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Abstract

We present a second-order finite-difference scheme for viscoelastic flows based on a recent reformulation of the constitutive laws as
equations for the matrix logarithm of the conformation tensor. We present a simple analysis that clarifies how the passage to logarithmic
variables remedies the high-Weissenberg numerical instability. As a stringent test, we simulate an Oldroyd-B fluid in a lid-driven cavity. The
scheme is found to be stable at large values of the Weissenberg number. These results support our claim that the high Weissenberg numerica
instability may be overcome by the use of logarithmic variables. Remaining issues are rather concerned with accuracy, which degrades with
insufficient resolution.
© 2005 Elsevier B.V. All rights reserved.

Keywords:High Weissenberg number problem; Matrix logarithm; Finite-differences; Oldroyd-B fluid; Lid-driven cavity

1. Introduction In this article, we identify the mechanism responsible for
the HWNP. In summary, the stress experiences a combination
The high-Weissenberg number problem (HWNP) has been of deformation and convection, which gives rise to steep ex-
themajor obstacle in computational rheology since the early ponential profiles. Even for moderate Weissenberg numbers,
1970s (se€l,2] for recent reviews on current challenges in these spatial profiles are poorly approximated by numerical
computational rheology). It was diagnosed as a numerical schemes, which are based (either explicitly as in FEM or im-
phenomenon that causes all computations to break down aplicitly as in finite-differences) on polynomial interpolation.
frustratingly low values of the Weissenberg number. Most of The failure to properly balance the deformation with the con-
the work in computational rheology has focused on steady vection yields a numerical instability. This is a fundamental
two-dimensional creeping flows using finite element meth- instability present in all constitutive models that satisfy Ol-
ods (FEM) (seé3] for an early reference arjd] for a recent droyd’s frame invariance principle, and shared by all standard
review). Then, the HWNP usually manifests as a lack of con- numerical methods.
vergence of an iterative system. Itis remarkable that although  Since the HWNP is due to the inadequacy of polynomial
the HWNP has played such a central role for three decades,nterpolation to approximate exponential profiles, two pos-
its origin has remained somewhat of a mystery. Even the fun- sible remedies come to mind: either to use exponential ba-
damental question whether the HWNP is a purely numerical sis functions for the stress variables, or to make a change
phenomenon, or rather a breakdown of the constitutive laws of variables into new variables that scale logarithmically
has remained, to some extent, under debate. with the stress. In either case, this requires the stress field
7(x, t) to remain strictly positive, which cannot be guar-
"+ Corresponding author. anteed. A physical quantity, directly related to the stress,

E-mail addresses:aananf@cs.huji.ac.il (R. Fattal); tha_t prgserves pos_itiVity 'S the C(_)n_formation tensdx, 1),
raz@math.huiji.ac.il (R. Kupferman). which is symmetric positive-definite (SPD). As such, the

0377-0257/% — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnnfm.2004.12.003



24 R. Fattal, R. Kupferman / J. Non-Newtonian Fluid Mech. 126 (2005) 23-37

conformation tensor has a well-defined matrix-logarithm, whereP(z)is a polynomial. For an Oldroyd-B fluig{o) = 1
which we denote by (x, ) = loga(x, ). We claim that the andP(z) =1—z.
HWNP can be remedied i(x, r) is approximated, rather The structure of this paper is as follows: In Sectiwe
thant(x, t) or o(x, t). To be more precise, the logarithmic analyze the high-Weissenberg number instability, which can
transformation removes the instability that has caused nu-be mimicked by a simple one-dimensional linear toy model.
merical computations to blowup, or linear solvers not to con- In Section3 we review the log-conformation representation
verge; less catastrophic effects, like the spurious instabili- of the constitutive laws. In Sectighwe present our numerical
ties observed in the simulation of viscometric flows at high scheme, which is based on a two-step backward differentia-
Weissenberg numbefs,6] seem to be caused by a different tion formula (BDF) for time stepping, and second-order spa-
mechanism. tial discretization. Numerical results are presented in Section
In [7] we reformulated a class of differential constitutive 5. We present results for intermediate and high Weissenberg
models as equations fat(x, r). We call the transformed sys- numbers, supported by numerical convergence analyses. Our
tem the log-conformation representation (LCR). The work scheme is found to be immune to high-Weissenberg numer-
[7] was supplemented with preliminary numerical results ex- ical instabilities, although, as expected, accuracy problems
hibiting stability at parameter regimes far beyond the break- emerge atinsufficientresolution. A discussion follows in Sec-
down threshold reported in the literature. The fact that the tion 6.
HWNP is only due to a poor treatment of the convection is
further supported i8], where we develop a second-order
finite-difference scheme fos(x, 1), but use a logarithmic
change of variables back-and-forth to implement the convec-
tion. This alternative method was tested for planar contraction
flow, and was found stable for very high Weissenberg num-
bers. Preliminary results indicate that the same stabilizing

effect occurs with FEM as welb]. verges in time. A more detailed examination of this blowup

In this paper, we present a second—order f|n|te-Q|ﬁerent reveals that the conformation tensor grows unbounded expo-
scheme based on the log-conformation representation of the

- ) X . Tnentially fast. The only term in the UCM equation that can
constitutive laws. The scheme is applicable to a large variety lead to exponential growth of the conformation tensor is the
of differential constitutive laws in two and three dimensions. deformation term in the upper-convected derivative. For a suf-
W? "?‘p'eme”t. our met-hod for. creeping flow (.)f an Oldroyd-B ficiently large deformation rate, this term cannot be balanced
fluid in a lid-driven cavnyz Wh|le this system is not normally by the relaxation, and thus, the only term that can balance
:fggileansﬂlaoi)enchmark, it'is known as a very stringent St growth is the convection; there is no blowup because the

. . . stretched fluid elements are eventually convected away from
We next introduce notations. We have already defined the y y

. . e the stretching region.
fieldsz(x, 1), o(x, t), andy(x, r). The Eulerian velocity field L - L A .
is denoted bye(x. 1) and the pressure field by(x. r). For Much insight into the origin of the high-Weissenberg in

ina i th cum bal ton | stability can be gained by performing a sequence of simplifi-
creeping flows, the momentum balance equation 1s cations of the original model. First, it can be verified that the

2. The high-Weissenberg instability

When one tries to solve, say, the upper-convected Maxwell
(UCM) equations at moderately large value$ief, using any
standard provably-stable method, the numerical solution di-

—Vp vV + WV -7=0, (1.1) instability persists even if the cor_wstltutlve equation is decou-
pled from the momentum equation. Thus, the emergence of
supplemented with the continuity equation, the instability can be studied in a much simpler setting, where

the velocity field is kept fixed. Second, we observed that the
instability is still present if the constitutive tensor equation
is replaced by a scalar equation of similar type in one space

) . dimension. This sequence of simplifications leads us to the
Herevs andvp are the respective solvent and polymer vis- ¢q)jowing “cartoon model”: a one-dimensional linear equa-
cosities, and the stress tensgr, 7) is assumed of the form 45 for ¢ = ¢(x, 1), x € [0, 1]

V.-u=0.

8(0)
T=2"S(c—-1), o o¢ 1
We E + Cl(X) a — b(x)¢ = — We(b, (21)

whereWe is the Weissenberg number, ag() is a scalar- ) - )
valued function, which only depends on the invariantgof ~ Witha(x), b(x) > 0 and boundary condition(0, 7) = 1. This
The constitutive equation, written as an evolution equation equation represents afiex, 7) thatis convected to the right

for the conformation tensor, is with velocity a(x) and grows exponentially at a rabéx) —
@) We—1. With reference to the UCM equation(x) plays the
(o

_8 role of the flow fieldu(x, r), andb(x) plays the role of the
-V)o — (Vu)o — a(Vu)' = == P(o), 1.2 _
ot + (- V)o = (Vu)o —o(Vu) We (@) (1.2 deformation rat&V u(x, 1).

Jdo
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The solution tq2.1) reaches a steady state,
b(x') — We™1

o(x) :/o exp( o) ) dx'.

Suppose we solv€.1) numerically using, for example, a
first-order upwind schem@d 1],

aj At
Ax

n+l _ n
$rHt = ¢

n n 1 Ui
(¢F —¢_1)+ At bj—% éj,
wherea; = a(x;), b; = b(x;). Rewriting this scheme as

aj At 1 n n
o2

it is easily seen that the numerical solution diverges in time
unless

ajAt

n+1l _
¢ Ax

J

1= YA A (b -2 <1
X T oWe ) 7
which implies that eitheWe < 1/b; or
a:
Ax< — 2.2
T bj— We1 22)

This condition has to hold at all mesh poipt$his is arestric-
tion on thespatial mesh sizét is not a CFL restriction on the
time step. This stability criterion has the following interpre-
tation: the spatial profile op(x, ¢) is exponential, therefore
every convection scheme thatis based on a polynomial recon
struction of fluxes underestimates the flux at the right edge
of every computational cell. Thus, the rate at which the field
¢ is removed from the computational cell fails to balance
its multiplicative growth rate, resulting in numerical blowup.
This scenario remains unchanged if the first-order upwind

scheme is replaced by a higher-order method; a higher-order”

25

Consider a first order upwind scheme for solv{gd3):

1 u; At 1
n+l _ — ) L n
o = 5 |:I " I+ At <2Vuj We)]a-/
1, uj At I\
-0 | I — I+ At [2Vu; — —
+201[ Ax + < i We>]
n ujAt o All
Ax 1T we

This is a linear difference equation with a block lower-
diagonal transition matrix. The solution remains bounded in
time if the three eigenvalues of this matrix, which are

u; 1
1—-At| L+,
(Ax+We)

U; 1
1— At —L +—=—)+2Ar,/—detVu;
(Ax + We) Vuj),

j=1,2, ..., areallinside the unit disc. Note that dé) is
negative unless the flow is strongly rotational. Fordet <
0, we obtain a stability condition that generaliZ2<2).

|ue]

¥ =y detva) — We L
(as in the scalar model, there is no restrictionzon if the
denominator is negative). The stability conditi¢th4) may

be very restrictive when convection is weak (small numer-
ator) and in the presence of large deformation rates (large
denominator). Regions near stagnation points and strong de-
formation rates (e.g., near geometric singularities) are prone
to such numerical instability. We emphasize that the issue is

A (2.4)

not a lack of convergence in the strict sense—even the first
order upwind scheme does convergefas Ar — 0; it is
rather an issue of stiffness due to sharp spatial gradients.
We revert our attention to the scalar Eg.1). The re-
striction on the mesh size is removed at once by a change of
variablesy = log ¢, in which case/(x, ¢) satisfies the equa-

scheme increases the critical mesh size by, at most, an ordef'on

one factor. The use of implicit schemes does not help either. 9
To generalize the above analysis to viscoelastic flows, as- ¢

sume a fixed velocity fiela(x) (as would be attained by a
stable steady state), and consider the UCM equation,

%—‘t’ +(u-V)o — (Vu)o —a(Vu)" = %(1 —0).

This is a linear tensor-valued hyperbolic equation, which can

1
m’
with boundary condition/(0, r) = 0. Now, even a first-order
upwind scheme,

)

oy

+a(x) % —b(x) = — (2.5)

Ax

J

Vi -

W =i+ At (bj ~ We

(2.6)

be solved by the method of characteristics. Doing so, one no longer imposes practical restrictions on the size\of
obtains a tensor-valued equation in one space dimension ofWhile this stable behaviour may be attributed to the trans-

the form

do n
-_— u
ot
wherex is the arclength along the characteristic aifd) =
lu(x)|. Inthe absence of stagnation point&) has fixed sign,
which without loss of generality is assumed to be positive.

(x)g—i—(VM)U—G(VM)T %(1 -0, (23

formation of multiplicative growth into additive growth, the
reason for stability should rather be attributed to the improved
treatment of convection. To see this, exponen{jaté)to re-
gain an equation fop’;,

¢;{+l — (d);g)(l—ajAt/Ax) (¢;Ll)ajAt/Ax eAt(bj—We’l)’
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and expand the multiplicative source, expt) ~ 1+ b At, Like in (2.5), the extensional component becomes additive
to get, to first order in space and time, as a result of the logarithmic transformation. E8}3)is the
L = ()M (g1 yayi/ax equation.we are going to approximate. N _
J J J Two-dimensional caseThe decompositior3.1) is par-
1 ticularly simple in two dimensions. I& is proportional to
+At (bj - m) 9. (2.7) the unit tensor then simply sé@ = 3[(Vu) + (Vu)'] and

£2 = 0. Otherwise, calculate the diagonalizing transforma-
The transformation back and forth to a logarithmic scale re- jgn:
sults in a convection scheme that uses geometrical weights
rather than algebraic weights, as all standard schemes do. Al- M 0
though(2.7)involves multiplicative growth, itis subjecttothe o =R ( ) R',
much weaker stability constrainkx < a/log(b — We™1). 0 22

and set
3. The log-conformation representation

mi1 mi2

In order for the logarithm of a second-rank tensor to exist,
mp1  mz

the tensor needs to be positive definite. This is the reason
we choose to formulate the constitutive 1§#2) in terms
of the conformation tensor, although the more popular form It is easily verified that
is in terms of the stress tensor. LCR repla¢e®) by an
equivalent equation fog(x, r) = loga(x, t). (Recall that an 0 n\ 5 m11 O T
SPD matrixA can always be diagonalized,= RAR', and N=R (_n 0) R, B=R <O m22> R,
thatlogA = Rlog AR".)

Differential constitutive laws dictate the dynamics of the <0 a)) o

) = R"(Vu)R.

conformation tensor as a composition of convection, defor- £ = R —w 0
mation and relaxation. When a tensor field is convected by an
incompressible flow, any continuous function of this tensor ., , — (m12+mo)/ /051 =271, and o = (homiz +
satisfies the same convection equation. It is also a reI(':ltively)L1n121)/()\2 — 11), satisfy %he rec:1luired properties.

easy task to rewrite the relaxation equation ddqx, r) as a

relaxation equation for its matrix-logarithm. The main effort

is to transform the deformation terms. This is easy to do ONC€ 4 Tha numerical scheme

the deformation has been decomposed as a composition of

pure extension and pure rotation. For that we need the fol-

) o 4.1. Temporal discretization
lowing decomposition rule, proven [i]:

Proposition. Letu(x) be a divergencéree velocity field and Let u" = (u”, v") andy”" denote the numerical approx-
let o(x) b'e a symmetric positivéefinite tensor fieldThen imations to the fieldw, ¥ at the discrete time,, with

the velocity gradien¥u can be decomposed as At, = t,11 — t,. The temporal discretization of the system
Vu=92+B+No L (3.1) (3.3)is based on a two-step backward differentiation formula

(BDF) with variable time stefl 2]. For a differential equation
where 2 and N are anti-symmetric, and8 is symmetric, vy = f(t, y), the two-step BDF is
traceless, and commutes wigh

Substituting the decompositidB.1) into the constitutive A0Yn+1 + o1yn + a2yn—1 = f(tns1, Yut1),
law (1.2), theNo—1-term cancels by anti-symmetry, and thus

oy ¢(0) where

— -V)o — (20 —0R2) — 2Bo = =— P(0). (3.2

ot + (- Vio— (20 -09) ? We (0) (3.2) 2At, + Aty_1 Aty + At,_1
oo = s o] = ————

The tensorB generates a pure (area preserving) extension, 0 Aty (Aty + Aty_1) ! Aty Aty

as it commutes witler, and$2 generates a pure rotation. The At,

passage to an equation f@gris now straightforward (s€f¢] 2= T AL .

for details), n=1(Atn + Aln-1)

oy For fixed time steps these reduce dg = 3/2At, a1 =

o +@-V)y— (¢ —-v2)—-2B —2/At, anday = 1/2At. While this scheme has good sta-
bility properties, it is time consuming due to its implicitness.

_ g(e”) eV P (3.3) A workaround is to use an implicit setting only for the lin-

ear terms on the right-hand side, whereas non-linear termsare



R. Fattal, R. Kupferman / J. Non-Newtonian Fluid Mech. 126 (2005) 23-37

discretized by a two-step interpolation formula:

Ftas1, yng1) = Ba f(tn, yu) + B2 f(ta=1, Yu—1),
with

_ Aty + At,—1

8 Aty
= Aty

Atn—l'

) 2=

For fixed time stepsg; = 2 andB2 = —1. (A similar tem-
poral discretization for Newtonian flows is used13].)
Specifically, the evolution of” is governed by the two-
step difference equation:
a0¢n+1 +a1¢n +a2,¢n—l
= BLNc(u", ¥") + BoNc(" 9" )
+2[B1B(Vu", ¥") + p2B(Vu' ")
+[BLR(Vu", ¥") + B22(Vu" ", Y ]y
+y"HALR(VE", ") + B2 2(Vu" T Y]
+ BN (") + BN ("),

whereB(Vu, ) and2(Vu, ¢) are the tensor fields that com-
poseVu in (3.1), and

(4.1)

Nelw $) = -V, N, = o [exp) — 1],

are the nonlinear convection and relaxation terms.
For creeping flow, onlyy(x, ¢) satisfies a dynamical evo-

27
Vij+1/2
A
(i,j)-cell
Pij
Uitpj — " — Y1z
,’
|
Vij-1/2

Fig. 1. The position of the variables in a computational cell.

The values of the log-conformatiah and the pressune
are stored at cell centers, and are denoted by

]/,' I (wxx)i,j (wxy)i,j
b (xy)isj (Wyy)ij

and p; ;, respectively. For the velocity we use the so-called
staggered, or Marker-and-Cell (MAC) discretizatjt4d]; the
discrete velocity variables are stored at the centers of cell
edges, such that only the normal component is defined at
each edge. Thus, the velocity componeis defined at the
centers of left and right edges and the velocity component

is defined at the centers of top and bottom edges. The velocity

(4.3)

lution equation, whereas the velocity and pressure are detervariables associated with the cé)l() are denoted byi+1/2,

mined, givery(x, t), by the solution of an elliptic system: at
every time step, the velocityu” and pressurg” are obtained
by the solution of the Stokes system:

—V P+ vV + %v - [exp@") — 1] =0
e
V.u"=0, (4.2)

subject to the impermeability and no-slip boundary condi-
tions at solid walls. Inflow and outflow boundary conditions
are treated as easily.

4.2. Spatial discretization

We divide the domain inta, x n, rectangular cells of
sizeAx x Ay, foraunitsquare,Ax = nyAy = 1. The cell
labelled ¢, j) is centered at the point

(i 3)) = (G + DAx, G+ Day).

withi=0,1,...,n,—1,j=0,1,....,n,— 1.

andv; j+1/2, the indexing being self-explanatory. Note that
the only variables defined at the domain boundaries are nor-
mal velocities, which are dictated by the boundary condi-
tions. The geometry of the discrete variables is illustrated
in Fig. L

Eqg.(4.1)is a difference equation for the log-conformation
¥, and therefore needs to be prescribed at cell centers, i.e.,
at points (, j); the same is also true for the incompress-
ibility constraint in(4.2), which is a “pressure-like” equa-
tion. The momentum equations {#.2) are equations for
the velocity components, v, and therefore need to be pre-
scribed at the pointsi & 1/2, j) and ¢, j +1/2), respec-
tively. Values of, v at the domain boundaries are determined
by the boundary conditions, and no equation needs to be
solved there.

We now specify one-by-one the spatial discretizations of
the various terms ifd.1)and(4.2).

4.2.1. Velocity gradient

The velocity gradient tens&fu needs to be computed at
cell centers. The diagonal compone&igdx andadv/dy are
readily obtained by compact stencils, which take advantage
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of the staggering, order piecewise-linear reconstruction

<au> U2, — uie1g2, Vit1yp,; = Vij+zminmod®;q ; — ¥ ¥ij — ¥i1j)
X/ Ax ’ 'ﬁ;:.]_/z,j =VYit1j— %miand@”iJrz,j Vi1

<@> Vi j41/2 — Vi j-1/2 Virrj— Yij):
/i Ay where minmod{, ») = %[sgn@) + sgng)] - min(lal, |b]) is

the min-mod limiter (see e.§l1] for an extensive reference
These expressions hold everywhere in the domain, up to theon slope limiters and flux limiters). In principle, the optimal
boundary. Compact stencils cannot be constructed for the off-choice for the smoothing factor is= 1/2; our calculations
diagonal components: /dy anddv/dx, which are discretized  were found much better behaved for a valuecdivice as
by central differences, large. The need for a larger amount of smoothing is discussed
further below.

du\  Mijpi— w1 (V) Vi1 — V-1 S
dy i - 2Ay P i - 2 Ax ’ 4.2.3. Newtonian viscosity o . .
' ' The Laplacian operator if4.2) is discretized with the

standard five-point stencil. For example,
where

Uir3/2,j — 2Ui+1/2,j + Ui-1/2,j
Ax?

4 Uit1/2,j41 — 2Ui+1/2.j + Ui+1/2,j-1

_ _ (V2u)it1j2,) =
uij = 5Wit1y2,j+ui—12.;) vij = 5ijr12 + vij-1/2)-

In boundary cells, these stencils have to be modified to ac- Ay?

count for the boundary conditions; we evaluate these deriva-This expression is valid at all points, except for those at a
tive with one-sided stencils. WitW« at hand, the tensors  distanceAy,/2 from the top or bottom lids, that is, except for
B(Vu, y) and2(Vu, ¥) can be computed. whenj = 0 andj = n, — 1. There, boundary conditions are
imposed by using “ghost cells”, and reflecting the interior
values with respect to the boundary values (i.e., the value at
the boundary is equal to the average of the values at the adja-
centinterior cell and the ghost cell). A similar modification is
needed for the Laplacian of the vertical velocity components
dV?)i jy1/2fori =0andi = n, — 1.

4.2.2. Convection

We next turn to the convection terma (V)y. We dis-
cretize it with the Kurganov—Tadmor (KT) scheme for hyper-
bolic conservation lawgl5,16] The KT scheme is a high-
resolution central scheme, which assumes a semi-discret
limit (i.e., reduces to a “method of lines” asr — 0 [11]).
In a semi-discrete setting, the temporal discretization is in-
dependent of the spatial discretization; this is particularly
convenient in conjunction with our two-step temporal dis- Y

4.2.4. Pressure gradient
The pressure gradient is evaluated at cell edges. It is given

cretization. (V) _ DPitlj — Dij
The KT scheme can be written in conservation form, Pli+1/2.j = Ax
Pi,j+1— Di,j
_ y _ g (Vp)ijs1e = ———.
(- V)9l — Hi g —Hq)5; N Hija0—Hijap A Ay
iLj — ’ .
Ax Ay The pressure gradient does not need to be evaluated at the

boundary because no equation is being solved there.

X y )
whereHiﬂ/z’j andHl.’ijl/2 are numerical fluxes of the form,

+ —
Vit T VY12

+ —
H y)p = iv1y2,) > —cluiz1y2, (¥ a0 ;= ¥iay2,))
+ —
RENPNERY S
y i,j+1/2 i, j+1/2 + _
Hi1)0 j = Vi j+1/2 > = clvijr1/2l(¥ 112 — Vi j112)-
. . N _ .
andc is a smoothing factor. The tensofs. , , ;. Vi) 4.2.5. Velocity divergence

are (discontinuous) evaluations of the log-conformation at ~ The velocity divergence associated with the celj)is
cell edges, on the right and on the left, respectively. Their
construction, in amanner that does notintroduce spurious 0s-y . ), ;= Hitlj2,j — Wi-1/2j | Vij+l/2 = Vij-1/2.

cillations, can be done in several ways. We adopt the second- Ax Ay
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Since the normal velocity is prescribed at the boundary, the

Re=0 We=1 n=[256]

discrete divergence is well defined at all cells. 0.018
0.016}
4.2.6. Stress divergence 0014k
The divergence of the stre¥s- T is a “velocity-like” field, )
i.e., needs to be evaluated at cell edges. Take forexamiple (& 0912¢
T)i+1/2, ;- the contribution front,, exploits the staggering, g 0.01
4]
[ =
(Txx)i+1,j - (Txx)i,j g 0008
Ax ) 0.006 |
I . 0.004 |
The contribution frome,, cannot be obtained by a compact
stencil. As for the off-diagonal terms of the velocity gradient 0.002
we use a wide-stencil central difference: o

0 1 2 3 4 5 6 7 8

(Ty)i+1/2, j+1 — (Tey)iv1/2,j-1
2Ay ’

Fig. 2. TheL? norm of the velocity (the “kinetic energy”) as function of
time for We = 1.0.

where

the residual equation to a lower resolution grid and inter-
polating the obtained low-resolution solution back onto the
original grid; this process is repeated recursively. The transfer
back and forth between two levels of discretizations requires
the definition ofrestriction(fine-to-coarse) angrolongation
(coarse-to-fine) operators. The solution of the Stokes equa-
tions by a multigrid method has received much attention in
the literature. A comprehensive description and numerous
references may be found jh7].

(To)it1/2) = 3[(Tee)i; + (To)ids -

In the vicinity of boundaries, one-sided modifications are
used.

4.3. Other technical issues

4.3.1. Choice of spatial discretization

The use of a staggered discretization for the velocity vari-
ables is very convenient for a stable treatment of the Stokes
operator. In particular, it is immune to “checkerboard” pres- 4.3.3. Time step selection
sure modes that infect wide-stencil discretizations. The stag-  The constraint on the time step comes from the hyperbolic
gered Setting also providdﬂ, part, a Compact discretization CFL condition associated with the convection. For CaVity flow
of the velocity-stress interaction: the diagonal elements of the the maximal velocity is always = 1, thus, the CFL condi-
velocity gradient and the stress divergence exploit the stag-tion 1S
gering. This is not the case, however, with the off-diagonal el-
ements, which are given by wide-stencil central differences. 4, < CAx,
This implies that the rotational components of the system
may be sensitive to humerical instabilities. A natural remedy
would have been to store the off-diagonal elements of the whereC is the CFL constant. The KT scheme is stable for
stress tensor at cell corners. This cannot be done in our frameC < 0.5[15].
work as the log-conformation tensor is an entity whose tenso-
rial nature is essential. Other choices of spatial discretizations

and their effect on stability will be studied elsewhere.

4.3.2. Linear solver
The Stokes Eq(4.2) is a linear system for the velocity

5. Numerical results

We implemented the above scheme for an Oldroyd-B fluid
in a lid-driven cavity. The fluid is confined in a unit square,

and pressure, given the stress, or the log-conformation. It can(x, y) € [0, 1]2, bounded by solid walls, with the top bound-
be solved by various methods. We used a multigrid solver. ary moving to the right. For Newtonian fluids, the disconti-
Multigrid solvers are iterative methods. Their central pillaris nuity of the flow field at the upper corners causes the pressure
a standard iterative scheme, such as Jacobi or Gauss—Seideio diverge, without affecting the well-posedness of the sys-
Iterative schemes are known to rapidly reduce high frequencytem. A viscoelastic fluid cannot sustain deformations at a
modes of the error, but perform poorly on the lower frequency stagnation point, therefore the motion of the lid needs to be
modes; that is, they rapidly smooth the error, which is why regularized such tha¥« vanishes at the corners. Also, to
they are often calledmoothersThe multigrid method re-  avoid errors resulting from an impulsive start, the motion of
duces the lower frequency modes of the error by transferring the lid was started smoothly. Specifically, the velocity profile



30 R. Fattal, R. Kupferman / J. Non-Newtonian Fluid Mech. 126 (2005) 23-37

of the lid was taken to be The fields at the steady state are displayedriop 3. The
log-conformation exhibits steep gradients only in the vicinity
uid (x, 1) = 8[1+ tanh 8(t — %)] x2(1— x)2. of the upper lid;y,, has a thin boundary layer along the

lid, and all three components have large gradients near the
upper corners. Note the asymmetry of the stream function,
which would have had left-right symmetry for an inertia-less
Newtonian fluid.

In Table 1we display a mesh refinement analysis for the
velocity componenti and the log-conformation component
Y. We ran simulations for 64 64, 128x 128, and
256 x 256 point grids. Ifp(") denotes the fiel¢p computed
with an N x N point grid, its relative error is estimated by
comparison to the most refined computation,

For ¢ > % the lid velocity attains its maximumy, = 1, at

the centery = 1/2. In all our calculations we tool, = vs,

i.e., equal contributions of solvent and polymeric viscosities.
Thus, the only remaining parameter is the Weissenberg num-
ber.

51. We=10

In Fig. 2we plot theL?-norm of the velocity field—the
“kinetic energy”—as function of time foWe = 1.0 (properly
speaking, a fluid withoutinertia does not have kinetic energy). (M) = i
The kinetic energy grows as the upper lid accelerates, reaches 1¢(250)]|2
amaximum at the end of the acceleration, and then decreases
toward a steady value as elastic energy builds up. At time where| - ||» is the L? norm. The table shows second-order
t = 8 the solution seems to have approached a steady stateaccuracy for short times, but the estimated convergence

™) — (250,

N=256 Re=0 We=11=8 N=256 Re=0 We=11=8
250', - j;;_,:_f—f—_‘ — — —
\.‘dg"."l' —= \
‘ | Y P
200F |11 ey |
‘ - \
\ll,w s . | |
g " / (A : -0.04
= 1507
2 oF
=
= 100|
0
0. 04 05 06 07 08 09
N=256 Re=0 We=1t=8 N=256 Re=0 We=11t=8
R 7
a &
01 02 03 04 05 06 07 08 09 0. 04 05 06 07 08 09

Fig. 3. (a) The stream function, (b)—(d) the three components of the log-conformation atti®éor We = 1.0.
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Fig. 4. Comparison between simulation results for a<684 point grid (dotted lines), a 128 128 point grid (dashed lines), and 256256 point grid (solid
lines) at timer = 8 for We = 1.0. The four graphs representl/2, y), v(x, 3/4), ¥x(1/2, y), andy,, (x, 3/4).

rate deteriorates with time until it reaches a value around Table 1

1.4 at the steady state. Note that both the velocity and the Mesh refinement analysis for the fieldandy,., at various times foie =
log-conformation attain a similar rate of convergence. An 10
examination of the error reveals that itis mostly concentrated t ~ e(u®%) )  Rate e(y'S) ew¥®®)  Rate
near the upper-right corner of the cavity. The fluid enters 10 22x103 40x10% 235 78x103 16x 103 228
this region after having experienced contraction along the 20 12x102 28x10°% 208 38x102 10x102 185

x-direction, and exits after having been rotated clockwise by 40 18x 102 60x10°% 160 88x102 29x107 160
90 80 15x102 54x10° 148 99x102 38x102 138
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Fig. 5. TheL? norm of the velocity as function of time fd¥e = 2.0. The
dotted line corresponds to a 6464 point grid, the dashed line corresponds
to a 128x 128 point grid, and the solid lines corresponds to a R56%6
point grid.
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In Fig. 4we show selected profiles of the fieldsv, ¥,
andy,, atthe steady state. We compare results obtained from
calculations at three different resolutions; differencesifor
andy,, are hardly seen at the scale of the graphs. The profiles
of ¥, along the horizontal ling = 3/4 show that close to
the right wall the lowest resolution graph has somewhat larger
errors than the two higher resolution graphs.

To summarize, the calculations féfe = 1.0 are conver-
gent but the rate of convergence is somewhat lower than the
expected second order. Errors are found to accumulate mostly
in the upper-right part of the system.

52. We=20

In Figs. 5 and 6ve show the evolution of the kinetic energy
for We = 2.0. The three curves represent three mesh sizes.
The numerical convergence analysiSable 2indicates that
the results are still convergent, but errors are larger than for
We = 1.0. In particular, there is a drastic drop in convergence
rate at intermediate times. The fields’ profiles displayed in
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~

2]

(92}

4
= S
; 3
: 2
' 1
0
4
01 02 03 04 05 06 07 08 0.9
N=256 Re=0 We=2 t=40
6
’ 5
’ 4
5, 3
)
a
_ )
: 1
: 0
: A
' -2

02 03 04 05 06 07 08 09

Fig. 6. (a) The stream function, (b)—(d) the three components of the log-conformation atti#@ for We = 2.0.
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Fig. 7. Comparison between simulation results for a<684 point grid (dotted lines), a 128 128 point grid (dashed lines), and 256256 point grid (solid
lines) at timer = 40 for We = 2.0. The four graphs represenfl/2, y), v(x, 3/4), ¥x:(1/2, y), andyr,,(x, 3/4).

Fig. 7 confirm that the errors are indeed larger thanfer=
1.0, but yet convergent.

5.3. We=3.0

The kinetic energy is found to be oscillatory. An exami-
nation of the flow field reveals that these oscillations are
caused by vortices that are repeatedly created in the vicin-
ity of the upper-right corner, and propagate downwards until
being eventually damped out. For the 464 point grid (dot-

For We = 3.0 the tendencies observed in the passage from ted line) the oscillations occur at intermediate times, but the

We = 1.0 to We = 2.0 are further amplified. IrFig. 8 we

system tends eventually to a steady state, Thex1288 and

show the evolution of the kinetic energy for three mesh sizes. 256 x 256 point computations exhibit persistent oscillations,
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Fig. 8. TheL? norm of the velocity as function of time fd¥e = 3.0. The

dotted line corresponds to a 6464 point grid, the dashed line corresponds

to a 128x 128 point grid, and the solid lines corresponds to a 5656
point grid.
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Table 2

Mesh refinement analysis for the fieldandy ., at various times foiWe =

2.0

t e(u®) @) Rate e(y®?) i)  Rate
40 25x102 86x10° 155 10x10! 32x102 1.69
80 18x102 1.7x102 010 12x10! 60x 102 105
16.0 33x102 15x102 111 10x10! 43x102 122

320 37x102 25x102 056 11x10! 44x102 1.27

Table 3

Mesh refinement analysis for the fieldandy,, at various times foiWe =

3.0

t e(u®) @) Rate ey  w®) Rate
50 47x102 22x102 108 13x10! 50x1072 1.38

100 36x102 19x102 087 14x10! 63x102 114

20.0 53x102 13x102 194 10x107! 42x102 133

40.0 55x102 26x102 150 13x10' 44x102 156
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Fig. 9. (a) The stream function, (b)—(d) the three components of the log-conformation atti#@ for We = 3.0.
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lines) at timer = 40 for We = 3.0. The four graphs represenl/2, y), v(x, 3/4), ¥x:(1/2, y), andyr,, (x, 3/4).

although the oscillations obtained at higher resolution have 5.4. HigherWe
somewhat lower amplitude. The state of the system at time

t = 40 is displayed irFig. 9. The mesh refinement analy- At even higher values of the Weissenberg number, the
sis in Table 3shows convergence; errors are larger although numerical solution exhibits stronger oscillations, and we can
the estimated convergence rate is higher tharifer= 2.0. no longer claim for convergence (for example, we show in

Larger errors are also apparent in the profiles showfign Fig. 11the evolution of the kinetic energy féve = 5.0). On
10, notably in the upper-right part of the system. the other hand, the calculations are perfectly stable, showing
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Fig. 11. TheL? norm of the velocity as function of time fa¥e = 5.0. The
dotted line corresponds to a 6464 point grid, the dashed line corresponds
to a 128x 128 point grid, and the solid lines corresponds to a R5656

point grid.

®3)

(4)

that the passage to logarithmic variables does indeed remedy

the

HWNP instability.

6. Discussion

@)

)

Is the HWNP solved? Our claim is that we have elu-
cidated the high Weissenberg numlestability. Our
numerical experiments indicate that it is now possible
to perform stable simulations at very large values of
the Weissenberg number. (For comparison, computations
with a standard finite-difference scheme that does not use
logarithmic transformations reach a steady state only for
We < 0.5.) Yet, as one should expect, the change of vari-
ables does not guarantee thaturatecomputations can

be performed at arbitrarily highe. The situation can

be compared with classical CFD, where one can perform
stable calculations at arbitrarily large Reynolds nhumbers,
but accuracy is lost when the resolution becomes insuf-
ficient. The analogy is in fact most appropriate given the
recent identification of so-called elastic turbulefit@].
While the present paper describes an implementation of
the LCR approach for an Oldroyd-B fluid, the LCR ap-
proach is applicable to a large class of differential con-
stitutive models, and so is our numerical scheme. The
method can be generalized to three dimensions, nonlin-
ear constitutive models, and different systems of coordi-
nates. Our scheme is also easily augmented to fourth-
order accuracy (a fourth-order scheme for Newtonian
fluids that uses compact stencils is developeflLBj).

The LCR approach is also easily implemented within the
FEM frameworl[9], particle tracking methods, and var-
ious hybrid methods (e.g., Brownian configuration fields
[19,20). Note that while Lagrangian-based methods are
different in the sense that advection is not represented
by a partial differential operator, and therefore its imple-

R. Fattal, R. Kupferman / J. Non-Newtonian Fluid Mech. 126 (2005) 23-37

mentation does not involve the approximation of spatial
derivatives. On the other hand, Lagrangian-based meth-
ods require either the insertion and removal of stress el-
ements[21], or, a re-meshing stage in hybrid methods
[22]. It is at this stage that interpolation is introduced,
and like for Eulerian-based methods, the use of polyno-
mial interpolation causes stress amplification in areas of
high deformation.

Our computational method can also be applied to iner-
tial flows. There, the main computational difficulty is the
need to use small time steps to satisfy the CFL condi-
tion imposed by the elastic shear waves. This is a seri-
ous limitation at low Reynolds number®¢ « 1, as the
characteristic speeds scale like—1/2.

Eq. (2.4) provides a quantitative criterion for when a
method, that does not use matrix logarithms, is expected
to lead to numerical blowup. Different schemes alter
the criterion(2.4) by at most an order one prefactor. It
would be of interest to re-examine past results, and verify
whether the limiting Weissenberg number can indeed be
related to such a stability criterion. Moreover, past am-
biguities for whether increased resolution increases or
reduces the maximum attainable Weissenberg number
can be understood in light ¢2.4). While increased res-
olution seems to be a stabilizing factor, it may cause the
numerical estimate of the velocity gradient to increase,
thus being destabilizing.

(5) Having elucidated the fundamental HWNP instability,

there remain problems of accuracy. As our results show,
large errors and (possibly) spurious oscillations are gen-
erated in regions of large stress and strong rotations.
The instability that results from under-resolution may
be understood as a “checkerboard instability”, caused
by the wide stencils employed in the calculation of the
off-diagonal elements of the velocity gradient, and the
stress divergence. As pointed out above, it would have
been more natural to associate the off-diagonal elements
of tensor-valued fields with cell corners, rather than cell
centers (i.e., use a staggered setting for tensors as well).
Such a splitting between diagonal and off-diagonal ele-
ments is problematic in a method that is heavily based on
tensorial operations, such as matrix exponentiation and
diagonalization.

We believe that the loss of accuracy and the genera-
tion of spurious oscillations has the same origins as the
(spurious) unstable modes observed in numerical solu-
tions of plane Couette floyb]. In [6] various numeri-
cal schemes were benchmarked for Couette flow. In par-
ticular, the authors report that “a factor that influences
the behavior of the DEVSS-G/SUPG method seems a
proper choice for the adaptive viscosity function”. In our
case too, the formation of vortices was found very sen-
sitive to the amount of smoothing in the KT convec-
tion scheme. An understanding of this numerical arti-
fact is of fundamental importance, and is left for future
work.
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(6) A similar passage to logarithmic variables may be of use
in situations other than computational rheology. Gen-
erally, such an approach could be useful in any situa-
tion where a physical quantity that preserves positivity
is simultaneously convected and amplified (e.g., reactive
flows). The use of a logarithmic transformation is, by
itself, not a novel idea in mathematics. A classical ex-
ample is thewks expansior23], where a power series
expansion is constructed for the logarithm of the sought
solution. Another example is the Cole-Hopf transforma-
tion that turns the nonlinear viscous Burgers equation
into a linear heat equatid@4].
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