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Abstract

We solve numerically for the steady-state spiral in the thin-interface limit, including the effects of diffusion of the slow field.
The calculation is performed using a generalization of the hybrid scheme of Keener. In this method, the diffusion equation
is solved on a suitable mapped lattice while the eikonal equation relating the field on the interface to the interfacial velocity
and curvature is solved independently. We present results for the selected frequency and tip radius as a function of the various
parameters. We note that a stability analysis based on these results may be performed.

The study of spiral patterns in excitable media has
been the focus of considerable attention in recent
years (for a review, see [1]). Much progress has been
achieved in this area, through the use of simulations
and the analysis of various limiting cases. Spirals ex-
hibit a wide range of interesting dynamics, including
transitions from simple rotation to meandering (com-
pound rotation) to hypermeandering and yet more
complex behaviors [2,3]. Spirals are relevant not only
in the context of chemical reactions such as the famed
Belousov—Zhabotinskii reaction [2.4] but also in vari-
ous biological systems such as electrical conduction in
heart tissue [5] and aggregation of the slime mold {6].

A key tool for analyzing spirals, and patterns in
general, is the thin-interface, or free-boundary limit.
This limit arises [7] from taking the ratio, 1/e, of the
reaction rate of the bi-stable reaction to the other reac-
tion to be large. In this limit, the dynamics reduces to
that of the single “slow” field. The spiral can then be
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considered as a sharp interface between two different
phases of the slow field, the so-called “excited” and
“refractory” regions. In particular, there is much evi-
dence to support the notion that in this limit, the spiral
solution achieves a simple scaling form, known as the
Fife ansatz [8], in which the parameter € only deter-
mines the overall length and time scales of the pattern.
In this limit, the spiral is characterized by only a few
simple macroscopic “material parameters” derivable
from the underlying dynamics.

This Fife-scaling has been verified in two limits.
One is the limit where the diffusion constant of the
slow field is vanishingly small [9-11]. In this limit,
the “tip radius,” the distance of closest approach of
the spiral to the center of rotation, goes to zero. Also,
the curvature at the tip goes to infinity. One then has
to treat the tip region separately, with a cutoff length
scale given by the larger of the small diffusion length
or the small interface width. When one analyzes the
stability of the spiral in this limit [12], one finds that
the tip always exhibits a single unstable mode. It is
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difficult to square this behavior with that observed in
simulations [13], where the spiral undergoes a Hopf
bifurcation from steady rotation to meandering, which
arises as a result of a complex conjugate pair of un-
stable modes. One is left to wonder whether this dif-
ference in dynamical behavior is a result of the Fife
(small €) limit or the small diffusion limit.

More recently, the Fife limit has been solved in a
second limit, where the dynamics in the two phases is
symmetrical [14]. In this limiting case, the tip radius
and the curvature at the tip are both zero. While the
dynamical stability of this solution has not been in-
vestigated, it appears from simulation that there is no
meandering transition in this case [15]. This is in fact
quite reasonable, since by symmetry the spiral cannot
depart from the center of rotation. Thus, again, we are
stymied in our attempt to understand the generic dy-
namics of the Fife regime and in particular the fate
of the meandering transition in this limit. In order to
achieve this aim, a necessary first step is to generate
a solution of the steady-state spiral for finite diffusion
and asymmetric dynamics. In the following we report
on such a solution.

Let us first formulate the problem, so as to fix nota-
tion and terminology. We start from the two-variable
reaction—diffusion system studied by Barkley [13]:

i =V2u+u(l —u)u— (v+b)/a)/e, (1a)
b= DV%0+u—v. (1b)

The fast variable, u, by virtue of the smallness of ¢, is
always either O (refractory, “—") or 1 (excited, “+7),
except for sharp transition regions of width /€. Thus,
the u-field can be eliminated, resulting in the v-field
dynamics,

'l.)+ = DV2U+ +1-— Uy, (23)
v_=DV3u_ —v_, (2b)
in the two phases, respectively. The v-field is continu-
ous and has continuous first derivative across the tran-

sition regions, or interfaces. The dynamics of these
interfaces is given by the eikonal equation

cn = —k + v(vin) /e, (3)

whereby the normal velocity ¢, of a given point on the
interface is given by the interfacial curvature « and the
value of v at this point. We adopt the sign convention
that the interface has positive velocity if the excited
phase propagates into the refractory phase. Similarly,
the interface curvature is positive when the excited
region is convex. The function v can be computed
from a study of soliton propagation in Eq. (1a). For
our purposes, it is sufficient to replace v by its linear
expansion around the stall value v = %a — b, where
v vanishes, so that

V2

v(Vint) = “7 (Vint — vs). 4

As a can be eliminated by a rescaling we seta = 1.
It is convenient at this point to shift the v-field by the
constant v, yielding the equations

by = DVZuy 4 g1 — vs, (52a)
n=—k — V2vin/ Ve, (5b)
where g4 =1 —v5, g = —v;.

We are interested in steady-state spirals, rotating at
constant frequency w. The spiral consists of a “front,”
along which the excited phase invades the refractory
phase, and a “back” along which the system reverts
to the refractory state. The front and back meet at the
spiral tip, where ¢, vanishes, at a distance rg from the
rotation center, which we may fix at the origin. Going
into the corotating frame, with polar coordinates r and
6, our equations read

d

DV3ug + a)% +g+—vy =0, (6a)
\/Ev-

Cp = —k — \/g‘“‘. (6b)

This then is the system we shall study.

- Fife [8] noticed that whereas € appears explicitly
in Egs. (6), it can be eliminated through the rescaling
of lengths by €1/, time by ¢ ~!/? and the v-ficld by
e 13 so that r — €!/6 “1Bw, ¢ — e Vo,
x — € /%%, and v — €'/3v. Then, Eq. (6) reads

r,w—> €

d
DVzvi +w% + g+ —el/3vi =0, (7a)
en = —Kk — /2 Vi (7b)
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Assuming that the rescaled v is O(1), we can drop the
last term, in effect a “mass” term for the v-field, in
Eq. (7a), yielding the e-independent Fife equations

d

DV3uy + 0 E g =0, (8a)
do

Chp = —K — ﬁvim . (8b)

Note also, that the Fife-limit justifies our linearization
of the function v in Eq. (4).

We now turn to a discussion of our numerical proce-
dure for solving Egs. (6) (and likewise (8)). The pro-
cedure is an extension of the one developed by Keener
[14] in his study of Egs. (6) in the symmetric limit
g+ = —g-—. The essential insight of Keener is that the
diffusion equation (6a) is very difficult to treat due to
the discontinuity of the operator along the as yet un-
known interfaces. Furthermore, the eikonal equation
(6b) refers to values of v along the interface, which
will not necessarily pass through the grid points, so
that a complicated interpolation scheme is required.
Keener managed to eliminate both these obstacles in
one fell swoop by mapping the plane as in Fig. 1(b),
so that the excited (refractory) region is the lower (up-
per) half-plane. The spiral front and back are just the
positive and negative x-axes in this new coordinate
system. Keener noticed that if one knew the position
of the spiral front, parameterized by 6;(r) (for a sym-
metric spiral, the back is given by 6, = 8¢ + ) then
the polar coordinates (r, ), where

a=60—6:(r), ©)]

have just the required properties. The front maps to
the line @ = 0, i.e. the positive x-axis and the back to
« = m, the negative x-axis. Also, so long as 8(r) is
monotonic, the mapping is 1-1 and onto. The calcula-
tion proceeds in an iterative fashion. Given an initial
guess for the curve 6¢(r) and w, one can solve the dif-
fusion equation (6a) in the mapped coordinate system.
In particular, the solution gives v along the interface.
This is used as input to the eikonal equation (6b) which
for a given vy (r) is an ordinary differential equation
for the front 6¢(r). There is a unique w for which the
eikonal equation has a solution. This value of @ and
the associated solution for the front are then fed back

as inputs to the next round of the procedure. The re-
sult converges after a few rounds, yielding a consistent
solution of both halves of Egs. (6).

The key to extending this procedure to the general
asymmetric case is to construct a suitable mapping.
Basically we wish to again consider a covering of
the plane generated by rotates about the tip of the
spiral front. To do this, we first pick a polar coordinate
system (p, ) centered at the spiral tip (Fig. 1(a)),
defining

pcose = rcosf —rg,

10
psing = rsinf. (10)

In this coordinate system, the front and back are given
by ¢r(p) and gu(p), with

o(0) = 3. (1)

The remaining obstacle is that the front and back are
no longer rotates of each other; i.e. ¢y (p) # @r(p)+m.
Thus, if we were to adopt the Keener definition of «,
Eq. (9), the front would again map to the ray @ = 0
(the positive x-axis), but the back would not map to
the negative x-axis. To fix this, ¢(«) must smoothly
interpolate from ¢f(p) at & = 0 to gp(p) at a = .
A simple choice which satisfies this constraint is to
define « implicitly by

9:(0) = 3,

p=aoa+ ¢r(p)
+ (g (p) — @r(p) — ) sin? . (12)

The polar coordinates (o, o) thus map the asymmetric
spiral to the x-axis as depicted in Fig. 1(b). It is easy
to verify that & is a monotonic function of ¢, so that
the mapping is 1-1 and onto, so long as |lgn(p) —
@i(p) — | is everywhere less than 2. For very large
asymmeltry, this condition is violated, and a different
mapping needs to be found for these cases, In any
event, we will restrict our attention in this paper to
moderate values of the asymmetry.

With the mapping in hand, we can proceed to the
calculation. Instead of the iterative scheme employed
by Keener, we have chosen to use a Newton’s method
approach. Given two trial interface curves ¢r(p) and
b (p) along with values for w and rp, we can calculate
the field along the interface, vint(p) in two indepen-
dent ways. The first is from the diffusion equation (6a),
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refractory state

(a)

refracto;

(b)

Fig. 1. (a) Schematic plot of the spiral geometry. (b) The mapping from the physical plane to the (o,a) plane.
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Fig. 2. The steady-state spiral for the parameters: € = 0.02,
D =02, vs=04

transformed to the variables (p, ). (We present the
transformed diffusion operator and some technical re-
marks, including a discussion of boundary conditions,
in Appendix A.) The second method of calculating
vine 18 from the eikonal equation (6b), since viy is
determined from the interface curve via « and ¢,. In
general, of course, the two determinations of vjpe will
yield differing results. In order to have a consistent
solution, we have to find values of gf(p), ¢v(p), @
and rg such that the two calculations of v, agree for
all p. Thus, if we have a mesh of N + 1 points in
p, we have 2N nonlinear equations (2N — 2 match-
ing equations for viyy, in the interior, one at the tip,
and the smoothness condition ¢{(0) = —g; (0)) for
the 2N variables (N — 1 interior values for each of ¢
and ¢y, w and rp). These equations are then solved via
a Newton’s method solver, starting from some initial
guess.

We present in Fig. 2 the result of our calculation
for the steady-state spiral shape for a typical set of pa-
rameters. We present in Fig. 3(a) a graph of w vs. the
asymmetry, g4 + g—, and in Fig. 3(b) the results for
ro vs. the asymmetry. We see in agreement with ex-
pectation that the tip radius rg increases with increas-
ing asymmetry. Also w decreases with asymmetry, in
accord with the result for the small diffusion limit of
Keener [16], Karma [10] and Bernoff [9].
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Fig. 3. (a) The spiral rotation frequency w vs. asymmetry. (b)
The tip radius rg vs. asymmetry, g4+ + g—. Here, ¢ = 0.02,
D =0.2.

In Fig. 4 we investigate the ¢ dependence of w and
ro. We compare the results of solving Eq. (6) with
those of the Fife-scaled equation (8). Here the answers
are quite good for €’s less than about 1/100. We also
present on this graph the results from a direct simu-
lation of the original two-field model, Eq. (1), using
Barkley’s EZSPIRAL program. The results for the fre-
quency o are excellent, whereas those for rg, while
qualitatively correct, are off by about 50%. The rea-
sons for this fairly large discrepancy needs to be bet-
ter understood, though it is clear from the comparison
to the Fife scaling that the tip radius is much more
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Fig. 4. (a) The spiral rotation frequency w vs. €. (b) The tip
radius rg vs. €. The numerical results are given by the open
circles (connected by lines to guide the eye). The Fife scaling
laws are shown by solid lines. The results of simulations are
indicated by filled circles. Here, D = 0.2, vs = 0.4.

sensitive to finite € effects. The discrepancy conceiv-
ably could arise due to the linearization of the function
v in the eikonal equation (6b).

The behavior of the solution with D is more inter-
esting. We show in Fig. 5 a graph of ry (in Fife units,
i.e. scaled by €71/9) vs. D for several values of e,
together with the prediction of Bernoff. We see that for
any finite €, rg approaches a constant as D goes to 0.
This constant decreases with decreasing ¢, vanishing
(even in Fife units) only as € goes to 0. (It is interesting
to note that our numerical procedure has great diffi-
culties when € is smaller than about 10~2° (the source
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Fig. 5. The Fife-scaled tip radius ro(Fife) = roe~!/6 vs. D for
€ = {0.02,0.001, 0.0005}. Here vs = 0.4 The straight line is
the prediction of the Bernoff theory.

of this problem and its implications are not yet clear).
Thus the system adopts the Keener/Karma/Bernoff
diffusionless outer solution only for zero € (or, equiva-
lently, zero “mass” term in Eq. (7a)). This is consistent
with the observation that the Bernoff solution of the
core region is only consistent for zero €. If there were
to be a mass term, then the leading order equation for
v in the “core” region, r < ry, is (in Fife units)

d
wd_;’ = ve!/3, (13)

which has no periodic solution. Thus, only if
€ < O(D) is a Bernoff type core possible. For gen-
eral €, the system chooses to keep ry finite, with vy
going to infinity as D goes to 0. Of course, for suffi-
ciently small D, finite interface width effects become
critical and our reduction to a free boundary problem
is rendered invalid. All this only serves to underscore
how delicate the Bernoff limit is, with its requirement
that €!/3 « D'/3 « 1. It is perhaps no surprise, then
that the stability properties of the Bernoff solution are
very atypical. It also raises the hope that a new kind of
“diffusionless” core, in the presence of a finite mass
term, might be found, whose properties would more
closely correspond to those of the generic spiral.
While these results are instructive, their true impor-
tance lies in the fact that they are an essential prerequi-
site for the study of the many open questions regarding



D.A. Kessler, R. Kupferman/Physica D 97 (1996) 509-516 515

spiral stability and dynamics. A linear stability analy-
sis may be constructed using the same hybrid formu-
lation we have used for the steady-state calculation.
Work along these lines is proceeding apace.
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Appendix A

We may express the diffusion equation (6a) in the
transformed variables (p,) as

3%v 1 dv a%v
2t e TP O3
pa

82v
+ f2(p, a) +f3(p aaa

+w[f4(f> Ol) +f5(p a)—]
+g+—v=0. (A.D)

The coefficient functions f; can be most conveniently
expressed in terms of the following derivatives of the

mapping a(p, ¢):
Jo
g1 = )

_91(p) + [9y(p) — wi(p)]sin’ 5
1+ ep(p) — pr(p) — m]sine’

(&)
g=|—
¢/,

1

"1+ Len(o) — o0

—Jt]sinoz’

83 = o )
 Hlen(p) = gi(p) — wlcosa
{1+ 3l (p)

— or(p) - wlsina)’

3
g4—<ail) = —oo{[ef + (pi — ¢f)sin’ La]

(%) _
85 = aap

+ Sg1(ep — ¢f) sina},

—1e2{(ey, — ¢p) sine

+g1(gp — ¢f —m)cosa}.  (A2)

Then

fi=g}+8%/p"%

fr=gs+8185+81/p+ 8283/p°

f3 =2z, (A.3)
Ja=rgsing,

fs=rosing g + (L + (ro/p) cos¢)g2.

Similarly, the normal velocity, cp, is given in the
mapped coordinates by
P+ rocos e b — Progs , Sin gr b
[1+ (pg; ,)21'/2

, (A4)

¢p = T

and the curvature, « by

2 3 ’
‘= i—P (‘/’é,b) — P9y — 205 (A.5)
[1+ (p¢},b)2]3/2 ' )

where the “+” (“=) refers to the front (back)
respectively.

We need to specify boundary conditions for our so-
lution of both the diffusion (A.1) and eikonal (6b)
equations. We solve the diffusion equation on the in-
terval p € (0, pmax) Where we choose pmax suffi-
ciently large so that the spiral completes one turn. We
use no-flux boundary conditions on the outer bound-
ary, requiring dv/dp to vanish at pmax. Note that the
boundary is circular in the coordinates (p,x), so that
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it is deformed (and co-rotating with the spiral) in the
original frame of reference. Nevertheless, as we expect
the dependence on the outer boundary to be exponen-
tially suppressed, we do not expect the exact nature
of the boundary conditions to be relevant. Indeed we
verify that increasing pmax has a negligible effect on
the selected w. We require v to be regular at the origin.
We accomplish this by rewriting Eq. (A.1) at p = 0
using Green’s theorem to re-express the Laplacian as

ov da av
1\ ), "5 ) \ba *
Pla Plo N0 /p p=4p/2
(A.6)

where Ap is the lattice spacing in p.

For the eikonal equation, we require ¢f and ¢| to
vanish at the outer boundary. We require the curve to
be twice differentiable everywhere in its interior, in-
cluding at the tip. This condition, as noted in the text,
provides one of the equations needed in our method.
We also point out that our geometry fixes the require-
ment that ¢f(0) = 3, and ¢,(0) = 3.

The results presented in this paper were obtained
using 50 lattice points in « and 50 in p. We found
these sufficient to geuerate answers correct to the 1%
level.
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