see below), and as a result,
the uniqueness of the limit (a limit body independent of the mappings Fn). It is possible that
the other conditions in Definition 5 suffice for a unique limit, in which case Condition (5)
can be omitted. This is, however, a pure question of geometric rigidity, and it is beyond the
scope of this paper. It is further discussed in the open questions part of Sect. 5.

In the rest of this subsection we prove some properties of convergent sequences, and give
some examples.

Lemma 1 If Mn converges to M in the mean, and Fn : M → Mn are maps that realize
the convergence, then for every p ∈ [1,∞)

lim
n→∞

∫

M
(Dis dFn)

p dVolg = 0, (8)

and

lim
n→∞

∫

Mn

(Dis dF−1
n )p dVolgn = 0. (9)

Proof Since

Dis dFn ≤ |dFn |2 + k,

and since |dFn |2 is uniformly bounded by (4), it follows from the Bounded Convergence
Theorem that L1-convergence (6) implies L p-convergence (8).

Similarly, it is enough to prove (9) for p = 1. It follows from (6) that for every ε >

0 there exist sets An ⊂ M whose complements have asymptotically vanishing volume,
Vol(M\An) → 0, in which Dis dFn < ε. It follows that the singular values of dFn with
respect to the frame are in the interval (1−ε, 1+ε), hence all the singular values of (dFn)−1

are in the interval ((1 + ε)−1, (1 − ε)−1) ⊂ (1 − 2ε, 1 + 2ε), from which follows that for
every point in An ,

F∗
nDis dF−1

n < 2ε · √
k. (10)

From (10) and the uniform bound (4), it follows that
∫
M F∗

nDis dF−1
n dVolg ≤ 2

√
kεVol(An) + CVol(M\An)

≤ 2
√
kVol(M)ε + o(1)

as n → ∞.

Since ε is arbitrary,

lim
n→∞

∫

M
F∗
nDis dF−1

n dVolg = 0.
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Using the uniform convergence of the volume (7),

lim
n→∞

∫

M
F∗
nDis dF−1

n dVolF�
n gn = 0,

from which (9) for p = 1 follows by a change of variables. �

2.3.1 Relations to other modes of convergence

1. Uniform convergence is stronger than mean convergence. Indeed, (3) implies (4) and (6).
Uniform convergence of volumes (7) follows from the inequality

∣
∣
∣
∣
dVolF�

n gn

dVolg
− 1

∣
∣
∣
∣ ≤ (Dis dFn + 1)k − 1,

see Lemma 4.5 in [16] for details. Finally, let γ be a curve whose lengths �g(γ ) and
�F�

n gn (γ ) with respect to g and F�
n gn are well-defined. The uniform convergence (3)

implies that |�g(γ ) − �F�
n gn (γ )| → 0 over all such curves. Moreover, for every R > 0,

this convergence is uniform over all curves of length less or equal R. This implies uniform
convergence of the distances dF�

n gn → dg (the distance functions induced on M by the
Riemannian metrics F�

n gn and g). Since dg = d and dF�
n gn is the pullback by Fn of dn ,

this implies the asymptotic vanishing (5) of the global distortion.
2. Both types of convergence are weaker than (m, α)-Hölder convergence of smooth man-

ifolds, for any m ≥ 0 and α ∈ (0, 1). Indeed, by definition, (Mn, gn) → (M, g) in the
Cm,α-topology if there exists diffeomorphisms Fn : M → Mn such that F�

n gn → g in
the Cm,α-topology, i.e., the components of the metric converge in the Cm,α-topology in
any coordinate chart (see [29, Chapter 10] for details). This implies (3), hence uniform
convergence.
Thus, all the results presented in this paper apply a fortiori to Hölder-converging mani-
folds.

3. Mean convergence of Mn to M implies measured Gromov-Hausdorff convergence of
the measured metric spaces (Mn, dgn , Volgn ) to (M, dg, Volg) (see [29, Chapter 10]
for details). Indeed, (5) implies Gromov-Hausdorff convergence, and (7) implies weak
convergence of the measures VolF�

n gn to Volg.

2.3.2 Examples

1. The convergence defined in [14,16] in the context of distributed edge-dislocations is
weaker than mean convergence, but on the other hand, it also embodies the convergence
of an additional structure—a flat metric connection. In the terminology of the present
paper, [14,16] deal with the convergence of quintuples (M, d,M̃, g,∇), where ∇ is a
flat metric connection on M̃. The explicit sequences of manifolds constructed in [14,16]
exhibit mean convergence (see Propositions 1 and 3 in [16]). Therefore, the main theorem
in [14] implies that generic smooth, 2-dimensional surfaces can be obtained as mean
convergence limits of locally-Euclidean surfaces with distributed edge-dislocations.

2. The constructions in [14,16] are composed from building blocks, each containing a pair
of disclinations of opposite charge, as illustrated in Fig. 1. In the n-th stage, the two
disclinations in each building block have angles ±2θ , i.e., independent of n and identical
in all blocks, whereas the distance d between the disclinations is of order 1/n2. This
construction yields in each block a dislocation of magnitude 2d sin θ ∼ 1/n2.
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Fig. 1 A single edge-dislocation realized as a dipole of disclinations at p− and p+, by gluing the segments
[x, p−], [p−, p+] and [p+, y] in the upper polygon to the matching segments in the lower polygon. The
disclination angle is 2θ and the distance between the dislocations is |[p−, p+]| = d, yielding a dislocation
magnitude (identified with the size of the Burgers vector) 2d sin(θ)

These constructions yield sequences of body manifolds that do not converge uniformly,
but do converge in the mean. The lack of uniform convergence stems from the fact that
the disclination angles do not vanish as n tends to infinity. When mapping the manifolds
Mn into the limit manifold M, one has to map curves such as xp− p+y in Fig. 1 to
smooth curves. This always results in asymptotically small areas where dFn is bounded
away from being a rigid transformation.
A slight modification of the constructions in [14,16] yields a sequence of locally-
Euclidean surfaces with distributed edge-dislocations that converges uniformly to a
smooth two-dimensional surface. For that, one has to take the angle θ in each build-
ing block to be of order 1/nε for some small ε, and set the distance d between the
disclinations such that the dislocation magnitude is the same as in the original construc-
tion (hence d is of order 1/n2−ε). This construction yields the same limit as the original
construction.
While it can be argued that vanishing disclination angles are “less physical” than fixed
ones (especially in the context of crystalline solids), this shows that any smooth surface
with a continuous distribution of dislocations (M, d,M, g,∇) (since M is smooth
M̃ = M) can be approximated uniformly by surfaces with finitely many dislocations
(Mn, dn,M̃n, gn,∇n), where ∇n is the Levi-Civita connection.

3. Another example of uniform convergence is the convergence of approximations of a
surface via Euclidean triangulations: Any given surface can be triangulated by geodesic
triangles whose edge-lengths are of order 1/n and whose angles are bounded away from
0 and π . For n large enough, each such triangle can be replaced by a Euclidean triangle
of the same edge lengths. This yields a surface having disclination-type singularities at
the vertices, while being locally Euclidean everywhere else. As n tends to infinity, these
singular, locally Euclidean surfaces converge uniformly to the original surface. Higher
dimensional analogues to this construction are also possible.

4. As an example of a sequence of manifolds converging to a smooth manifold in a weak
sense, but not in the mean (and therefore neither uniformly), one can take any sequence
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of Riemannian manifolds (Mn, gn) that converges to (M, g) while limn Vol(Mn) �=
Vol(M); there are many such examples in the literature (see e.g. [12]).
An example relevant to the homogenization of defects is the convergence of bodies with
increasingly dense point-defects, as in [17]. There, limn Vol(Mn) > Vol(M). In this
example the maps Fn : M → Mn are far from being rigid, as Dis dFn is uniformly
bounded away from zero almost everywhere. Thus, the homogenization of point-defects
does not fall under the framework of this paper.

2.4 Convergence of maps on converging manifolds

Having two notions of convergence for body manifolds, we proceed to define a topology for
maps fn : Mn → R

k .

Definition 6 Let Mn be a sequence of body manifolds converging to a body manifold M
(either uniformly or in the mean), and let Fn : M → Mn be body manifold morphisms
that realize the convergence. We say that a sequence un ∈ L p(Mn;Rk) converges to u ∈
L p(M;Rk) in L p (relative to Fn) if

‖un ◦ Fn − u‖L p(M;Rk ) → 0.

Note that this convergence depends on the maps Fn , which means that we do not have a
general notion of convergence of sequences in L p(Mn;Rk) to a limit in L p(M;Rk). This
convergence induces a natural topology on the disjoint union (�n L p(Mn;Rk)�L p(M;Rk);
see [20] for details. In the terminology of [20], we defined an asymptotic relation between
L p(Mn;Rk) and L p(M;Rk), since the sequence Fn also realizes measured Gromov-
Hausdorff convergence, as stated in the third item in Sect. 2.3.1.

The following lemma establishes standard properties of L p-convergence, adapted to con-
verging manifolds:

Lemma 2 1. If un → u in L p, then un is a bounded sequence in L p(Mn;Rk), namely,
‖un‖L p(Mn;Rk ) is bounded.

2. If un is bounded in W 1,p(Mn;Rk) (i.e. ‖un‖W 1,p(Mn;Rk ) is bounded), then un ◦ Fn is
uniformly bounded in W 1,p(M;Rk), and in particular admits a weakly W 1,p-convergent
subsequence.

Proof It is enough to prove the lemma under the assumption that Mn → M in the mean.
Let un → u in L p . By the triangle inequality,

‖un ◦ Fn‖L p(M;Rk ) ≤ ‖un ◦ Fn − u‖L p(M;Rk ) + ‖u‖L p(M;Rk ).

The first term tends, by definition, to zero. Next,

‖un‖p
L p(Mn;Rk )

=
∫

Mn

|un |p dVolgn =
∫

M
|un ◦ Fn |p dVolF�

n gn

=
∫

M
|un ◦ Fn |p dVolF�

n gn

dVolg
dVolg

≤
∥
∥
∥
dVolF�

n gn
dVolg

∥
∥
∥∞ ‖un ◦ Fn‖p

L p(M;Rk )
,

hence

lim sup
n→∞

‖un‖L p(Mn;Rk ) ≤ ‖u‖L p(M;Rk ),
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which proves the first part.
For the second part, assume that un is bounded in W 1,p(Mn;Rk). In particular, un is

bounded in L p(Mn;Rk). The same calculation as above yields that un ◦ Fn is bounded in
L p(M;Rk). Moreover,

‖d(un ◦ Fn)‖p
p =

∫

M
|d(un ◦ Fn)|p dVolg ≤

∫

M
F∗
n |dun |p · |dFn |p dVolg

≤ C
∫

M
F∗
n |dun |p dVolg = C

∫

Mn

|dun|p dVol(Fn)�g

= C
∫

Mn

|dun |p dVol(Fn)�g
dVolgn

dVolgn

≤ C‖dun‖p
L p(Mn;Rk )

∥
∥
∥
∥
dVol(Fn)�g
dVolgn

∥
∥
∥
∥∞

≤ C ′‖dun‖p
L p(Mn;Rk )

, (11)

where the norms of dun , dFn and d(un ◦ Fn) at a point p are in the space L(TpMn,R
k), as

described in Sect. 2.1. Between the first and the second line we used the uniform Lipschitz
continuity of Fn . In the passage to the last line we used the uniform Lipschitz continuity of
F−1
n , and the fact that if G : (N , h) → (N ′, h′) is a smooth map between k-dimensional

Riemannian manifolds (G = F−1
n in our case), then Hadamard’s inequality (see Lemma 4.5

in [16] for details) implies

dVolG�h′

dVolh
≤ |dG|d .

Together with the boundedness of un ◦Fn in L p(M;Rk), (11) implies that un ◦Fn is bounded
in W 1,p(M;Rk), which completes the proof. �

3 Energy functionals on families of manifolds

Definition 7 Let M be a class of body manifolds.

1. An energy density on M is a function

W :
⊔

(M,d,M̃,g)∈M
T ∗M̃ ⊗ R

k → R.

We denote the restriction of W to (M, d,M̃, g) by W(M,g).
2. An energy density on M is called p-regular for p ∈ (1,∞), if the following holds:

(a) Regularity: For every (M, d,M̃, g) ∈ M, W(M,g) is a Carathéodory function; see
“Appendix A” in [15] for the definition of Carathéodory functions in Riemannian
settings.

(b) Uniform coercivity: There exist α, β > 0 such that for every (M, d,M̃, g) ∈ M,

W(M,g)(A) ≥ α|A|p − β, ∀A ∈ T ∗M̃ ⊗ R
k . (12)

(c) Uniform boundedness: There exists a γ > 0 such that for every (M, d,M̃, g) ∈ M,

W(M,g)(A) ≤ γ (|A|p + 1), ∀A ∈ T ∗M̃ ⊗ R
k . (13)
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(d) Lipschitz continuity in the metric: There exists a C > 0 such that for every
(M, d,M̃, g), (N , d ′, Ñ , h) ∈ M, linear isomorphism L : TM̃ → T Ñ , and
A ∈ T ∗Ñ ⊗ R

k

|W(M,g)(A ◦ L)1/p − L∗W(N ,h)(A)1/p| < C(1 + L∗|A|)Dis L . (14)

3. LetW be a p-regular energy density onM. Its associated energy functional is the function

E :
⊔

(M,d,M̃,g)∈M
L p(M;Rk) → R ∪ {+∞}

defined by

E(M,g)[u] =
{∫

M W (du) dVolg u ∈ W 1,p(M;Rk)

+∞ u ∈ L p(M;Rk)\W 1,p(M;Rk).

Energy densities are normally defined for a single Riemannian manifold. Here, we define
an energy density for a class of Riemannian manifolds. The crux of the matter is that the energy
density for a given manifold at a given point only “sees” the metric at that point. Conditions
2(a)–(c) are standard regularity conditions. Condition 2(d) is the one that involves depen-
dence on the metric. In particular, when reduced to a single manifold, it implies homogeneity
and isotropy. Indeed, let (M, g) be a Riemannian manifold, x, y ∈ M, A ∈ T ∗

x M × R
k

and B ∈ T ∗
y M × R

k . If A and B are related by an isometry, namely, A = B ◦ L for some
L ∈ SO(gx , gy), then

W(M,g)(A) = W(M,g)(B).

The motivation for the Lipschitz continuity (14) is that it is a key property satisfied by the
prototypical energy density Dis du, as proved in the next proposition:

Proposition 1 Let (M, d,M̃, g) be a k-dimensional body manifold. For every p ∈ (1,∞),
the energy density

W(M,g)(du) = (Dis du)p, (15)

is p-regular, where u is considered as a map (M, d,M̃, g) → (Rk, e).

Proof The regularity property (a) holds since W(M,g) is continuous on every fiber and we
have the smoothness of the manifold on its base.

The coercivity (b) and boundedness (c) are immediate, hence it remains to prove (d).
Let (M, d,M̃, g) and (N , d ′, Ñ , h) be body manifolds. Let L : TM̃ → T Ñ be a linear
isomorphism, and let A ∈ T ∗Ñ ⊗ R

k . We need to prove (14).
The energy density (15) depends on g in two ways: via the metric with respect to which

the distortion is measured, and via the set of local isometries SO(g, e) whose distance from
is being measured. We treat each dependence separately:

|W(M,g)(A ◦ L)1/p − L∗W(N ,h)(A)1/p|
= |Dis (A ◦ L) − L∗Dis A|
= | distg,e(A ◦ L , SO(g, e)) − L∗ disth,e(A, SO(h, e))|
≤ | distg,e(A ◦ L , SO(g, e)) − distg,e(A ◦ L , SO(L�h, e))|

+ | distg,e(A ◦ L , SO(L�h, e)) − L∗ disth,e(A, SO(h, e))|
≤ distg,e(SO(g, e), SO(L�h, e))

+ | distg,e(A ◦ L , SO(L�h, e)) − L∗ disth,e(A, SO(h, e))|.
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In the passage to the last inequality we used the fact that in any metric space (X, d), with
x ∈ X and A, B ⊂ X ,

|d(x, A) − d(x, B)| ≤ d(A, B),

where the distance on the right-hand side is the hausdorff distance.
In Lemma 3 below we prove that

dist∞g,e(SO(g, e), SO(L�h, e)) = dist∞g,h(L , SO(g, h)).

Together with the norm inequality (1), we get

distg,e(SO(g, e), SO(L�h, e)) ≤ k distg,h(L , SO(g, h)) = kDis L .

In Lemma 4 below we prove that
∣
∣distg,e(A ◦ L , SO(L�h, e)) − L∗ disth,e(A, SO(h, e))

∣
∣ ≤ (L∗|A| + k)Dis L .

Putting everything together,
∣
∣W(M,g)(A ◦ L)1/p − L∗W(N ,h)(A)1/p

∣
∣ ≤ (L∗|A| + 2k)Dis L ,

which conclude the proof. �
Lemma 3 Let (V, g) and (W, h) be two oriented k-dimensional inner-product spaces, and
let L : V → W be an isomorphism. Then, for any metric r on V ,

dist∞r,e(SO(g, e), SO(L�h, e)) = dist∞r,h(L , SO(g, h)).

Proof Let R ∈ SO(g, e) and Q ∈ SO(L�h, e); both are isomorphisms V → R
k . The

(operator norm) distance between R and Q is

d2∞(R, Q) = sup‖v‖r=1 ‖(R − Q)v‖2
e = sup‖v‖r=1 (〈Rv, Rv〉e + 〈Qv, Qv〉e − 2〈Rv, Qv〉e)

= sup‖v‖r=1

(
〈v, v〉g + 〈v, v〉L�h − 2〈QQ−1Rv, Qv〉e

)

= sup‖v‖r=1

(
‖v‖2

g + ‖Lv‖2
h − 2〈LQ−1Rv, Lv〉h

)
,

where in the last step we used the fact that for every u, v ∈ V ,

〈Qu, Qv〉e = 〈u, v〉L�h = 〈Lu, Lv〉h.

Denote S = LQ−1R : V → W , and observe that S ∈ SO(g, h) as

〈Sv, Su〉h = 〈LQ−1Rv, LQ−1Ru〉h = 〈Q−1Rv, Q−1Ru〉L�h

= 〈Rv, Ru〉e = 〈v, u〉g.
Also,

d2∞(L , S) = sup‖v‖r=1 ‖(L − S)v‖2
h = sup‖v‖r=1

(
‖Lv‖2

h + ‖v‖2
g − 2〈Lv, Sv〉h

)
= d2∞(R, Q).

It follows that for every R ∈ SO(g, e) and Q ∈ SO(L�h, e),

dist∞r,e(R, Q) ≥ dist∞r,h(L , SO(g, h)),

which implies that

dist∞r,e(SO(g, e), SO(L�h, e)) ≥ dist∞r,h(L , SO(g, h)).
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For the reverse inequality, the same arguments imply that for every S ∈ SO(g, h) and
Q ∈ SO(L�h, e), R = Q L−1 S ∈ SO(g, e) satisfies

d∞(R, Q) = d∞(L , S).

Taking S to be a minimizer for the right-hand side, we obtain that for every Q ∈ SO(L�h, e),

dist∞r,e(SO(g, e), Q) ≤ dist∞r,h(L , SO(g, h)).

Similarly, since for every S ∈ SO(g, h) and R ∈ SO(g, e), Q=RS−1L∈SO(L�h, e)

satisfies d(R, Q) = d(L , S) we obtain that for every R ∈ SO(g, e),

dist∞r,e(R, SO(L�h, e)) ≤ dist∞r,h(L , SO(g, h)).

From the definition of Hausdorff distance, these two inequalities imply that

dist∞r,e(SO(g, e), SO(L�h, e)) ≤ dist∞r,h(L , SO(g, h)).

�
Lemma 4 Let (V, g) and (W, h) be two oriented k-dimensional inner-product spaces, and
let L : V → W be an isomorphism and A : W → R

k . Then
∣
∣distg,e(A ◦ L , SO(L�h, e)) − disth,e(A, SO(h, e))

∣
∣ ≤ (|A| + k)Dis L .

Proof Let B : W → R
k . Then, for every Q ∈ SO(g, h),

| |B|h,e − |B ◦ L|g,e| = | |B ◦ Q|g,e − |B ◦ L|g,e| ≤ |B ◦ (Q − L)|g,e ≤ |B|h,e |Q − L|g,h,

where we used the sub-multiplicativity of the Frobenius norm. Hence,

| |B|h,e − |B ◦ L|g,e| ≤ |B|h,e distg,h(L , SO(g, h)).

Take B = A − R with R ∈ SO(h, e). Then, |B|h,e ≤ |A|h,e + k, and

(|A|h,e + k) distg,h(L , SO(g, h)) ≥ |B|h,e distg,h(L , SO(g, h))

≥ |B|h,e − |B ◦ L|g,e

≥ disth,e(A, SO(h, e)) − |B ◦ L|g,e

= disth,e(A, SO(h, e)) − |A ◦ L − R ◦ L|g,e.

Since R ◦ L ∈ SO(L�h, e) and this holds for all R ∈ SO(h, e) we obtain

(|A|h,e + k) distg,h(L , SO(g, h)) ≥ disth,e(A, SO(h, e)) − distg,e(A ◦ L , SO(L�h, e)).

Repeating the same argument the other way around we obtain an absolute value in the second
line. �

4 �-convergence of elastic energies of converging manifolds

Let M be a class of k-dimensional body manifolds. Fix p ∈ (1,∞), and let W be a p-regular
energy density on M, with E the associated energy functional. For (M, d,M̃, g) ∈ M,
denote

�EM =
⎧
⎨

⎩

∫

M
QW(M,g)(du) dVolg u ∈ W 1,p(M;Rk),

+∞ u ∈ L p(M;Rk)\W 1,p(M;Rk),
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where QW(M,g) is the quasi-convex envelope ofW(M,g) (see Sect. 3.4 in [15] for a discussion
on quasi-convexity in Riemannian settings).

In this section we prove �-convergent results for a sequence EMn , where Mn ∈ M is a
convergent sequence of body manifolds. In Sect. 4.1 we prove �-convergence, or establish
an upper bound to �-convergent subsequences, depending on whether Mn → M uniformly
or in the mean. In Sect. 4.2 we adapt to our setting the standard convergence of minimizers
for �-convergent (sub)sequences.

4.1 �-convergence

Theorem 1 Let Mn,M ∈ M, then the following holds:

1. If Mn → M uniformly, then EMn �-converges to �EM.
2. If Mn → M in the mean, then the �-limit of every �-convergent subsequence of EMn

is bounded from above by �EM.

The �-convergence is with respect to the L p-topology induced by some realization Fn :
M → Mn of the convergence.

Note that although the topology depends on the choice of realizations Fn , neither the
�-limit (in the first case) or the bound on the �-limit (in the second case) depends on this
choice.

Proof For succinctness, we will write En = EMn , E = EM and �E = �EM. Similarly
we will write Wn = W(Mn ,gn) and W∞ = W(M,g).

Let E∞ be the �-limit of a (not-relabeled) subsequence of En . Such a subsequence always
exists by the general compactness theorem of �-convergence (see Theorem 8.5 in [9] for the
classical result, or Theorem 4.7 in [20] for the case where each functional is defined on a
different space).

Part 2, which only assumes convergence in the mean, states that E∞ ≤ �E . This upper
bound follows from Propositions 2 and 3.

To prove Part 1, which assumes uniform convergence, it is enough to prove that E∞ = �E .
Indeed, since by the compactness theorem, every sequence has a �-converging subsequence,
the Urysohn property of �-convergence (see Proposition 8.3 in [9]) implies that if all con-
verging subsequences converge to the same limit, then the entire sequence converges to that
limit. Proposition 4 establishes the lower bound E∞ ≥ �E , which together with the upper
bound concludes the proof. �

Proposition 2 (Infinity case) Assume Mn → M in the mean, and let u ∈ L p(M;Rk)\
W 1,p(M;Rk). Then E∞[u] = ∞ = �E[u].

Proof Suppose, for contradiction, that E∞[u] < ∞. Let un → u be a recovery sequence,
namely,

lim
n→∞ En[un] = E∞[u] < ∞.

W.l.o.g. we may assume that En[un] < ∞ for all n, and in particular, un ∈ W 1,p(Mn,R
k).

The coercivity of Wn implies that

sup
n

∫

Mn

|dun |pgn ,e dVolgn < ∞.
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Thus, un is uniformly bounded in W 1,p , and by Lemma 2, un ◦Fn weakly converges (modulo
a subsequence) in W 1,p(M;Rk). By the uniqueness of the limit, this limit is u, hence u ∈
W 1,p(M;Rk), which is a contradiction. �
Proposition 3 (Upper bound) Assume Mn → M in the mean. Then, for every u ∈
W 1,p(M;Rk),

E∞[u] ≤ �E[u].
Proof Let u ∈ W 1,p(M;Rk). Define un = u ◦ F−1

n ∈ L p(Mn;Rk). Trivially, un → u in
L p , and by the definition of �-limit,

E∞[u] ≤ lim inf
n

En[un].
We now show that

lim
n

En[un] = E[u]. (16)

Since |dF−1
n | is uniformly bounded, un ∈ W 1,p(Mn;Rk). Therefore, (16) reads

lim
n

∫

Mn

Wn
(
d

(
u ◦ F−1

n

))
dVolgn =

∫

M
W∞(du) dVolg.

First,

lim
n

∫

Mn

Wn(d(u ◦ F−1
n )) dVolgn = lim

n

∫

M
F∗
n Wn(d(u ◦ F−1

n )) dVolF�
n gn

= lim
n

∫

M
F∗
n Wn(d(u ◦ F−1

n )) dVolg

+
∫

M
F∗
n Wn(d(u ◦ F−1

n ))

(
1 − dVolg

dVolF�
n gn

)
dVolF�

n gn

= lim
n

∫

M
F∗
n Wn(d(u ◦ F−1

n )) dVolg. (17)

In the passage from the second to the third line we used the boundedness (13) of W and the
uniform convergence (7) of the volume forms.

Second,
∣
∣
∣
∣
∣

(∫

M
F∗
n Wn(d(u ◦ F−1

n )) dVolg

)1/p

−
(∫

M
W∞(du) dVolg

)1/p
∣
∣
∣
∣
∣

≤
(∫

M

∣
∣F∗

n Wn(d(u ◦ F−1
n ))1/p − W∞(du)1/p

∣
∣p dVolg

)1/p

≤ C

(∫

M
(1 + |du|)p dist pF∗

n gn ,g
(dF−1

n , SO(F∗
n gn, g)) dVolg

)1/p

. (18)

In the passage from the first to the second line we used the reverse triangle inequality, and in
the passage to the third line we used the Lipschitz continuity (14) of W , with L = d(F−1

n )

and A = du.
Since by (9), distF∗

n gn ,g(dF
−1
n , SO(F∗

n gn, g)) → 0 in L p , we can assume by
moving to a subsequence that this sequence converges almost everywhere. Let ε >

0. By Egorov’s theorem, there exists an A ⊂ M such that Volg(M\A) < ε
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and distF∗
n gn ,g(dF

−1
n , SO(F∗

n gn, g)) → 0 uniformly on A. Since |du| is in L p and
distF∗

n gn ,g(dF
−1
n , SO(F∗

n gn, g)) is bounded uniformly by some constant C ′, we obtain that

lim supn

∫

M
(1 + |du|)p dist pF∗

n gn ,g

(
dF−1

n , SO(F∗
n gn, g)

)
dVolg

≤ lim supn

∫

M\A
(1 + |du|)p dist pF∗

n gn ,g

(
dF−1

n , SO(F∗
n gn, g)

)
dVolg

≤ lim supn C
′
∫

M\A
(1 + |du|)p dVolg.

(19)

Since M\A is arbitrary small and |du| ∈ L p , the righthand side is arbitrary small, hence
(18) and (19) imply that

lim
n

∫

M
F∗
n Wn

(
d

(
u ◦ F−1

n

))
dVolg =

∫

M
W∞(du) dVolg. (20)

Together with (17), (16) follows.
We therefore obtain that for every u ∈ W 1,p(M;Rk)

E∞[u] ≤ E[u]. (21)

Together with Proposition 2, we obtain that (21) holds for every u ∈ L p(M;Rk). Since E∞
is a �-limit with respect to the L p topology, it is lower-semicontinuous (see Proposition 6.8
in [9] or Lemma 4.6 in [20]), and

E∞ ≤ Ẽ, (22)

where Ẽ is the lower semicontinuous envelope of E with respect to the strong L p topology.
We complete the proof by showing that Ẽ = �E . The argument is essentially the same as
in the proof of Proposition 4.3 in [15], using Lemma 5 in [22] and the results of [3] (see
“Appendix B” in [15] for the relevant generalization of [3] to manifolds). �
Proposition 4 (Lower bound) Assume Mn → M uniformly. Then, for every u ∈
W 1,p(M;Rk),

E∞[u] ≥ �E[u].
Proof Let u ∈ W 1,p(M;Rk), and let un → u be a recovery sequence. If E∞[u] = ∞, then
the claim is trivial. Otherwise, we may assume that un ∈ W 1,p(Mn;Rk) for all n. By the
coercivity of Wn , un is bounded in W 1,p , hence un ◦ Fn is bounded in W 1,p(M;Rk) and
weakly W 1,p-converges (modulo a subsequence) to u.

We will show that

E∞[u] = lim
n

En[un] = lim
n

∫

Mn

Wn(dun) dVolgn

= lim
n

∫

M
W∞(d(un ◦ Fn)) dVolg

≥ lim
n

∫

M
QW∞(d(un ◦ Fn)) dVolg

≥
∫

M
QW∞(du) dVolg = �E[u]. (23)

The passage from the second to the third line follows from the definition of the quasi-
convex envelope. The passage from the third to the fourth line follows from the weak lower-
semicontinuity of an integral functional with a Carathéodory quasiconvex integrand (see
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Sect. 3.4 in [15] for details). The rest of the proof derives the equality between the first and
the second line.

First, by the same arguments as in (17),

limn

∫

Mn

Wn(dun) dVolgn = lim
n

∫

M
F∗
n Wn(dun) dVolg. (24)

Second, we use the Lipschitz continuity (14) of W , with L = dFn and A = dun , and
obtain that

∣
∣
∣
∣
∣

(∫

M
F∗
n Wn(dun) dVolg

)1/p

−
(∫

M
W∞(d(un ◦ Fn)) dVolg

)1/p
∣
∣
∣
∣
∣

≤
(∫

M

∣
∣F∗

n Wn(dun)
1/p − W∞(d(un ◦ Fn))

1/p
∣
∣p dVolg

)1/p

≤ C

(∫

M
(1 + F∗

n |dun |)p dist pg,F∗
n gn

(dFn, SO(g, F∗
n gn)) dVolg

)1/p

≤ C
∥
∥distg,F∗

n gn (dFn, SO(g, F∗
n gn))

∥
∥∞

(∫

M
(1 + F∗

n |dun |)p dVolg

)1/p

→ 0 (25)

using the uniform convergence (3) and the fact that F∗
n |dun | is uniformly bounded in

L p(M, g).
Using (24) and (25) we obtain that

lim
n

En[un] = lim
n

∫

Mn

Wn(dun) dVolgn = lim
n

∫

M
W∞(d(un ◦ Fn)) dVolg (26)

which completes the proof. �
4.2 Convergence of minimizers

The following proposition is a standard convergence of minimizers result that typically
accompanies �-convergence results.

Proposition 5 Assume that Mn → M either uniformly or in the mean, and that EMn

�-converges to E∞ (in the case of uniform convergence we always have E∞ = �EM). Let
un ∈ W 1,p(Mn;Rk) be a sequence of (approximate) minimizers of EMn , and denote by un
the mean of un. Then the translated sequence un − un is relatively compact (with respect to
the L p topology defined by Fn), and all its limits points are minimizers of E∞. Moreover,

lim
n→∞ inf

L p(Mn;Rk )
EMn = min

L p(M;Rk )
E∞.

Proof Once again, we write En = EMn and �E = �EM. Let un be a sequence of
approximate minimizers of En . Since En is invariant to translations (in the sense that
En[un] = En[un + x] for every x ∈ R

k), we will assume w.l.o.g. that un = 0. We first
prove that it is relatively compact, i.e. that every subsequence (not relabeled) of un has a
subsequence converging in L p .

Let w ∈ W 1,p(Mn;Rk) be arbitrary and let wn ∈ L p(Mn;Rk) be a recovery sequence
for w. Then, by Theorem 1,

inf
L p

En[·] ≤ En[wn]−→n→∞ E∞[w] ≤ �E[w] < ∞.
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This shows that infL p En[·] is a bounded sequence.
It follows that En[un] is bounded, hence, by coercivity, dun is uniformly bounded in

L p . Together with the Poincaré inequality, we obtain that un ◦ Fn is uniformly bounded in
W 1,p(M;Rk). This implies the existence of a (not relabeled) subsequence un → u in L p ,
proving the relative compactness of un .

We now prove that u is a minimizer of E∞. Let w ∈ L p(M;Rk) be an arbitrary function,
and let wn ∈ L p(Mn;Rk) be a recovery sequence for w. Then,

E∞[w] = lim
n→∞ En[wn] ≥ lim

n→∞ inf
L p

En[·] = lim
n→∞ En[un] ≥ E∞[u],

where the last inequality follows from the lower-semicontinuity property of �-limits. Since
w is arbitrary, u is a minimizer of E∞. Moreover, by choosing w = u we conclude that

E∞[u] = lim
n→∞ inf

L p
En[·].

�

5 Discussion

In this paper we proved a �-convergence result for elastic models of uniformly converging
manifolds. This result is intrinsic, in the following senses: first, it does not depend on the
parametrizations of the manifolds Mn and M. Second, while the L p-topology described
in Sect. 2.4 depends on the maps Fn , the limiting functional �EM itself is independent of
these maps. That is, �EM[u] is defined independently of the choice of maps, even though
recovery sequences converging to u depend on them. The intrinsic nature of the limit model
highlights the geometric nature of non-Euclidean elasticity, which is sometimes obscured by
choices of coordinates and maps.

For manifolds that converge in the mean, we do not obtain a �-convergence result, but,
similarly, the �-upper bound is independent of parametrization and of the maps Fn .

Boundary conditions and external forces For the sake of clarity, we limited our analysis
to unconstrained systems, i.e., systems without external forces and without boundary con-
straints. Forces and boundary conditions can be included in a standard way. Note, however,
that boundary conditions should be specified for configurations of each of the manifolds Mn

and M, and the maps Fn : M → Mn that realize the convergence should map admissible
configurations to admissible configurations. That is, the maps Fn must satisfy the condition
that un ∈ W 1,p(Mn;Rk) is Mn-admissible if and only if un ◦ Fn is M-admissible.

Applications of the main theorem to dislocation theory As discussed in the Introduc-
tion, bodies with continuously-distributed dislocations are commonly modeled as smooth
Weitzenböck manifolds (M, g,∇), where the affine connection ∇ is metrically consis-
tent with g and flat (hence, uniquely determined by its torsion tensor). In the terminology
of this paper, this corresponds to a body manifold (M, d,M, g,∇) (since M is smooth
M̃ = M). This model is, naturally, viewed as a limit of bodies with finitely many disloca-
tions (Mn, dn,M̃n, gn,∇n), were ∇n is the Levi-Civita connection, i.e., torsionless.

In this paper we associate with each body manifold (M, d,M̃, g) an elastic energy func-
tional E(M,g). In the case of continuously-distributed dislocations, we would expect to have
an energy functional that depends on the connection, namely, E(M,g,∇). When there are no
distributed dislocations, ∇ is the Levi-Civita connection, ∇LC , hence it is natural to assume
E(M,g,∇LC ) = E(M,g), so that E(M,g,∇) extends E(M,g). Since a body with a continuous
distribution of dislocations (M, d,M, g,∇) is an effective model for bodies with finitely
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many dislocations (Mn, dn,M̃n, gn,∇LC
n ), we expect E(M,g,∇) to be a limit of the elastic

energies E(Mn ,gn) (up to relaxation).
Two questions arise in this context: first, is E(M,g,∇) well-defined as a limit of ener-

gies E(Mn ,gn), independently of the converging sequence of manifolds? Second, how does
E(M,g,∇) depend on ∇?

The first part of Theorem 1 implies that the limiting elastic energy does not depend
on the limiting process as long as the sequence of manifolds with finitely-many dislocations
converges uniformly (like the variation of the constructions in [14,16] presented in Example 2
in Sect. 2.3.2). In this case, the limiting energy does not depend on the connection ∇ (or
equivalently on the torsion). In other words, the limiting elastic model is only sensitive to the
metric structure of the limit manifold.

If one rather considers a larger class of body manifolds that converges to the limit
(M, d,M, g,∇), including the original constructions in [14,16] (which converges only
in the mean, see Example 1 in Sect. 2.3.2), then our results do not guarantee the existence
of a �-limit independent of the converging sequence. However, one would still expect that
if a specific sequence of bodies with dislocations has a �-limit energy, then the effect of
the torsion would be an additional compatibility constraint, and hence would increase the
energy compared to the torsion-free case. In other words, the inequality E(M,g,∇) ≥ E(M,g)

is expected. The second part of Theorem 1 shows that it is not the case, as the limit energy
is bounded from above by that determined by the metric. In particular, if (M, g) can be
isometrically embedded in R

k (e.g. as in the main example of [16]), then (M, d,M, g,∇)

has a zero energy embedding in R
k , regardless of ∇ and the converging sequence.

Other applications of the main theorem The first part of Theorem 1 also holds for approx-
imations of a surface M by Euclidean triangles Mn , as described in Example 3 in Sect. 2.3.2.
The �-convergence still holds if one considers only maps Mn → R

k which are affine on
every triangle. Indeed, the only change in the proof is to replace the recovery sequence
un : Mn → R

k in Proposition 3 with a piecewise affine sequence that L p-converges to the
same limitu : M → R

k ; this is always possible. This implies the consistency of finite element
approximations based on triangulations of surfaces (or on simplices in higher dimensions)
and their piecewise affine embeddings into Euclidean space.

Finally, our results establish the structural stability of elastic models that are p-regular
according to Definition 7: if two metrics are arbitrarily close to each other (with respect
to the sup-norm), then their elastic energies are arbitrarily close. This observation validates
experimental estimates of reference metrics via interpolations based on finite sets of measured
distances (e.g., [31]).

Other rigidity criteria The distortion of a linear map Dis A defined in (2) plays a role
both in the definition of convergence of body manifolds in Sect. 2.3 and in the Lipschitz
continuity property of p-regular energy densities in Definition 7.

In principle, one can choose other measures for the distortion of a linear map, for which
other energy densities may be p-regular according to Definition 7. If we change the definition
of Dis A accordingly also in the definitions of converging body manifolds (Definitions 3–5),
then our results do not change, providing that for uniformly converging body manifolds,
the uniform convergence of the new distortion criterion in Definition 4 continues to imply
uniform bi-Lipschitzness (4) and uniform volume convergence (7). Even if this is not true
for the new distortion criterion, (4) and (7) can be assumed in addition to (3) in the definition
of uniform convergence 4 (as in the definition of mean convergence 5), and the proof will
still hold.

Open questions Outside the context of dimension reduction, this is, to the best of our
knowledge, the first paper to consider �-convergence of elastic energies of converging
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manifolds. Unlike dimension reduction, where the converging manifolds are ordered by an
inclusion relation, here the notion of convergence allows for varying topologies and metric
structures. Naturally, there remain numerous open questions, among which are:

1. Do the elastic energies �-converge in the case of manifolds converging in the mean?
Even if such a result does not hold in general, it is of interest to determine whether it
holds for the specific sequence of manifolds with dislocations considered in [14,16] (see
also Example 1 in Sect. 2.3.2).

2. It would also be interesting to relax some of the assumptions on the elastic energy
densities. In particular, for a more physical model one may want to modify the growth
condition in Definition 7, such to include densities tending to infinity when deformations
tend to be singular (the relaxation of the growth condition is of interest in many other
contexts as well, see [6] for details).

3. This paper considers “bulk” elasticity—the embedding of a k-dimensional manifold in the
k-dimensional Euclidean space. Another main theme in elasticity theory (both classical
and non-Euclidean) is the derivation of dimensionally reduced models for bodies with one
or more slender dimensions (see e.g. [11,15,21,22]). An interesting question concerns
the two-parameter limit of changing metrics and dimension reduction. A result in this
direction would also relate to the von-Kármán limits of slender bodies whose metrics
tend to a Euclidean metric; such a situation was treated in [23].

4. Another question, which unlike the previous ones is of geometric nature rather than ana-
lytic, concerns the role of global distortion in manifolds that converge in the mean. An
asymptotically vanishing global distortion is part of our mean convergence definition
(Condition 2 in Definition 5). Its only role in the present paper is to guarantee the unique-
ness of the limit (as vanishing distortion implies Gromov-Hausdorff convergence); it
doesn’t play any role in the subsequent analysis.
It would be interesting to understand whether this condition can be omitted, that is to say,
whether asymptotic vanishing of the mean local distortions (Condition 3 in Definition 5)
suffices to define a notion of convergence (i.e., that the limit does not depend on the choice
of morphisms). Such a result would require rigidity estimates for Riemannian manifolds,
analogous to Reshetnyak’s generalization of Liouville’s rigidity theorem (which is in a
Euclidean setting, see [30] for the original paper and [11] for a modern restatement).
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