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Time-dependent simulation of viscoelastic flows at high Weissenberg
number using the log-conformation representation
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Abstract

We present a second-order finite-difference scheme for viscoelastic flows based on a recent reformulation of the constitutive laws as
equations for the matrix logarithm of the conformation tensor. We present a simple analysis that clarifies how the passage to logarithmic
variables remedies the high-Weissenberg numerical instability. As a stringent test, we simulate an Oldroyd-B fluid in a lid-driven cavity. The
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cheme is found to be stable at large values of the Weissenberg number. These results support our claim that the high Weissenbe
nstability may be overcome by the use of logarithmic variables. Remaining issues are rather concerned with accuracy, which deg
nsufficient resolution.

2005 Elsevier B.V. All rights reserved.
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. Introduction

The high-Weissenberg number problem (HWNP) has been
hemajor obstacle in computational rheology since the early
970s (see[1,2] for recent reviews on current challenges in
omputational rheology). It was diagnosed as a numerical
henomenon that causes all computations to break down at

rustratingly low values of the Weissenberg number. Most of
he work in computational rheology has focused on steady
wo-dimensional creeping flows using finite element meth-
ds (FEM) (see[3] for an early reference and[4] for a recent
eview). Then, the HWNP usually manifests as a lack of con-
ergence of an iterative system. It is remarkable that although
he HWNP has played such a central role for three decades,
ts origin has remained somewhat of a mystery. Even the fun-
amental question whether the HWNP is a purely numerical
henomenon, or rather a breakdown of the constitutive laws
as remained, to some extent, under debate.

∗ Corresponding author.
E-mail addresses:raananf@cs.huji.ac.il (R. Fattal);

az@math.huji.ac.il (R. Kupferman).

In this article, we identify the mechanism responsible
the HWNP. In summary, the stress experiences a combin
of deformation and convection, which gives rise to steep
ponential profiles. Even for moderate Weissenberg num
these spatial profiles are poorly approximated by nume
schemes, which are based (either explicitly as in FEM or
plicitly as in finite-differences) on polynomial interpolatio
The failure to properly balance the deformation with the c
vection yields a numerical instability. This is a fundame
instability present in all constitutive models that satisfy
droyd’s frame invariance principle, and shared by all stan
numerical methods.

Since the HWNP is due to the inadequacy of polynom
interpolation to approximate exponential profiles, two p
sible remedies come to mind: either to use exponentia
sis functions for the stress variables, or to make a ch
of variables into new variables that scale logarithmic
with the stress. In either case, this requires the stress
τ(x, t) to remain strictly positive, which cannot be gu
anteed. A physical quantity, directly related to the str
that preserves positivity is the conformation tensor,σ(x, t),
which is symmetric positive-definite (SPD). As such,
377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2004.12.003
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conformation tensor has a well-defined matrix-logarithm,
which we denote byψ(x, t) = logσ(x, t). We claim that the
HWNP can be remedied ifψ(x, t) is approximated, rather
thanτ(x, t) or σ(x, t). To be more precise, the logarithmic
transformation removes the instability that has caused nu-
merical computations to blowup, or linear solvers not to con-
verge; less catastrophic effects, like the spurious instabili-
ties observed in the simulation of viscometric flows at high
Weissenberg numbers[5,6] seem to be caused by a different
mechanism.

In [7] we reformulated a class of differential constitutive
models as equations forψ(x, t). We call the transformed sys-
tem the log-conformation representation (LCR). The work
[7] was supplemented with preliminary numerical results ex-
hibiting stability at parameter regimes far beyond the break-
down threshold reported in the literature. The fact that the
HWNP is only due to a poor treatment of the convection is
further supported in[8], where we develop a second-order
finite-difference scheme forσ(x, t), but use a logarithmic
change of variables back-and-forth to implement the convec-
tion. This alternative method was tested for planar contraction
flow, and was found stable for very high Weissenberg num-
bers. Preliminary results indicate that the same stabilizing
effect occurs with FEM as well[9].

In this paper, we present a second-order finite-different
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whereP(z) is a polynomial. For an Oldroyd-B fluidg(σ) = 1
andP(z) = 1 − z.

The structure of this paper is as follows: In Section2 we
analyze the high-Weissenberg number instability, which can
be mimicked by a simple one-dimensional linear toy model.
In Section3 we review the log-conformation representation
of the constitutive laws. In Section4we present our numerical
scheme, which is based on a two-step backward differentia-
tion formula (BDF) for time stepping, and second-order spa-
tial discretization. Numerical results are presented in Section
5. We present results for intermediate and high Weissenberg
numbers, supported by numerical convergence analyses. Our
scheme is found to be immune to high-Weissenberg numer-
ical instabilities, although, as expected, accuracy problems
emerge at insufficient resolution. A discussion follows in Sec-
tion 6.

2. The high-Weissenberg instability

When one tries to solve, say, the upper-convected Maxwell
(UCM) equations at moderately large values ofWe, using any
standard provably-stable method, the numerical solution di-
verges in time. A more detailed examination of this blowup
reveals that the conformation tensor grows unbounded expo-
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cheme based on the log-conformation representation
onstitutive laws. The scheme is applicable to a large va
f differential constitutive laws in two and three dimensio
e implement our method for creeping flow of an Oldroy

uid in a lid-driven cavity. While this system is not norma
sed as a benchmark, it is known as a very stringen
roblem[10].

We next introduce notations. We have already define
eldsτ(x, t), σ(x, t), andψ(x, t). The Eulerian velocity fiel
s denoted byu(x, t) and the pressure field byp(x, t). For
reeping flows, the momentum balance equation is

− ∇p + νs∇2u+ νp ∇ · τ = 0, (1.1)

upplemented with the continuity equation,

· u = 0.

ereνs andνp are the respective solvent and polymer
osities, and the stress tensorτ(x, t) is assumed of the form

= g(σ)

We
(σ − I),

hereWe is the Weissenberg number, andg(σ) is a scalar
alued function, which only depends on the invariants oσ.
he constitutive equation, written as an evolution equa

or the conformation tensor, is

∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T = g(σ)

We
P(σ), (1.2)
entially fast. The only term in the UCM equation that
ead to exponential growth of the conformation tensor is
eformation term in the upper-convected derivative. For a
ciently large deformation rate, this term cannot be bala
y the relaxation, and thus, the only term that can bal

his growth is the convection; there is no blowup becaus
tretched fluid elements are eventually convected away
he stretching region.

Much insight into the origin of the high-Weissenberg
tability can be gained by performing a sequence of sim
ations of the original model. First, it can be verified that
nstability persists even if the constitutive equation is de
led from the momentum equation. Thus, the emergen

he instability can be studied in a much simpler setting, w
he velocity field is kept fixed. Second, we observed tha
nstability is still present if the constitutive tensor equa
s replaced by a scalar equation of similar type in one s
imension. This sequence of simplifications leads us to

ollowing “cartoon model”: a one-dimensional linear eq
ion for φ = φ(x, t), x ∈ [0,1],

∂φ

∂t
+ a(x)

∂φ

∂x
− b(x)φ = − 1

We
φ, (2.1)

ith a(x), b(x) > 0 and boundary conditionφ(0, t) = 1. This
quation represents a fieldφ(x, t) that is convected to the rig
ith velocity a(x) and grows exponentially at a rateb(x) −
e−1. With reference to the UCM equation,a(x) plays the

ole of the flow fieldu(x, t), andb(x) plays the role of th
eformation rate∇u(x, t).
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The solution to(2.1)reaches a steady state,

φ(x) =
∫ x

0
exp

(
b(x′) − We−1

a(x′)

)
dx′.

Suppose we solve(2.1) numerically using, for example, a
first-order upwind scheme[11],

φn+1
j = φnj − aj �t

�x
(φnj − φnj−1) + �t

(
bj − 1

We

)
φnj ,

whereaj = a(xj), bj = b(xj). Rewriting this scheme as

φn+1
j =

[
1− aj �t

�x
+�t

(
bj − 1

We

)]
φnj +

[
aj �t

�x

]
φnj−1,

it is easily seen that the numerical solution diverges in time
unless

1 − aj �t

�x
+ �t

(
bj − 1

We

)
≤ 1,

which implies that eitherWe < 1/bj or

�x ≤ aj

b − We−1
. (2.2)
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Consider a first order upwind scheme for solving(2.3):

σn+1
j = 1

2

[
I − uj �t

�x
I + �t

(
2∇uj − I

We

)]
σnj

+ 1

2
σnj

[
I − uj �t

�x
I + �t

(
2∇uj − I

We

)]T

+
[
uj �t

�x

]
σnj−1 + �t

We
I.

This is a linear difference equation with a block lower-
diagonal transition matrix. The solution remains bounded in
time if the three eigenvalues of this matrix, which are

1 − �t

(
uj

�x
+ 1

We

)
,

1 − �t

(
uj

�x
+ 1

We

)
± 2�t

√
− det(∇uj),

j = 1,2, . . ., are all inside the unit disc. Note that det(∇u) is
negative unless the flow is strongly rotational. For det∇u <

0, we obtain a stability condition that generalizes(2.2):

�x ≤ |u|
2
√− det(∇u) − We−1

(2.4)

(as in the scalar model, there is no restriction on�x if the
d
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his condition has to hold at all mesh pointsj. This is a restric
ion on thespatial mesh size; it is not a CFL restriction on th
ime step. This stability criterion has the following interp
ation: the spatial profile ofφ(x, t) is exponential, therefo
very convection scheme that is based on a polynomial re
truction of fluxes underestimates the flux at the right e
f every computational cell. Thus, the rate at which the
is removed from the computational cell fails to bala

ts multiplicative growth rate, resulting in numerical blow
his scenario remains unchanged if the first-order upw
cheme is replaced by a higher-order method; a higher-
cheme increases the critical mesh size by, at most, an
ne factor. The use of implicit schemes does not help e

To generalize the above analysis to viscoelastic flows
ume a fixed velocity fieldu(x) (as would be attained by
table steady state), and consider the UCM equation,

∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T = 1

We
(I − σ).

his is a linear tensor-valued hyperbolic equation, which
e solved by the method of characteristics. Doing so,
btains a tensor-valued equation in one space dimens

he form

∂σ

∂t
+ u(x)

∂σ

∂x
− (∇u)σ − σ(∇u)T = 1

We
(I − σ), (2.3)

herex is the arclength along the characteristic andu(x) =
u(x)|. In the absence of stagnation points,u(x) has fixed sign
hich without loss of generality is assumed to be positiv
enominator is negative). The stability condition(2.4) may
e very restrictive when convection is weak (small num
tor) and in the presence of large deformation rates (
enominator). Regions near stagnation points and stron

ormation rates (e.g., near geometric singularities) are p
o such numerical instability. We emphasize that the iss
ot a lack of convergence in the strict sense—even the
rder upwind scheme does converge as�x,�t → 0; it is
ather an issue of stiffness due to sharp spatial gradient

We revert our attention to the scalar Eq.(2.1). The re-
triction on the mesh size is removed at once by a chan
ariablesψ = logφ, in which caseψ(x, t) satisfies the equ
ion

∂ψ

∂t
+ a(x)

∂ψ

∂x
− b(x) = − 1

We
, (2.5)

ith boundary conditionψ(0, t) = 0. Now, even a first-orde
pwind scheme,

n+1
j = ψn

j − aj �t

�x
(ψn

j − ψn
j−1) + �t

(
bj − 1

We

)
,

(2.6)

o longer imposes practical restrictions on the size of�x.
hile this stable behaviour may be attributed to the tr

ormation of multiplicative growth into additive growth, t
eason for stability should rather be attributed to the impro
reatment of convection. To see this, exponentiate(2.6)to re-
ain an equation forφnj ,

n+1
j = (φnj )(1−aj�t/�x) (φnj−1)aj�t/�x e�t(bj−We−1),
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and expand the multiplicative source, exp(b�t) ∼ 1 + b�t,
to get, to first order in space and time,

φn+1
j = (φnj )(1−aj�t/�x) (φnj−1)aj�t/�x

+�t

(
bj − 1

We

)
φnj . (2.7)

The transformation back and forth to a logarithmic scale re-
sults in a convection scheme that uses geometrical weights
rather than algebraic weights, as all standard schemes do. Al-
though(2.7)involves multiplicative growth, it is subject to the
much weaker stability constraint:�x ≤ a/ log(b − We−1).

3. The log-conformation representation

In order for the logarithm of a second-rank tensor to exist,
the tensor needs to be positive definite. This is the reason
we choose to formulate the constitutive law(1.2) in terms
of the conformation tensor, although the more popular form
is in terms of the stress tensor. LCR replaces(1.2) by an
equivalent equation forψ(x, t) = logσ(x, t). (Recall that an
SPD matrixA can always be diagonalized,A = RΛRT, and
that logA = R logΛRT.)

Differential constitutive laws dictate the dynamics of the
conformation tensor as a composition of convection, defor-
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Like in (2.5), the extensional component becomes additive
as a result of the logarithmic transformation. Eq.(3.3) is the
equation we are going to approximate.

Two-dimensional case: The decomposition(3.1) is par-
ticularly simple in two dimensions. Ifσ is proportional to
the unit tensor then simply setB = 1

2[(∇u) + (∇u)T] and
Ω = 0. Otherwise, calculate the diagonalizing transforma-
tion:

σ = R

(
λ1 0

0 λ2

)
RT,

and set

(
m11 m12

m21 m22

)
= RT(∇u)R.

It is easily verified that

N = R

(
0 n

−n 0

)
RT, B = R

(
m11 0

0 m22

)
RT,

Ω = R

(
0 ω

−ω 0

)
RT,

w
λ

4

4

x-
i
� em
( ula
( n
y

α

w

α

α

F
− ta-
b ss.
A in-
e sare
ation and relaxation. When a tensor field is convected b
ncompressible flow, any continuous function of this ten
atisfies the same convection equation. It is also a rela
asy task to rewrite the relaxation equation forσ(x, t) as a
elaxation equation for its matrix-logarithm. The main ef
s to transform the deformation terms. This is easy to do
he deformation has been decomposed as a composit
ure extension and pure rotation. For that we need the

owing decomposition rule, proven in[7]:

roposition.Letu(x) be a divergence-free velocity field an
et σ(x) be a symmetric positive-definite tensor field. Then
he velocity gradient∇u can be decomposed as
u = Ω+ B +Nσ−1, (3.1)

hereΩ andN are anti-symmetric, andB is symmetric
raceless, and commutes withσ.

Substituting the decomposition(3.1) into the constitutive
aw(1.2), theNσ−1-term cancels by anti-symmetry, and th

∂σ

∂t
+ (u · ∇)σ − (Ωσ − σΩ) − 2Bσ = g(σ)

We
P(σ). (3.2)

he tensorB generates a pure (area preserving) exten
s it commutes withσ, andΩ generates a pure rotation. T
assage to an equation forψ is now straightforward (see[7]

or details),

∂ψ

∂t
+ (u · ∇)ψ − (Ωψ − ψΩ) − 2B

= g(eψ)

We
e−ψP(eψ). (3.3)
ith n = (m12 + m21)/(λ
−1
2 − λ−1

1 ), and ω = (λ2m12 +
1m21)/(λ2 − λ1), satisfy the required properties.

. The numerical scheme

.1. Temporal discretization

Let un = (un, vn) andψn denote the numerical appro
mations to the fieldsu, ψ at the discrete timetn, with
tn = tn+1 − tn. The temporal discretization of the syst

3.3)is based on a two-step backward differentiation form
BDF) with variable time step[12]. For a differential equatio
′ = f (t, y), the two-step BDF is

0yn+1 + α1yn + α2yn−1 = f (tn+1, yn+1),

here

0 = 2�tn + �tn−1

�tn(�tn + �tn−1)
, α1 = −�tn + �tn−1

�tn�tn−1
,

2 = �tn

�tn−1(�tn + �tn−1)
.

or fixed time steps these reduce toα0 = 3/2�t, α1 =
2/�t, andα2 = 1/2�t. While this scheme has good s
ility properties, it is time consuming due to its implicitne
workaround is to use an implicit setting only for the l

ar terms on the right-hand side, whereas non-linear term
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discretized by a two-step interpolation formula:

f (tn+1, yn+1) ≈ β1 f (tn, yn) + β2 f (tn−1, yn−1),

with

β1 = �tn + �tn−1

�tn−1
, β2 = − �tn

�tn−1
.

For fixed time steps,β1 = 2 andβ2 = −1. (A similar tem-
poral discretization for Newtonian flows is used in[13].)

Specifically, the evolution ofψn is governed by the two-
step difference equation:

α0ψ
n+1 + α1ψ

n + α2ψ
n−1

= β1Nc(u
n,ψn) + β2Nc(u

n−1,ψn−1)

+ 2[β1B(∇un,ψn) + β2B(∇un−1,ψn−1)]

+ [β1Ω(∇un,ψn) + β2Ω(∇un−1,ψn−1)]ψn+1

+ψn+1[β1Ω(∇un,ψn) + β2Ω(∇un−1,ψn−1)]T

+β1Nr(ψ
n) + β2Nr(ψ

n−1), (4.1)

whereB(∇u,ψ) andΩ(∇u,ψ) are the tensor fields that com-
p

N

a
o-

l eter-
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a

4

f
s l
l

(

w

Fig. 1. The position of the variables in a computational cell.

The values of the log-conformationψ and the pressurep
are stored at cell centers, and are denoted by

ψi,j =
(

(ψxx)i,j (ψxy)i,j
(ψxy)i,j (ψyy)i,j

)
(4.3)

andpi,j, respectively. For the velocity we use the so-called
staggered, or Marker-and-Cell (MAC) discretization[14]; the
discrete velocity variables are stored at the centers of cell
edges, such that only the normal component is defined at
each edge. Thus, the velocity componentu is defined at the
centers of left and right edges and the velocity componentv

is defined at the centers of top and bottom edges. The velocity
variables associated with the cell (i, j) are denoted byui±1/2,j
andvi,j±1/2, the indexing being self-explanatory. Note that
the only variables defined at the domain boundaries are nor-
mal velocities, which are dictated by the boundary condi-
tions. The geometry of the discrete variables is illustrated
in Fig. 1.

Eq.(4.1)is a difference equation for the log-conformation
ψ, and therefore needs to be prescribed at cell centers, i.e.,
at points (i, j); the same is also true for the incompress-
ibility constraint in (4.2), which is a “pressure-like” equa-
tion. The momentum equations in(4.2) are equations for
the velocity componentsu, v, and therefore need to be pre-
s -
t ned
b to be
s

s of
t

4
at

c
r tage
ose∇u in (3.1), and

c(u,ψ) = −(u · ∇)ψ, Nr(ψ) = 1

We
[exp(−ψ) − I],

re the nonlinear convection and relaxation terms.
For creeping flow, onlyψ(x, t) satisfies a dynamical ev

ution equation, whereas the velocity and pressure are d
ined, givenψ(x, t), by the solution of an elliptic system:

very time steptn the velocityun and pressurepn are obtaine
y the solution of the Stokes system:

∇pn + νs∇2un + νp

We
∇ · [exp(ψn) − I] = 0

∇ · un = 0, (4.2)

ubject to the impermeability and no-slip boundary co
ions at solid walls. Inflow and outflow boundary conditio
re treated as easily.

.2. Spatial discretization

We divide the domain intonx × ny rectangular cells o
ize�x × �y; for a unit squarenx�x = ny�y = 1. The cel
abelled (i, j) is centered at the point

xi, yj) =
(
(i + 1

2)�x, (j + 1
2)�y

)
,

ith i = 0,1, . . . , nx − 1, j = 0,1, . . . , ny − 1.
cribed at the points (i ± 1/2, j) and (i, j ± 1/2), respec
ively. Values ofu, vat the domain boundaries are determi
y the boundary conditions, and no equation needs
olved there.

We now specify one-by-one the spatial discretization
he various terms in(4.1)and(4.2).

.2.1. Velocity gradient
The velocity gradient tensor∇u needs to be computed

ell centers. The diagonal components∂u/∂x and∂v/∂y are
eadily obtained by compact stencils, which take advan
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of the staggering,(
∂u

∂x

)
i,j

= ui+1/2,j − ui−1/2,j

�x
,

(
∂v

∂y

)
i,j

= vi,j+1/2 − vi,j−1/2

�y
.

These expressions hold everywhere in the domain, up to the
boundary. Compact stencils cannot be constructed for the off-
diagonal components∂u/∂y and∂v/∂x, which are discretized
by central differences,

(
∂u

∂y

)
i,j

= ūi,j+1 − ūi,j−1

2�y

(
∂v

∂x

)
i,j

= v̄i+1,j − v̄i−1,j

2�x
,

where

ūi,j = 1
2(ui+1/2,j + ui−1/2,j) v̄i,j = 1

2(vi,j+1/2 + vi,j−1/2).

In boundary cells, these stencils have to be modified to ac-
count for the boundary conditions; we evaluate these deriva-
tive with one-sided stencils. With∇u at hand, the tensors
B(∇u,ψ) andΩ(∇u,ψ) can be computed.

4

c er-
b h-
r crete
l
I s in-
d larly
c dis-
c

[

w ,

2,j −

/2 − ψ

a
a n at
c heir
c s os-
c cond-

order piecewise-linear reconstruction

ψ−
i+1/2,j = ψi,j + 1

2minmod(ψi+1,j − ψi,j,ψi,j − ψi−1,j)

ψ+
i+1/2,j = ψi+1,j − 1

2minmod(ψi+2,j − ψi+1,j,

ψi+1,j − ψi,j),

where minmod(a, b) = 1
2[sgn(a) + sgn(b)] · min(|a|, |b|) is

the min-mod limiter (see e.g.[11] for an extensive reference
on slope limiters and flux limiters). In principle, the optimal
choice for the smoothing factor isc = 1/2; our calculations
were found much better behaved for a value ofc twice as
large. The need for a larger amount of smoothing is discussed
further below.

4.2.3. Newtonian viscosity
The Laplacian operator in(4.2) is discretized with the

standard five-point stencil. For example,

(∇2u)i+1/2,j = ui+3/2,j − 2ui+1/2,j + ui−1/2,j

�x2

+ ui+1/2,j+1 − 2ui+1/2,j + ui+1/2,j−1

�y2
.

This expression is valid at all points, except for those at a
distance�y/2 from the top or bottom lids, that is, except for
whenj = 0 andj = ny − 1. There, boundary conditions are
i rior
v ue at
t adja-
c n is
n ents
(

4
given

b

(

(

T at the
b

4

(

.2.2. Convection
We next turn to the convection term (u · ∇)ψ. We dis-

retize it with the Kurganov–Tadmor (KT) scheme for hyp
olic conservation laws[15,16]. The KT scheme is a hig
esolution central scheme, which assumes a semi-dis
imit (i.e., reduces to a “method of lines” as�t → 0 [11]).
n a semi-discrete setting, the temporal discretization i
ependent of the spatial discretization; this is particu
onvenient in conjunction with our two-step temporal
retization.

The KT scheme can be written in conservation form,

(u · ∇)ψ]i,j =
Hx
i+1/2,j − Hx

i−1/2,j

�x
+

H
y

i,j+1/2 − H
y

i,j−1/2

�y
,

hereHx
i±1/2,j andHy

i,j±1/2 are numerical fluxes of the form

Hx
i+1/2,j = ui+1/2,j

ψ+
i+1/2,j + ψ−

i+1/2,j

2
− c |ui+1/2,j|(ψ+

i+1/

H
y

i+1/2,j = vi,j+1/2
ψ+
i,j+1/2 + ψ−

i,j+1/2

2
− c |vi,j+1/2|(ψ+

i,j+1

ndc is a smoothing factor. The tensorsψ+
i+1/2,j, ψ

−
i+1/2,j

re (discontinuous) evaluations of the log-conformatio
ell edges, on the right and on the left, respectively. T
onstruction, in a manner that does not introduce spuriou
illations, can be done in several ways. We adopt the se
ψ−
i+1/2,j)

−
i,j+1/2),

mposed by using “ghost cells”, and reflecting the inte
alues with respect to the boundary values (i.e., the val
he boundary is equal to the average of the values at the
ent interior cell and the ghost cell). A similar modificatio
eeded for the Laplacian of the vertical velocity compon
∇2v)i,j+1/2 for i = 0 andi = nx − 1.

.2.4. Pressure gradient
The pressure gradient is evaluated at cell edges. It is

y

∇p)i+1/2,j = pi+1,j − pi,j

�x

∇p)i,j+1/2 = pi,j+1 − pi,j

�y
.

he pressure gradient does not need to be evaluated
oundary because no equation is being solved there.

.2.5. Velocity divergence
The velocity divergence associated with the cell (i, j) is

∇ · u)i,j = ui+1/2,j − ui−1/2,j

�x
+ vi,j+1/2 − vi,j−1/2

�y
.
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Since the normal velocity is prescribed at the boundary, the
discrete divergence is well defined at all cells.

4.2.6. Stress divergence
The divergence of the stress∇ · τ is a “velocity-like” field,

i.e., needs to be evaluated at cell edges. Take for example (∇ ·
τ)i+1/2,j: the contribution fromτxx exploits the staggering,

(τxx)i+1,j − (τxx)i,j
�x

.

The contribution fromτxy cannot be obtained by a compact
stencil. As for the off-diagonal terms of the velocity gradient
we use a wide-stencil central difference:

(τ̄xy)i+1/2,j+1 − (τ̄xy)i+1/2,j−1

2�y
,

where

(τ̄xy)i+1/2,j = 1
2[(τxx)i,j + (τxx)i+1,j].

In the vicinity of boundaries, one-sided modifications are
used.
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Fig. 2. TheL2 norm of the velocity (the “kinetic energy”) as function of
time forWe = 1.0.

the residual equation to a lower resolution grid and inter-
polating the obtained low-resolution solution back onto the
original grid; this process is repeated recursively. The transfer
back and forth between two levels of discretizations requires
the definition ofrestriction(fine-to-coarse) andprolongation
(coarse-to-fine) operators. The solution of the Stokes equa-
tions by a multigrid method has received much attention in
the literature. A comprehensive description and numerous
references may be found in[17].

4.3.3. Time step selection
The constraint on the time step comes from the hyperbolic

CFL condition associated with the convection. For cavity flow
the maximal velocity is alwaysu = 1, thus, the CFL condi-
tion is

�t ≤ C�x,

whereC is the CFL constant. The KT scheme is stable for
C ≤ 0.5 [15].

5. Numerical results

fluid
i re,
( d-
a nti-
n ssure
t sys-
t at a
s o be
r to
a n of
t file
.3. Other technical issues

.3.1. Choice of spatial discretization
The use of a staggered discretization for the velocity

bles is very convenient for a stable treatment of the S
perator. In particular, it is immune to “checkerboard” p
ure modes that infect wide-stencil discretizations. The
ered setting also provides,in part, a compact discretizatio
f the velocity-stress interaction: the diagonal elements o
elocity gradient and the stress divergence exploit the
ering. This is not the case, however, with the off-diagona
ments, which are given by wide-stencil central differen
his implies that the rotational components of the sys
ay be sensitive to numerical instabilities. A natural rem
ould have been to store the off-diagonal elements o
tress tensor at cell corners. This cannot be done in our fr
ork as the log-conformation tensor is an entity whose te

ial nature is essential. Other choices of spatial discretiza
nd their effect on stability will be studied elsewhere.

.3.2. Linear solver
The Stokes Eq.(4.2) is a linear system for the veloci

nd pressure, given the stress, or the log-conformation.
e solved by various methods. We used a multigrid so
ultigrid solvers are iterative methods. Their central pilla
standard iterative scheme, such as Jacobi or Gauss–S

terative schemes are known to rapidly reduce high frequ
odes of the error, but perform poorly on the lower freque
odes; that is, they rapidly smooth the error, which is

hey are often calledsmoothers. The multigrid method re
uces the lower frequency modes of the error by transfe
l.

We implemented the above scheme for an Oldroyd-B
n a lid-driven cavity. The fluid is confined in a unit squa
x, y) ∈ [0,1]2, bounded by solid walls, with the top boun
ry moving to the right. For Newtonian fluids, the disco
uity of the flow field at the upper corners causes the pre

o diverge, without affecting the well-posedness of the
em. A viscoelastic fluid cannot sustain deformations
tagnation point, therefore the motion of the lid needs t
egularized such that∇u vanishes at the corners. Also,
void errors resulting from an impulsive start, the motio
he lid was started smoothly. Specifically, the velocity pro
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of the lid was taken to be

ulid (x, t) = 8
[
1 + tanh 8

(
t − 1

2

)]
x2(1 − x)2.

For t � 1
2, the lid velocity attains its maximum,u = 1, at

the center,x = 1/2. In all our calculations we tookνp = νs,
i.e., equal contributions of solvent and polymeric viscosities.
Thus, the only remaining parameter is the Weissenberg num-
ber.

5.1. We = 1.0

In Fig. 2 we plot theL2-norm of the velocity field—the
“kinetic energy”—as function of time forWe = 1.0 (properly
speaking, a fluid without inertia does not have kinetic energy).
The kinetic energy grows as the upper lid accelerates, reaches
a maximum at the end of the acceleration, and then decreases
toward a steady value as elastic energy builds up. At time
t = 8 the solution seems to have approached a steady state.

The fields at the steady state are displayed inFig. 3. The
log-conformation exhibits steep gradients only in the vicinity
of the upper lid;ψxx has a thin boundary layer along the
lid, and all three components have large gradients near the
upper corners. Note the asymmetry of the stream function,
which would have had left–right symmetry for an inertia-less
Newtonian fluid.

In Table 1we display a mesh refinement analysis for the
velocity componentu and the log-conformation component
ψxx. We ran simulations for 64× 64, 128× 128, and
256× 256 point grids. Ifφ(N) denotes the fieldφ computed
with anN × N point grid, its relative error is estimated by
comparison to the most refined computation,

e(φ(N)) = ‖φ(N) − φ(256)‖2

‖φ(256)‖2
,

where‖ · ‖2 is theL2 norm. The table shows second-order
accuracy for short times, but the estimated convergence
Fig. 3. (a) The stream function, (b)–(d) the three compo
nents of the log-conformation at timet = 8 forWe = 1.0.
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Fig. 4. Comparison between simulation results for a 64× 64 point grid (dotted lines), a 128× 128 point grid (dashed lines), and 256× 256 point grid (solid
lines) at timet = 8 forWe = 1.0. The four graphs representu(1/2, y), v(x,3/4),ψxx(1/2, y), andψxy(x,3/4).

rate deteriorates with time until it reaches a value around
1.4 at the steady state. Note that both the velocity and the
log-conformation attain a similar rate of convergence. An
examination of the error reveals that it is mostly concentrated
near the upper-right corner of the cavity. The fluid enters
this region after having experienced contraction along the
x-direction, and exits after having been rotated clockwise by
90◦.

Table 1
Mesh refinement analysis for the fieldsu andψxx at various times forWe =
1.0

t e(u(64)) e(u(128)) Rate e(ψ(64)
xx ) e(ψ(128)

xx ) Rate

1.0 2.2 × 10−3 4.0 × 10−4 2.35 7.8 × 10−3 1.6 × 10−3 2.28
2.0 1.2 × 10−2 2.8 × 10−3 2.08 3.8 × 10−2 1.0 × 10−2 1.85
4.0 1.8 × 10−2 6.0 × 10−3 1.60 8.8 × 10−2 2.9 × 10−2 1.60
8.0 1.5 × 10−2 5.4 × 10−3 1.48 9.9 × 10−2 3.8 × 10−2 1.38
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Fig. 5. TheL2 norm of the velocity as function of time forWe = 2.0. The
dotted line corresponds to a 64× 64 point grid, the dashed line corresponds
to a 128× 128 point grid, and the solid lines corresponds to a 256× 256
point grid.

In Fig. 4we show selected profiles of the fieldsu, v, ψxx,
andψxy at the steady state. We compare results obtained from
calculations at three different resolutions; differences foru,v,
andψxx are hardly seen at the scale of the graphs. The profiles
of ψxy along the horizontal liney = 3/4 show that close to
the right wall the lowest resolution graph has somewhat larger
errors than the two higher resolution graphs.

To summarize, the calculations forWe = 1.0 are conver-
gent but the rate of convergence is somewhat lower than the
expected second order. Errors are found to accumulate mostly
in the upper-right part of the system.

5.2. We = 2.0

In Figs. 5 and 6we show the evolution of the kinetic energy
for We = 2.0. The three curves represent three mesh sizes.
The numerical convergence analysis inTable 2indicates that
the results are still convergent, but errors are larger than for
We = 1.0. In particular, there is a drastic drop in convergence
rate at intermediate times. The fields’ profiles displayed in

Fig. 6. (a) The stream function, (b)–(d) the three compon
ents of the log-conformation at timet = 40 forWe = 2.0.
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Fig. 7. Comparison between simulation results for a 64× 64 point grid (dotted lines), a 128× 128 point grid (dashed lines), and 256× 256 point grid (solid
lines) at timet = 40 forWe = 2.0. The four graphs representu(1/2, y), v(x,3/4),ψxx(1/2, y), andψxy(x,3/4).

Fig. 7confirm that the errors are indeed larger than forWe =
1.0, but yet convergent.

5.3. We = 3.0

ForWe = 3.0 the tendencies observed in the passage from
We = 1.0 to We = 2.0 are further amplified. InFig. 8 we
show the evolution of the kinetic energy for three mesh sizes.

The kinetic energy is found to be oscillatory. An exami-
nation of the flow field reveals that these oscillations are
caused by vortices that are repeatedly created in the vicin-
ity of the upper-right corner, and propagate downwards until
being eventually damped out. For the 64× 64 point grid (dot-
ted line) the oscillations occur at intermediate times, but the
system tends eventually to a steady state, The 128× 128 and
256× 256 point computations exhibit persistent oscillations,
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Fig. 8. TheL2 norm of the velocity as function of time forWe = 3.0. The
dotted line corresponds to a 64× 64 point grid, the dashed line corresponds
to a 128× 128 point grid, and the solid lines corresponds to a 256× 256
point grid.

Table 2
Mesh refinement analysis for the fieldsu andψxx at various times forWe =
2.0

t e(u(64)) e(u(128)) Rate e(ψ(64)
xx ) e(ψ(128)

xx ) Rate

4.0 2.5 × 10−2 8.6 × 10−3 1.55 1.0 × 10−1 3.2 × 10−2 1.69
8.0 1.8 × 10−2 1.7 × 10−2 0.10 1.2 × 10−1 6.0 × 10−2 1.05

16.0 3.3 × 10−2 1.5 × 10−2 1.11 1.0 × 10−1 4.3 × 10−2 1.22
32.0 3.7 × 10−2 2.5 × 10−2 0.56 1.1 × 10−1 4.4 × 10−2 1.27

Table 3
Mesh refinement analysis for the fieldsu andψxx at various times forWe =
3.0

t e(u(64)) e(u(128)) Rate e(ψ(64)
xx ) e(ψ(128)

xx ) Rate

5.0 4.7 × 10−2 2.2 × 10−2 1.08 1.3 × 10−1 5.0 × 10−2 1.38
10.0 3.6 × 10−2 1.9 × 10−2 0.87 1.4 × 10−1 6.3 × 10−2 1.14
20.0 5.3 × 10−2 1.3 × 10−2 1.94 1.0 × 10−1 4.2 × 10−2 1.33
40.0 5.5 × 10−2 2.6 × 10−2 1.50 1.3 × 10−1 4.4 × 10−2 1.56

Fig. 9. (a) The stream function, (b)–(d) the three components of the log-conformation at timet = 40 forWe = 3.0.
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Fig. 10. Comparison between simulation results for a 64× 64 point grid (dotted lines), a 128× 128 point grid (dashed lines), and 256× 256 point grid (solid
lines) at timet = 40 forWe = 3.0. The four graphs representu(1/2, y), v(x,3/4),ψxx(1/2, y), andψxy(x,3/4).

although the oscillations obtained at higher resolution have
somewhat lower amplitude. The state of the system at time
t = 40 is displayed inFig. 9. The mesh refinement analy-
sis inTable 3shows convergence; errors are larger although
the estimated convergence rate is higher than forWe = 2.0.
Larger errors are also apparent in the profiles shown inFig.
10, notably in the upper-right part of the system.

5.4. HigherWe

At even higher values of the Weissenberg number, the
numerical solution exhibits stronger oscillations, and we can
no longer claim for convergence (for example, we show in
Fig. 11the evolution of the kinetic energy forWe = 5.0). On
the other hand, the calculations are perfectly stable, showing
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Fig. 11. TheL2 norm of the velocity as function of time forWe = 5.0. The
dotted line corresponds to a 64× 64 point grid, the dashed line corresponds
to a 128× 128 point grid, and the solid lines corresponds to a 256× 256
point grid.

that the passage to logarithmic variables does indeed remedy
the HWNP instability.

6. Discussion

(1) Is the HWNP solved? Our claim is that we have elu-
cidated the high Weissenberg numberinstability. Our
numerical experiments indicate that it is now possible
to perform stable simulations at very large values of
the Weissenberg number. (For comparison, computations
with a standard finite-difference scheme that does not use
logarithmic transformations reach a steady state only for
We < 0.5.) Yet, as one should expect, the change of vari-
ables does not guarantee thataccuratecomputations can
be performed at arbitrarily highWe. The situation can
be compared with classical CFD, where one can perform
stable calculations at arbitrarily large Reynolds numbers,
but accuracy is lost when the resolution becomes insuf-
ficient. The analogy is in fact most appropriate given the
recent identification of so-called elastic turbulence[18].

(2) While the present paper describes an implementation of
the LCR approach for an Oldroyd-B fluid, the LCR ap-
proach is applicable to a large class of differential con-
stitutive models, and so is our numerical scheme. The
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mentation does not involve the approximation of spatial
derivatives. On the other hand, Lagrangian-based meth-
ods require either the insertion and removal of stress el-
ements[21], or, a re-meshing stage in hybrid methods
[22]. It is at this stage that interpolation is introduced,
and like for Eulerian-based methods, the use of polyno-
mial interpolation causes stress amplification in areas of
high deformation.

(3) Our computational method can also be applied to iner-
tial flows. There, the main computational difficulty is the
need to use small time steps to satisfy the CFL condi-
tion imposed by the elastic shear waves. This is a seri-
ous limitation at low Reynolds numbers,Re � 1, as the
characteristic speeds scale likeRe−1/2.

(4) Eq. (2.4) provides a quantitative criterion for when a
method, that does not use matrix logarithms, is expected
to lead to numerical blowup. Different schemes alter
the criterion(2.4) by at most an order one prefactor. It
would be of interest to re-examine past results, and verify
whether the limiting Weissenberg number can indeed be
related to such a stability criterion. Moreover, past am-
biguities for whether increased resolution increases or
reduces the maximum attainable Weissenberg number
can be understood in light of(2.4). While increased res-
olution seems to be a stabilizing factor, it may cause the
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method can be generalized to three dimensions, no
ear constitutive models, and different systems of coo
nates. Our scheme is also easily augmented to fo
order accuracy (a fourth-order scheme for Newto
fluids that uses compact stencils is developed in[13]).
The LCR approach is also easily implemented within
FEM framework[9], particle tracking methods, and v
ious hybrid methods (e.g., Brownian configuration fie
[19,20]). Note that while Lagrangian-based methods
different in the sense that advection is not represe
by a partial differential operator, and therefore its im
numerical estimate of the velocity gradient to incre
thus being destabilizing.

5) Having elucidated the fundamental HWNP instabi
there remain problems of accuracy. As our results s
large errors and (possibly) spurious oscillations are
erated in regions of large stress and strong rotat
The instability that results from under-resolution m
be understood as a “checkerboard instability”, cau
by the wide stencils employed in the calculation of
off-diagonal elements of the velocity gradient, and
stress divergence. As pointed out above, it would h
been more natural to associate the off-diagonal elem
of tensor-valued fields with cell corners, rather than
centers (i.e., use a staggered setting for tensors as
Such a splitting between diagonal and off-diagonal
ments is problematic in a method that is heavily base
tensorial operations, such as matrix exponentiation
diagonalization.

We believe that the loss of accuracy and the gen
tion of spurious oscillations has the same origins as
(spurious) unstable modes observed in numerical
tions of plane Couette flow[5]. In [6] various numeri
cal schemes were benchmarked for Couette flow. In
ticular, the authors report that “a factor that influen
the behavior of the DEVSS-G/SUPG method seem
proper choice for the adaptive viscosity function”. In
case too, the formation of vortices was found very
sitive to the amount of smoothing in the KT conv
tion scheme. An understanding of this numerical
fact is of fundamental importance, and is left for fut
work.
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(6) A similar passage to logarithmic variables may be of use
in situations other than computational rheology. Gen-
erally, such an approach could be useful in any situa-
tion where a physical quantity that preserves positivity
is simultaneously convected and amplified (e.g., reactive
flows). The use of a logarithmic transformation is, by
itself, not a novel idea in mathematics. A classical ex-
ample is thewkb expansion[23], where a power series
expansion is constructed for the logarithm of the sought
solution. Another example is the Cole-Hopf transforma-
tion that turns the nonlinear viscous Burgers equation
into a linear heat equation[24].
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