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Abstract

We study a class of singularly perturbed dynamical systems that have fast and slow com-
ponents, ��1 being the fast to slow timescale ratio. The fast components are governed by a
strongly mixing discrete map, which is iterated at time intervals �. The slow components are
governed by a /rst-order /nite-di0erence equation that uses a time step �. As � tends to zero, the
fast components may be eliminated, giving rise to SDEs for the slow components. The emerging
stochastic calculus is, in the general case, of neither Itô nor Stratonovich type, but depends on
the correlation time of the mixing process.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in science exhibit the interaction of dynamics characterized by very
di0erent time scales. A class of such systems, which has been the focus of extensive
study for a century, is characterized by an explicit distinction between “fast” and “slow”
variables—systems with scale separation. Often, the problem may be formulated by a
set of ordinary di0erential equations (ODEs):

dx
dt

= f(x; y) ;
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dy
dt

=
g(x; y)

�
; (1.1)

where ��1; x∈R n and y∈Rm are the “slow” and “fast” variables, respectively. The
parameter � is the fast to slow timescale ratio.

Averaging methods are concerned with the derivation of “e0ective dynamics”, which
approximate the evolution of the slowly varying components x(t) without having to
solve for the fast components y(t) [1,2]. Thus, one looks for a new system of ODEs—
the “reduced”, or “e0ective” system

dX
dt

= F(X )

so that X (t)∈R n converges to x(t) as � → 0. There exist many variants to this basic
idea: the fast dynamics may take place on an in/nite-dimensional space, the equations
may be non-autonomous, there can be more than one fast time scale, and some of the
components may satisfy stochastic dynamics; see Ref. [3] for a recent literature review.

A situation of interest is where the fast dynamics is ergodic, that is, for almost every
x∈R n the dynamics de/ned by the ODE

dy
dt

= g(x; y) (1.2)

(with x viewed as a parameter) is ergodic. Then, Anosov’s theorem (e.g. Ref. [2])
proves the uniform convergence of x(t), as � → 0, to the solution X (t) of the reduced
equation

dX
dt

=
∫

f(X (t); z) 
X (t)(dz) ;

where 
x is the invariant measure (on Rm) associated with the fast dynamics (1.2).
Consider now a di0erent class of systems with scale separation:

dx
dt

= f1(x; y) +
f0(x; y)√

�
;

dy
dt

=
g(x; y)

�
; (1.3)

where the fast dynamics is ergodic, and f0(x; y) averages to zero under 
x for all x.
In this class of problems both the x and y equations contain fast dynamics but the
dynamics in y is an order of magnitude faster. Although f0(x; y) averages to zero
under the y-dynamics, the Kuctuations may inKuence the x-dynamics to leading order,
i.e., they may not vanish as � → 0. (Systems of form (1.3) can also be identi/ed,
upon a rescaling of time, with systems of form (1.1) on time intervals of the order of
1=
√
�.)

In Ref. [3], the authors and Stuart considered such a system where x satis/es a scalar
equation and y∈R 3 satis/es the Lorenz equations. Numerical experiments suggest
that f0(x; y)=

√
� might converge, as � → 0, to white noise. Whether this is indeed

the case remains an open question. The situation is considerably simpler if the fast
dynamics is stochastic, in which case one may apply classical perturbation analyses by
Kurtz [4] and by Papanicolaou and co-workers [5,6]; see also more recent analyses by
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Majda et al. [7]. Papanicolaou’s analysis in Ref. [6] may also apply for deterministic
systems with random initial data, however, the assumptions for which the general
theorem applies are usually hard to verify for given systems.

Discrete variants of systems of form (1.3) were constructed and studied by Beck
[8,9]. In this paper we are concerned with such discrete systems, in which the small
parameter � is also the discretization step. We describe Beck’s work using notations
and terminology consistent with system (1.3). The fast variable, y, assumes values in
some bounded interval Y ⊂ R . The function y(t) is constant on time intervals [tn; tn+1),
where tn = n�. Every � time units a new value of y is assigned by transforming its
previous value under a discrete map T ; let yn = y(tn), then yn+1 = Tyn. The initial
value y0 is randomly drawn from a probability measure, P, invariant under T ; expected
values with respect to P are denoted by E. The map T is assumed to have suNciently
strong mixing properties in a sense to be speci/ed below. The dynamics of the slow
variables x are de/ned, in analogy with (1.3), so that (xn; yn) = (x(tn); y(tn)) satisfy
the discrete system

xn+1 − xn
�

= f1(xn; yn) +
f0(xn; yn)√

�
;

yn+1 = Tyn : (1.4)

We are concerned with the case where f0(x; y) averages to zero under iterations of
the discrete map T acting on the y variables, i.e.,

lim
n→∞

1
n

n−1∑
k=0

f0(x; T ky) =
∫

f0(x; y)P(dy) = 0 :

A generic example of such a dynamical system (Y;B;P; T ) is Y =[0; 1], B the �-/eld
of Borel sets on [0; 1], and T : [0; 1] �→ [0; 1] de/ned by Ty = 2ymod 1; it is easy
to see that P = the Lebesgue measure on [0; 1] is invariant under T . The function
f0(x; y) = cos(2�y) has the required property of averaging to zero under P.

While the slow dynamics is de/ned in discrete time, it is useful to retain the no-
tion of a process in continuous time. In this work we take the function x(t) to be
piecewise-linear, with straight lines connecting the points (tn; xn). This choice allows
us to carry our analysis within the space of continuous functions, which simpli/es
some of the proofs.

Consider /rst the case f0(x; y) = f0(y) and f1(x; y) = 0, with f0(y) continuous.
Denoting the slow variables by xn = xB

n , (1.4) can be summed up explicitly, to /nd

xB
n = x0 + �

n−1∑
k=0

f0(yk)√
�

(1.5)

or in continuous time,

xB(t) = x0 + �
�t=��−1∑
k=0

f0(yk)√
�

+ (t − ��t=��)f0(y�t=��)√
�

: (1.6)

As � → 0 the last term on the right-hand side vanishes uniformly (recall that yn is
bounded and f0(y) continuous), hence the entire focus is on the second term, which is
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the sum of O(1=�) terms of order O(
√
�). Each of the summands is a random variable

whose expected value is zero, which suggests that this sum may converge by a central
limit theorem (CLT) to a Gaussian variable. However, one cannot use the CLT in
its standard form because the f0(yk) are not independent; the yk are all iterates of
the deterministic map T : yk = Tky0. Yet, if the map T has suNciently strong mixing
property (which amounts to asymptotic independence) and the function f0 satis/es
certain boundedness conditions, then it may be shown that the second term in (1.6)
converges weakly to a Gaussian random variable. Moreover, xB(t) converges weakly
in C[0; �] (the space of continuous functions on [0; �] endowed with the sup-norm
topology; � is arbitrary) to �B(t), where B(t) is standard Brownian motion and

�2 = E[f0(y)2] + 2
∞∑
n=1

E[f0(y)f0(Tny)] :

The proof of this statement is the subject of a chapter in Billingsley [10]. A precise
formulation will be given in the next section.

Thus, (1.5) de/nes a family of random processes xB(t), whose weak limit, as � → 0,
X B(t), satis/es the stochastic di0erential equation (SDE):

dX B(t) = � dB(t) :

The summand f0(yk)=
√
� plays here the role of white noise—the derivative (in the

sense of distributions) of Brownian motion.
This observation lead Beck to speculate that random processes de/ned by dynamical

systems of form (1.4) could, under certain conditions, weakly converge to SDEs of
more general type. Speci/cally, he considered the case where f0(x; y) = f0(y) and
f1(x; y) =−�x, �¿ 0. Denoting here the slow variables by xn = xOU

n , (1.4) reduces to
the linear (in x) equation

xOU
n+1 − xOU

n

�
= −�xOU

n +
f0(yn)√

�
: (1.7)

In view of the identi/cation of f0(yn)=
√
� with an approximation to white noise, it is

natural to expect that the function xOU(t) de/ned through the discrete equation (1.7)
weakly converges to the solution X OU(t) of the SDE:

dX OU(t) = −�X OU(t) dt + � dB(t) ;

i.e., xOU(t) converges to an Ornstein–Uhlenbeck process [11]. This assertion was in-
deed proved by Beck in Ref. [9] and supported by extensive numerical simulations in
Refs. [8,9].

The question is whether Beck’s theorem may be extended to more general dynamics
of form (1.4), and notably to nonlinear equations and multiplicative noise. In Section 3,
we analyze the linear system (1.7) considered by Beck and provide a new convergence
proof, based on a continuity argument. Speci/cally, we identify the relation between
xB(t) and xOU(t) as a continuous mapping in C[0; �]. Since weak convergence is pre-
served under continuous mappings, the convergence of xB(t), as � → 0, implies the
convergence of xOU(t). All that remains is to show that the limiting process is indeed
an OU process.
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Using the same approach, we then extend in Section 4 the treatment to non-
autonomous equations of the form

xn+1 − xn
�

= f1(xn; tn) + �(tn)
f0(yn)√

�
: (1.8)

For T and f0(y) satisfying the same assumptions as before and f1(x; t) continuous in
time and Lipschitz continuous in x, we prove that x(t) converges weakly in C[0; �] to
the solution X (t) of the nonlinear SDE

dX (t) = f1(X; t) dt + ��(t) dB(t) : (1.9)

These results are supported by numerical experiments. In particular, we compare the
approach to the limit to that obtained with the white noise approximated by i.i.d.
random variables, say, ��n=

√
�, where �n ∼ N(0; 1), which yields an Euler-type ap-

proximation to SDE (1.9).
The interesting situation is when the (approximate) white noise term is multiplied

by a function of xn or yn. This is where the delicacies of stochastic calculus emerge.
A general analysis of such situations is beyond the scope of this paper. In Section 5,
we examine three examples in which the limiting SDEs can be derived. Those turn out
to be, in general, neither Itô nor Stratonovich SDEs; the relevant stochastic calculus
depends on the rate at which the correlations of f0(yn) decay. This situation is in
contrast to the Stratonovich SDEs obtained in the � → 0 limit if the x-dynamics were
governed by di0erential equations, rather than di0erence equations. The emergence
of intermediate stochastic calculus can be understood in light of recent results by
Pavliotis et al. [12,13], who study SDE limits in scale separated systems where the
fast dynamics generate colored noise, and the slow dynamics satisfy a second-order
equation with small inertia (see also the related work by Graham and Schenzle [14]).
Then, intermediate stochastic calculus arises in the presence of a “competition” between
the inertial time and the noise correlation time. In our case, it is the discretization which
introduces an intrinsic time scale which is comparable with the noise correlation time.

2. Background: limit theorems for sums of weakly dependent variables

In this section, we describe the setting under which sums of form (1.6) weakly
converge to Brownian motion as � → 0. Our presentation follows closely Beck [9],
with notations adapted such to /t into the framework presented in Section 1.

Let then

xB(t) = �
�t=��−1∑
k=0

f0(yk)√
�

+ (t − ��t=��)f0(y�t=��)√
�

; (2.1)

where at this point y1; y2; : : : is an arbitrary sequence of random variables on a prob-
ability space (Y;B;P) and f0 is a real-valued function on Y (the yn will be related
back to a dynamical system further below). The simplest case is when the variables yn

are i.i.d. If the function f0(y) has mean zero and /nite variance �2, then Donsker’s
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theorem states that xB(t) weakly converges, as � → 0, to Brownian motion [10],

xB ⇒ �B in C[0; �] :

The next level of complexity is where the variables y0; y1; : : : are not independent, but
yn and yn+m become asymptotically independent as m increases. To this end, the notion
of �-mixing sequences is introduced.

Let y0; y1; : : : be a stationary sequence of random variables on (Y;B;P), and de/ne

Bn = �(y0; y1; : : : ; yn) ;

Bn = �(yn+1; yn+2; : : :) ;

to be the �-algebras generated by the sequence up to the nth element, and from the
(n + 1)th element on, respectively.

De�nition 2.1. The stationary sequence yn is called �-mixing if for every k¿ 0 and
m¿ 1, and for every E1 ∈Bk , and E2 ∈Bk+m

|P(E1 ∩ E2) − P(E1)P(E2)|6�(m)P(E1) ;

where �(m) is a non-negative function such that �(m) → 0 as m → ∞.

Thus, events related to the sequence yn up to its kth element and events related to
the sequence from its (k + m)th element on are only weakly dependent for large m.
The function � is a bound on the degree of dependence between such events. It is
easy to see that if yn is a �-mixing sequence and f0(y) is a measurable real-valued
function, then the sequence �n = f0(yn) is also �-mixing, with a di0erent function �.

Donsker’s theorem may then be generalized for �-mixing sequences [10]. Suppose
that f0(yn) is a �-mixing sequence with �(n) satisfying

∑∞
n=1

√
�(n)¡∞. If f0(y)

has mean zero and /nite variance, then the series

�2 = E[f2
0(y0)] + 2

∞∑
k=1

E[f0(y0)f0(yk)]

converges absolutely, and xB(t), given by (2.1), weakly converges to Brownian motion,
xB ⇒ �B in C[0; �].

We are concerned in this paper with the case where the sequence y0; y1; : : : is gen-
erated by the iterates of a deterministic map T on the initial element y0. Thus, y0 is
random but y1 = Ty0, y2 = T 2y0, etc., are deterministically determined by y0. Clearly,
the sequence yn is not �-mixing, yet the notion of �-mixing sequences may still be
exploited. This requires the introduction of generating partitions.

Consider the dynamical system (Y;B;P; T ) and let A be a /nite alphabet. A par-
tition � of (Y;B) is a measurable map Y �→ A (to each point y in Y corresponds
a letter a in the alphabet A). Let ! be the space of sequences {a0; a1; : : :}, where
an ∈A (the space of in/nite words over the alphabet A). The map T together with
the partition � de/ne a map from Y to !:

y �→ �T (y) = {�(y); �(Ty); �(T 2y); : : :} :
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Note that �T maps T into a left-shift operator S in the sense that �T (Ty) = S(�T (y))
for all y∈Y . The partition � is called generating if �T admits a retraction; namely, if
there exists a map � : ! �→ Y (a map that converts in/nite words over A back into
element of Y ) such that (i) � is measurable, (ii) � acts as a left inverse, �(�T (y))=y,
and (iii) � maps the shift operator into T in the sense that �(S&) = T �(&) for all
&∈!. Thus, a partition is called generating if the elements in Y can be identi/ed, in
a reversible way, with in/nite words over some alphabet, and the dynamical system
maps into a symbolic dynamical system.

The generic example [10,9] is Y = [0; 1], B the �-algebra of Borel sets on [0; 1],
Ty = 2ymod 1, and P the Lebesgue measure on [0; 1], which is invariant under T . A
generating partition is �(y) = �2y�, i.e., the alphabet is A = {0; 1} and �(y) = 0 if
y¡ 1=2 and �(y)=1 if y¿ 1=2. Then, �T maps every y∈ [0; 1] to its standard binary
representation a0a1a2 : : :, whereas � maps every sequence a0a1a2 : : : of {0; 1} into the
number y = a02−1 + a12−2 + · · · .

To any dynamical system (Y;B; T;P) with generating partition � we associate a
sequence of random variables �n on Y , �n(y)=�(Tny). Since T is measure preserving,
the sequence is stationary. We may now de/ne the notion of �-mixing for dynamical
systems:

De�nition 2.2. A dynamical system (Y;B; T;P) is said to be �-mixing if it admits
a generating partition �, such that the sequence of random variables �n = � ◦ Tn is
�-mixing.

Note that in the above example �(n) ≡ 0, because the digits �n of the binary
representation are strictly independent. It is worth emphasizing again that the iterates
Tny are not independent; y determines all the Tny deterministically. It is only the
corresponding symbols, �(Tny), which are independent.

We now turn our attention back to sum (2.1). The summands are proportional to
f0(yk) = f0(Tky0). Let � be a generating partition on (Y;B;P; T ); it maps f0 into a
function F0 on !:

F0(&) = f0(�(&)) :

Thus, �k(y) = f0(Tky) can be written in the equivalent form �k(y) = F0(Sk&), where
&=�T (y). Note that �k is a function of the sequence of random variables (�k ; �k+1; : : :).
Suppose that F0(&) depends only on a /nite truncation of the in/nite sequence &.
Then, if (�0; �1; : : :) is �-mixing (i.e., the dynamical system is �-mixing), then so it
the sequence (�0; �1; : : :), and provided that the corresponding function �(n) decays
suNciently fast, then xB(t) weakly converges to Brownian motion. This result may be
extended to cases where F0(&) depends on the entire sequence, provided that it can
be approximated well enough by a function that depends only on a /nite truncation
of &.

Theorem 2.1. Let (Y;B;P; T ) be a �-mixing dynamical system with generating par-
tition �, such that

∑∞
n=0

√
�(n)¡∞. Let �n(y) = �(Tny) and Bk = �(�0; �1; : : : ; �k).
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If f0(y) is a real valued function on Y with the property that
∞∑
k=1

(E|f0 − E[f0|Bk ]|2)1=2 ¡∞ ;

where E[f0|Bk ] is the conditional expectation of f0(y) given the 7rst k digits of
�T (y), then the series

�2 = E[f2
0(y0)] + 2

∞∑
k=1

E[f0(y0)f0(yk)] (2.2)

converges absolutely and xB(t), given by (2.1), weakly converges, as � → 0, to �B(t).

Returning to the example with Y = [0; 1] and Ty = 2ymod 1, we take f0(y) =
cos(2�y). The function f0 is di0erentiable, hence it satis/es the assumptions of the
theorem and it is a matter of a simple calculation to show that �2=1=2, i.e., xB ⇒ 1√

2
B.

3. From deterministic dynamics to SDEs: a �rst example

Consider system (1.7) considered in Refs. [8,9]:

yn+1 = Tyn

xOU
n+1 − xOU

n

�
= −�xOU

n +
f0(yn)√

�
; (3.1)

where T and f0(y) are assumed to satisfy the assumptions on Theorem 2.1. Recall
that a continuous piecewise-linear function, xOU(t), is de/ned by

xOU(t) = xOU
�t=�� + (t=�− �t=��)(xOU

�t=��+1 − xOU
�t=��) :

In this section, we provide a new proof that, as � → 0, xOU(t) weakly converges in
C[0; �] to the OU processes X OU(t) de/ned by the SDE,

dX OU(t) = −�X OU(t) dt + � dB(t) ; (3.2)

where � is given by (2.2).
Our proof is based on the well-known fact that weak convergence is preserved under

a continuous mapping [10, p. 31]. That is, if F is a continuous mapping in C[0; �], and
x(t) weakly converges in C[0; �] as � → 0, then F[x(t)] is also weakly convergent.
We will construct such an F so that xOU = F[xB], where xB(t) is given by (2.1).
Thus, the weak convergence of xB(t) implies the weak convergence of xOU(t). It only
remains then to show that the limit is indeed X OU(t).

Theorem 3.1. Let (Y;B;P; T ) and f0 satisfy the conditions of Theorem 2.1, and let
xOU(t) and X OU(t) be given by (3.1) and (3.2), respectively. Then, as � → 0,

xOU ⇒ X OU in C[0; �] :
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Proof. We construct a continuous map F on C[0; �], such that xOU =F[xB]. Because
C[0; �] is a complete metric space, it is suNcient to construct an F that is uniformly
continuous on a dense subset; it then has a unique extension, which is uniformly
continuous, to the whole space [15, p. 118].

De/ne E ⊂ C[0; �] to be the set of all piecewise linear functions whose points of
non-di0erentiability are rational. Obviously E is dense in C[0; �]. By restricting the
values of � to rational numbers we guarantee that xB(t)∈E and xOU(t)∈E.

Let h(t) be an arbitrary function in E, and denote by M the smallest common
denominator (SCD) of its points of non-di0erentiability. Given h(t), we de/ne a cor-
responding discrete function,

hn = h
( n
M

)
; n = 0; 1; : : : ; �M��

(note that the points tn = n=M contain all the points of non-di0erentiability of h), and
use it to construct another discrete function, xhn, satisfying

xhn+1 − xhn
1=M

= −�xhn +
hn+1 − hn

1=M
; (3.3)

with xh0 = x0. The continuous process xh(t) is de/ned by

xh(t) = xh�tM� + (tM − �tM�)(xh�tM�+1 − xh�tM�) : (3.4)

This de/nes a mapping on E, h �→ xh, which we denote by F. It is easily veri/ed
that F[xB] = xOU.

In Lemma 3.1 below we show that F is a uniformly continuous mapping in E.
Hence, it can be uniquely extended as a uniformly continuous mapping in C[0; �];
since no confusion should arise, we denote its extension by F as well. It then follows
that the weak convergence xB(t) ⇒ �B(t), by Theorem 2.1, implies that xOU(t) weakly
converges to the limiting process, F[�B].

It remains to identify the process F[�B]. Since the limit F[�B] does not depend
on the sequence in E that approximates B, we can use

F[�B] = lim
n→∞F[�xw] ;

where xw(t) is any di0erentiable approximation to standard Brownian motion. Then,
it is well-known that F[�xw] converges in probability in C[0; �] to the solution of
(Stratonovich) SDE (3.2) [16] (since the coeNcient of dB is constant, there is no
di0erence here between Itô and Stratonovich interpretations).

Lemma 3.1. F is uniformly continuous on the subset E.

Proof. Let �¿ 0, and de/ne ' = �=2e|�|�. Let g; h∈E such that ‖g − h‖6 '. With-
out loss of generality, we assume that the functions g; h have the same points of
non-di0erentiability, with M their SCD. As above we de/ne xg =F[g] and xh =F[h].
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Then, for m = 0; 1; : : : ; �M��,

|xhm − xgm| =

∣∣∣∣∣− �
M

m−1∑
i=1

(xhi − xgi ) +
m−1∑
i=1

(hi+1 − hi) −
m−1∑
i=1

(gi+1 − gi)

∣∣∣∣∣
=

∣∣∣∣∣− �
M

m−1∑
i=1

(xhi − xgi ) + (hm − h0) − (gm − g0)

∣∣∣∣∣
6

�
M

m−1∑
i=1

|xhi − xgi | + |hm − gm| + |h0 − g0|

6
�
M

m−1∑
i=1

|xhi − xgi | + 2' :

A discrete version of Gronwall’s inequality yields

|xhm − xgm|6 2'
(
1 +

�
M

)m−1
6 2'e|�|� = � :

Thus, for all �¿ 0 there exists a '¿ 0, such that ‖g − h‖6 ' implies that |F[g] −
F[h]|6 � on all points tm = m=M . Since the maximum distance between functions
in E (that have the same points of non-di0erentiability) is attained at a point of
non-di0erentiability, this implies the uniform continuity of the map F.

3.1. Numerical experiment

We now illustrate the behavior of the deterministic process (3.1) with a computer
experiment. We took y0 ∼ U[0; 1] and Ty= 2ymod 1. In some of the experiments we
used f0(y) = cos(2�y) and in other f0(y) =

√
2(y − 1=2); in both cases �2 = 1=2.

Note that because of the /nite representation of real numbers on a computer, T cannot
be implemented using real number multiplication; it is necessary to actually generate
a sequence of pseudo-random bits.

In Fig. 1 we plot the empirical distribution of x(t) for �=1 and three di0erent values
of � for a sampling time of 105 units. The dashed line corresponds to f0(y)=cos(2�y)
and the dash–dotted line corresponds to f0(y)=

√
2(y−1=2). Note that in the /rst case

the distribution is asymmetric, whereas it is symmetric in the second case. The empirical
distribution is compared to the empirical distribution generated by an Euler scheme
(dotted line), i.e., by (3.1) with f0(yn) replaced by independent normal variables
N(0; �2). The solid line is the empirical distribution of the OU process, which is
a normal distribution with variance 1=2�2. As expected, all the curves approach the
asymptotic limit for small �.

In Fig. 2 we plot the corresponding auto-covariance functions. Here again, all the
curves approach the limiting exponential curve for small �. Note that x(t) generated
using f0(y)=cos(2�y) has the same empirical auto-covariance as the Euler approxima-
tion, which may be shown by a straightforward calculation (the f0(yn) are uncorrelated
in both cases).
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Fig. 1. Dashed lines: the empirical measure of x(t) solving (3.1) for � = 1, f0(y) = cos(2�y), and
(a) � = 0:05, (b) � = 0:3, (c) � = 0:5. Dash–dotted lines: same for f0(y) =

√
2(y − 1=2). Dotted-lines

same for x(t) generated by an Euler approximation of the OU equation. Solid line: the empirical measure
of the limiting OU process.

4. Extension to more general SDEs

In this section we extend the treatment to systems of the form,

yn+1 = Tyn ;

xn+1 − xn
�

= f1(xn; tn) + �(tn)
f0(yn)√

�
; (4.1)

where tn=n� and T and f0(y) are assumed to satisfy the assumptions of Theorem 2.1.
The continuous piecewise-linear function, x(t), is de/ned by

x(t) = x�t=�� + (t=�− �t=��)(x�t=��+1 − x�t=��) :

In this section we prove that x(t) weakly converges in C[0; �], as � → 0, to the
process X (t) de/ned by the SDE,

dX (t) = f1(X; t) dt + ��(t) dB(t) ; (4.2)
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Fig. 2. Dashed lines: the empirical auto-covariance of x(t) solving (3.1) for � = 1, f0(y) = cos(2�y), and
(a) � = 0:05, (b) � = 0:3, (c) � = 0:5. Dash–dotted lines: same for f0(y) =

√
2(y− 1=2). Dotted lines same

for x(t) generated by an Euler approximation of the OU equation. Solid line: the empirical auto-covariance
of the limiting OU process.

where � is still given by (2.2). Our proof uses the same technique that was used in
Section 3—the fact that weak convergence is preserved under a continuous mapping.

Theorem 4.1. Let (Y;B;P; T ) and f0 satisfy the conditions of Theorem 2.1, and
let x(t) and X (t) be given by (4.1) and (4.2), respectively. Assume that f1(z; t) is
Lipschitz in z with constant L, and that �(t) is of bounded variation. Then, as � → 0,

x ⇒ X in C[0; �] :

Proof. Following the proof of Theorem 3.1, we construct a uniformly continuous map
F on E, such that x=F[xB]. Let h(t) be an arbitrary function in E, and denote by M
the SCD of its points of non-di0erentiability. Given h(t), we de/ne a corresponding
discrete function,

hn = h
( n
M

)
; n = 0; 1; : : : ; �M��
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and use it to construct another discrete function, xhn, satisfying

xhn+1 − xhn
1=M

= f1(xhn; n=M) + �(n=M)
hn+1 − hn

1=M
(4.3)

with xh0=x0. The continuous process xh(t) is de/ned as in (3.4). This de/nes a mapping
F on E, xh = F[h]. Again, it is easily veri/ed that x = F[xB]. In Lemma 4.1 below
we show that F is a uniformly continuous mapping on E, so that F[xB] ⇒ F[B].
The identi/cation of the process F[B] is the same as in the proof of Theorem 3.1.

Lemma 4.1. F is uniformly continuous on the subset E.

Proof. Let �¿ 0. De/ne

V = sup
0=t0¡···¡tn=�

n−1∑
i=0

|�(ti+1) − �(ti)| (4.4)

to be the variation of �(t) in [0; �], and

' =
�

(V + 2‖�‖)eL� : (4.5)

Let g; h∈E such that ‖g − h‖6 '. Without loss of generality we assume that the
functions g; h have the same points of non-di0erentiability, with M their SCD. If xg =
F[g] and xh = F[h], then for all m = 0; 1; : : : ; �M��,

|xhm − xgm| =

∣∣∣∣∣ 1
M

m−1∑
i=1

[
f1

(
xhi ;

i
M

)
− f1

(
xgi ;

i
M

)]

+
m−1∑
i=1

�
(

i
M

)
(hi+1 − gi+1 − hi + gi)

∣∣∣∣∣
6

L
M

m−1∑
i=1

|xhi − xgi | +
∣∣∣∣∣
m−1∑
i=1

[
�
(
i + 1
M

)
− �

(
i
M

)]
(hi − gi)

− �(0)(h0 − g0) + �
(
m− 1
M

)
(hm−1 − gm−1)

∣∣∣∣ ;

where we used the Lipschitz property and summation by parts. Substituting (4.4) and
(4.5),

|xhm − xgm|6
1
M

m−1∑
i=1

L|xhi − xgi | + (V + 2‖�‖)' ;

and by the discrete Gronwall inequality,

|xhm − xgm|6 (V + 2‖�‖)'
(

1 +
L
M

)m−1

6 (V + 2‖�‖)'e|L| = � ;

which implies the uniform continuity of the map F.
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4.1. Numerical experiment

Consider the following deterministic process:

yn+1 = Tyn ;

xn+1 − xn
�

= −V ′(xn) +
f0(yn)√

�
(4.6)

with V (x) = x4

4 − x2

2 , y0 ∼ U[0; 1], Ty = 2ymod 1, and f0(y) = cos(2�y).
Theorem 4.1 asserts that x(t) weakly converges to the solution of the SDE,

dX (t) = −V ′(X (t)) dt + � dB(t) ; (4.7)

� = 1=
√

2, which describes a noise-driven over-damped particle in a potential well
V (x). The process X (t) is ergodic with distribution Z−1 exp[ − 4V (X )], and Z is a
normalizing constant.

Fig. 3 shows the empirical distribution for x(t) solving (4.6) for three values of �
and a sampling time of 105 units. As before, we compare the empirical distribution to
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Fig. 3. Dashed lines: the empirical distribution of x(t) solving (4.6) for (a) � = 0:01, (b) � = 0:05, and
(c) � = 0:1. Dotted lines: empirical distribution of an Euler approximation to the SDE (4.7) with time step
�. Solid lines: empirical distribution of the limiting process (4.7).
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that obtained from an Euler approximation to (4.7) with time step �. The two curves
are compared with the empirical distribution of the limiting process X (t). The results
clearly indicate the convergence of the empirical distribution to the predicted limit.
Note once again the asymmetry of the distribution for x(t) solving (4.6), which is still
noticeable even for � as small of 0.01.

5. Examples with multiplicative noise

In the last two sections, we studied dynamical systems that converge to SDEs in
which the noise term is additive—the prefactor of the (approximate) Brownian incre-
ment is at most a function of time and does not depend on the random process. In this
section, we study three examples in which the noise is multiplicative, in which case
it is not clear a priori how to interpret stochastic integration. The two most common
interpretations of stochastic integration are Itô’s, which assumes that Brownian incre-
ments are independent of the present or past state of the process, and the Stratonovich
interpretation, which applies when Brownian motion is approximated by a sequence of
di0erentiable functions.

5.1. First example

Consider the following discrete system:

yn+1 = Tyn ;

xn+1 − xn
�

=
f0(yn)√

�
;

zn+1 − zn
�

= xn
f0(yn)√

�
(5.1)

with x0 = 0 and z0 = 0; T and f0 satisfy the assumptions of Theorem 2.1.
The discrete function xn is identical to xB

n de/ned by (1.5); its piecewise-linear
interpolant, x(t) = xB(t) weakly converges to �B(t), with � given by (2.2). Since
f0(yn)=

√
� are the increments of xB

n , we expect z(t), the piecewise-linear interpolant
of zn, to weakly converge to the solution Z(t) of the SDE

dZ(t) = �2B(t) dB(t); Z(0) = 0 :

The question is in which sense has this equation to be interpreted. When interpreted
in the sense of Itô its solution is ZI (t) = (�2=2)[B2(t) − t], whereas the Stratonovich
calculus yields ZS(t) = (�2=2)B2(t). We will show that z(t) converges to a stochastic
integral �2

∫
B dB, which is neither in the sense of Itô nor Stratonovich. Speci/cally,

z(t) ⇒ Z(t), where

Z(t) =
�2

2

[
B2(t) − �̂2

�2 t
]

(5.2)

and �̂2 = Ef2
0(y).
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To obtain this result we start by rewriting zn in the following form:

zn =
n−1∑
k=0

xk(xk+1 − xk)

=
1
2

n−1∑
k=0

[x2
k+1 − x2

k − (xk+1 − xk)2]

=
1
2
x2
n −

1
2

n−1∑
k=0

�f2
0(yk)

≡ z(1)
n − z(2)

n :

Note that this equation holds also for the piecewise-linear interpolants, z(t) = z(1)(t)−
z(2)(t).

We now show that z(1)(t) weakly converges to (�2=2)B2(t), and that z(2)(t) con-
verges almost-surely (a.s.) to the (non-random) function (�̂2=2) t, whence the validity
of (5.2). Note that, in general, z(1) ⇒ Z (1) and z(2) ⇒ Z (2) does not imply the weak
convergence of the sums z(1) + z(2) ⇒ Z (1) + Z (2). Indeed, for the sum to converge we
need the pair (z(1); z(2)) to weakly converge in the product space C[0; �]×C[0; �]. This
is guaranteed, however, if one of the summands converges in a stronger sense, say, in
probability [10].

We start by arguing that z(1)(t) weakly converges to (�2=2)B2(t). This may seem
obvious since xB ⇒ �B, and the squaring of a function is a continuous operation
in C[0; �]. More generally, if h : R �→ R is continuous, then it is continuous as an
operator in C[0; �], hence h(xB) ⇒ h(�B) in C[0; �]. This argument require some care,
since z(1)(t) �= 1

2 [xB(t)]2; these two functions only agree on the points tn =n �, and the
square of the linear interpolant of xB

n does not coincide with the interpolant of (xB
n)

2.
In Appendix A we show that if h : R �→ R is di0erentiable and h′(z) can be bounded
by exponential growth, then the piecewise-linear interpolant of the discrete function
h(xB

n) weakly converges to h(�B).
It remains to show that z(2)(t), converges a.s. in C[0; �] to the non-random function

(�̂2=2) t. Since the maximum of a piecewise-linear function is attained at a point of
non-di0erentiability, it is suNcient to show that a.s.

lim
�→0

max
06n6��=��

∣∣∣∣z(2)
n − �̂2

2
tn

∣∣∣∣ = 0 ;

where tn = n �.
Let '¿ 0 be given. Since the sequence f0(yn) is ergodic, then it follows from

Birkho0’s ergodic theorem that there exists an �' such that for all �¡ �' and '=�¡
n6 ��=��,∣∣∣∣∣1n

n−1∑
k=0

f2
0(yk) − �̂2

∣∣∣∣∣6 '
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or equivalently,∣∣∣z(2)
n − �̂2

2 tn
∣∣∣6 n�

2
'6

�
2
' :

For 06 n6 '=� we have

|z(2)
n |6 M

2
';

�̂2

2
tn6

�̂2

2
' ;

where M = maxy∈Y f2
0(y). Thus, for every '¿ 0 there exists an �' such that for all

�¡ �',

max
06n6��=��

∣∣∣∣z(2)
n − �̂2

2
tn

∣∣∣∣6 1
2

max(�;M; �̂2) '

which concludes our proof.

5.2. Second example

We now consider a generalization of the previous example. Let h : R → R be a twice
continuously di0erentiable function, and consider the following discrete processes:

yn+1 = Tyn ;

xn+1 − xn
�

=
f0(yn)√

�
;

zn+1 − zn
�

= h′(xn)
f0(yn)√

�
; (5.3)

where x0 = 0 and z0 = 0; T and f0 satisfy the assumptions of Theorem 2.1. By the
same argument as above, we expect zn to weakly converge to Z(t) satisfying the SDE:

dZ(t) = h′(�B) � dB; Z(0) = 0 : (5.4)

For Itô and Stratonovich SDEs the solution are

ZI (t) = h(�B(t)) − h(0) − �2

2

∫ t

0
h′′(�B(s)) ds ;

ZS(t) = h(�B(t)) − h(0) :

Here again, the relevant stochastic calculus is of neither type; we will show that the
piecewise-linear interpolant z(t) weakly converges to Z(t) given by

Z(t) = h(�B(t)) − h(0) − �̂2

2

∫ t

0
h′′(�B(s)) ds ; (5.5)

where �̂ is the same as in Section 5.1.
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Consider the discrete function h(xn). By Taylor’s expansion, and using (5.3), we get

h(xn+1) − h(xn)
�

= h′(xn)
f0(yn)√

�
+ 1

2 h
′′(xn)f2

0(yn) + O(�1=2) : (5.6)

A comparison of (5.6) with the equation for zn shows that

zn = h(xn) − h(x0) − 1
2

n−1∑
k=0

�h′′(xk)f2
0(yk) + O(�3=2) ;

which we rewrite as follows:

zn = z(1)
n − z(2)

n − z(3)
n + O(�3=2) ;

where

z(1)
n = h(xn) − h(x0) ;

z(2)
n =

�̂2

2

n−1∑
k=0

� h′′(xk) ;

z(3)
n =

1
2

n−1∑
k=0

� h′′(xk)[f2
0(yk) − �̂2] :

This decomposition is also valid for the piecewise-linear interpolants.
The function z(1)(t) weakly converges to h(�B(t)) − h(0) by the same argument as

in the previous section. The function z(2)(t) weakly converges to the integral,

�̂2

2

∫ t

0
h′′(�B(s)) ds

as can easily be shown by a continuity argument. In general the limit of a sum of
two weakly convergent sequences does not equal the sum of their limits. But because
x → (x; x) is a continuous operation from C[0; �] to C[0; �]×C[0; �], z(1)(t) and z(2)(t)
are both continuous functions of x(t), and addition is a continuous operation from
C[0; �] × C[0; �] to C[0; �], it follows that

z(1) − z(2) ⇒ h(�B) − h(0) − �̂2

2

∫ t

0
h′′(�B(s)) ds :

To prove the validity of (5.5) it remains to show that z(3) converges to zero in prob-
ability, i.e., that for all '¿ 0,

lim
�→0

P
{

max
06n6��=��

∣∣∣∣∣12
n−1∑
k=0

� h′′(xk)[f2
0(yk) − �̂2]

∣∣∣∣∣¿ '

}
= 0 : (5.7)

This is proved in Appendix B.
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5.3. Third example

Consider the following process:

yn+1 = Tyn ;

zn+1 − zn
�

= -zn + zn
f0(yn)√

�
;

where - is a constant. Here we expect zn to weakly converge to a solution of an SDE

dZ = -Z dt + �Z dB; Z(0) = z0 :

Here the Itô and Stratonovich interpretations give

ZI (t) = z0 exp[(-− �2=2)t + �B(t)]

ZS(t) = z0 exp[-t + �B(t)] :

Instead, we obtain that z(t) weakly converges to Z(t) given by

Z(t) = z0 exp[(-− �̂2=2)t + �B(t)] (5.8)

with �̂ the same as in the /rst two examples.
The equation for zn being linear, it can be solved explicitly,

zn = z0
n−1∏
k=0

[1 + -� + f0(yk)
√
�] :

Taking the logarithm and expanding in powers of �:

log zn = log z0 +
n−1∑
k=0

log[1 + -� + f0(yk)
√
�]

= log z0 +
n−1∑
k=1

[
-� + f0(yk)

√
�− 1

2
f2

0(yk)� + O(�3=2)
]

= log z0 + -tn + xn − 1
2

n−1∑
k=1

f2
0(yk)� + O(�1=2) :

The /rst two terms on the right-hand side are non-random; the third term converges
weakly to �B(t); the fourth term converges in probability to (�̂2=2)t; the /fth term
(surely) converges uniformly to zero. Hence, the limits can be added, and the linear
interpolant of log zn weakly converges to log z0 + -t + �B − (�̂2=2)t. By continuity,
(5.8) follows.

6. Discussion

(1) This paper studies SDE limits of discrete dynamical systems with scale separation
of form (1.4). The discrete system is inspired by the continuous system (1.3), and
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has the advantage of allowing explicit examples for which the assumed mixing
properties can be veri/ed. As argued below, the discrete setup plays a critical role
in the determination of the limiting dynamics.

(2) While we were able to prove a quite general convergence theorem for additive
noise, our treatment of multiplicative noise is restricted to three examples. Thus,
general systems of the form

xn+1 − xn
�

= f1(xn; tn) + �(xn; tn)
f0(yn)√

�
;

yn+1 = Tyn (6.1)

are beyond the scope of this paper. Note that if the “white noise” term, f0(yn)=
√
�

is replaced by i.i.d. normal variables N(0; �2�−1), then (6.1) is simply the Euler–
Maruyama scheme [17] for the Itô SDE,

dX = f1(X; t) dt + ��(X; t) dB(t) :

Then, the piecewise-linear interpolant, x(t), of xn converges strongly (in proba-
bility) in C[0; �] to X (t). If f0(yn) are i.i.d., say, ±1 (i.e., Brownian motion is
approximated by random walk), which is a simpler situation than mixing determin-
istic dynamics, then weak convergence is the only possible mode of convergence.
In Ref. [17] it is proven that under mild restrictions on f0 and �,

lim
�→0

E[g(x(t))] = E[g(Z(t))]

for all t ∈ [0; �] and all suNciently smooth functions g. Bally and Talay [18] gen-
eralize this theorem to functions g that are measurable and bounded.

(3) In the three examples studied in Section 5, the resulting stochastic calculus was
found to be intermediate between Itô and Stratonovich. The reason for that is as
follows: Itô’s calculus assumes that Brownian increments are independent of the
current and past state of the system. In our case, where the Brownian increments
are approximated by a function of a mixing process, this independence is not
satis/ed. The factor that determines the limiting stochastic calculus was found out
to be the auto-correlation of the sequence f0(yn). If the elements of this sequence
are uncorrelated (as is the case, for example, if we take Y = [0; 1], Ty= 2ymod 1
and f0(y)= cos(2�y)), then �̂=�, and the limit is of Itô type. In all other cases,
�̂ �= �, and we obtain a limit which is intermediate between Itô and Stratonovich.

(4) In view of the above, we conjecture that x(t) solving (6.1) weakly converges in
C[0; �], under quite general conditions, to X (t) solving

X (t) = X (0) +
∫ t

0
f1(X (s); s) ds + (M)

∫ t

0
�(X (s); s) � dB(s) ;

where the stochastic integral (M)
∫

is de/ned by the following combination of Itô
and Stratonovich integrals:

(M)
∫ t

0
dB = .(I)

∫ t

0
dB + (1 − .)(S)

∫ t

0
dB ;

and . = �̂2=�2. The possible range of . is (0;∞).
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(5) Suppose that rather than constructing discrete equations for the slow dynamics, we
kept the y dynamics discrete, with the slow dynamics governed by a di0erential
equation. For example, the approximate Brownian motion could be de/ned as the
solution of the ODE

dx
dt

=
f0(y�t=��)√

�
:

It is easy to see that x(t) converges weakly to �B(t). We can then proceed to
construct di0erential systems with multiplicative noise. Consider for example the
case

dz
dt

= h′(x)
f0(y�t=��)√

�
= h′(x)

dx
dt

:

Integration by parts, followed by a continuity argument, shows that z(t) converges
weakly to h(�B), i.e. to a Stratonovich interpretation of the stochastic integral. This
is not surprising given that Brownian motion is approximated here by a piecewise
di0erentiable function [19].

(6) In general, the Itô interpretation of the stochastic integral is expected to prevail
when the correlation time of the driving noise is fast compared to the relaxation
time of the rate of change (i.e., velocity) of the process. Conversely, a Stratonovich
interpretation is expected to prevail when the driving noise seems smooth on the
scale over which the velocity relaxes. Intermediate interpretations are likely to
occur when both relaxation times are of the same order. In the present paper,
because the slow dynamics are governed by a discrete process, we have a velocity
relaxation time of order �, which is also the timescale of noise correlation.

A detailed study of Itô versus Stratonovich limits when inertia interacts with
noise correlation is undertaken by Pavliotis and Stuart [12]. While their study
covers a range of di0erent situations, here we only interpret their results within
the scope of the present paper. Consider, for example, the second-order ODE with
multiplicative noise:

��
d2x
dt2

+
dx
dt

= f(x)
f0(y�t=��)√

�

with �¿ 0 (in Ref. [12] the setup is stochastic, and the noise term is an Ornstein–
Uhlenbeck process with correlation time of order �). As � → 0, one may be
tempted to drop the inertial term, and speculate that x(t) weakly converges to the
solution X (t) of the SDE

dX = �f(X ) dB : (6.2)

The analysis in Ref. [12] shows that when �¡ 1, i.e., the velocity correlation
time �� is much longer, for small �, than the noise correlation time, then the limit
satis/es (6.2), interpreted in the sense of Itô. When �¿ 1 the noise is smooth on
the scale of the velocity correlation time and a Stratonovich correction appears.
When �= 1, the two times are of the same order, and an intermediate limit holds.
Note that we study a /rst order system, i.e., there is no explicit inertia; the inertial
e0ect is an artifact of the discretization, which uses � for time step.
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Appendix A

Consider xn = xB
n given by (1.5), and its piecewise-linear interpolant, x(t) = xB(t),

which weakly converges to �B(t), with � given by (2.2). Let h(x) : R → R be
a continuous function, zn = h(xn), and z(t) be its piecewise-linear interpolant. The
continuity implies that h(x(t)) weakly converges to h(�B(t)), however it is not clear
whether z(t) weakly converges to h(�B(t)) as well.

As in Theorem 2.1, �n(y)=�(Tny) is the nth digit of �T (y), BK =�(�0; �1; : : : ; �K) is
the �-algebra generated by the /rst K digits of �T (y), and fK

0 =E[f0|BK ] is the best
approximation of f0(y) in L2(Y;B;P) by a BK -measurable function. Note that the
sequence fK

0 (yn) is K-dependent, that is, {fK
0 (yi); : : : ; fK

0 (yl)} and {fK
0 (yl+n); : : : ;

fK
0 (yj)} are independent whenever n¿K , hence it is a �-mixing process.

Proposition A.1. Assume that there exist a¿ 1; K0 ¿ 0 such that for all K ¿K0,

sup
y∈Y

|f0(y) − fK
0 (y)|¡a−K : (A.1)

If h′(x) is bounded by exponential growth, that is, |h′(x)|6 ce.|x| for some .; c¿ 0,
then

lim
�→0

P
{
sup06t6� |z(t) − h(x(t))|¿'

}
= 0 (A.2)

for all '¿ 0.

Comments. (1) This proposition determines conditions under which the uniform dis-
tance between z(t) and h(x(t)) converges to zero in probability. Since h(x(t)) weakly
converges to h(�B(t)), it follows that z(t) weakly converges to h(�B(t)).

(2) Note that the assumptions in Theorem 2.1 require a bound on the distance in
L2(Y;B;P) between f0(y) and fK

0 (y), while here an L∞(Y;B;P) bound is assumed.
Note also that we require exponential convergence while in Theorem 2.1 the require-
ment is less stringent.

(3) This proposition also holds for supy∈Y |f0(y)−fK
0 (y)|¡K−a, a¿ 1 and h′(x)

bounded by polynomial growth, |h′(x)|6 c|x|p; p¡ 2a.
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Proof. Let 06 t6 � and �¿ 0. The fact that h(x(t)) and z(t) share the same values
at integer multiples of � implies,

|z(t) − h(x(t))|6 |z(t) − h(x�t=��)| + |h(x�t=��) − h(x(t))|
= (t=�− �t=��)|h(x�t=��+1) − h(x�t=��)| + |h(x�t=��) − h(x(t))|
= (t=�− �t=��){|h′(x(41))| + |h′(x(42))|}|f0(y�t=��)|

√
� ;

where we used the mean value theorem twice with �t=��6 41; 426 �t=�� + 1. Let
4∈{41; 42} be such that it maximizes |h′(x(4))|, then

|z(t) − h(x(t))|6 2|h′(x(4))f0(y�t=��)|
√
� :

The boundedness on the growth rate of h′(x) and the fact that x(t) assumes its local
extrema on the mesh points implies that (A.2) follows if

lim
�→0

P
{

sup
06t6�

|h′(x�t=��)f0(y�t=��)
√
�|¿'

}
= 0

for all '¿ 0. Using the boundedness of f0(y) and the exponential bound, it is suNcient
to show that

lim
�→0

P
{

max
06k6��=��

|xk |¿ log
'√
�

}
= 0

for all '¿ 0. De/ne xKk =
∑k−1

i=0 fK
0 (yi)

√
�. (A.1) guarantees that

|xKk − xk |6 k a−K√�6
�√
�
a−K (A.3)

which implies,

P
{

max
06k6��=��

|xk |¿ log
'√
�

}
= P

{
max

06k6��=��
|xk − xKk + xKk |¿ log

'√
�

}

6 P
{

max
06k6��=��

|xKk | + |xk − xKk |¿ log
'√
�

}

6 P
{

max
06k6��=��

|xKk |¿ log
'√
�
− �√

�
a−K

}
:

Because xKk is the sum of variables which are K-dependent, we can split it into a double
sum such that each of the inner sums is over independent variables; this exploits the
fact that fK

0 (yi+jK) are i.i.d. for di0erent values of j. Thus,

P
{

max
06k6��=��

|xk |¿ log
'√
�

}

=P


 max

06k6��=��

∣∣∣∣∣∣
K−1∑
i=0

(k−K−2)=K∑
j=0

fK
0 (yi+jK)

√
�

∣∣∣∣∣∣¿ log
'√
�
− �√

�
a−K




6P


 max

06k6��=��;06i6K−1

∣∣∣∣∣∣
(k−K−2)=K∑

j=0

fK
0 (yi+jK)

√
�K

∣∣∣∣∣∣¿
log '=

√
�−(�=

√
�)a−K

√
K


 :
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For sums of i.i.d. variables the reKection principle [10] implies,

P
{

max
06k6��=��

|xk |¿ log
'√
�

}

6 2P


 max

06i6K−1

∣∣∣∣∣∣
��=��=K∑
j=0

fK
0 (yi+jK)

√
�K

∣∣∣∣∣∣¿
log '=

√
�− (�=

√
�)a−K

√
K


 :

(A.4)

If we choose K = K(�) such that

�K → 0 (A.5)

then
∑��=��=K

j=0 fK
0 (yi+jK)

√
�K weakly converges to a Gaussian variable, which implies

that for all �,
[∑��=��=K

j=1 fK
0 (yi+jK)

√
�K

]2
are uniformly integrable. If furthermore,

log
'√
�
− �√

�
a−K ¿ 0 ; (A.6)

then Chebyshev’s inequality applied to (A.4) implies

P
{

max
16k6��=��

|xk |¿ log
'√
�

}
6

CK

[log '=
√
�− (�=

√
�)a−K ]2

(A.7)

for some C¿ 0. If we set K(�) = −log �, then (A.5) and (A.6) are satis/ed for suN-
ciently small �, and it is easy to see that the right-hand side of (A.7) tends to zero as
� → 0.

Appendix B

Proposition B.1. Assume that there exists an a¿ 0 such that for K su<ciently large

sup
y∈Y

|f0(y) − fK
0 (y)|6 a−K ; (B.1)

sup
y∈Y

|f2
0(y) − (fK

0 (y))2|6 a−K (B.2)

and that g(x) is Lipschitz with constant L. Then

lim
�→0

P
{

max
06k6��=��

∣∣∣∣∣
k∑

i=0

g(xi)[f2
0(yi) − �̂2]�

∣∣∣∣∣¿ '

}
= 0 (B.3)

for all '¿ 0.

Proof. De/ne

uk = f2
0(yk) − Ef2

0 = f2
0(yk) − �̂2 ;

uKk = (fK
0 (yk))2 − E(fK

0 )2 ;
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where K is selected a posteriori. Using these notations we have,∣∣∣∣∣
k∑

i=0

g(xi)[f2
0(yi) − �̂2]�

∣∣∣∣∣ =

∣∣∣∣∣
k∑

i=0

g(xi)ui�

∣∣∣∣∣
6

∣∣∣∣∣
k∑

i=0

[g(xi) − g(xKi )]ui�

∣∣∣∣∣ +

∣∣∣∣∣
k∑

i=0

g(xKi )(ui − uKi )�

∣∣∣∣∣
+

∣∣∣∣∣
k∑

i=0

g(xKi )uKi �

∣∣∣∣∣ (B.4)

which implies that

P
{

max
16k6��=��

∣∣∣∣∣
k∑

i=0

g(xi)[f2
0(yi+1) − �̂2]�

∣∣∣∣∣¿ '

}

6P
{

max
16k6��=��

∣∣∣∣∣
k∑

i=0

[g(xi) − g(xKi )]ui�

∣∣∣∣∣¿ '
3

}

+P
{

max
16k6��=��

∣∣∣∣∣
k∑

i=0

g(xKi )(ui − uKi )�

∣∣∣∣∣¿ '
3

}

+P
{

max
16k6��=��

∣∣∣∣∣
k∑

i=0

g(xKi )uKi �

∣∣∣∣∣¿ '
3

}
= I1 + I2 + I3 : (B.5)

Consider the /rst two terms. From (B.1),

|xKk |6
k−1∑
i=0

|fK
0 (yi)|

√
�6 kc

√
�6 �c

1√
�
;

|xk − xKk |6
k−1∑
i=0

|f0(yi) − fK
0 (yi)|

√
�6

√
�ka−K 6

1√
�
�a−K ; (B.6)

where c=max{supy∈Y |f0(y)|; supy∈Y f
2
0(y); supy∈Y |fK

0 (y)|}. Using the Lipschitz prop-
erty of g(x),

|g(xKk )|6L|xKk |6L�c
1√
�
;

|g(xk) − g(xKk )|6L|xk − xKk |6L�
1√
�
a−K : (B.7)

From (B.2) we get, on the other hand,

|uk − uKk |6 |f2
0(yk) − (fK

0 (yk))2| + E|f2
0(yk) − (fK

0 (yk))2|6 2a−K : (B.8)
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Substituting (B.6)–(B.8) into (B.5) and using the fact that k is at most �=�, we get

I16P
{
�
�
�2cL�

a−K
√
�
¿

'
3

}
;

I26P
{
�
�
� 2L�c

a−K
√
�
¿

'
3

}
:

By choosing K = −loga � we get both I1 and I2 to vanish for suNciently small �.
Consider now I3. Note that

∑k
i=0 g(x

K
i )uKi � is the sum of K-dependent variables.

As in Appendix A, sums of K-dependent sequences can be divided into double sums,
where each of the inner sums is over independent variables.

k∑
i=0

g(xKi )uKi � =
K−1∑
j=0

(k−K−1)=K∑
i=0

g(xKiK+j)u
K
iK+j� :

De/ne

gi = sgn(g(xKiK+j)) min(|g(xKiK+j)|;−log �) ;

which is the minimum (in absolute value) between g(xKiK+j) and (−log �). The following
calculation shows that for small �, gi and g(xKiK+j) are close in probability. Recall that
g(x) is Lipschitz, hence it is bounded by a linear growth rate and therefore,

P{∃i s:t: gi �= g(xKiK+j)} = P
{

max
i

|g(xKiK+j)|¿− log �
}

6 P
{

max
i

|xKiK+j|¿
−log �

L

}
:

Since the xKi weakly converge to Brownian motion, and the maximum is a continuous
function on C[0; �], it follows that the last expression can be estimated by an analogous
expression with xKi replaced by Brownian motion,

P{∃i s:t: gi �= g(xKiK+j)}6 2P
{

max
06t6�

|B(t)|¿ −log �
L

}

6 4P
{
|B(�)|¿ −log �

L

}

6
c �L2

log2 �
;

where we have used the reKection principle and the Chebyshev’s inequality. The
right-hand side tends to zero for small �, thus, we can replace everywhere g(xKiK+j)
by gi as the di0erence can be made arbitrarily small (in probability).

De/ne now Wk =
∑k

i=0 giuKiK+j�. It is a martingale with respect to the /ltration
generated by the BiK+j as by the K-dependence of the yK

i ,

E[giuKiK+j|B(i−1)K+j] = 0 :
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Then Wk satisfy,

|Wk −Wk−1| = |gkuKkK+j�|6 (−log �) 2c� :

We then use the following inequality:

Lemma B.1 (Azuma and Hoe0ding [20,21]): Let 0 = X0; : : : ; Xm be a martingale with

|Xk+1 − Xk |6C

for all 06 k ¡m. Then for all -¿ 0,

P[Xm ¿-C
√
m]¡ e−-2=2 :

Using this inequality and the fact that (k − K − 1)=K ¡�=�,

P
{∣∣∣∣∣

(k−K−1)=K∑
i=0

giuKiK+j�

∣∣∣∣∣¿�1=4
}

6P
{∣∣∣∣∣

(k−K−1)=K∑
i=0

giuKiK+j�

∣∣∣∣∣¿ �3=4√
�

(−log �)2c�
(−log �)2c�

√
k − K − 1

k

}

6 exp
[
−1

2

(
�3=4√

�(−log �)2c�

)]

6 exp
(
− 1

8c�
√
� log2 �

)
:

Thus, for suNciently small �,

I3 = P
{

max
16k6��=��

∣∣∣∣∣
k∑

i=0

giuKi �

∣∣∣∣∣¿ '
3

}

6 P


 max

16k6��=��

∣∣∣∣∣∣
K∑
j=0

(k−K−1)=K∑
i=0

giuKiK+j�

∣∣∣∣∣∣¿�1=4




6K exp
(
− 1

8c�
√
� log2 �

)

which converges to zero as � → 0.
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