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Abstract. We present a rigorous homogenization theorem for distributed
edge-dislocations. We construct a sequence of locally-flat 2D Riemannian mani-

folds with dislocation-type singularities. We show that this sequence converges,

as the dislocations become denser, to a flat non-singular Weitzenböck mani-
fold, i.e. a flat manifold endowed with a metrically-consistent connection with

zero curvature and non-zero torsion. In the process, we introduce a new no-

tion of convergence of Weitzenböck manifolds, which is relevant to this class of
homogenization problems.

1. Introduction.

1.1. Manifolds with dislocations. The study of defects in solids with imper-
fections is a longstanding theme in material science. There exists a wide range
of prototypical crystalline defects, among which are dislocations, disclinations and
point defects (see Kröner [9] for a classical review). The common practice in crystal-
lography is to identify and quantify defects of dislocation-type via Burgers circuits,
which are based on discrete steps with respect a local crystalline structure. Defects
are quantified by the Burgers vector, which is a discrepancy between closed loop in
real space and closed loops in the discrete “ideal” crystallographic space.

Dislocations have also been considered in the context of amorphous materials.
More than a century ago, Volterra constructed a variety of defects using “cut-and-
weld” procedures [15]. A Burgers vector arises naturally in this context too, with
the crystallographic structure replaced by the Riemannian metric and its associ-
ated parallel transport [12]. Recently, Kupferman et al. [10] introduced a general
approach to describe isolated defects in amorphous materials, using the differential
geometric notion of monodromy in affine manifolds. The Burgers vector is iden-
tified with the translational component of the monodromy, whereas its rotational
component quantifies the magnitude of disclination-type defects (the Frank vector).

In the above-mentioned approaches to isolated defects, the continuum is modeled
as a topological manifold, smooth everywhere except at the loci of the defects. The
smooth part of the manifold is endowed with a locally-flat Riemannian metric. The
defects, which are the singularities of the topological manifold, manifest through
the properties of the Riemannian (Levi-Civita) parallel transport. The important
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observation is that when considering isolated defects in amorphous materials, the
Riemannian structure is the only structure imposed on the material manifold.

1.2. Continuously distributed dislocations. It is customary in material science
to consider materials with distributed defects. In the spirit of continuum mechanics,
bodies with distributed dislocations were modeled as smooth manifolds, starting in
the 1950s with the pioneering work of Nye [11], Kondo [8] and Bilby et al. [2, 3]. In
these works, the singularities were smoothed out, resulting in a manifold endowed
with a flat metric, and in addition, a torsion field that represents the Burgers vector
density. In other words, the presence of distributed dislocations was modeled by an
additional geometric structure imposed on the material manifold.

This classical modelling of distributed dislocations is phenomenological. A natu-
ral question is in what sense does torsion emerge in the continuum limit of discretely
distributed dislocations. That is, one would hope to obtain torsion as a homoge-
nization limit of an increasingly large number of discrete dislocations.

1.3. Outline of results. In this paper we construct a sequence of manifolds with
isolated dislocations, such that the dislocations become increasingly dense, while
their total magnitude remains fixed. We show the convergence of both metric
and parallelism. (i) The sequence converges as a sequence of metric spaces to
a flat, simply-connected Riemannian manifold. (ii) The sequence converges as a
sequence of manifolds with connections. The Levi-Civita connections converge in
a weak sense to a metrically-consistent non-symmetric connection. This means
that a torsion field arises in a rigorous limit process from torsion-free Riemannian
manifolds. This notion of convergence of Weitzenböck manifolds with connections
is, to our knowledge, new.

Structure of this paper. In Section 2 we describe the construction of a man-
ifold with a single edge-dislocation, and then construct a sequence of manifolds
with increasingly dense dislocations. In Section 3 we prove that this sequence of
manifolds converges to a Weitzenböck manifold (a Riemannian manifold endowed
with a metrically-consistent, flat, non-symmetric connection). This example leads
us in Section 4 to a definition of convergence of Weitzenböck manifolds. We prove
that this notion of convergence is well-defined. Finally, we discuss in Section 5 the
properties of the limit manifold, and relate the limit connection to Burgers vectors
and dislocation line densities.

A note about mechanics and geometry. Torsion appears also in a mechanical
context, where it is related to symmetries in the constitutive laws (Wang [16]).
The present paper does not consider the mechanical implications of defects. The
homogenization process described in the paper can be posed, in essence, in pure
geometric terms.

2. A sequence of locally-flat manifolds with defects.

2.1. A single edge-dislocation. Consider the Euclidean plane that undergoes
the following Volterra cut-and-weld procedure [15]: First, remove a sector of angle
2θ < π, and glue together (i.e., identify) the two rays that were the boundaries of
the sector. This results in a locally-Euclidean surface with a cone singularity at a
point which we denote by p+. Next, choose a point p− at a distance d from p+, and
cut the surface along a ray that starts at p− and does not pass through p+. Finally,
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Figure 1. The Volterra cut-and-weld construction of a curvature
dipole, or an edge-dislocation. A sector whose vertex is denoted by
p+ is removed from the plane and its outer boundaries are glued
together, thus forming a cone. The same sector is then inserted
into a straight cut along a ray whose endpoint is denoted by p−.

insert into the cut a sector of angle 2θ, with its vertex at p− and its two sides glued
to the edges of the cut (see Figure 1).

In material-science terminology, we obtain a plane with a pair of disclinations
of equal magnitudes and opposite signs. This pair of disclinations is the isotropic
equivalent of a pentagon-heptagon pair in an hexagonal lattice, which is another re-
alization of an edge-dislocation (Seung and Nelson [14], see comment in Section 2.2).

Mathematically, we obtain a simply-connected topological manifold which carries
a structure of a complete metric space. The points p± are said to carry a cone sin-
gularity: p+ is the vertex of a cone and p− is the vertex of an anti-cone. Removing
the singular points p±, we obtain a locally-flat (or locally-Euclidean) Riemannian
manifold. This means that every point has a neighborhood that is isometric to an
open subset of the Euclidean plane. It we further remove the segment that connects
p+ and p− we obtain a Riemannian manifold with trivial holonomy: parallel trans-
port is path-independent. As a result, this manifold can be covered by a parallel
frame field.

A few comments: (i) The distance between p+ and p− after the cut-and-weld
procedure is still d, and the shortest path between those points is the same as in
the original plane, hence the segment between p+ and p− is well-defined. We call
this segment the dislocation line. (ii) Parallel transport and holonomy are with
respect to the Levi-Civita connection. (iii) This construction was studied in detail
by Guven et al. [6]; see also Section 4.3 in [10].

2.2. The building-block R(a, b, θ, ε). We next consider a compact subset of a
plane with a single edge-dislocation. In Subsection 2.3 it is used as a building block
for surfaces with multiple edge-dislocations.
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Figure 2. The building block R(a, b, θ, ε).
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Figure 3. An alternative construction of the building block R(a, b, θ, ε).

From the vertex p− of the anti-cone emanate two rays that are at an angle of
π/2 + θ from the dislocation line [p−, p+]. These two rays partition the surface into
two sets. Since the total angle around the anti-cone is 2π + 2θ, the set that does
not include p+ is a (non-singular) half-plane, which we denote by X−. Likewise, we
denote by X+ the half-plane whose boundary intersects the dislocation line [p−, p+]
at p+ at an angle π/2− θ (see Figure 2).

We construct a “rectangle” ABCD as follows:

1. Choose a point A ∈ X−.
2. Let B ∈ X− be the unique point such that AB is parallel to the boundary of
X− and d(A, p−) = d(B, p−). Denote |AB| = a.

3. Choose C ∈ X+ such that BC ⊥ AB. Denote |BC| = b.
4. Let D ∈ X+ be the unique point such that AD ⊥ AB and |AD| = b.
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Comments.

1. An alternative representation of the same “rectangle” is displayed in Fig-
ure 3. The figure shows two hexagons, ADFp+p−E and BCFp+p−E (both
are bone-fide Euclidean hexagons). The “rectangle” is formed by identifying
the segments Ep−, p−p+ and p+F in both hexagons. This representation
shows how the combination of two disclinations is metrically equivalent to
standard description of a two-dimensional edge-dislocation, which is the in-
sertion of a half-line.

2. It follows (for example from the alternative representation in Figure 3) that
BC ⊥ CD and AD ⊥ CD, hence ABCD can be thought of as a rectangle with
singularities. Note that Figure 2 is somewhat misleading as this “rectangle”
cannot be embedded in the plane.

3. It is easy to see from Figure 3 that

|CF | = |DF | = a+ ε

2
,

where

ε = 2d sin θ. (1)

Looking back at Figure 2 we have |CD| = a+ ε, i.e., the “rectangle” ABCD
does not satisfy the Euclidean property of having opposite sides of equal
length. The parameter ε is the excess in length of the longer side, and mea-
sures the magnitude of the dislocation.

The above “rectangle” is a simply-connected topological manifold with boundary,
which we denote by R̃(a, b, θ, ε). Note that the parameters a, b, θ, ε do not determine
the shape uniquely, as the position of the dislocation line [p−, p+] can be shifted
horizontally. In reference to Figure 3,

|Ep−|+ d cos θ + |p+F | = b.

Without loss of generality we assume |Ep−| = |p+F |, thus determining R̃(a, b, θ, ε)
uniquely (we will see later that the exact position of the dislocation line does not
affect the limit). We also denote

R(a, b, θ, ε) = R̃(a, b, θ, ε) \ [p−, p+],

which is a non-compact smooth manifold with corners. The Levi-Civita parallel
transport in R(a, b, θ, ε) is path-independent, which is the reason we remove the
whole dislocation line [p−, p+] rather than only the singular points p±.

2.3. Manifolds with multiple edge-dislocations. By using R̃(a, b, θ, ε) as a
building block and gluing copies together, we generate manifolds with multiple edge-
dislocations. Since our goal is to investigate a limit process in which dislocations
get denser, we need to “zoom out”, or in other words, rescale the space in an
appropriate way. We do so by constructing manifolds that have a fixed boundary, a
fixed total dislocation magnitude ε, and are partitioned into an increasing number
of R̃-blocks.

Fix a, b, θ and ε. Given n ∈ N, we construct a topological manifold with corners
M̃n by gluing together n2 building blocks, where the (i, j)-th block, which we denote

by M̃n(i, j) is of type

M̃n(i, j) = R̃ (an,i, bn, θ, εn) , (2)
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Figure 4. The manifold M̃n obtained by gluing together n2 build-
ing blocks. At the i-th column and j-th row we place the “rectan-
gle” M̃n(i, j) defined by (2) and (3).

where

an,i =
a+ (i− 1)ε/n

n
, bn =

b

n
and εn =

ε

n2
(3)

(see Figure 4).

The rectangular nature of the M̃n(i, j)-blocks enables us to glue them such that

the manifold is smooth across the blocks. The only singularities in M̃n are the
points p± in each M̃n(i, j). The singularities do not get milder as n increases,
since θ remains fixed. The distance between pairs of singular points p± decreases,
however, by (1) as 1/n2. If we describe the defects as curvature multipoles, the
monopoles remain constant but the dipoles decrease like 1/n2.

We denote by Mn the amalgam of n2 R-blocks. The manifolds Mn form a
sequence of smooth manifolds with corners, satisfying the following properties:

1. They are locally Euclidean; we denote the Riemannian metrics by gn.
2. The boundary is n-independent; ∂Mn consists of four segments of length
a, b, b and a+ ε that form a “rectangle”.

3. The parallel transport operator Πn, induced by the Levi-Civita connection
∇n is path-independent since it is inherited from the parallel transport within
the R-blocks.

4. The completion of Mn as a metric space is the simply-connected topological
manifold with corners M̃n. We denote by dn the distance function in M̃n.

3. Convergence to a non-singular manifold with torsion. In this section we
show that the sequence (Mn, gn,∇n) converges to a compact, non-singular, simply-
connected Riemannian manifold with corners (N , g), endowed with a metrically-
compatible non-symmetric connection ∇.

We start by defining (N , g,∇). Denote by N = N (a, b, ε) the sector of angle ε/b
of an annulus of inner radius R0 = ab/ε and outer radius R1 = R0 + b = (a+ ε)b/ε.
Endow N with the standard Euclidean metric, denoted by g; the corresponding
distance function is denoted by d. (N , g) is a manifold with corners whose edges
have lengths a, b, b and a+ ε (see Figure 5).

We endow N with a polar system of coordinates (r, ϕ),

(r, ϕ) ∈ [R0, R1]× [0, ε/b].
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Figure 5. The limit manifold N , its partition into sub-sectors
Nn(i, j) and its path-independent parallel transport.

In these coordinates the Euclidean metric takes the form

g = dr ⊗ dr + r2 dϕ⊗ dϕ.

We further endow TN with a connection ∇, defined by declaring the frame field
E = (∂r, r

−1 ∂ϕ) parallel. We denote by Π the (path-independent) parallel transport
operator of ∇,

Πq
p : TpN → TqN .

Since E is orthonormal, it follows that ∇ is metrically-compatible (see e.g. [4] p.53).
Note however that E is not parallel with respect to the Levi-Civita connection, hence
∇ is not the Levi-Civita connection, i.e., it is non-symmetric and carries torsion. A
direct calculation shows that this torsion equals

T =
1

r
dr ∧ dϕ⊗ ∂ϕ.

Note that constant-r and constant-ϕ parametric curves are, by definition, ∇-
geodesics, but only constant-r curves are locally length-minimizing. See Figure 5
for an illustration of how vectors are parallel transported under Π. Note that ∇
admits, by definition, a global parallel frame field, hence its curvature tensor is zero.
Since it is also metrically-consistent and non-symmetric, the triplet (N , g,∇) is a
Weitzenböck manifold.

Our main result can be stated as follows:

The sequence of locally-Euclidean smooth manifolds with connections
(Mn, gn,∇n) converges to the Euclidean sector with non-symmetric con-
nection (N , g,∇).

The mode of convergence will be described below. In Subsection 3.1 we prove
the convergence of (M̃n, gn) to (N , g) in the Gromov-Hausdorff (GH) sense. In
Subsection 3.2 we construct homeomorphisms

Fn : N → M̃n,

that (i) realize the GH convergence, i.e., have asymptotically vanishing distortions,
and (ii) have the property that pullbacks of parallel frame fields of (Mn,∇n) con-
verge to a parallel frame field of (N ,∇). We then prove some properties of these
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homeomorphisms, which guide us in the definition of a general notion of convergence
described in Section 4.

3.1. Gromov-Hausdorff convergence. The GH distance is a measure of distance
between metric spaces, and is a metric on isometry classes of compact metric spaces
([13], Chapter 10). A sufficient and necessary condition for a sequence of metric
spaces (Zn, dn) to converge in the GH sense to a metric space (Z, d) is that there
exist bijections

Tn : An → Bn,

where An ⊂ Z and Bn ⊂ Zn are finite δn-nets, δn → 0, and the distortion of Tn,

disTn = max
x,y∈An

|d(x, y)− dn(Tn(x), Tn(y))|,

tends to zero.

Theorem 3.1. Let (M̃n, gn) be the sequence of compact metric spaces defined in

Section 2, and let (N , g) be the Euclidean sector defined above. Then, (M̃n, gn) GH
converges to (N , g).

Proof. Denote by Xn the union of boundaries of the n2 blocks forming M̃n (Xn is
the union of both dashed and solid lines in Figure 4). The vertices of Xn form a

finite O(n−1)-net of M̃n.
Given n, we partition N into n2 sectors, where the (i, j)-th sector, denoted by

Nn(i, j) is of type

Nn(i, j) = N (an,i, bn, εn) ,

where an,i, bn, εn are defined in (3). In polar coordinates,

Nn(i, j) = [ri, ri+1]× [ϕj , ϕj+1],

where

ri = (i− 1) ∆Rn, ϕj = (j − 1) ∆ϕn.

and

∆Rn =
R1 −R0

n
= bn, ∆ϕn = εn/bn.

In correspondence with Xn, we denote by Yn the union of the boundaries of Nn(i, j)
(Yn is the union of both dashed and solid lines in Figure 5).

These partitions of N and M̃n have the following properties:

1. The vertices of Yn form a finite O(n−1)-net ofN and have the same cardinality
as the vertices of Xn.

2. The boundary of Nn(i, j) consists of curves that are of the same length as the
boundary of Mn(i, j).

3. Yn consists of ∇-geodesics and Xn consists of ∇n-geodesics.

It follows that there exists a natural mapping Tn : Yn → Xn that preserves the
intrinsic distance of Yn and Xn (the intrinsic distances on path-connected subsets
differ from the induced distances d and dn). In particular, Tn restricted to the ver-
tices of Yn is a bijection between two finite O(n−1)-nets ofMn and N respectively.

To prove that (M̃n, gn) converges to (N , g) in the GH sense it only remains to show
that

disTn → 0,

where the distortion is with respect to the induced distances d and dn.
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The proof relies on two lemmas, whose proofs are given in the appendix. The
first lemma shows that the restrictions of Tn to the boundaries ∂Nn(i, j) of single
cells, has a distortion of order O(n−2):

Lemma 3.2. Let a, b, ε > 0 and θ ∈ (0, π/2) be given. Let Tn,i,j be the natural
intrinsic distance preserving mapping,

Tn,i,j : ∂Nn(i, j)→ ∂M̃n(i, j).

Then, there exists a constant c > 0 independent of n, i, j, such that

max
p,q∈∂Nn(i,j)

|d(p, q)− dn(Tn,i,j(p), Tn,i,j(q))| <
c

n2
.

In other words, since εn tends to zero faster than an,i, bn, both Mn(i, j) and
Nn(i, j) become metrically similar to a Euclidean rectangle of size an,i× bn, and in
particular to each other. Lemma 3.2 quantifies this assertion.

The second lemma bounds the number of cells intersected by a length minimizing
curve, thus allowing to estimate the accumulated distortion along such a curve:

Lemma 3.3. For every n ∈ N and p, q ∈ Yn, the shortest path in N connecting p
and q intersects at most 3n out of the n2 sectors Nn(i, j). Likewise, for every n ∈ N
and p, q ∈ Xn, the shortest path in M̃n (viewed as a metric space) connecting p and

q intersects at most 3n out of the n2 “rectangles” M̃n(i, j).

To complete the proof of the theorem, let p, q ∈ Yn, and let γ : [0, 1]→ N be the
shortest path in N connecting p and q, i.e.,

Length(γ) = d(p, q).

Denote by p = p0, p1, . . . , pm = q the entrance/exit points of γ into sectors Nn(i, j)
in Yn, that is, pj = γ(tj) where (t0, t1, . . . , tm) is the coarsest partition of [0, 1] for
which γ maps each interval into a single sector. By Lemma 3.3, m ≤ 3n, whereas
by Lemma 3.2

|d(pj , pj+1)− dn(Tn(pj), Tn(pj+1))| < cn−2.

Hence, there exists a curve σ : [0, 1]→ M̃n such that σ(tj) = Tn(pj) and

Length(σ) < Length(γ) + 3n · c n−2

(see Figure 6). It follows that

dn(Tn(p), Tn(q)) < d(p, q) +O(n−1).

A similar argument, starting from a curve connecting Tn(p) to Tn(q) shows that

d(p, q) < dn(Tn(p), Tn(q)) +O(n−1),

hence

disTn = O(n−1),

which completes the proof.

By the nature of the GH distance, the limit of (M̃n, gn) is unique up to isometry

of metric spaces. That is, if (M̃n, gn) GH converges also to (N ′, g′), then there exists
a distance-preserving bijection (N , d) → (N ′, d′). By the Myers-Steenrod theorem
([13], p.147), this map is smooth and is a Riemannian isometry (N , g)→ (N ′, g′).
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Figure 6. The curves γ and σ used in the proof of Theorem 3.1.

3.2. Convergence of the parallel transport. GH convergence of metric spaces
is a very weak notion of convergence. To wit, the sequence of finite metric spaces
consisting of the vertices of Xn alone with the induced metric dn GH-converges
to the smooth Riemannian manifold (N , g). On the other hand, stronger notions
of convergence of smooth manifolds, such as Hölder convergence, require Mn to
be diffeomorphic to N , which is not the case. Thus, we look for a new notion of
convergence, which is strong enough to capture the smooth structure of Mn and
its parallel transport, while being weak enough to allow for topological defects.

Since the manifolds M̃n and N are homeomorphic, it is natural to relate their
structures by constructing a sequence of homeomorphisms

Fn : N → M̃n,

which are smooth on the pre-image of Mn. Moreover, by defining the Fn to be
extensions of the Tn defined in the previous section, we guarantee the preservation
of both length and geodesic properties along the ∇-geodesic grids Yn. At this point
the limiting connection ∇ may look arbitrary. In Section 4 we will see that it is
determined uniquely.

We define the mappings Fn thought their restrictions to sub-sectors,

Fn : Nn(i, j)→ M̃n(i, j).

Recall that the parametrization of Nn(i, j) by polar coordinates is

Nn(i, j) = [ri, ri+1]× [ϕj , ϕj+1],

where ri = (i − 1)∆Rn and ϕj = (j − 1)∆ϕn. Recall, furthermore, that M̃n(i, j)
can be represented as two hexagons glued together (see Figure 3). Fn maps the

lower half, ϕj ≤ ϕ ≤ ϕj+1/2, of Nn(i, j) onto the lower hexagon of M̃n(i, j).
Endowing this lower hexagon with canonical Euclidean coordinates, Fn(r, ϕ) =
(X(r, ϕ), Y (r, ϕ)) is defined by

X(r, ϕ) = r − ri,
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and

Y (r, ϕ) = (ϕ− ϕj)×


ri r ∈

[
ri, ri+1/2−D/2

]
,

ri + 1
D

(
r − ri+1/2−D/2

)
r ∈

[
ri+1/2−D/2, ri+1/2+D/2

]
,

ri+1 r ∈
[
ri+1/2+D/2, ri+1

]
,

where D = ∆ϕn
2 tan θ = O(n−1). The mapping of the upper half, ϕj+1/2 ≤ ϕ ≤ ϕj+1,

of Nn(i, j) onto the upper hexagon of M̃n(i, j) is defined similarly. One can verify
that Fn is indeed a homeomorphism that extends the mapping Tn.
Fn is a local diffeomorphism everywhere in F−1

n (Mn) ⊂ N , except along the
lines r = ri+1/2±D/2 in every sector. We now calculate the derivatives of Fn and
the pullback metric on N . Differentiating Fn,

∂X

∂r
= 1,

∂X

∂ϕ
= 0,

∂Y

∂r
=


0 r ∈

(
ri, ri+1/2−D/2

)
ϕ−ϕj
D r ∈

(
ri+1/2−D/2, ri+1/2+D/2

)
0 r ∈

(
ri+1/2+D/2, ri+1

)
,

and

∂Y

∂ϕ
=


ri r ∈

(
ri, ri+1/2−D/2

)
ri + 1

D

(
r − ri+1/2−D/2

)
r ∈

(
ri+1/2−D/2, ri+1/2+D/2

)
ri+1 r ∈

(
ri+1/2+D/2, ri+1

)
.

(4)

This mapping can be slightly modified to be C1 (and even smooth) in F−1
n (Mn),

resulting in a diffeomorphism F−1
n (Mn)→Mn.

We now prove several properties of the mappings Fn that will be relevant for
the notion of convergence defined in Section 4. Proposition 1 deals with the van-
ishing distortion of Fn. Proposition 2 deals with the convergence of the pullback
connections.

Proposition 1.

1. disFn → 0.
2. For every p ∈ [1,∞),∫

N
dist p(dFn,SO(g, gn)) dVolg → 0,

where SO(g, gn) denotes the set of metric- and orientation-preserving linear
maps TN → F ∗nTMn.

Proof. Item 1 follows from the fact that Fn is an extension of Tn. Item 2 follows
from (4), since dFn tends uniformly to SO(g, gn) on the domain

n⋃
i,j=1

{
(r, ϕ) ∈ Nn(i, j) : r /∈ (ri+1/2−D/2, ri+1/2+D/2)

}
,

and the area of its complement, where dFn is uniformly bounded, tends to zero.

Proposition 2. Denote by En the frame field on Mn generated by the vector fields
(∂X , ∂Y ) on the Euclidean hexagons (it is an orthonormal parallel frame field of
the Levi-Civita connection ∇n on Mn). Denote by E the frame field (∂r, r

−1∂ϕ)
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on N (it is an orthonormal parallel frame field of the connection ∇ on N ). Then
F ?nEn → E in Lp for every p ∈ [1,∞),

lim
n→∞

∫
N
|F ?nEn − E|pg dVolg = 0, (5)

where the norm of a tuple of vector fields is the sum of the norms. Furthermore,
F ?nEn → E almost everywhere. In particular, since En and E are orthonormal and
parallel, the parallel transport from x to y with respect to F ?n∇n converges to the
parallel transport from x to y with respect to ∇, for almost every x, y ∈ N .

Remark 1. This is a weak form of convergence of the connection, which entails
the convergence of the parallel transport operator, but not the convergence of the
derivative operator. In particular, the Christoffel symbols of the pullback connection
F ?n∇n do not converge to the Christoffel symbols of ∇. In fact, since the mappings
(r, ϕ) 7→ (X,Y ) are eventually almost everywhere affine, the Christoffel symbols
converge almost everywhere to 0 pointwise (which are the symbols of the Levi-
Civita connection, and not of ∇).

Proof. From equation (4),

F ?nEn = dF−1
n (∂X , ∂Y ) =


(∂r, r

−1
i ∂ϕ) r ∈

(
ri, ri+1/2−D/2

)
,

· · · r ∈
(
ri+1/2−D/2, ri+1/2+D/2

)
,

(∂r, r
−1
i+1∂ϕ) r ∈

(
ri+1/2+D/2, ri+1

)
,

where · · · in the middle term stands for a frame uniformly bounded in n. Since D =
O(n−1), the almost everywhere convergence and equation (5) follow immediately.

Proposition 1 asserts that the distortion of Fn vanishes – this is a global claim –
and that locally, dFn is asymptotically rigid in the mean. Even though this is not
relevant to the subsequent analysis, there is more to be said about the mappings Fn,
and specifically, on the convergence of the pullback metrics F ?ngn to the Euclidean
metric g on N .

We conclude this section by stating several of these results, both for the sake of
completeness, and since they provide a better understanding of how the sequence
(Mn, gn) converges to (N , g). All of them follow from direct calculations using (4).

Proposition 3. 1. F ?ngn → g in Lp for every p ∈ [1,∞),

lim
n→∞

∫
N
|F ?ngn − g|pg dVolg = 0.

Furthermore, F ?ngn → g almost everywhere. By smoothing Fn we can obtain
pointwise convergence in F−1

n (Mn).
2. It follows from the previous item that for every vector field X ∈ Γ(TN ),

lim
n→∞

∫
N
|X|pF?ngndVolg =

∫
N
|X|pgdVolg

3. F ?ngn does not converge to g uniformly or in L∞ (even for smooth modifica-
tions of Fn).

4. The volume form dVolF?ngn converges to dVolg in L∞. In particular, the
induced measures µF?ne converge to µg in total variation. This is, in a sense,
a volume-equivalent of vanishing distortion. It also shows that Mn converge
to N as metric measure spaces.
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4. Convergence of manifolds with defects. In Section 3 we constructed a se-
quence Fn : N → M̃n of homeomorphisms, which are diffeomorphisms on F−1

n

(Mn). We showed that they have asymptotically vanishing distortions, they are
asymptotically rigid in the mean, and that there exist ∇n-parallel frame fields En,
whose pullback F ?nEn converge in the mean to a ∇-parallel frame field E.

A natural question is whether the sequence (Mn, gn,∇n) defines a unique limit
(N , g,∇). The metric limit is clearly unique (modulo Riemannian isometries) by
the properties of GH convergence and the Myers-Steenrod theorem. It is not yet
clear, however, whether a limit connection is well-defined. In Section 3 we character-
ized the convergence of a sequence of flat connections ∇n through the convergence
of pullbacks of ∇n-parallel frame fields. For such a mode of convergence to be
unambiguous, we have to prove that any sequence of asymptotically rigid maps
N → Mn with asymptotically vanishing distortion and for which the pullback of
parallel frame fields converges, results in the same limiting connection.

In order to prove that (M̃n, gn) GH-converges to (N , g), it is sufficient to examine
the distortion associated with mappings between nets. Similarly, it is possible to
define a convergence of connections by examining mappings from subsets of N to
subsets ofMn, excluding sets of asymptotically vanishing volume. We will exclude
from Mn asymptotically small neighborhoods of the lines M̃n \ Mn. In other
words, manifolds with singularities are replaced by manifolds with asymptotically
small “holes”. The advantage of this approach is that we are then in the realm of
diffeomorphisms between compact smooth manifolds with corners, and do not have
to deal with singularities, nor with a lack of compactness.

The following definition establishes a notion of weak convergence of Weitzenböck
manifolds, that is, Riemannian manifolds endowed with metrically-consistent (i.e.
metric) locally-flat connections.

Definition 4.1. Let (Mn, gn,∇n), (M, g,∇) be compact d-dimensional oriented
Weitzenböck manifolds with corners. We say that the sequence (Mn, gn,∇n) con-
verges to (M, g,∇) with p ∈ [d,∞), if there exists a sequence of diffeomorphisms
Fn : An ⊂M→Mn such that:

1. An covers M asymptotically:

lim
n→∞

Volg(M\An) = 0.

2. Fn are approximate isometries: the distortion vanishes asymptotically, namely,

lim
n→∞

disFn = 0.

3. Fn are asymptotically rigid in the mean:

lim
n→∞

∫
An

dist p(dFn,SO(g, gn)) dVolg = 0.

4. The parallel transport converges in the mean in the following sense: every
point in M has a neighborhood U ⊂ M, with (i) a ∇-parallel frame field E
on U , and (ii) a sequence of ∇n-parallel frame fields En on Fn(U ∩An), such
that

lim
n→∞

∫
U∩An

|F ?nEn − E|pgdVolg = 0.

Corollary 1. The sequence of manifolds with defects (Mn, gn,∇n) defined in Sec-
tion 2, converges in the sense of Definition 4.1 to the Euclidean sector with connec-
tion (N , g,∇).
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Proof. This follows from Propositions 1-2. To comply with Definition 4.1 one has to
takeMn to be compact manifolds by removing asymptotically small neighborhoods
around the singular lines M̃n \Mn, and restrict the functions Fn accordingly. It
is immediate that Proposition 2 holds after the restriction of Fn. To show that
Proposition 1 also holds, observe that the dislocation lines in M̃n are of length
O(n−2). Therefore, it is possible to remove neighborhoods of diameter O(n−2)
around the singularity lines, thus changing the distance functions only by O(n−2).
Lemmas 3.2-3.3 still hold after the removal of these neighborhoods, from which
Theorem 3.1, and therefore Proposition 1, follow.

The following theorem shows that the convergence of sequences of Riemannian
manifolds with connections is well-defined: the limit is unique up to isomorphisms.

Theorem 4.2. Let (Mn, gn,∇n), (M, g,∇M) and (N , h,∇N ) be compact Rie-
mannian manifolds with corners, endowed with metrically-consistent locally-flat con-
nections. Suppose that

(Mn, gn,∇n)→ (M, g,∇M) and (Mn, gn,∇n)→ (N , h,∇N )

in the sense of Definition 4.1. Then, there exists a Riemannian isometry H :M→
N such that H?∇N = ∇M.

Since the proof is long and technical, we start by presenting a sketch. By defini-
tion, there exist sequences of diffeomorphisms

Fn : An ⊂M→Mn and Gn : Bn ⊂ N →Mn

that are approximate isomorphisms of Riemannian manifolds with connections in
the sense of Definition 4.1. Note that since Fn and Gn are diffeomorphisms, Item
3 in Definition 4.1 implies that Fn and Gn are, for n large enough, orientation
preserving, which we will assume from now on. We define

Hn = G−1
n ◦ Fn : An → Bn,

which are diffeomorphisms. It follows from disFn → 0 and disGn → 0 that

lim
n→∞

disHn = 0

as well. We then proceed as follows:

1. Lemma 4.3, the metric part: it follows from the properties of GH convergence
that (M, g) and (N , h) are isometric. We show that there exists a Riemannian
isometry, which we denote by H : M → N , which is the uniform limit of a
subsequence of the maps Hn. In the rest of the proof we show that H satisfies
H?∇N = ∇M.

2. Lemma 4.4: The convergence of the connections in Definition 4.1 is associated
with the convergence of pullbacks of local frame fields. We show that we can
restrict ourselves to neighborhoods that admit global frame fields. Hence,
we may assume, without loss of generality, the existence and convergence of
pullbacks of global frame fields.

3. Lemma 4.7: We show that the limit of a specific sequence of (global) frame
fields is unique in the following sense: if En are frame fields on Mn such
that F ?nEn converges to EM and G?nEn converges to EN (both in Lp), then
H?E

M = EN .
4. Lemma 4.8: We complete the proof by showing that if En and Dn are frame

fields on Mn such that F ?nEn converges to EM and G?nDn converges to EN

(both in Lp), then H?E
M is a ∇N -parallel frame field, hence H?∇N = ∇M.



TORSION IN THE LIMIT OF DISTRIBUTED DISLOCATIONS 375

A comment about notations: here and throughout this paper, we consider dif-
ferentials such as dFn as maps TM→ F ∗nTMn, where F ∗nTMn is a vector bundle
over M, with the fiber (F ∗nTMn)p identified with the fiber TFn(p)Mn. The dif-
ferential should be distinguished from the push-forward operator for vector fields,
(Fn)? : TM → TMn. Likewise, we denote by F ∗n the pullbacks of vector fields
and differential forms, both considered as sections of TMn or T ∗Mn. This should
not be confused with the closely related pullback involving composition with dFn,
which we denote by F ?n . That is, if X is a vector field onMn, then F ∗nX is a section
of F ∗nTMn, with F ∗nX(p) = X(Fn(p)), whereas F ?nX is a section of TM, where
F ?nX(p) = dF−1

n ◦X(Fn(p)).

Lemma 4.3. There exists an isometry H : (M, g)→ (N , h), which is the uniform
limit of a (not relabeled) subsequence Hn in the sense that

sup
p∈An

dN (Hn(p), H(p))→ 0 and sup
q∈Bn

dM(H−1
n (q), H−1(q))→ 0.

Proof. Since by Item 1 in Definition 4.1

µg(M\An)→ 0 and µh(N \Bn)→ 0,

it follows that An and Bn are εn-nets of M and N for some εn → 0, i.e., Hn

are bijective mappings between εn-nets. Since disHn → 0, it follows that the
GH distance between M and N is zero, hence (M, g) and (N , h) are isometric as
metric spaces. By the Myers-Steenrod theorem this isometry is also a Riemannian
isometry.

We now construct a specific isometry H. We extend the maps Hn : An → Bn
into maps Ĥn : M→ N with asymptotically vanishing distortion. Since An is an
εn-net of M, there exists a map ψn :M→ An, such that

ψn|An = Id and sup
p∈M

dM(p, ψn(p)) < εn.

We define

Ĥn(p) = Hn(ψn(p)).

The sequence Ĥn has asymptotically vanishing distortions: for all p, p′ ∈M,

|dM(p, p′)− dN (Ĥn(p), Ĥn(p′))| = |dM(p, p′)− dN (Hn(ψn(p)), Hn(ψn(p′)))|
≤ |dM(p, p′)− dM(ψn(p), p′)|

+ |dM(ψn(p), p′)− dM(ψn(p), ψn(p′))|
+ |dM(ψn(p), ψn(p′))− dN (Hn(ψn(p)), Hn(ψn(p′)))|

≤ 2εn + disHn → 0.

Note, however, that Ĥn are not diffeomorphisms: they are neither injective nor
surjective, and may not even be continuous (depending on the choice of ψn).

Let A ⊂M be a dense countable subset. Via a standard Arzela-Ascoli argument,
there exists a subsequence (not relabeled) such that Ĥn(ak) converges for every k.
Denote the resulting function by H : A → N ,

H(a) = lim
n→∞

Ĥn(a) ∀a ∈ A.
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Clearly, disH = 0, i.e. H is distance-preserving. Since A is dense in M, H can be
extended to a distance-preserving function M→N . For all p ∈M and a ∈ A,

dN (Ĥn(p), H(p)) ≤ dN (Ĥn(p), Ĥn(a)) + dN (Ĥn(a), H(a)) + dN (H(a), H(p))

≤ dis Ĥn + 2dM(p, a) + dN (Ĥn(a), H(a)).
(6)

Let ε > 0 be given. Let {a1, . . . , a`} ⊂ A be a finite ε/6-net of M. Let N ∈ N be
large enough such that for all n > N ,

dis Ĥn < ε/3, and max
k=1,...,`

dN (Ĥn(ak), H(ak)) < ε/3.

By choosing a in (6) in the set {a1, . . . , a`} with dM(p, a) < ε/6, we obtain that for
all p ∈M and all n > N ,

dN (Ĥn(p), H(p)) < ε,

i.e., Ĥn converges to H uniformly. Since Ĥn is an extension of Hn, it follows that

sup
p∈An

dN (Hn(p), H(p))→ 0.

It remains to show that H is surjective. Similarly to the above construction,
extend Kn = H−1

n to mappings K̂n : N →M satisfying dis K̂n → 0. Even though

K̂n 6= Ĥ−1
n (neither K̂n nor Ĥn are invertible),

K̂n ◦ Ĥn = K̂n ◦Hn ◦ ψn = ψn,

where we used the fact that K̂n = H−1
n on the image of ψn. Thus,

dM(p, K̂n ◦ Ĥn(p)) = dM(p, ψn(p)) < ε.

By the same arguments as above, we construct from K̂n a distance-preserving
map K : N →M, which is the uniform limit of a subsequence of K̂n,

sup
q∈N

dM(K̂n(q),K(q))→ 0.

Since

dM(p,K ◦H(p)) ≤ dM(p, K̂n ◦ Ĥn(p)) + dM(K̂n ◦ Ĥn(p), K̂n ◦H(p))

+ dM(K̂n ◦H(p),K ◦H(p))

≤ εn + dis K̂n + dN (Ĥn(p), H(p))

+ dM(K̂n ◦H(p),K ◦H(p)),

it follows that the right-hand side tends to 0 as n → ∞, i.e., K = H−1. Thus,
H :M→ N is a distance-preserving bijection. By the Myers-Steenrod theorem it
is a smooth Riemannian isometry.

In the remaining of this section we show that H?∇N = ∇M. Specifically, we
show that every point p ∈ M has a neighborhood U endowed with a ∇M-parallel
frame field EU , such that H pushes forward EU into a ∇N -parallel frame field EV

on V = H(U).
We will show it by proving that Theorem 4.2 holds under the assumption that

∇n, ∇M and ∇N all admit global parallel frame fields, and that the isometry that
pushes the global frame fields is the uniform limit H of Hn (Lemmas 4.7 and 4.8).
To apply this particular case to the general case, we show that it is possible to
restrict M, N and Mn to submanifolds U , V and Un that admit global frame
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fields, such that the convergence ofMn implies the convergence of Un (as stated in
the following lemma).

Lemma 4.4. Every point p ∈M has a compact neighborhood U ⊂M, such that

(Un, gn,∇n)→ (U, g,∇M) and (Un, gn,∇n)→ (V, h,∇N ), (7)

where U , V = H(U) and Un = Fn(U ∩ An) ∩ Gn(V ∩ Bn) all admit global frame
fields. The convergence is realized by restrictions of Fn and Gn.

Before proving Lemma 4.4, we prove two lemmas. The first is a geometric version
of Hadamard’s inequality [5]. The second shows that Fn and Gn are uniformly close
to being rigid over large sets.

Lemma 4.5. Let F : (M, g) → (N , h) be a smooth orientation-preserving local-
diffeomorphism between d-dimensional oriented Riemannian manifolds, then

1.
dVolF?h
dVolg

≤ |dF |d,

where

|dF | = sup
06=v∈TM

|dF (v)|h
|v|g

.

2. ∣∣∣∣dVolF?h
dVolg

− 1

∣∣∣∣ ≤ (dist(dF,SO(g, h)) + 1)d − 1.

Proof. dF dilates tangent vectors in TM by at most a factor of |dF |, hence at every
point p ∈ M, dF maps a unit d-cube in TpM (distances are with respect to g) to
a d-parallelogram in TH(p)N with edges of length at most |dF | (distances are with

respect to h), hence its h-volume is at most |dF |d. This proves the first part.
For the second part, note that when working in local oriented orthonormal frames

in TM and F ∗TN , dist(dF,SO(g, h)) is greater or equal to the largest deviation
of the singular values of dF from 1, whereas dVolF?h/dVolg is the determinant of
dF , which is the product of the singular values, since F is orientation preserving.
Denote by rj the singular of dF (j = 1, . . . , d), it follows that∣∣∣∣dVolF?h
dVolg

− 1

∣∣∣∣ =

∣∣∣∣∣∣
d∏
j=1

ri − 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
d∏
j=1

(|ri − 1|+ 1)− 1

∣∣∣∣∣∣ ≤ (dist(dF,SO(g, h))+1)d−1.

Lemma 4.6. For every ε > 0 and n ∈ N define

Aεn =
{
x ∈ An : |dxFn|, |dFn(x)F

−1
n |, |dFn(x)G

−1
n |, |dHn(x)Gn| < 1 + ε

}
.

Then

lim
n→∞

Volg(M\Aεn) = 0 (8a)

lim
n→∞

Volgn(Mn \ Fn(Aεn)) = 0. (8b)

Proof. For every ε > 0 and n ∈ N, define

Cεn =
{
x ∈ An : |dxFn|, |dFn(x)F

−1
n | < 1 + ε

}
,

and

Dε
n =

{
y ∈ Bn : |dyGn|, |dGn(y)G

−1
n | < 1 + ε

}
.
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Note that

Aεn = Cεn ∩H−1
n (Dε

n). (9)

Since for every ε < 1 and x ∈M,

dist(dxFn,SO(g, gn)) < ε

implies that

|dxFn| < 1 + ε and |dFn(x)F
−1
n | <

1

1− ε
,

it follows from items 1 and 3 in Definition 4.1 that for every ε > 0,

lim
n→∞

Volg(M\ Cεn) = 0 and lim
n→∞

Volh(N \Dε
n) = 0. (10)

To prove (8a), (8b) it is sufficient to show that

lim
n→∞

Volgn(Mn \Gn(Dε
n)) = 0. (11)

Indeed, since |dF−1
n | < 1 + ε on Cεn, it follows from Hadamard’s inequality

(Lemma 4.5), and Equations (9), (10) and (11) that

Volg(M\Aεn) = Volg(M\ (Cεn ∩H−1
n (Dε

n)))

= Volg(M\ Cεn) + Volg(Cεn \H−1
n (Dε

n))

≤ Volg(M\ Cεn) + (1 + ε)dVolgn(Mn \Gn(Dε
n))→ 0,

which implies (8a). If (11) holds then by symmetry,

lim
n→∞

Volgn(Mn \ Fn(Cεn)) = 0,

and (8b) follows since

Fn(Aεn) = Fn(Cεn) ∩Gn(Dε
n).

It remains to prove (11).
Indeed,

Volgn(Mn \Gn(Dε
n))

=

∫
Mn\Gn(Dεn)

dVolgn =

∫
Bn\Dεn

dVolG?ngn

≤
∫
Bn\Dεn

dVolh +

∫
Bn\Dεn

∣∣∣∣dVolG?ngn
dVolh

− 1

∣∣∣∣ dVolh

≤ Volh(N \Dε
n) +

∫
Bn

[
(dist(dGn,SO(h, gn)) + 1)d − 1

]
dVolh

→ 0.

Where between the second and third lines we used the second part of Lemma 4.5,
and in the last lines we used (10) and Item 3 in Definition 4.1 (note that p ≥ d).

Remark 2. Lemma 4.6 is the only place where we use the assumption that p ≥
d. This assumption can be removed (resulting in p ∈ [1,∞)) if we add an extra
assumption on Fn in Definition 4.1, requiring the volume forms dVolF?n to converge
in the mean to dVolg, or require the convergence of the induced measures.
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Proof of Lemma 4.4. Let p ∈M, and let U be a neighborhood of p satisfying Item
4 in Definition 4.1 (with respect to Fn). Set q = H(p) ∈ N and let V ⊂ N
be a neighborhood of q satisfying Item 4 in Definition 4.1 (with respect to Gn).
Without loss of generality we may assume that V = H(U), otherwise reduce U to
U ∩H−1(V ). This choice of neighborhoods ensures that U , V and Un are covered
by global parallel frame fields.

The properties in Items 2–4 in Definition 4.1 are preserved by the restrictions of
Fn and Gn to sub-domains U ∩An and V ∩Bn. Therefore, the only non-trivial part
of the proof is to show that F−1

n (Un) and G−1
n (Un) cover U and V asymptotically

(Item 1).
Thus, we have to show that

lim
n→∞

Volg(U \ F−1
n (Un)) = 0 and lim

n→∞
Volh(V \G−1

n (Un)) = 0. (12)

We prove the first equality; the second is proved by similar arguments.
Fix ε > 0. By Lemma 4.6, Volg(U \Aεn)→ 0, hence it suffices to show that

Volg((U ∩Aεn) \ F−1
n (Un))→ 0. (13)

Since |dHn| and |dH−1
n | are uniformly bounded in n on Aεn, it follows from Hada-

mard’s inequality (Lemma 4.5) that (13) holds if and only if

Volh(Hn(U ∩Aεn) \G−1
n (Un))→ 0. (14)

As G−1
n (Un) = (V ∩Bn) ∩Hn(U ∩An),

Hn(U ∩Aεn) \G−1
n (Un) = Hn(U ∩Aεn) \ (V ∩Bn) = Hn(U ∩Aεn) \ V,

where in the last step we used the fact that Hn(U ∩ Aεn) ⊂ Bn. Let y ∈ Hn(U ∩
Aεn) \ V . Using that fact that H is an isometry,

dN (y,H(H−1
n (y))) = dM(H−1(y), H−1

n (y)) < εn,

where εn = supy∈Bn dM(H−1(y), H−1
n (y)). However,

H(H−1
n (y)) ∈ H(U ∩Aεn) ⊂ H(U) = V,

which implies that

dN (y, V ) < εn.

It follows that Hn(U ∩ Aεn) \ V is contained in an εn-tubular neighborhood of the
boundary of V , hence

Volh (Hn(U ∩Aεn) \ V ) < CεdimN
n → 0,

where the constant C depends of the length of the boundary of V . This completes
the proof.

We next show that Theorem 4.2 holds for the case of global frame fields, i.e., if
(Mn, gn,∇n) converges to two limits, then the uniform limit H of the mappings
Hn is an isomorphism between the two limits. We do so in two steps: In Lemma 4.7
we prove it under the additional assumption that it is the same sequence of frame
fields En that converges in the two limits. In Lemma 4.8 we relax this assumption.

Lemma 4.7. Let (Mn, gn), (M, g) and (N , h) be compact Riemannian manifolds.
Let En and EM be frame fields on Mn and M, respectively, and let EN be a
dim(N )-tuple of vector fields on N . Suppose that both

(Mn, gn, En)→ (M, g, EM) and (Mn, gn, En)→ (N , h, EN )
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with respect to diffeomorphisms Fn : An ⊂ M → Mn and Gn : Bn ⊂ N → Mn

(here, the pullbacks of the frame fields converge in Lp). Then H?E
M = EN , where

H : M → N is the uniform limit of Hn = G−1
n ◦ Fn defined in Lemma 4.3.

Furthermore, EN is a frame field on N .

Proof. We need to show that H?E
M − EN = 0. Since H is the limit of Hn, we

start by estimating (Hn)?E
M−EN . We fix some ε > 0. Throughout this proof we

will consider Hn as a diffeomorphism Aεn → Hn(Aεn), where sets Aεn are defined in
Lemma 4.6. By the standard inequality |a+ b|p ≤ C(|a|p + |b|p) we get

∫
Hn(Aεn)

|(Hn)?E
M − EN |phdVolh ≤ C

∫
Hn(Aεn)

|(Hn)?E
M −G?nEn|

p
hdVolh

+ C

∫
Hn(Aεn)

|G?nEn − EN |
p
hdVolh.

The second addend tends to 0 since (Mn, gn, En)→ (N , h, EN ) with respect to the
maps Gn. To show that the first addend tends to zero as well we observe that

∫
Hn(Aεn)

|(Hn)?E
M −G?nEn|

p
hdVolh ≤ C

∫
Aεn

|EM − F ?nEn|pgdVolg → 0,

by the uniform bound on |dHn| on Aεn and Lemma 4.5. We have thus shown that

∫
Hn(Aεn)

|(Hn)?E
M − EN |phdVolh → 0. (15)

The proof would be complete if we could replace (Hn)? by H? and Hn(Aεn) by
N in the limit n → ∞. This is not yet possible since Hn tends to H on An only
uniformly, whereas the push-forward of frame fields with Hn involves derivatives of
Hn.

Therefore, we will show that Hn → H in W 1,p. Since Sobolev spaces are easier
to handle when the image is a vector bundle, we fix an isometric immersion φ :
(N , h)→ (Rν , e) for large enough ν, where e is the standard Euclidean metric. Since
Hn are uniformly Lipschitz on their restricted domains Aεn, the functions φ ◦ Hn

are (1 + 3ε)-Lipschitz mappings Aεn → Rν . By the McShane extension lemma [7],

there exists L-Lipschitz functions H̃n : M → Rν (for some L independent of n)

that extend φ ◦Hn (the image of H̃n may no longer be a subset of the image of φ).

The functions H̃n converge to φ ◦H uniformly on M, as

dRν (H̃n(p), φ ◦H(p))

≤ dRν (H̃n(p), H̃n(ψn(p))) + dRν (H̃n(ψn(p)), φ ◦H(ψn(p)))

+ dRν (φ ◦H(ψn(p)), φ ◦H(p))
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= dRν (H̃n(p), H̃n(ψn(p))) + dRν (φ ◦Hn(ψn(p)), φ ◦H(ψn(p)))

+ dRν (φ ◦H(ψn(p)), φ ◦H(p))

≤ dRν (H̃n(p), H̃n(ψn(p))) + dN (Hn(ψn(p)), H(ψn(p)))

+ dN (H(ψn(p)), H(p))

= dRν (H̃n(p), H̃n(ψn(p))) + dN (Hn(ψn(p)), H(ψn(p)))

+ dM(ψn(p), p)

≤ L · dM(p, ψn(p)) + dN (Hn(ψn(p)), H(ψn(p))) + dM(ψn(p), p)

≤ (L+ 1) sup
M

d(·, ψn(·)) + sup
Aεn

dN (Hn(·), H(·))→ 0.

Here ψn is a mapping M→ Aεn satisfying

ψn|Aεn = Id and sup
p∈M

dM(p, ψn(p)) < εn

for some εn → 0; it is analogous to the mappingM→ An introduced in Lemma 4.3.
Lemma 4.6 implies that we can choose indeed such a sequence εn → 0. In the
passage from the first to the second line we used the fact that H̃n coincides with
φ◦Hn on the image of ψn. In the passage from the second to the third line we used
the fact that φ is distance reducing. In the passage from the third to the fourth
line we used the fact that H is an isometry. The rest follows from the uniform
Lipschitz bound on H̃n and the uniform convergence of ψn to IdM, and the uniform
convergence of Hn to H on Aεn.

Changing variables x 7→ φ(x), (15) takes the form∫
φ(Hn(Aεn))

|(H̃n)?E
M − φ?EN |pedVolφ?h → 0,

where we used the fact that H̃n coincides with φ ◦Hn on Aεn. It follows that∫
Aεn

|dH̃n◦EM−H̃∗nφ?EN |pedVolg ≤ C
∫
Aεn

|dH̃n◦EM−H̃∗nφ?EN |
p

H̃∗
ne
dVolH?nh → 0.

Since H̃n → φ◦H uniformly and EN is smooth, we can replace H̃∗n by (φ◦H)∗. Since

dH̃n is uniformly bounded by the Lipschitz constant, and since Volg(M\Aεn)→ 0,
the integral over Aεn can be replaced by an integral over M, yielding∫

M
|dH̃n ◦ EM −H∗(dφ ◦ EN )|pedVolg → 0.

It follows that dH̃n converges in Lp(M;T ∗M⊗ Rν) to the map

EM 7→ H∗(dφ ◦ EN ).

Since, in addition, H̃n converges uniformly to φ ◦H, it follows that H̃n converges
to φ ◦H in W 1,p(M;Rν), and in particular,

d(φ ◦H) ◦ EM = H∗(dφ ◦ EN ).

Since φ is an embedding we can eliminate dφ on both sides, getting

H?E
M = EN .

The following lemma completes the proof of Theorem 4.2:
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Lemma 4.8. Let (Mn, gn,∇n), (M, g,∇M) and (N , h,∇N ) be compact Riemann-
ian manifolds with metrically-consistent connections. Let En and Dn be ∇n-parallel
frame fields on Mn. Let EM and EN be ∇M and ∇N -parallel frame fields on M
and N , respectively. Suppose that

(Mn, gn, En)→ (M, g, EM) and (Mn, gn, Dn)→ (N , h, EN ),

where the pullbacks of the frame fields converge in Lp. Then there exists a matrix
Q ∈ GLdim(M)(R), such that Q(H?E

M) = EN , where H : M → N is the Rie-

mannian isometry defined in Lemma 4.3. In particular, H∗E
M is a ∇N -parallel

frame field.

Proof. Given a Riemannian manifold (X, g), denote the subset of orthonormal
frames of the frame bundle Frp(TX) at a point p by Op(X, g). Since EM and EN

are parallel with respect to ∇M and ∇N , which are g- and h- metrically-consistent
connections, we can assume without loss of generality that EM(p) ∈ Op(M, g) and
EN (q) ∈ Oq(N , h) for every p ∈ M and q ∈ N . If not, multiply EM (and likewise
EN ) by a constant matrix R such that REM is orthonormal.
En and Dn are both parallel with respect to the same connection ∇n, hence

there exists a constant matrix Qn ∈ GLdim(M)(R) such that QnEn = Dn. We now
prove that the sequence Qn is bounded.

Fix some small ε > 0, and denote

Rεn = {x ∈ An : dist (F ?nEn(x), Ox(M, g)) < ε}

Since F ?nEn converges in Lp to EM ∈ O(M, g), it follows that

lim
n→∞

Volg (M\Rεn) = 0.

Using Lemmas 4.5-4.6,

Volgn (Mn \ Fn(Rεn ∩Aεn)) = Volgn (Mn \ Fn(Aεn)) + Volgn (Fn(Aεn) \ Fn(Rεn))

≤ Volgn (Mn \ Fn(Aεn)) + (1 + ε)dVolg (Aεn \Rεn)

−→
n→∞

0,

Similarly, denoting

Sεn = {y ∈ Bn : dist (G?nDn(y), Oy(N , h)) < ε} ,

we obtain

lim
n→∞

Volgn (Mn \Gn(Sεn) ∩ Fn(Aεn)) = lim
n→∞

Volgn (Mn \Gn(Sεn ∩Hn(Aεn))) = 0.

In particular, for n large enough, the set

Fn(Aεn) ∩ Fn(Rεn) ∩Gn(Sεn)

is non-empty. For every point xn in it, we have the following:

1. F ?nEn(F−1
n (xn)) is in an ε-neighborhood of the orthonormal frames

OF−1
n (xn)(M, g).

2. Since F−1
n (xn) ∈ Aεn, dF−1

n (xn)Fn is in an ε-neighborhood of SO(g, gn).

3. G?nDn(G−1
n (xn)) is in an ε-neighborhood of the orthonormal frames

OG−1
n (xn)(N , h).

4. dG−1
n (xn)Gn is in an ε-neighborhood of SO(h, gn).
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Therefore, both En(xn) and Dn(xn) are in some O(ε)-neighborhood of Oxn(Mn,
gn), where O(ε) is independent of n. It follows that Qn is in O(ε)-neighborhood of
SO(d), and in particular, it is uniformly bounded.

It follows that there exists a converging subsequence (not relabeled) Qn → Q,
and∫

An

|F ?nDn −QE|pgdVolg =

∫
An

|Qn(F ?nEn)−QEM|pgdVolg

≤ C
∫
An

|Q(F ?nEn − EM)|pg + |(Qn −Q)(F ?nEn)|pgdVolg

≤ C|Q|p
∫
An

|F ?nEn − EM|pgdVolg + C|Qn −Q|p
∫
An

|F ?nEn|pgdVolg

≤ C
(∫

An

|F ?nEn − EM|pgdVolg + |Qn −Q|p
)
→ 0,

where we used the uniform boundedness of F ?nEn.
If follows that

(Mn, gn, Dn)→ (M, g, QEM) and (Mn, gn, Dn)→ (N , h, EN ),

By Lemma 4.7, Q(H?E
M) = H?(QE

M) = EN . In particular, since EN is a frame
field, Q is not singular, and the proof is complete.

5. Discussion. In this paper we prove that the limit of a specific sequence of
manifolds with an increasing number of edge-dislocations is a smooth flat man-
ifold endowed with a metrically-compatible non-symmetric flat connection, i.e. a
Weitzenböck manifold. Both the limit manifold and the limit connection are defined
uniquely by the parameters a,b and ε. In particular, the limit remains unchanged if
the dislocations in the sequenceMn are not located at the centers of each building
block.

Moreover, the dislocation magnitude ε of each block is determined by two pa-
rameters: ε = 2d sin θ, where θ is the disclination angle and d is the length of the
dislocation line. The metric limit is indifferent to the values of d and θ as long as ε
remains fixed, and these values may change from one Mn(i, j)-block to another.

For the connection limit to hold, there is an additional constraint: – the lengths
dn of the dislocation lines must tend to zero faster than n−1 (in our construction
dn = O(n−2) since θ is fixed and εn = O(n−2)). If the length of the dislocation line

is comparable to the cell size, the removal of the dislocation lines from M̃n changes
the distance function significantly (see the proof of Corollary 1). This observation
is consistent with the fact that the notion of “curvature dipole” is ambiguous when
it is not clear to which dipole each monopole (singularity) belongs.

To conclude, the limit is determined by the orientation of the dislocation lines and
the magnitude of the dislocations – that is to say, by the parallel vector fields, which
are the Burgers vector fields of individualMn(i, j)-blocks. In our case the Burgers
vector fields are equal to (ε/n2) ∂y (they can be calculated from the monodromy,
see [10]). As a result, the total Burgers vector associated with a loop encircling
αβn2 dislocations, 0 < α, β < 1, is αβε ∂y.

The torsion field of the limit connection ∇ is given by

T =
1

r
dr ∧ dϕ⊗ ∂ϕ.
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It is the density of the Burgers field in the following sense: let Πp be the parallel
transport operator to an arbitrary reference point p. Let

D = [r1, r1 + αb]× [ϕ1, ϕ1 + βε/b] ⊂ N

a domain whose boundaries are ∇-geodesics. Using the fact that r−1∂θ is a ∇-
parallel vector field, ∫

D

ΠpT = αβε (r−1∂θ)p,

which is the image under Fn of αβε ∂y at Fn(p).
Every metrically compatible connection of a two-dimensional manifold can be

written as

∇XY = ∇LCX Y + g(X,Y )V − g(V, Y )X

for some vector field V , where g is the metric and ∇LC is the Levi-Civita connection
(see [1] for details). In our case, a simple calculation shows that this vector field
is V = r−1∂r. V can be interpreted, in a sense, as the continuum limit of the
dislocation lines in Mn.

While in our example, both the connections∇n onMn and∇ onM admit global
parallel frame fields, the notion of convergence given in Definition 4.1 relies only
on the existence of local parallel frame fields. This gives some flexibility to include
convergence to manifolds endowed with connections that are only locally-flat, for
example, edge-dislocations on a cone.

We conclude this paper by raising several natural questions, which will be dealt
in subsequent publications:

1. The example presented in this paper is a very specific one, with all the dislo-
cations aligned in the same direction, resulting in a fairly simple limit torsion
field. What other torsion fields can be obtained as limits of edge-dislocations in
the sense of Definition 4.1? For example, which simply connected Weitzenböck
manifolds can be obtained as a limit of locally-flat Riemannian manifolds, each
endowed with its Levi-Civita connection?

2. Another natural extension of this work is to account for continuous-distributed
screw-dislocations, or more generally, distributed dislocations of both types.
Screw-dislocations differ from edge-dislocations in that they are inherently
three-dimensional. The notion of convergence developed in this paper is inde-
pendent of dimension and is therefore expected to apply in the more general
case. On the other hand, the construction of a manifold with singular de-
fects presented in this paper is two-dimensional, and as such cannot generate
screw-dislocations.

3. In what way does the limit connection (or equivalently, the torsion field) man-
ifest in the mechanical or elastic properties of the manifold? Assuming that
the manifolds Mn represent elastic bodies with some elastic energy density,
what is the limit elastic energy density on the limit manifold N ? This relates
to a general question of Γ-convergence of elastic energy functionals in a limit
of converging metrics.
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Appendix A. Proof of Lemma 3.2. In this appendix we prove the Lemma:

Let a, b, ε > 0 and θ ∈ (0, π/2) be given. Let Tn,i,j be the natural intrinsic
distance preserving mapping,

Tn,i,j : ∂Nn(i, j)→ ∂M̃n(i, j).

Then, there exists a constant c > 0 independent of n, i, j, such that

max
x,y∈∂Nn(i,j)

|d(x, y)− dn(Tn,i,j(x), Tn,i,j(y))| < c

n2
.

Recall that

M̃n(i, j) = R̃(an,i, bi, θ, εn) and Nn(i, j) = N (an,i, bi, εn),

where an,i, bi = O(1/n) and εn = O(1/n2). Here R̃(α, β, θ, δ) is the building block
of our locally-flat manifolds with defects, whereas N (α, β, δ) is a the sector of angle
δ/β of an annulus of inner radius αβ/δ and outer radius αβ/δ + β.

To prove the lemma, it is sufficient to prove that for

c

n
< α, β <

C

n
and δ <

C ′

n2
,

where c, C,C ′ are positive constants, the natural intrinsic-distance preserving map,

T : ∂N (α, β, δ)→ ∂R̃(α, β, θ, δ),

satisfies

max
x,y∈∂N (α,β,δ)

|dN (x, y)− dR̃(T (x), T (y))| < C̃

n2
, (16)

for C̃ that depends only on c, C and C ′. Here dN and dR̃ are the respective distance

functions in N (α, β, δ) and R̃(α, β, θ, δ).

The proof is based on showing that for large n both N (α, β, δ) and R̃(α, β, θ, δ)
are almost isometric to a Euclidean rectangle, R(α, β), with edges of length α, β. We

construct two mappings, S : R̃(α, β, θ, δ)→ R(α, β) and S′ : R(α, β)→ N (α, β, δ),

such that T−1 : ∂R̃(α, β, θ, δ) → ∂N (α, β, δ) is the restriction of S′ ◦ S to the
boundary. We then show that the distortions of both S and S′ are O(n−2), hence
so is the distortion of their composition.

Construction of S′: We endow both N (α, β, δ) and R(α, β) with Euclidean co-
ordinates,

N (α, β, δ) =

{
(r cos t, r sin t) : (r, t) ∈

[
αβ

δ
,
αβ

δ
+ β

]
×
[
0,
δ

β

]}
,

R(α, β) =

{
(x, y) ∈

[
αβ

δ
,
αβ

δ
+ β

]
× [0, α]

}
,

and define S′ by

S′(x, y) :=

(
x cos

(
yδ

αβ

)
, x sin

(
yδ

αβ

))
.

This mapping is bijective. For all (x, y) ∈ R(α, β),

|S′(x, y)− (x, y)|2 = x2

(
1− cos

(
yδ

αβ

))2

+

(
x sin

(
yδ

αβ

)
− y
)2

= O(n−2),
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where we used the fact that x = O(1), α, β, y = O(n−1) and δ = O(n−2). It follows
that for every two points p, q ∈ R(α, β),

|dR(p, q)− dR2(S(p), S(q))| < C̃

n2
. (17)

Observe that since N (α, β, δ) is not convex dN is not just a restriction of the
Euclidean distance dR2 . The distance dN between any two points in N (α, β, δ)

cannot, however, be larger than the Euclidean distance in R2 plus O
(
αδ2

β2

)
=

O(n−3). Hence the estimate (17) holds also with dN replaced by dR2 .

Construction of S: R̃(α, β, θ, δ) can be constructed by gluing two euclidean hexa-

gons. We define a bijective map S : R̃(α, β, θ, δ) → R(α, β) by defining it in an
appropriate way on each hexagon.

Let R̃I be one of the hexagons, with the following Euclidean coordinates:

R̃I =

(x, y) : x ∈ [0, β], y ∈


[0, a1] x ∈ [0, b1]

[0, a1 + tan(x− b1)] x ∈ (b1, b1 + b2 cosϕ]

[0, a1 + δ/2] x ∈ (b1 + b2 cosϕ, β]


where b2 = δ

2 sinϕ is the distance between the singular points, β = b1 + b2 cosϕ+ b3,

and a1 < a (the respective length in the other hexagon is a− a1). Denote

a(x) = sup{y : (x, y) ∈ R̃I}.

Now define a bijective mapping S′I : R̃I → R(a1, β) by

S′I((x, y)) =

(
x,

a1

a(x)
y

)
(we use the fact that θ ≤ π/2, otherwise we construct a slightly different coordinate

system). A similar construction is used to define S′II : R̃II → R(α− a1, β). Gluing

both maps together we get a bijective S′ : R̃(α, β, θ, δ)→ R(α, β). Now,

|S′I((x, y))− (x, y)| =
∣∣∣∣ a1

a(x)
y − y

∣∣∣∣ ≤ (a1 +
δ

2

)(
1− a1

a1 + δ
2

)
= O(n−2),

and similarly for S′II . Like with N (α, β, δ), the hexagons are not convex, but it can
easily be seen that

|dR̃I (x, y)− dR2 | ≤ δ/2 = O
(
n−2

)
,

hence for every two points P,Q ∈ R̃I ,

|dR̃I (P,Q)− dR(S′I(P ), S′I(Q))| < C̃

n2
, (18)

and similarly for the second hexagon.
By construction T−1 is a composition of the restriction of S and S′ to the bound-

aries, hence by (17),(18) we obtain (16), which completes the proof.
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Appendix B. Proof of Lemma 3.3. In this appendix we prove the Lemma:

For every n ∈ N and p, q ∈ Yn, the shortest path in N connecting p
and q intersects at most 3n out of the n2 sectors Nn(i, j). Likewise,

for every n ∈ N and p, q ∈ Xn, the shortest path in M̃n (viewed as a
metric space) connecting p and q intersects at most 3n out of the n2

“rectangles” M̃n(i, j).

Let p, q ∈ Yn and let γ be the shortest path in N between them. Assume that γ
intersects k sectors Nn(i, j), and denote their indices by

(i1, j1), . . . , (ik, jk),

where p ∈ Nn(i1, j1) and q ∈ Nn(ik, jk).
We prove that k ≤ 3n by observing that jr − jr+1 never changes sign (in the

weak sense, it may be 0), and ir− ir+1 does not change sign more than once, which
immediately implies k ≤ 3n. This follows from the fact that the shortest path
between a point in Nn(i, j) and a point in Nn(i′, j) only passes through sectors
Nn(·, j), and a shortest path between a point in Nn(i, j) and a point in Nn(i, j′)
only passes through sectors Nn(i′, ·) with i′ ≤ i. The same reasoning holds also for

M̃n, with its building blocks M̃n(i, j).
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