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Abstract

We numerically solve the steady-state equation and the stability spectrum for solidification in a
channel. For a large range of parameters stable symmetric and stable parity-broken solutions co-
exist. The branches of parity-broken solutions are found to originate from the symmetric solutions
through standard bifurcations.

1. Introduction

The problem of dendritic growth in a channel {1,2] is one of the classical problems of
pattern formation [3-6]. It incorporates in various limits the cases of a free dendrite, and
of the Saffman-Taylor finger. Both of these limiting cases have been understood in the
context of the paradigm of microscopic solvability [7,8]. Much progress has also been
made working out the interpolating case, using both numerical [1] and approximate
analytical [2] methods. However, it has recently been discovered that the spectrum
of solutions is much richer than had previously been supposed. Brener et al. [9] and
Thle and Miiller-Krumbhaar [10] found asymmetric (parity-broken) dendrites. Such
patterns were observed also in numerical simulations of the phase-field model (Fig. 1)
[11]. In this paper we use numerical boundary-integral techniques to extract additional
information about this new class of solutions and determine their stability.

Parity-broken dendrites are important not only in their own right, but also for the role
they may play in organizing more complex morphologies. The search for parity-broken
solutions was motivated by an attempt to understand the dense-branching morphology
[12] seen at large undercooling and small anisotropy [13,11]. The existence of such
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Fig. 1. The solid-liquid interface for a numerical simulation of the phase-field model under isotropic conditions.
Couples of mirror-image parity-broken dendrites grow at constant velocity. The direction of propagation was
shown to be independent of any source of anisotropy. It seems as if a mechanism of mutual stabilization acts
by the creation of an effective half-space for each asymmetric dendrite.

solutions allows for the existence of a front propagating at constant velocity. The velocity
of propagation of these fingers may provide a natural scale for the velocity of the
propagating front [13].

One of the critical issues in unraveling the puzzle of morphological selection is
the coexistence of two different linearly stable patterns for the same parameters. Such
coexistence has been hypothesized on general grounds by Ben-Jacob et al. [14], and has
been observed by Shochet and Ben-Jacob [15] in numerical simulations of the diffusion-
transition algorithmic model [16]. However, the origins of such coexistence from a
bifurcation viewpoint has not been clear. Typically, we should expect new solutions
to arise from bifurcations, which result in the instability of one of the branches. In
the problem at hand, Thle and Miiller-Krumbhaar reported coexistence of both stable
symmetric and parity-broken fingers for a finite range of their parameters. It is important
to investigate further the range of such coexistence, and also to understand its origins.

The existence of parity-broken solutions at all in this system is surprising given their
non-existence in the two limiting cases of the free dendrite and the Saffman-Taylor finger
[17]. On the other hand, parity-broken solutions have been found in eutectic systems
[18], and in directional solidification [ 19]. It is important to distinguish between these
parity-broken states, and the parity-broken states associated with transverse drift [20].
Considering an infinite array of symmetric fingers, the present parity-broken states arise
from an instability of Bloch wave number & = 7r, whereas the drift states are associated
with a k = 0 instability. The present case is qualitatively different from eutectics and



R. Kupferman et al./Physica A 213 (1995) 451-464 453

=
y

V x
Fig. 2. A finger growing in a two-dimensional channel.

directional solidification in that the cells here are of infinite depth.

Some of the questions we plan to address in this paper are: (i) the origins of the
parity-broken solutions in terms of bifurcations from known solutions, (ii) the existence
of additional branches of parity-broken solutions, and (iii) the stability of the various
branches, and its relation to the bifurcations. In particular, the mapping of the full
structure of solutions resolves some of the open questions raised by Ihle and Miiller-
Krumbhaar that could not be settled in the framework of the dynamical approach.

2. The free-boundary model

In this section, we review the well-known evolution equations for two-dimensional
fingers in a channel, growing under chemical diffusion-limited conditions. We consider
a crystal growing from a supersaturated solution in a two-dimensional channel of width
2a (Fig. 2). The channel is directed along the y-axis. The dimensionless solute concen-
tration field is defined as

Coo —C(X,¥,1)
I — ¢y

u(x,y, t) = , (1)
where c,, is the equilibrium concentration at phase coexistence, and ¢, is the solute
concentration far from the growing solid. In the solid then, u is equal to 4 = (coo —
Ceq) / (1—c.q), the dimensionless supersaturation. The location of the interface is denoted
by {(x,t). We adopt dimensionless units with length measured in units of the channel
half-width, @, and time measured in units of a®>/D, where D is the diffusion constant of
solute in the solution. The growth dynamics is assumed to be described by the one-sided
free boundary model (for a conserved order-parameter). In the solution, u satisfies the
diffusion equation,
ou

i Viu. (2)
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The interfacial boundary conditions are mass conservation
A-Vu(x,{(x,t),t) =— (1 —dox(x,t)) v,(x,1), 3)

where 7 is the interfacial normal unit vector, k is the curvature, and dj is the capillary
length, and the Gibbs-Thompson local equilibrium relation,

u(x,{(x,t),t) = 4— dok, (4)

(we neglect the kinetic effects). Four-fold surface tension anisotropy is included by
setting do(0) = do(1 — € cos468), where € controls the level of anisotropy, and @ is the
angle between the interface normal and the channel orientation. Finally, impermeable
walls are assumed, implying du/dx =0 for x = +1.

As is standard, we transform Eqs. (2)-(4) into an integro-differential equation for
{(x,t), in a frame of reference moving at velocity v along the channel axis,

= / dt’/dx’ [2p+Z(x’,t’)]Q(x,f(x,t),t;x’,{(x’,t'),t')

- /d!'/ds(t)do(s ) (s, t)—(x (x, 1), x(5), (5.1, z) (5)

The integration ds is along the solid-liquid interface, the Péclet number, p = av/2D, is
the dimensionless velocity, and G(r, t;1°,¢') is the Green’s function given by

= o(t—1) [(y—y) +2p(t—1)]°
SRS D=y p{_ A )

()c+4n—)c’)2 (244n—x—x")?
X {exp [——W] +exp [— 2 —7) ]} (6)

(&(r) is the Heaviside step function). In fact, the integral over dG/dn gives rise to a
discontinuity in u analogous to that of a dipole layer, hence {(x,¢) has to be taken
slightly inside the solid.
3. Numerical method
3.1. Steady-state solutions

If a steady-state solution is assumed the integration over ¢ in Eq. (5) can be car-

ried out explicitly. The stationary interfacial shape, {(x), then satisfies the following
equation,

—/&%MMQ§UJMHMJM)
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+2p / d¥'G (x,£(x):x. £ (). 7

with

G(r;r) = 51;6—17()’—)") Z {KO (p\/(x +4n—x")2+ (y— y/)Z)

n=—0oo

+K0(p\/(2+4n—x—x’)2+(y—y’)z) } (8)

To solve Eq. (7) numerically for asymmetric solutions, we generalize the boundary
integral method developed by Kessler et al. for symmetric solutions [1]. Parity-broken
dendrites are fingers approaching negative infinity at x = —A;, A2. As the asymptotic
crystal width is constrained by global solute conservation, A; + A2 = 24, this introduces
one additional degree of freedom in the solution. Similar to the symmetric case, the
asymptotic behavior of {(x) at { — —oo. is given by

xX() ~ Ay — Cre®™ — Dye™, 9
with B, = \/a3 + 2pa; and 7y, = \/4a3 + 4pa,, with parallel expressions obtaining at

x — —Aj. The exponential approach rate, a;, is the smallest root of

2pcos [Ba(1 — A2)] = do(1 — €)arBrsin [Ba(1 — A2)] . (10)

In order to operate on a bounded computational field, the interface is parameterized
as £ (x) = Zo(x) + z(x), where the base curve, {3(x), has the asymptotic behavior of
the solution. Specifically, we take

1 w4 x m(x — x0)°2

—1 — — , A <x<

ay ogsin [2 ()n +x0)] 8az (A2 — x0) PeES
Jo(x) = 2 2 ’

—1—10 sin[z A2_x) —W(x_x()) Xo<x<A

as g 2 \ A —x0 8ay (A + x0) 0 2

(11)

where xg = (Ay — A1) /2. The derivative of the computational field, z(x), at the end
point is then finite, and given by

() = 22 ayB3do(1 — €) + yap tan [y2(1 — Ap)]
2 - = ]
@ C?  2pay — 2aky,do(1 — €) tan [y2(1 — Ay) ]

(12)

with a similar expression obtained for z/(—A;).

The numerical procedure consists basically of discretizing z (x) into N points, which
together with p and A,, form a total of N + 2 unknowns. For a correct implementation
of the boundary integral technique, it is necessary for z and z’ to be fixed at both end
points, —A; and A;. Whereas in the symmetric case, translational invariance could be
used to fix z(A;), with z(Ay) immediately determined by symmetry, here the boundary
condition remains undetermined on one end. It turns out that the results of the numerical



456 R. Kupferman et al./Physica A 213 (1995) 451-464

procedure are practically insensitive to the value substituted for this missing boundary
condition as long as it is kept fixed. The reason is that the procedure is equivalent
to solving a second order ordinary differential equation with initial conditions given
at z = —oo. Local analysis near these points shows that any finite error will decay
exponentially when shooting back toward the tip. The set of equations is completed
by the N — 2 equations, obtained by evaluating Eq. (7) at the interior points. This
non-linear algebraic set is then solved by Newton’s method. The integrals entering into
Eq. (7) are evaluated using a simple trapezoidal rule, which after accounting for the
Green’s function singularities, is accurate to O(1/N?). The quadratic convergence was
used as a basic test for the entire procedure.

In many cases, it proved necessary to use mismatch functions in order to facilitate
the numerical procedure. The method is to fix p and A, relaxing one equation (for
X = xp), and allowing a discontinuity in z(x) at this point. Thus, for each set of values
(p, A2), there are two mismatch functions, (Azg, Azé), and the remaining procedure is
an ordinary root finding in this two-dimensional space.

3.2. Linear stability operator

In this section we describe the numerical procedure for calculating the stability spec-
trum of steady-state solutions. It is based on the method developed by Kessler and
Levine which was already applied for free dendrites [21], and for Saffman-Taylor fin-
gers [22]. Here, the perturbation equation is written in terms of longitudinal shifts,
rather than normal shifts.

Once a steady-state solution, ¢(x) has been found, we set

{(x,1) ={(x) + 8(x)e™, (13)

and linearize the equation of motion, (5), about the small perturbation, §( x). Integration
over ¢’ can again be carried out explicitly, yielding a non-linear eigenvalue equation for
the amplification rate, w,

G,
w/dx' G,8(x)=2p /dx/ —ay—, [B(x) — B(x’)]
+/dx’ [3do(x") sin @ — 4edy sin46 cos 8] k(x')
. 0G, 4G,

X (SIHGW — COS Ga—y,> 6’()(’)
oG, G,

+/dx'do(x') cos’ 6 sin9~G—— —cosf@— ) & (x")
ax’ ay’

+/dx’dg(x’)x(x')

*G, 3*G, , Gy o,
X {(taneax,ayl - v > [ﬁ(x) —6(x )] - b—;al(x )},

(14)
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where the w-dependent Green’s function, G,,, is obtained by substituting p — 1/p? + @
for the arguments of the Bessel functions in Eq. (8). We will use the standard quasi-
static approximation neglecting the time dependence of the perturbation in all terms
other than the velocity. Under this approximation the Green’s functions are no longer
w-dependent, and the eigenvalue problem reduces to a standard one. Formally, it can be
written as

wAb6(x) = Bé(x), (15)

where A and B are integro-differential operators.

The numerical implementation of the stability calculation consists of first interpolating
the steady-state solution to a vector of size Ny (typically, Ny ~ 300). For better
results, it was necessary to get a higher density of discretization points at the tails. To
maintain accuracy, the partition of discretization points, x;, was calculated using the
parameterization

tanh pw

16
tanhp ’ (16)

x(w)=xo+ A4

where w; is the computational axis varying from —1 to 1, and p is an adjustable
parameter.

Next, the Ny, X Ny, stability operators, A and B, were calculated. The derivatives
were replaced by the standard three-point discretization, whereas the integrals were again
evaluated by the trapezoidal rule after accounting for the singular pieces. Finally, we
solved the linear eigenvalue problem using the EISPACK Library routine DRGG. This
routine solves the equation directly without going through the inversion of .4, which
proved to induce large numerical errors [21,22].

4. Steady state solutions
4.1. Symmetric dendrites

The essence of our results is presented in Figs. 3a-3¢, where the Péclet number of
each of the multiple steady-state solutions is plotted versus supersaturation. With respect
to symmetric fingers, for which an approximate theory exists, our results provide a
new picture. The approximate analytical treatment of Brener et al. [2] predicts that
branches are formed by connecting the nth dendritic-like (high p) solutions to the
nth Saffman-Taylor-like (low p) solutions. By dendritic-like, it is meant that p is an
increasing function of 4, unlike the Saffman-Taylor like solutions. Thus, the nth branch
was predicted to be wholly contained in the r» — 1 branch. Brener et al. also gave a
convincing argument for why only the dendritic-like solution could be stable.

The first of these predictions is not borne out for low anisotropy, as well as for
large surface tension (which, from dimensional considerations, is equivalent to a narrow
channel). For € = 0.1 (Fig. 3c), the n = 0 branch is in accord with the prediction,
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Fig. 3. Péclet number versus supersaturation for steady state solutions of parity-broken dendrites (filled dots)
and symmetric dendrites (open dots). The parameters are dy = 0.01 and (a) € =0, (b) € = 0.09 and (c)
e=0.1.

however all the higher branches which are inside the main branch are Saffman-Taylor-
like. Thus, the next branch connects the n = 1 and n = 2 Saffman-Taylor solutions,
followed by a branch connecting the n = 3 and n = 4 Saffman-Taylor solutions, etc. For
€ = 0 (Fig. 3a), all the branches of the symmetric solutions are Saffman Taylor like,
but this time it is the » = 0 and n = | solutions which are connected, then, the n = 2
and n = 3 solutions, etc. Clearly, a continuous transition between these two pictures as
anisotropy is decreased, must go through the merging and the reconnection of branches.
In Fig. 4 we show the p(4) curves for the symmetric solutions for € = 0.08. Compared
to the € = 0.1 picture, the Saffman-Taylor solutions remain practically unchanged, while
the main dendritic branch merges with the n = 1 branch and the two reconnect. Hence,
for € = 0.08, the n =0 and n = 1 Saffman-Taylor solutions are connected, while the main
dendritic solution is connected to the n = 2 Saffman-Taylor solution. This process of
merging and reconnection of the main dendritic solution with the higher Saffman-Taylor
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Fig. 4. Péclet number versus supersaturation for symmetric dendrites for dp = 0.01 and € = 0.08.

branches goes on as anisotropy is further decreased. Presumably, an inverse process
occurs for increasing anisotropy or for decreasing surface tension, giving rise to the
formation of higher dendritic branches. Clearly, for any finite amount of anisotropy, the
entire discrete set of free dendrites must be recovered in the limit of infinite channel
width.

Brener et al.’s approach, while very useful, does not enable to capture the intrica-
cies of this merging and reconnection. This is presumably due to the nature of their
approximation for the zero-surface-tension solution which does not capture the true sin-
gularity structure in the complex plane. A similar merging and reconnection were found
in the case of the Saffman-Taylor sector problem to result from the existence of branch-
cut singularities of the zero-surface-tension solution [23]. Verifying such a singularity
structure in the present problem is an interesting challenge for the future.

4.2. Parity-broken dendrites

In addition to the symmetric solutions, we also obtained steady-state parity-broken
dendrites (Fig. 6). As a first verification, we compared our solutions to the dynamical
results of Ref. [10]. The agreement is fairly good, keeping in mind that the latter is for
a non-conserved order-parameter.

For isotropic surface tension (Fig. 3a), one branch of parity-broken solutions was
obtained. It originates from the main branch of the symmetric solutions at A = 0.665
through a forward bifurcation (the asymmetry vanishes as the two solutions merge)
(Fig. 5). The Péclet number, p, increases rapidly with 4, hence, the parity-broken
solutions are presumably the ones which are dynamically selected.

For € = 0.09, two additional branches of parity-broken solutions were found. Both also
bifurcate from branches of symmetric solutions. The first originates from the main den-
dritic branch at 4 = 0.745, through a forward bifurcation, whereas the second connects
the main dendritic branch to the n = 1 symmetric branch. For slightly higher anisotropy,
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Fig. 5. A measure of the asymmetry of the parity-broken dendrites, (A2 —A; ) /(A2+A1), versus supersaturation
for dy =0.01 and (a) € =0, (b) € =0.09 and (c¢) € =0.1.

the bifurcation point of this second branch merges with the original bifurcation point
to form a new branch which is disconnected from the symmetric solutions. This new
branch structure is obtained for € = 0.1 (Figs. 3c,5¢).

The above results settle the puzzle of the origin of the parity-broken dendrites. If
all the steady-state solutions are represented on hypersurfaces in the three-dimensional
space of control parameters, (4, dp, €), then the parity-broken solutions are analytically
connected to the symmetric ones, arising from standard bifurcations. Only along cuts
in the parameters space, such as the p(4) curves, the symmetric and the asymmetric
solutions can be disconnected.
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Fig. 6. Steady-state solutions of a parity-broken dendrite (solid) and a symmetric dendrite (dashed) in a
channel for dyp = 0.01, € = 0 and 4 = 0.7. The velocity and the transversal location of the parity-broken
dendrite are p = 1.48 and A = 0.869. The velocity of the symmetric dendrite is p = 0.56.

5. Linear stability

For all the steady-state solutions, we performed the linear stability calculations. The
spectrum consists of three distinct pieces, as was already found for free dendrites [21]
and for Saffman-Taylor fingers [22]. At large negative Re w, there is a real continuum,
ending at a point on the negative Re w axis. From there emerges a complex continuum,
followed by real discrete modes. A discrete zero mode is always present due to the
translational invariance. As we parameterize our perturbations by 8z, the longitudinal
shift, the translation zero-mode is completely decoupled (contrasting with using én),
and so cannot be used as a measure of the accuracy of the procedure. The unstable
modes all belong to the discrete spectrum, therefore we consider below only the discrete
eigenmodes in the vicinity of the stability threshold. If represented as normal shifts,
these modes are decaying towards the boundaries, hence correspond to tip instabilities.

The main goal is to understand the spectral flow associated with the main branches
of solutions, and in particular between the symmetric and the parity-broken solutions.
In Table 1 we present the leading eigenmodes on the n = 0 symmetric and parity-
broken branches for € = 0. Below the bifurcation point, 4 < 0.665, the branch of
symmetric solutions is linearly stable. At the bifurcation point, it picks up one unstable
anti-symmetric mode. Thus, the stability is transferred to the branch of the parity-broken
solutions. At 4 ~ 0.69, it acquires a second unstable mode, this time a symmetric one.
This instability occurs at the point where p becomes a decreasing function of 4, in
accord with the argument of Brener et al. [2]. The branch of parity-broken solutions is
stable as befits a forward bifurcation. To summarize, these is a stable symmetric solution
for 0.62 < 4 < 0.665, and a stable parity-broken solution for larger A.

In Table 2 we present the leading eigenmodes on the main symmetric branch for € =
0.09. At the main bifurcation point, 4 ~ 0.665, the same scenario repeats, namely, the
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Table 1
Data for the leading eigenmodes on the symmetric and the parity-broken main branches for € = 0. ws and
w, denotes symmetric and anti-symmetric modes respectively

4 p w4 ws
Symmetric dendrites 0.65 0.47 ~0.11 —-0.65
0.66 0.51 ~0.06 —0.61
0.67 0.55 +0.03 —0.47
0.68 0.57 +0.15 —0.25
0.69 0.57 +0.33 +0.02
0.70 0.56 +0.54 +0.28
)
Parity-broken dendrites 0.67 0.66 ~047
0.68 091 -0.90
0.69 1.18 ~1.57
0.70 1.48 ~2.52

Table 2
Data for the leading eigenmodes on the main symmetric branch for € = 0.09

A r WA ws

0.64 0.69 -0.12 —1.30
0.65 0.76 -0.08 —1.25
0.66 0.83 -0.03 —-1.17
0.67 0.91 +0.01 —1.10
0.68 0.99 +0.05 —1.10
0.69 1.09 +0.03 —-1.35
0.70 1.21 -0.04 -2.12
0.71 1.37 -~0.09 —2.82
0.72 1.54 -0.10 -3.12

symmeiric solutions are stable below it, and pick up an unstable mode at the bifurcation
point. The stability is transferred to the parity-broken solutions. Here, the stability of
the symmetric solutions is recovered at the second bifurcation point, 4 ~ 0.696. The
unstable mode is transferred to the emerging parity-broken branch. Thus, except for a
short interval between the two bifurcation points, both the symmetric and the parity-
broken solution are linearly stable till the next bifurcation off the symmetric branch is
encountered at A = 0.745. This interval of instability shrinks as the bifurcation points
merge, and disappear when the parity-broken solutions disconnect from the symmetric
ones.

6. Discussion

In this paper, we have shown that the new class of parity-broken fingers growing
during solidification in a channel are analytically connected to the symmetric solutions.
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The branches of parity-broken solutions emerge through standard bifurcations. For suf-
ficiently strong anisotropy, two of such branches can merge, and disconnect from the
symmetric branch. Such parity-broken solutions exist for 4 > A.(dp, €).

We have found that the fastest parity-broken branch is stable for all parameters we
have investigated. The symmetric branch is stable for 4 up to the first bifurcation. This
region grows as the anisotropy is increased. Thus, we confirm the coexistence of two
stable patterns on a wide range of parameters.

Thle and Miiller-Krumbhaar report that at sufficiently large anisotropy, the symmetric
branch appears to intersect the parity-broken one, beyond which point a stable parity-
broken solution was not found. For dy = 0.01, we found no such crossing up to € = 0.28.
One needs to investigate this point further, in particular for smaller do corresponding to
the values used by Ihle and Miiller-Krumbhaar. We did see however that as € increased,
the eigenvalue of the least stable mode increased reaching a local maximum before
turning back down again. Thus, it is conceivable that at lower values of dy the eigenvalue
might occasionly cross zero.

Another open question is the possibility for fingers to grow even in directions other
than the directions of minimum surface tension. Ihle and Miiller-Krumbhaar obtained
fingers for which the growth direction was at an angle of 8.7° with respect to the
natural growth direction. On theoretical grounds, this is not surprising as parity-broken
solutions exist even in the absence of anisotropy. A similar phenomenon happens in
Saffman-Taylor fingers [24]. The stability of such “misoriented” fingers is worthy of
further study.

The most difficuit set of questions that need to be addressed are those concerning
pattern selection and morphology transitions. In a given channel, many different patterns
are possible in principle. For example, for sufficiently large anisotropy the system has
to select between symmetric and parity-broken fingers. One consideration is the relative
size of the basins of attraction of the two solutions. The other is the non-linear stability/
insensitivity to noise of the two patterns. In addition, there is the possibility of multiple
fingers in a given channel [9]. Of course, knowing the result for p(dp, 4, €) allows us
to directly find the velocity of the n-fingers solution,

2D
Uny = Tnp(ndo/a,A,e). an

For the symmetric fingers, we know that this function has a maximum [2]. Presumably,
the same holds true for the parity-broken case as well. It would be interesting to see
if the selected channel width is such that the system operates at the maximum velocity
[13].
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