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STRONG CONVERGENCE OF PROJECTIVE INTEGRATION
SCHEMES FOR SINGULARLY PERTURBED STOCHASTIC

DIFFERENTIAL SYSTEMS∗

DROR GIVON† , IOANNIS G. KEVREKIDIS‡ , AND RAZ KUPFERMAN§

Abstract. We study the convergence of the slow (or “essential”) components of singularly
perturbed stochastic differential systems to solutions of lower dimensional stochastic systems (the
“effective”, or “coarse” dynamics). We prove strong, mean-square convergence in systems where both
fast and slow components are driven by noise, with full coupling between fast and slow components.
We analyze a class of “projective integration” methods, which consist of a hybridization between a
standard solver for the slow components, and short runs for the fast dynamics, which are used to
estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for
the discrepancy between the results of the projective integration method and the slow components
of the original system.
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1. Introduction
Many problems in the natural sciences give rise to singularly perturbed systems

of stochastic differential equations (SDEs) of the form

dxε
t = a(xε

t, y
ε
t ) dt + b(xε

t, y
ε
t ) dUt, xε

0 = x0, (1.1a)

dyε
t =

1
ε
f(xε

t, y
ε
t ) dt +

1√
ε
g(xε

t, y
ε
t ) dVt, yε

0 = y0, (1.1b)

where xε
t and yε

t are n- and m-dimensional diffusion processes. The functions a(x, y) ∈
Rn and f(x, y) ∈ Rm are the drifts, and the functions b(x, y) ∈ Rn×d1 and g(x, y) ∈
Rm×d2 are the diffusions; Ut and Vt are d1- and d2-dimensional mutually independent
Wiener processes. The parameter ε represents the ratio between the natural time
scale of the xε

t and yε
t variables. We are concerned with situations where ε ¿ 1, i.e.,

with a separation of scales; in such case the vector xε
t is called the “slow component”

of the system, and the vector yε
t is the “fast component” of the system.

Systems of the form (1.1) arise in various situations; see [1] for a classical review
with numerous applications. In many cases, one is only interested in predicting the
time evolution of the slow component xε

t, yet, this cannot be done, in a direct approach,
without solving the full system of equations. In biomaterials, for example, the fast
dynamics may have a characteristic time of the order of picoseconds (the fastest
atomic motions), while the process of interest has a characteristic time of the order
of seconds. No computer can deal with such a disparity of scales.

In the past four decades, singularly perturbed systems of the form (1.1) have
been the focus of extensive research, within the framework of averaging methods. The
separation of scales is taken to advantage to derive, in the limit ε → 0, a reduced
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equation for an n-dimensional process x̄t, which approximates the slow component
xε

t. This effective equation is of the form

dx̄t = ā(x̄t) dt + b̄(x̄t) dWt, (1.2)

where ā(x) ∈ Rn, b̄(x) ∈ Rn×d1 and Wt is a d1-dimensional Wiener process.
The conditions under which xε

t converges, as ε → 0, to the solution of effective
dynamics of the form (1.2) was first addressed by Khasminskii [2] in the context
of Markov diffusion processes. The averaging principle in the context of SDEs is
described in the monograph by Skorokhod [3], and can be summarized as follows:
Assume that for every fixed x the rapid variables induce a unique invariant, ergodic
measure µx(dy). Then, as ε → 0, xε

t converges in distribution, or weakly on every
finite interval [0, T ], to the solution x̄t of a closed equation of the form (1.2) where

ā(x) =
∫

Rm

a(x, y)µx(dy),

b̄(x)b̄T (x) =
∫

Rm

b(x, y)bT (x, y)µx(dy).

Generalizations can be found, for example, in Papanicolaou et al. [4], Pardoux
and Veretennikov [5, 6], and Freidlin and Wentzell [7], with notably extensions to
convergence in probability (i.e., pathwise). Kifer [8] proved convergence in some “av-
eraged L2 sense” without assuming the non-degeneracy condition on the diffusion
coefficients, which is an essential condition in [2] and its sequels, thus generalizing
Anosov’s theorem for deterministic systems. A survey on the existence of an effec-
tive dynamics for the case where b(x, y) = 0 in (1.1a) (i.e., xε

t satisfies an ordinary
differential equation (ODE) coupled to a fast stochastic process) can be found in Pa-
panicolaou and co-workers [9, 4] where they improve a result of Khasminskii [10] and
show weak convergence to a diffusion Markov process for a broad class of situations.
For the case where yε

t satisfies an Itô stochastic equation Kifer [11] proves convergence
in the sup-norm and E et al. [12] derive estimates on the rate of strong (L1) con-
vergence to the solution of an effective ordinary differential system (see also Vanden
Eijnden [13]).

While the averaging principle and its resulting effective dynamics (1.2) provide
a substantial simplification of the original system (1.1), it is often impossible, or im-
practical, to obtain the reduced equations in closed form (for example, because the
invariant measure µx is unknown, or because integrations cannot be performed ana-
lytically). This has motivated the development of algorithms such as projective and
coarse projective integration [14, 15, 16] within the so-called equation-free framework
[17, 18]. In this framework, short bursts of appropriately initialized “fine scale” simu-
lations are used to estimate on demand the numerical quantities required to perform
scientific computing task with coarse-grained models (time derivatives, residuals, the
action of (slow) Jacobians, and, for the case of stochastic coarse-grained models, the
local effective noise drift and diffusivity, e.g. [19]). When a stochastic problem effec-
tively closes at a deterministic level (e.g. in terms of the expectations of some slow
observables), traditional ODE integration algorithms, whether explicit or implicit,
can be wrapped around on-demand estimates of the (slow) time-derivatives of these
observables to accelerate the simulation of the effective equation (e.g. [14, 16, 20]).
Here we extend the idea of projective integration for a (deterministic) effective model
to the case where the effective model is a stochastic one.
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In its simplest formulation, this extended, stochastic projective integration scheme
can be described as follows: Let ∆t be a fixed time step, and Xn be the numerical
approximation to the coarse variable, x̄, at time tn = n∆t. Inspired by the limiting
equation (1.2), Xn is evolved in time by an Euler-Maruyama step,

Xn+1 = Xn + A(Xn)∆t + B(Xn)∆Wn, (1.3)

where ∆Wn are Brownian displacements over a time interval ∆t. We refer to (1.3) as
the macro-solver (or, macro integrator).

The functions A(X) and B(X) approximate the functions ā(x) and b̄(x), which
result from the averaging (1.3) over an ergodic measure. The ergodic property implies
that instead of ensemble averaging we can use averaging over paths of the rapid
variables with fixed x. Since, by assumption, these averages cannot be performed
analytically, they are approximated by an empirical average over short runs of the
fast dynamics. These “short runs” are over time intervals that are sufficiently long
for empirical averages to be sufficiently close to their limiting ensemble averages, yet
sufficiently short for the entire procedure to be efficient compared to the direct solution
of the coupled system.

Thus, given the coarse variable at the n-th time step, Xn, we take some initial
value for the fast component Y n

0 , and solve (1.1b) numerically with step size δt and
x = Xn fixed. We denote the discrete variables associated with the fast dynamics at
the n-th coarse step by Y n

m, m = 0, 1, . . . , M . The numerical solver used to generate
the sequence Y n

m is called the micro-solver (or micro-integrator). The simplest choice
is again the Euler-Maruyama scheme,

Y n
m+1 = Y n

m +
1
ε
f(Xn, Y n

m) δt +
1√
ε
g(Xn, Y n

m)∆V n
m, (1.4)

where ∆V n
m are Brownian displacements over a time interval δt. Since we assume that

the y dynamics is ergodic, we may choose, among other choices, Y n
0 = y0.

Having generated the trajectories Y n
m, the functions ā and b̄ are estimated by

A(Xn) =
1
M

M∑
m=1

a(Xn, Y n
m),

B(Xn)BT (Xn) =
1
M

M∑
m=1

b(Xn, Y n
m)bT (Xn, Y n

m). (1.5)

B(Xn) can then be extracted from B(Xn)BT (Xn) through a Cholesky decomposition.
Finally, to reduce the statistical noise, several independent realizations of the micro-
solver can be carried out, in which case expressions (1.5) for A(X) and B(X) involve
an additional averaging over these independent realizations. Equations (1.3), (1.4),
and (1.5) define the projective integration scheme.

In this paper we analyze systems of the form (1.1), along with the projective
integration scheme for the case where b = b(x), i.e., the diffusion function of the
slow variables does not depend explicitly on the fast variables. Note that in this case
b̄(x) = B(x) = b(x) (when b depends on y there is no strong convergence, as a counter
example is in the Discussion section shows).

The contribution of this paper is two-fold:
1. We prove L2 convergence of xε

t to x̄t under specified conditions. That is, we
obtain strong converge for a class of systems where the limiting dynamics
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is stochastic. In particular, we obtain an explicit estimate on the rate of
convergence of the form

sup
0≤t≤T

E |xε
t − x̄t|2 ≤ C

√
ε.

2. We derive estimates for the L2 (again, pathwise) error between the solution
x̄t of the effective dynamics (1.2) and the solution Xn of the projective inte-
gration scheme (1.3). Specifically, we obtain an error estimate of the form

E|x̄tn −Xn|2 ≤ C

(
∆t +

(lnMδt)2 + 1
Mδt

+
1
M

+
√

δt

)
.

Both results generalize the analysis in [12], which is limited to the case where
the slow dynamics (and hence the limiting dynamics) are deterministic.

2. A strong limit theorem for the averaging principle
In this section we establish the convergence, under specified conditions, of xε

t, the
slow component in (1.1), to x̄t, the solution of the effective dynamics (1.2). We prove
mean-square convergence, i.e., pathwise, with Wt in (1.2) identified with Ut in (1.1a).
We achieve this goal by estimating the mean-square deviation E|xε

t − x̄t|2 between
the two processes; our main result is Theorem 2.11. For the sake of readability we
state in this section our assumptions, lemmas and theorems, deferring all proofs to
the next section.

Throughout this work, the following assumptions are made:

Assumption 2.1.
A1. The functions a = a(x, y) and b = b(x) in (1.1a) are measurable, Lipschitz

continuous and have linear growth bounds: specifically, there exist constants
L,K, such that

|a(x1, y1)− a(x2, y2)|2 + ‖b(x1)− b(x2)‖2 ≤ L2
(|x1 − x2|2 + |y1 − y2|2

)
,

and

|a(x, y)|2 + ‖b(x)‖2 ≤ K2
(
1 + |x|2 + |y|2) .

Here and below we use |·| to denote Euclidean vector norms and ‖·‖ for Frobe-
nius matrix norms.

A2. The functions f(x, y) and g(x, y) in (1.1b) are of class C∞ and have bounded
derivatives of any order; in particular, we can choose the Lipschitz constant
L sufficiently large, such that it bounds the first derivatives of f ,g. Moreover,
f(x, y) is assumed to be a bounded function of x for all y,

sup
x
|f(x, y)| = cf (y) < ∞,

and g(x, y) is bounded,

sup
x,y

‖g(x, y)‖ = cg < ∞.

A3. There exists a constant α > 0, independent of x, such that:

yT g(x, y)gT (x, y)y ≥ α |y|2

for all y ∈ Rm.
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A4. There exists a constant β > 0, independent of x, such that

(y1 − y2) · [f(x, y1)− f(x, y2)] + ‖g(x, y1)− g(x, y2)‖2 ≤ −β |y1 − y2|2

for all y1, y2 ∈ Rm.
Some comments: (i) Assumption A3 ensures the non-degeneracy of the fast dy-

namics (1.1b), with x viewed as a fixed parameter. (ii) Assumption A4 is called the
dissipative (or recurrence) condition; together with A3 it guarantees the ergodicity
of the fast dynamics (see Khasminskii [21, §3,4]). Assumption A3 guarantees that
the ergodic measure µx(dy) has a smooth density [22, 21]. (iii) Since a satisfies a
Lipschitz condition, so does ā, and the effective dynamics (1.2) has a unique solution.

In practice, one rarely encounters systems in which the first two assumptions hold
verbatim. These assumptions can be weakened at the expense of technical complica-
tions. For example, the extent of regularity can be relaxed, and the global Lipschitz
constant can be replaced by a local Lipschitz continuity property. Thus, it is a matter
of technicality to generalize our results to situations of practical interest. The last
two assumptions are more imperative, but are satisfied in numerous (and generic)
situations. Condition A3 is satisfied, for example, in the case of fixed diffusion con-
stant. Ergodic properties under much weaker conditions were demonstrated by Meyn
and Tweedie [23]; see Mattingly et al. [24] for further elaboration and applications
to various situations. Thus, both the dissipative assumption and the non-degeneracy
assumptions can be partially relaxed.

Our first three lemmas provide mean-square estimates for the process (xε
t, y

ε
t ),

with bounds independent of ε. The proofs are straightforward and are provided for
completeness.

Lemma 2.2. The fast component yε
t satisfies,

sup
0≤t≤T

E|yε
t |2 ≤ C1,

where C1 = C1(y0) = |y0|2 + c2
f (0)/β2 + c2

g/β.

Lemma 2.3. The slow component xε
t satisfies

sup
0≤t≤T

E|xε
t|2 ≤ C2,

where

C2 = C2(T, x0, y0) = |x0|2 e(1+K2)T +
K2(1 + C1)

1 + K2
e(1+K2)T .

Lemma 2.4. For all 0 ≤ t0 ≤ t ≤ T , the mean-square displacement of the slow
component satisfies

E|xε
t − xε

t0 |2 ≤ C3 (t− t0),

where C3 = C3(T, x0, y0) = c1K
2(1 + C1 + C2).

Our goal is to estimate the difference between xε
t, the slow component of (1.1),

and x̄t, the solution of the effective dynamics (1.2). To this end we construct an
auxiliary process, (x̃ε

t, ỹ
ε
t ) ∈ Rn × Rm: we divide the time interval [0, T ] into sub-

intervals of length ∆ =
√

ε, setting tk = k∆, k = 0, . . . , b T
∆c; for s ∈ [0, T ] we also

define ts = bs/∆c∆, the nearest breakpoint preceding s.
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With initial conditions (x̃ε
0, ỹ

ε
0) = (x0, y0), the process (x̃ε

t, ỹ
ε
t ) is governed for

t ∈ [tk, tk+1) by the SDE

dx̃ε
t = a(xε

tk
, ỹε

t ) dt + b(xε
tk

) dUt,

dỹε
t =

1
ε
f(xε

tk
, ỹε

t ) dt +
1√
ε
g(xε

tk
, ỹε

t ) dVt, ỹε
tk

= yε
tk

.
(2.1)

The pair (x̃ε
t, ỹ

ε
t ) satisfies dynamics similar to (1.1), notably with the same random

noise, except that the argument x in the functions a, b, f, g, is replaced by xε
t at the

beginning of the sub-interval, t = tk, whereas the fast component ỹε
t is reset to equal

yε
t at each breakpoint tk. The time interval ∆ is selected small enough, ∆ ¿ 1, so that

x̃ε
t does not deviate much from xε

t; on the other hand ∆ À ε, so that the empirical
distribution of ỹε

t in the k-th interval is close to the invariant distribution µx, with
x = xε

tk
. The introduction of the auxiliary process (x̃ε

t, ỹ
ε
t ) provides an intermediate

step between the processes xε
t and x̄t, whose difference we need to estimate. As

will be shown, (x̃ε
t, ỹ

ε
t ) remains close to (xε

t, y
ε
t ) because ∆ is small enough (on the

x-timescale) and ỹε
t is repeatedly reset to equal yε

t . On the other hand, x̃ε
t remains

close to x̄t because ∆ is large enough (on the y-timescale) so that the time average of
a(xε

tk
, ỹε

t ) is close enough to ā(xε
tk

).
The next two lemmas estimate the mean-square differences between the fast and

slow components of the processes (xε
t, y

ε
t ) and (x̃ε

t, ỹ
ε
t ):

Lemma 2.5. Let (xε
t, y

ε
t ) and (x̃ε

t, ỹ
ε
t ) be the respective solutions of (1.1) and (2.1).

Then

sup
0≤t≤T

E |yε
t − ỹε

t |2 ≤ C4

√
ε,

where C4 = C4(T, x0, y0) = (L2/β)(2 + 1/β) C3.

Lemma 2.6.

sup
0≤t≤T

E |xε
t − x̃ε

t|2 ≤ C5

√
ε, (2.2)

where C5 = C5(T, x0, y0) = c1 L2 T (C3 + C4).

Having estimated the mean-square difference between xε
t and x̃ε

t, it remains to
estimate the mean-square difference between x̃ε

t and x̄t. The smallness of the latter
is due to the mixing properties of the fast dynamics.

For k = 1, 2, . . . , bT/∆c, we set xk = xε
tk

and define the stochastic process zk
t

which satisfies the SDE,

dzk
t = f(xk, zk

t ) dt + g(xk, zk
t ) dV k

t , zk
0 = yε

tk
, (2.3)

where the V k
t are independent Wiener processes. The process zk

t is statistically equiv-
alent to a shifted and rescaled version of ỹε

t , that is, zk
t ∼ ỹε

(t−tk)/ε. Its introduction
is only needed to simplify the notation.

The dynamics (2.3) is ergodic with invariant measure µxk (Assumptions A3,A4 ).
Moreover, the process zk

t is exponentially mixing. Recall that if Fb
a is the σ-algebra

generated by
{
zk
t : a ≤ t ≤ b

}
, the strong mixing coefficient of zk

t is defined by

αt = sup
s≥0

sup
A∈Fs

0 ,B∈F∞s+t

|P(A ∩B)− P(A)P(B)| .
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It is a measure on the independence of events that are separated by a time interval
of at least t.

The following lemma, proved by Malyshkin [25], establishes a bound on the strong
mixing coefficient of the process zk

t :

Lemma 2.7. There exist constants c2, c3 > 0, such that for all γ ∈ (0, 1/2),

αt ≤ c2 exp (−c3 tγ) .

Moreover, all moments associated with the invariant measure µxk are finite.
The following relation between correlations and the mixing coefficient is proved

in Billingsley [26, §20]:

Lemma 2.8. If ζ, η are real-valued random variables, where ζ is Fs
0 -measurable and

η is F∞s+t-measurable, with

E |ζ|2 < ∞, E |η|2 < ∞.

Then

|E [ζ · η]− E [ζ] · E [η]| ≤ 2α
1/2
t

(
E |ζ|2

)1/2 (
E |η|2

)1/2

.

The process zk
t is ergodic, but not stationary because the initial condition is not

drawn from its invariant distribution, µxk . We introduce a third auxiliary process
ξk
t , which satisfies the same dynamics as zk

t (in a pathwise sense), but with random
initial conditions, ξk

0 , drawn from the invariant distribution µxk ; ξk
t is a stationary

process. The process ξk
t is needed in order to approximate the process zk

t , which is
initialized with the value yε

tk
, by a similar process which is stationary. Stationarity is

then exploited for an explicit estimate of correlations.
The next Lemma states that the two processes zk

t and ξk
t converge exponentially

fast to each other in a mean-square sense (that is, the stochastic map defined by (2.3)
is exponentially contracting).

Lemma 2.9. For k = 0, 1, . . . , bT/∆c,

E
∣∣zk

t − ξk
t

∣∣2 ≤ 2C1e
−2βt.

Equipped with the above, we can estimate the difference between x̃ε
t and x̄t.

Lemma 2.10. For small enough ε,

sup
0≤t≤T

E|x̃ε
t − x̄t|2 ≤ C6

√
ε,

where C6 = C6(T, x0, y0) = 4T (C3 + C5) exp( 5
2c1L

2T ).

Combining Lemma 2.10 with Lemma 2.6 we obtain our main result:

Theorem 2.11. Let xε
t be the slow component of (1.1), and x̄t be the solution of the

effective dynamics (1.2). Then, for small enough ε,

sup
0≤t≤T

E |xε
t − x̄t|2 ≤ 2(C5 + C6)

√
ε.
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3. Proofs for Section 2
We start by establishing a number of relations, which will be used repeatedly

below (for more details see [27, p.136]). First, Gronwall’s inequality: if the real-valued
function v(t) satisfies a linear differential inequality of the form

dv

dt
≤ λv + c, v(t0) = v0,

then

v(t) ≤ v0e
λ(t−t0) +

c

λ

(
eλ(t−t0) − 1

)
. (3.1)

Let zt ∈ Rn, t ∈ [0, T ], be the solution of the SDE

dzt = a(zt) dt + b(zt) dWt,

such that a and b are measurable, Lipschitz continuous and have linear growth bounds.
Assume also the boundedness of the second moment of the initial value zt0 . Applying
the Itô formula, followed by Young’s inequality,

d

dt
E|zt|2 = 2E zt · a(zt) + E‖b(zt)‖2

≤ E|zt|2 + E
[|a(zt)|2 + ‖b(zt)‖2

]
.

(3.2)

Alternatively, using the Itô isometry and the Cauchy-Schwarz inequality,

E|zt − zt0 |2 = E
∣∣∣
∫ t

t0

a(zs) ds +
∫ t

t0

b(zs) dWs

∣∣∣
2

≤ 2E
∣∣∣
∫ t

t0

a(zs) ds
∣∣∣
2

+ 2E
∣∣∣
∫ t

t0

b(zs) dWs

∣∣∣
2

≤ 2(t− t0)
∫ t

t0

E|a(zs)|2 ds + 2
∫ t

t0

E‖b(zs)‖2 ds

≤ c1

∫ t

t0

E
[|a(zs)|2 + ‖b(zs)‖2

]
ds,

(3.3)

where c1 = c1(T ) = 2 max(1, T ).

Proof of Lemma 2.2. Applying the first line of (3.2) to yε
t we obtain

ε
d

dt
E|yε

t |2 = 2E yε
t · f(xε

t, y
ε
t ) + E‖g(xε

t, y
ε
t )‖2. (3.4)

Assumption A4 with y1 = yε
t and y2 = 0 gives,

yε
t · [f(xε

t, y
ε
t )− f(xε

t, 0)] + ‖g(xε
t, y

ε
t )− g(xε

t, 0)‖2 ≤ −β|yε
t |2,

or

yε
t · f(xε

t, y
ε
t ) ≤ −β|yε

t |2 + yε
t · f(xε

t, 0).

Using Young’s inequality 2p ·q ≤ β|p|2+β−1|q|2 with p = yε
t/
√

2 and q = f(xε
t, 0)/

√
2,

and substituting the bound on f (Assumption A2 ),

yε
t · f(xε

t, y
ε
t ) ≤ −β

2
|yε

t |2 +
c2
f (0)
2β

,
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Adding the bound on g (Assumption A2 ) and substituting into (3.4) yields the dif-
ferential inequality,

ε
d

dt
E|yε

t |2 ≤ −β E|yε
t |2 +

[
c2
f (0)
β

+ c2
g

]
.

The desired result follows from Gronwall’s inequality (3.1).

Proof of Lemma 2.3. Applying (3.2) to xε
t,

d

dt
E|xε

t|2 ≤ E|xε
t|2 + E

[|a(xε
t, y

ε
t )|2 + ‖b(xε

t)‖2
]
.

Substituting the linear growth bound for a, b (Assumption A1 ), it follows that

d

dt
E|xε

t|2 ≤ E|xε
t|2 + K2(1 + E|xε

t|2 + E|yε
t |2)

≤ (1 + K2)E|xε
t|2 + K2(1 + C1),

where the last inequality follows from Lemma 2.2. The desired result follows from
Gronwall’s inequality (3.1).

Proof of Lemma 2.4. Inequality (3.3) for xε
t reads

E|xε
t − xε

t0 |2 ≤ c1

∫ t

t0

E
[|a(xε

s, y
ε
s)|2 + ‖b(xε

s)‖2
]

ds.

Using the linear growth bound for a, b (Assumption A1 ),

E|xε
t − xε

t0 |2 ≤ c1

∫ t

t0

K2(1 + E|xε
s|2 + E|yε

s|2) ds ≤ c1K
2(1 + C1 + C2)(t− t0),

where the last inequality follows from Lemmas 2.2 and 2.3.

Proof of Lemma 2.5. Define zt = yε
t − ỹε

t , fix t ∈ [0, T ] and set k such that
t ∈ [tk, tk+1). The resetting of the auxiliary process at the break points tk implies
that ztk

= 0 for all k.
Using the first line of (3.2) for the real-valued process ε|zt|2,

ε
d

dt
E |zt|2 = 2E zt ·

(
f (xε

t, y
ε
t )− f

(
xε

tk
, ỹε

t

))
+ E

∥∥g(xε
t, y

ε
t )− g(xε

tk
, ỹε

t )
∥∥2

= 2E zt · (f(xε
t, y

ε
t )− f(xε

t, ỹ
ε
t )) + 2E zt ·

(
f(xε

t, ỹ
ε
t )− f(xε

tk
, ỹε

t )
)

+ E‖g(xε
t, y

ε
t )− g(xε

t, ỹ
ε
t ) + g(xε

t, ỹ
ε
t )− g(xε

tk
, ỹε

t )‖2
≤ 2E zt · (f(xε

t, y
ε
t )− f(xε

t, ỹ
ε
t )) + 2E zt ·

(
f(xε

t, ỹ
ε
t )− f(xε

tk
, ỹε

t )
)

+ 2E ‖g(xε
t, y

ε
t )− g(xε

t, ỹ
ε
t )‖2 + 2E

∥∥g(xε
t, ỹ

ε
t )− g(xε

tk
, ỹε

t )
∥∥2

,

(3.5)

where we have used ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2.
By the dissipative assumption A4, the sum of the first and third terms on the

right hand side are bounded by −2β E|zt|2. The global Lipschitz continuity of f, g
(Assumption A2 ) implies

ε
d

dt
E |zt|2 ≤ −2β E |zt|2 + 2LE |zt|

∣∣xε
t − xε

tk

∣∣ + 2L2 E
∣∣xε

t − xε
tk

∣∣2

≤ −β E |zt|2 + L2(2 + 1/β)E
∣∣xε

t − xε
tk

∣∣2 ,
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where we have used Young’s inequality 2pq ≤ βp2 + 1
β q2 with p = |zt| and q =

L
∣∣xε

t − xε
tk

∣∣. By Lemma 2.4

E
∣∣xε

t − xε
tk

∣∣2 ≤ C3 (t− tk) ≤ C3

√
ε,

thus, we obtain a linear differential inequality

d

dt
E |zt|2 ≤ −β

ε
E |zt|2 +

L2(2 + 1/β)C3√
ε

.

The desired result follows from Gronwall’s inequality (3.1) upon integrating from tk
to t.

Proof of Lemma 2.6. By (3.3) with zt = xε
t − x̃ε

t,

E |xε
t − x̃ε

t|2 ≤ c1

∫ t

0

E
[∣∣a(xε

s, y
ε
s)− a(xε

ts
, ỹε

s)
∣∣2 +

∥∥b(xε
s)− b(xε

ts
)
∥∥2

]
ds.

Using the Lipschitz continuity of a, b (Assumption A1 ),

E |xε
t − x̃ε

t|2 ≤ c1L
2E

∫ t

0

(|xε
s − xε

ts
|2 + |yε

s − ỹε
s|2

)
ds

≤ c1L
2

∫ t

0

C3 (s− ts) ds + c1L
2TC4

√
ε

≤ c1 L2 T
√

ε (C3 + C4) ,

where the bound on E|xε
s−xε

ts
|2 follows from Lemma 2.4 , and the bound on E|yε

s−ỹε
s|2

follows from Lemma 2.5.

Proof of Lemma 2.9. First, we note that Lemma 2.2 implies that

E|zk
0 |2 = E|yε

tk
|2 ≤ C1.

Since ξk
t is a stationary version of zk

t , we also have

E|ξk
t |2 = lim

t→∞
E|zk

t |2,

which is easily found to be bounded by C1 as well.
Using the first line of (3.2), followed by the dissipativity assumption (Assumption

A2 ),

d

dt
E

∣∣zk
t − ξk

t

∣∣2 = 2E
(
zk
t − ξk

t

) · [f(xk, zk
t )− f(xk, ξk

t )
]
+ E

∥∥g(xk, zk
t )− g(xk, ξk

t )
∥∥2

.

≤ −2β E
∣∣zk

t − ξk
t

∣∣2 .

By Gronwall’s inequality (3.1),

E
∣∣zk

t − ξk
t

∣∣2 ≤ E ∣∣zk
0 − ξk

0

∣∣2 e−2βt = 2C1 e−2βt.
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Proof of Lemma 2.10. Start with

E|x̃ε
t − x̄t|2 = E

∣∣∣
∫ t

0

(a(xε
ts

, ỹε
s)− ā(x̄s)) ds +

∫ t

0

(b(xε
ts

)− b(x̄s)) dUs

∣∣∣
2

≤ 5E
∣∣∣
∫ t

0

(a(xε
ts

, ỹε
s)− ā(xε

ts
)) ds

∣∣∣
2

+5E
∣∣∣
∫ t

0

(ā(xε
ts

)− ā(x̃ε
s)) ds

∣∣∣
2

+ 5E
∣∣∣
∫ t

0

(b(xε
ts

)− b(x̃ε
s)) dUs

∣∣∣
2

+5E
∣∣∣
∫ t

0

(ā(x̃ε
s)− ā(x̄s)) ds

∣∣∣
2

+ 5E
∣∣∣
∫ t

0

(b(x̃ε
s)− b(x̄s)) dUs

∣∣∣
2

, (3.6)

where we have added an subtracted equal terms, and used the Cauchy-Schwarz in-
equality. Using the Itô isometry for the third and fifth terms on the right hand side,
and the Cauchy-Schwartz inequality for the second and fourth terms, we get

E|x̃ε
t − x̄t|2 ≤ 5I1 +

5
2
c1(I2 + I3), (3.7)

where

I1 = E
∣∣∣
∫ t

0

(a(xε
ts

, ỹε
s)− ā(xε

ts
)) ds

∣∣∣
2

,

I2 =
∫ t

0

E|ā(xε
ts

)− ā(x̃ε
s)|2 ds +

∫ t

0

E‖b(xε
ts

)− b(x̃ε
s)‖2 ds,

I3 =
∫ t

0

E|ā(x̃ε
s)− ā(x̄s)|2 ds +

∫ t

0

E‖b(x̃ε
s)− b(x̄s)‖2 ds. (3.8)

I3 is readily estimated using the Lipschitz continuity of ā, b,

I3 ≤ L2

∫ t

0

E|x̃ε
s − x̄s|2 ds. (3.9)

Similarly, we have for I2,

I2 ≤ L2

∫ t

0

E|xε
ts
− x̃ε

s|2 ds

≤ 2L2

(∫ t

0

E|xε
ts
− xε

s|2 ds +
∫ t

0

E|xε
s − x̃ε

s|2 ds

)

≤ 2L2

(∫ t

0

C3(s− ts) ds +
∫ t

0

C5

√
ε ds

)

≤ 2L2T (C3 + C5)
√

ε, (3.10)

where we have used Lemmas 2.4 and 2.6.
It remains to estimate I1, which we decompose as follows,

I1 = E
∣∣∣∣
∫ t

0

(
a(xε

ts
, ỹε

s)− ā(xε
ts

)
)

ds

∣∣∣∣
2

≤ (bt/∆c+ 1)
bt/∆c∑

k=0

E
∣∣∣∣
∫ tk+1

tk

(
a(xε

tk
, ỹε

s)− ā(xε
tk

)
)

ds

∣∣∣∣
2

≤ T 2

∆2
max

k≤T/∆
E

∣∣∣∣
∫ tk+1

tk

(
a(xε

tk
, ỹε

s)− ā(xε
tk

)
)

ds

∣∣∣∣
2

, (3.11)
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where the time integral has been split into a sum of integrals over time intervals
∆ =

√
ε (except for the last one which has upper limit t).

Setting as before xk = xε
tk

, we stretch the time variables by a factor of ε, and
using the fact that zk

t is statistically equivalent to ỹε
(t−tk)/ε,

I1 ≤ T 2ε max
k≤T/∆

Ik
1 ,

where

Ik
1 = E

∣∣∣∣
∫ 1/∆

0

(
a(xk, zk

s )− ā(xk)
)

ds

∣∣∣∣
2

. (3.12)

To estimate Ik
1 we introduce the stationary process ξk

t ,

Ik
1 ≤ Jk

1 + Jk
2 ,

where

Jk
1 = 2E

∣∣∣∣
∫ 1/∆

0

(
a(xk, zk

s )− a(xk, ξk
s )

)
ds

∣∣∣∣
2

,

Jk
2 = 2E

∣∣∣∣
∫ 1/∆

0

(
a(xk, ξk

s )− ā(xk)
)

ds

∣∣∣∣
2

.

To estimate Jk
1 we use the Lipschitz continuity of a (Assumption A1 ), and

Lemma 2.9,

Jk
1 ≤ 2L2

∫ 1/∆

0

E|zk
s − ξk

s |2 ds ≤ 4L2C1

∫ ∞

0

e−2βs ds =
2L2

β
C1. (3.13)

To bound Jk
2 we use the fact that ξk

t is a stationary process with invariant distri-
bution µxk . Thus, Ea(xk, ξk

t ) = ā(xk), and

Jk
2 = 2

∫ 1/∆

0

∫ 1/∆

0

[
E

(
a(xk, ξk

s ) · a(xk, ξk
s′)

)− ā(xk) · ā(xk)
]

ds ds′

≤ 4
∫ ∞

0

∫ ∞

s′

[
E

(
a(xk, ξk

s−s′) · a(xk, ξk
0 )

)− ā(xk) · ā(xk)
]

ds ds′

≤ 8E |ā(xk)|2
∫ ∞

0

∫ ∞

s′
α

1/2
s−s′ ds ds′,

where we have used the stationarity of ξk
t and Lemma 2.8. Using the bound on the

mixing rate, αt, the fact that ā(x) is Lipschitz and Lemma 2.3, we get that Jk
2 is

bounded. Thus, there exists a constant c4, such that I1 ≤ c4ε, and in particular, for
ε sufficiently small, I1 ≤ I2.

Combining (3.7), (3.10), and (3.9),

E|x̃ε
t − x̄t|2 ≤ 10c1L

2T (C3 + C5)
√

ε +
5
2
c1L

2

∫ t

0

E|x̃ε
s − x̄s|2 ds,

which by the integral version of Gronwall’s inequality yields the desired result.
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4. Analysis of the projective integration scheme
In this section we analyze the convergence of the numerical method defined by eqs.

(1.3)–(1.5). Specifically, we derive an estimate for the distance between the computed
solution Xn and the solution x̄t of the effective dynamics at time t = tn. Note that the
effective dynamics does not depend on ε. Also, since the discrete solution Y n

m obtained
by the micro-solver is for Xn fixed, it only depends on the ratio δt/ε. Thus, without
loss of generality, we may take ε = 1. This observation is at the heart of projective
integration. The separation of scales is exploited to break the coupled system into
two systems that operate each on its separate time scale. The fast variables are solved
for fixed values of the slow variables; as a result, there remains a single time scale
(which may well be rescaled to one), and the integration time has to be sufficiently
long only with respect to the mixing time of the fast dynamics—not with respect to
the evolution time of the slow dynamics.

Our projective integration scheme consists of a macro-solver: an Euler-Maruyama
time-stepper,

Xn+1 = Xn + A(Xn)∆t + b(Xn)∆Wn, X0 = x0, (4.1)

where A(Xn) is estimated by an empirical average

A(Xn) =
1
M

M∑
m=1

a(Xn, Y n
m), (4.2)

and Y n
m are numerically generated discrete solutions of the family of SDEs

dzn
t = f(Xn, zn

t ) dt + g(Xn, zn
t ) dV n

t , (4.3)

with initial conditions zn
0 = Y n

0 = y0, and a time step δt (the choice of a fixed Y n
0

for all n simplifies our estimates; in practice, one could take Y n
0 = Y n−1

M for n > 0).
Our micro-solver (1.4) is a particular realization that uses an Euler-Maruyama time-
stepper as well,

Y n
m+1 = Y n

m + f(Xn, Y n
m) δt + g(Xn, Y n

m)∆V n
m, (4.4)

where ∆V n
m = V n

(m+1)δt−V n
mδt are the Brownian increments associated with the SDEs

(4.3). Later on, we will use the auxiliary processes ξn
t , which differ from zn

t by the
choice of initial conditions (ξn

t is the “stationary version” of zn
t with invariant measure

µXn). The estimate

E |zn
t − ξn

t |2 ≤ 2C1e
−2βt.

was established in lemma 2.9. With a slight abuse of notation we denote by zn
m and

ξn
m the equally distanced samples of zn

mδt and ξn
mδt.

We also introduce a discrete auxiliary process, X̄n, which is the Euler-Maruyama
solution of the effective dynamics (1.2):

X̄n+1 = X̄n + ā(X̄n)∆t + b(X̄n)∆Wn.

As is well-known [27, §10.2.2, §10.6.3], the Euler-Maruyama scheme is of order 1/2,
which implies the existence of a constant K1 = K1(T, x0, y0), such that

sup
0≤n≤bT/∆tc

E|x̄(tn)− X̄n|2 ≤ K1 ∆t. (4.5)
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Thus, it remains to estimate the difference between the outcome of the projective
integration scheme, Xn, and the numerical solution of the effective dynamics, X̄n,
both being discrete-time processes.

The next two lemmas are analogous to Lemmas 2.2 and 2.3.

Lemma 4.1. For small enough δt,

sup
0≤n≤b T

∆t
c

0≤m≤M

E |Y n
m|2 ≤ K2

where

K2 = K2(y0) = |y0|2 + 2

(
c2
f (0)
β2

+
c2
g

β

)
.

Lemma 4.2. For small enough ∆t,

sup
0≤n≤T/∆t

E|Xn|2 ≤ K3,

where

K3 = K3(T, x0, y0) = e(1+2K2)T
[
|x0|2 + 2K2(1 + K2)

]
.

Lemma 4.3. The mean square deviation between two successive iterations of the
microsolver satisfies, for small enough δt,

sup
0≤n≤b T

∆t
c

0≤m≤M

E
∣∣Y n

m+1 − Y n
m

∣∣2 ≤ K4 δt

where K4 = 4c2
g.

The next lemma establishes the mixing properties of the auxiliary processes zn
t .

Recall that ā(Xn) is the average of a(Xn, y) with respect to µXn , which is the invariant
measure induced by the process zn

t .

Lemma 4.4. For small enough δt, there exist a constant K5 independent of M, δt s.t.

E
∣∣∣ 1
M

M∑
m=1

a (Xn, zn
m)− ā(Xn)

∣∣∣
2

≤ K5

[
(lnMδt)1/γ + 1

Mδt
+

1
M

]
. (4.6)

The next lemma establishes the mean deviation between (4.3) and its numerical
approximation (4.4).

Lemma 4.5. Let zn
t be the family of processes defined by (4.3). For small enough δt,

there exists a constant K8 s.t.

max
0≤n≤b T

∆t
c

0≤m≤M

E |Y n
m − zn

m|2 ≤ K8

√
δt. (4.7)
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Lemma 4.6. There exists a constant K6 = K6(T, x0, y0), such that for all 0 ≤ n ≤
bT/∆tc

E |ā(Xn)−A(Xn)|2 ≤ K6

(
(lnMδt)1/γ + 1

Mδt
+

1
M

+
√

δt

)
.

Lemma 4.7. There exists a constant K7 = K7(T, x0, y0) such that,

sup
0≤n≤bT/∆tc

E|Xn − X̄n|2 ≤ K7

(
(lnMδt)2 + 1

Mδt
+

1
M

+
√

δt

)
,

where K7 = 6T 2K6/(1− 2L2(2T + 1)∆t).

Combining this result with (4.5) our main theorem readily follows:

Theorem 4.8. There exists a constant K7 = K7(T, x0, y0) such that,

sup
0≤n≤bT/∆tc

E|Xn − x̄(tn)|2 ≤ 2K1 ∆t + 2K7

(
(lnMδt)2 + 1

Mδt
+

1
M

+
√

δt

)
.

Note the sources of the various terms: The first term arises from the truncation
error of the macro-solver. The second and third terms are the deviation of the en-
semble average from the empirical average. The last term is the truncation error of
the micro-solver.

5. Proofs for Section 4
Throughout this section we will need a discrete version of Gronwall’s inequality.

Let Zn be a sequence of positive numbers which, for small enough δt, satisfy the linear
inequality,

Zn+1 ≤ (1 + a δt)Zn + b δt,

then

Zn ≤ ean δtZ0 +
b

a

(
ean δt − 1

)
. (5.1)

Proof of Lemma 4.1. Squaring (4.4) and taking expectations,

E |Y n
m+1|2 = E |Y n

m|2 + δtE ‖g(Xn, Y n
m)‖2 + 2δtEY n

m · f(Xn, Y n
m) + δt2 E |f(Xn, Y n

m)|2 .

Using Assumptions A2,A4 (cf. Lemma 2.2),

E
∣∣Y n

m+1

∣∣2 ≤ (1− βδt)E |Y n
m|2 + δt

(
c2
f (0)
β

+ c2
g

)
+ δt2 E |f(Xn, Y n

m)|2 .

By Assumption A2,

|f(Xn, Y n
m)|2 ≤ 2L2 |Y n

m|2 + 2c2
f (0), (5.2)
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which substituted into the last term gives,

E
∣∣Y n

m+1

∣∣2 ≤ (
1− βδt + 2L2 δt2

)
E |Y n

m|2 + δt

(
c2
f (0)
β

+ c2
g

)
+ 2δt2 c2

f (0),

and the desired result follows from the discrete Gronwall inequality (5.1).

Proof of Lemma 4.2. Squaring (4.1) and taking expectations,

E |Xn+1|2 = E |Xn|2 +
2∆t

M

M∑
m=1

EXn · a(Xn, Y n
m) + ∆tE ‖b(Xn)‖2

+
∆t2

M2
E

∣∣∣∣∣
M∑

m=1

a(Xn, Y n
m)

∣∣∣∣∣

2

≤ E |Xn|2 +
∆t

M

M∑
m=1

E |Xn|2 +
∆t

M

M∑
m=1

E |a(Xn, Y n
m)|2 + ∆tE ‖b(Xn)‖2

+
∆t2

M

M∑
m=1

E |a(Xn, Y n
m)|2 .

Using Assumption A1 and Lemma 4.1, we get, for small enough ∆t,

E |Xn+1|2 ≤ (1 + ∆t)E |Xn|2 + 2K2(1 + E |Xn|2)∆t + 2 K2 sup
m≥0

[
E |Y n

m|2
]

∆t

≤ [
1 + (1 + 2K2)∆t

]
E |Xn|2 + 2K2(1 + K2)∆t,

and the desired result follows from the discrete Gronwall inequality (5.1).

Proof of Lemma 4.3. Eq. (4.4) together with Assumption A2 implies,

E
∣∣Y n

m+1 − Y n
m

∣∣2 = 2E |f(Xn, Y n
m)|2 δt2 + 2E ‖g(Xn, Y n

m)‖2 δt

≤ 4L2δt2 E |Y n
m|2 + 4c2

f (0)δt2 + 2c2
g δt,

where we have used (5.2). Lemma 4.1 implies that for δt small enough,

E
∣∣Y n

m+1 − Y n
m

∣∣2 ≤ 4c2
gδt.

Proof of Lemma 4.4. The proof follows the lines of the proof of estimate
(3.11). By inserting ξn

m, which is the stationary version of zn
m, we find

E
∣∣∣ 1
M

M∑
m=1

a (Xn, zn
m)− ā(Xn)

∣∣∣
2

≤ 2E
∣∣∣ 1
M

M∑
m=1

[a(Xn, zn
m)− a(Xn, ξn

m]
∣∣∣
2

+ 2E
∣∣∣ 1
M

M∑
m=1

[a(Xn, ξn
m)− ā(Xn)]

∣∣∣
2

≡ Jn
1 +Jn

2 .
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To bound Jn
1 we use sequentially the Cauchy-Schwarz inequality, the Lipschitz

continuity of a(x, y), and Lemma 2.9,

Jn
1 ≤

2
M

M∑
m=1

E
∣∣∣a(Xn, zn

m)− a(Xn, ξn
m)

∣∣∣
2

≤ 2L2

M

M∑
m=1

E |zn
m − ξn

m|2

≤ 2L2

M
2C1

M∑
m=1

e−2βmδt.

The last sum is bounded by its corresponding integral,

Jn
1 ≤

2L2

Mδt
2C1

M∑
m=1

e−2βmδtδt ≤ 4L2

Mδt
C1

1
2β

. (5.3)

Next, we bound Jn
2 . We use the fact that ξn

t is a stationary process with invariant
distribution µXn . Thus, Ea(x, ξn

t ) = ā(x), and so

Jn
2 =

2
M2

M∑
m=1

M∑
p=1

{
E

[
a(Xn, ξn

m) · a(Xn, ξn
p )

]− ā(Xn) · ā(Xn)
}

=
4

M2

M∑
m=1

M∑
p=m+1

{
E

[
a(Xn, ξn

m−p) · a(Xn, ξn
0 )

]− ā(Xn) · ā(Xn)
}

+
2

M2

M∑
m=1

{Ea(Xn, ξn
m) · a(Xn, ξn

m)− ā(Xn) · ā(Xn)} ,

where we have used the stationarity of ξn
t . The summands on the right hand side are

bounded by Lemma 2.7, which establishes the mixing coefficient αt of the process ξn
t ,

and by Lemma 2.8, with ζ = a(Xn, ξn
0 ), η = a(Xn, ξn

m−p),

|E [
a(Xn, ξn

m−p) · a(Xn, ξn
0 ))

]− ā(Xn) · ā(Xn)| ≤ 2
(
α(m−p)δt

)1/2 E|a(Xn, ξn
0 )|2.

Note, also, that Assumption A1 and Lemmas 4.1, 4.2, imply that for all small enough
∆t > 0,

sup
n≤T/∆t

E|a(Xn, ξn
0 )|2 < ∞.

Denote k1 = 4 supn≤T/∆t E|a(Xn, ξn
0 )|2. Hence,

Jn
2 ≤

2k1

M2

M∑
m=1

M∑
p=m+1

(
α(m−p)δt

)1/2 +
k1 α

1/2
0

M
.

We split the upper triangular sum into two summands. One is of terms which are near
the diagonal, and the second summand is for terms which are far from the diagonal.
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Hence,

Jn
2 ≤

2k1

M2

M∑
m=1

m+l∑
p=m+1

(
α(m−p)δt

)1/2

+
2k1

M2

M∑
m=1

M∑

p=m+l+1

(
α(m−p)δt

)1/2 +
k1 α

1/2
0

M

≤ 2k1

M2

M∑
m=1

m+l∑
p=m+1

c
1/2
2

+
2k1

M2

M∑
m=1

M∑

p=m+l+1

(
c
1/2
2 exp

(
−c3

2
((l + 1)δt)γ

))
+

k1 c
1/2
2

M

≤ 2k1 l(c2)1/2

M
+ 2k1 c

1/2
2 exp(−c3

2
((l + 1)δt)γ) +

k1 c
1/2
2

M
,

where we have used lemma 2.7 three times. Setting l = b 1
δt

(
2 ln(Mδt)

c3

)1/γ

c, there
exist constants k2, k3, k4 such that

Jn
2 ≤ k2

(lnMδt)1/γ

Mδt
+ k3

1
Mδt

+ k4
1
M

.

Combined with the bound (5.3) on J1(x), this concludes the proof.

Proof of Lemma 4.5. Let Y n
t be the Euler-Maruyama approximation Y n

m,
interpolated continuously by

Y n
t =

∫ t

0

f(Xn, Yn,ts
) ds +

∫ t

0

g(Xn, Yn,ts
) dVn,s.

Define

vt = Y n
t − zn

t .

Applying the Itô formula for E |vt|2,

d

dt
E |vt|2 = 2Evt · [f(Xn, Yn,ts

)− f(Xn, zn
t )] + E ‖g(Xn, Yn,ts

)− g(Xn, zn
t )‖2

= 2Evt · [f(Xn, Yn,ts
)− f(Xn, Y n

t )] + 2Evt · [f(Xn, Y n
t )− f(Xn, zn

t )]

+ E ‖g(Xn, Yn,ts
)− g(Xn, Y n

t ) + g(Xn, Y n
t )− g(Xn, zn

t )‖2
≤ 2Evt · [f(Xn, Yn,ts

)− f(Xn, Y n
t )] + 2Evt · [f(Xn, Y n

t )− f(Xn, zn
t )]

+ 2E ‖g(Xn, Yn,ts
)− g(Xn, Y n

t )‖2 + 2E ‖g(Xn, Y n
t )− g(Xn, zn

t )‖2

Using Assumption A4,

d

dt
E |vt|2 ≤ 2Evt · [f(Xn, Yn,ts

)− f(Xn, Y n
t )]− 2βE |vt|2

+ 2E ‖g(Xn, Yn,ts
)− g(Xn, Y n

t )‖2 ,
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followed by Assumption A2, and Lemma 4.3,

d

dt
E |vt|2 ≤ 2L

√
E |vt|2

√
E |Yn,ts

− Y n
t |2 − 2βE |vt|2 + 2L2E |Yn,ts

− Y n
t |2

≤ 2L

√
E |vt|2

√
K3δt− 2βE |vt|2 + 2L2K3δt. (5.4)

Let T1 = inf
{

t : E |vt|2 = 1
}

. Since v0 = 0, the line segment [0, T1) is not empty. We
first solve (5.4) up until time T1, and then show that T1 = ∞, which implies that the
bound for E |vt|2 is everywhere true. For t < T1 we have,

d

dt
E |vt|2 ≤ 2L

√
K3δt− 2βE |vt|2 + 2L2K3δt.

For δt small enough (
√

δt < 1√
K3L

), the third term on the right hand side is smaller
than the first term. Hence

d

dt
E |vt|2 ≤ −2βE |vt|2 + 4L

√
K3δt.

Gronwall’s inequality implies,

E |vt|2 ≤ 2L
√

K3δt

β
. (5.5)

The right hand side of (5.5) can be made smaller than one (δt < β2

4L2K3
), hence (5.5)

is valid for all t.

Proof of Lemma 4.6. By definition,

E |ā(Xn)−A(Xn)|2 = E

∣∣∣∣∣
∫

a(Xn, y)µXn(dy)− 1
M

M∑
m=1

a (Xn, Y n
m)

∣∣∣∣∣

2

≤ In
1 + In

2 ,

(5.6)

where

In
1 = 2E

∣∣∣∣∣
∫

a(Xn, y)µXn(dy)− 1
M

M∑
m=1

a (Xn, zn
m)

∣∣∣∣∣

2

,

In
2 = 2E

∣∣∣∣∣
1
M

M∑
m=1

a (Xn, zn
m)− 1

M

M∑
m=1

a (Xn, Y n
m)

∣∣∣∣∣

2

,

where zn
t is the family of processes defined by (4.3). In

1 is the difference between the
ensemble average of a(Xn, ·) with respect to the (exact) invariant measure of zn

t , and
its empirical average over M equidistant sample points. In

2 is the difference between
empirical averages of a(Xn, ·) over M equidistant sample points, once for the process
zn
t , and once for its Euler-Maruyama approximation Y n

m.
The estimation of In

1 , is given in Lemma 4.4,

In
1 = 2E

[∫
a(Xn, y)µXn(dy)− 1

M

M∑
m=1

a (Xn, zn
m)

]2

≤ 2K5

[
(lnMδt)1/γ + 1

Mδt
+

1
M

]
. (5.7)
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We proceed with estimating In
2 using Assumption A1,

In
2 = 2E

∣∣∣∣∣
1
M

M∑
m=1

a (Xn, Y n
m)− 1

M

M∑
m=1

a (Xn, zn
m)

∣∣∣∣∣

2

≤ 2
M2

M
M∑

m=1

E |a (Xn, Y n
m)− a (Xn, zn

m)|2

≤ 2L2 max
m≤M

E |Y n
m − zn

m|2 .

Using Lemma 4.5 with δt < min( 1
K3L2 , β2

4L2K3
) we get,

In
2 ≤

2L3
√

K3δt

β
. (5.8)

Combining (5.7) and (5.8),

E
[
|ā(Xn)−A(Xn)|2

]
≤ K6

[
(lnMδt)1/γ + 1

Mδt
+

1
M

+
√

δt

]
, (5.9)

which is uniform in n ≤ T/∆t.

Proof of Lemma 4.7. Set En = E|Xn − X̄n|2, then

En = E

∣∣∣∣∣
n−1∑

i=0

[
ā(X̄i)−A(Xi)

]
∆t +

n∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

∣∣∣∣∣

2

≤ 2E

∣∣∣∣∣
n−1∑

i=0

[
ā(X̄i)−A(Xi)

]
∆t

∣∣∣∣∣

2

+ 2E

∣∣∣∣∣
n−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

∣∣∣∣∣

2

≤ 4E

∣∣∣∣∣
n−1∑

i=0

[
ā(X̄i)− ā(Xi)

]
∆t

∣∣∣∣∣

2

+ 4E

∣∣∣∣∣
n−1∑

i=0

[ā(Xi)−A(Xi)]∆t

∣∣∣∣∣

2

+ 2E

∣∣∣∣∣
n−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

∣∣∣∣∣

2

. (5.10)

The first and third sums on the right hand side are easily estimated using the Lipschitz
continuity of ā and b, and the Itô isometry,

4E

∣∣∣∣∣
n−1∑

i=0

[
ā(X̄i)− ā(Xi)

]
∆t

∣∣∣∣∣

2

≤ 4L2n
n−1∑

i=0

Ei ∆t2 = 4L2T
n−1∑

i=0

Ei ∆t,

2E

∣∣∣∣∣
n−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

∣∣∣∣∣

2

= 2
n−1∑

i=0

E
∥∥b(X̄i)− b(Xi)

∥∥2 ∆t = 2L2
n−1∑

i=0

Ei ∆t,

(5.11)
whereas the middle term can be bounded as follows:

4E

∣∣∣∣∣
n−1∑

i=0

[ā(Xi)−A(Xi)]∆t

∣∣∣∣∣

2

≤ 4T 2 max
i<n

E |ā(Xi)−A(Xi)|2 . (5.12)
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Combining eqs. (5.10)–(5.12) and Lemma 4.6, we obtain a discrete linear integral
inequality,

En ≤ 2L2(2T + 1)
n−1∑

i=1

Ei ∆t + 4T 2K6

(
(lnMδt)1/γ + 1

Mδt
+

1
M

+
√

δt

)
,

with initial condition E0 = 0. It follows by a discrete version of Gronwall’s inequality
that for sufficiently small ∆t,

En ≤
(

n−1∑

i=0

(6L2∆t)i

)
4T 2K6

(
(lnMδt)1/γ + 1

Mδt
+

1
M

+
√

δt

)

≤ 4T 2K6

1− 2L2(2T + 1)∆t

(
(lnMδt)1/γ + 1

Mδt
+

1
M

+
√

δt

)
.

This is valid for all γ ∈ (0, 1/2). Since the right hand side is a continuous function
of γ, this inequality holds also for γ = 1/2. This estimate is independent of n, which
proves the theorem with K7 = 4T 2K6/(1− 2L2(2T + 1)∆t).

6. Discussion
In this paper we proved a strong averaging principle for a system of SDEs in

which slow and fast dynamics are driven by Brownian noise; as a result, the limiting
dynamics are stochastic as well. Our results thus generalize the analysis of E et al.
in which the slow (and effective) dynamics are deterministic. Note that the rate of
convergence scales like ε1/4, in contrast with the ε1/2 rate obtained when the slow
dynamics are deterministic.

We then proceeded to show that under the same conditions, a stochastic extension
of projective integration schemes strongly converges to the ε → 0 effective dynamics.
Our analysis focuses on the simplest case, where both the macro- and micro-solvers
use an Euler-Maruyama scheme, but the analysis is easily extended to higher-order
schemes.

We have limited ourselves to the case where the diffusion function of the slow
dynamics b does not depend on the fast component y. It is easy to see that when
b = b(x, y) strong convergence does not hold (although weak convergence does, see
[8]). Indeed, take for example the case of xε

t, y
ε
t ∈ R,

dxε
t = sin(yε

t ) dUt, xε
0 = x0

dyε
t = −1

ε
yε

t dt +
√

2√
ε

dVt, yε
0 = y0,

where yε
t is an Ornstein-Uhlenbeck process, independent of xε

t. If a strong averaging
principle were to hold, the effective dynamics could be determined analytically as the
invariant distribution of yε

t is a standard normal distribution,

dx̄t = γ dUt,

where

γ =
1
2π

∫
sin2 y e−y2/2 dy.
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However by the Itô isometry,

E |xε
t − x̄t|2 = E

∣∣∣∣
∫ t

0

(sin yε
s − γ) dUs

∣∣∣∣
2

=
∫ t

0

E |sin yε
s − γ|2 ds

=
T

2π

∫
(sin y − γ)2e−y2/2 dy,

which is independent of ε, i.e.,

lim
ε→0

E |xε
t − x̄t|2 6= 0.
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