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bstract

We study a model inspired by the Oldroyd-B equations for viscoelastic fluids. The objective is to better understand the nonlinear coupling between
he stress and velocity fields in viscoelastic flows, and thus gain insight into the reasons that cause the loss of accuracy of numerical computations
t high Weissenberg number. We derive a model system by discarding the stress-advection and stress-relaxation terms in the Oldroyd-B model.
he reduced (unphysical) model, which bears some resemblance to a viscoelastic solid, only retains the stretching of the stress due to velocity
radients and the induction of velocity by the stress field. Our conjecture is that such a system always evolves toward an equilibrium in which the
tress builds up such to cancel the external forces. This conjecture is supported by numerous simulations. We then turn our attention to a finite
imensional model (i.e., a set of ordinary differential equations) that has the same algebraic structure as our model system. Numerical simulations
ndicate that the finite-dimensional analog has a globally attracting equilibrium manifold. In particular, it is found that subsets of the equilibrium
anifold may be unstable, leading to a “peaking” behavior, where trajectories are repelled from the equilibrium manifold at one point, and are
ventually attracted to a stable equilibrium point on the same manifold. Generalizations and implications to solutions of the Oldroyd-B model are
iscussed.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The Oldroyd-B model for viscoelastic fluids in the creeping
ow regime consists of a constitutive equation,

∂c

∂t
+ (u · ∇)c = (∇u)T · c + c · (∇u) − 1

λ
(c − I) (1.1)

oupled to a Stokes system,

∇p+ νs�u +G div c + f = 0, div u = 0. (1.2)

Here u = u(x, t) is the velocity vector field, p = p(x, t) is
he scalar pressure field, c = c(x, t) is the (symmetric positive-

efinite) conformation tensor with (div c)i =∑j∂cji/∂xj , νs is
he solvent viscosity, G the elastic modulus, λ the polymeric
elaxation time, and f = f (x) is a force field. The constitutive
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q. (1.1) describes the evolution of the conformation tensor as
composition of advection, deformation, and relaxation. The
ow field, which governs the advection and the deformation is

nduced by the conformation tensor through the Stokes system
1.2), thus constituting a nonlinear feedback mechanism (see
1,2] for a presentation of various constitutive models).

Our primary motivation is to better understand the inter-
lay between the various terms in this system, with the dual
oals of (i) progressing toward the development of an exis-
ence theory, and (ii) gain insight into the reasons that make
umerical computations lose accuracy at modestly large Weis-
enberg numbers. A strategy that often yields useful information
n complex dynamics of this sort is the analysis of “toy models”
hat focus on certain terms in the equations while discarding
ll other. For example, by focusing the attention on the bal-
nce between stress-advection and stress-deformation, two of

he co-authors identified a numerical instability responsible for
lowup at high Weissenberg numbers [3–5]. Although this insta-
ility can be remedied by a simple change of variables (the
og-c formulation), computations still exhibit a frustrating loss
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f accuracy in regions of large stress, whose reasons are not yet
nderstood.

Sticking to the same strategy, we investigate here the non-
inear feedback mechanism between the stress-induced velocity
nd the stress-buildup due to deformation. Specifically, we first
iscard stress-relaxation by letting λ → 0, while retaining the
lastic modulus G fixed, thus letting the polymeric viscosity
p = Gλ tend to infinity as well. This transforms the model into
hat of an incompressible viscoelastic solid with modulus G and
etardation time νs/G (the so-called Kelvin–Voigt model). We
hen discard stress-advection, remaining with an (unphysical)

odel in which the conformation tensor is stretched and rotated
y the flow field, the latter being induced by the conformation
ensor through the Stokes system:

∂c

∂t
= (∇u)T · c + c · (∇u),

−∇p+�u + div c + f = 0, div u = 0 (1.3)

the retardation time has been set to 1). For concreteness we con-
ider the simplest geometry, Ω = T2, a two-dimensional fluid
n a doubly periodic box (i.e., on a torus), which obviates the
eed for boundary conditions.

Further motivation for studying a model of the form (1.3)
s now given. In the creeping flow regime, i.e., in the absence
f inertia, the flow field is determined instantaneously by the
tress field. In analogy to the motion generated by a mechan-
cal spring, we expect this induced flow to relax the stress.
onsider momentarily a system without external forces, f = 0.
he Stokes system can then be represented as an equivalent
ariational problem,

= argmin
u

‖∇u + c‖2 such that div u = 0, (1.4)

here the norm ‖ · ‖2 is the L2 Frobenius norm. That is, the
elocity gradient is the best L2 approximation to (−c) taken
mong all divergence-free flow fields. Proceeding heuristically,
f indeed ∇u ≈ −c (keeping in mind that c is symmetric), the
onstitutive Eq. (1.1) is approximated by

∂c

∂t
+ (u · ∇)c ≈ −2c2 − νp

λ
(c − I). (1.5)

Since the stress is positive definite, such dynamics represent
negative feedback capable of eradicating large stresses. It is

uch a stress relaxation mechanism that we are trying to better
nderstand. To simplify the analysis we isolate this mechanism,
iscarding stress-advection and stress-relaxation.

Note that had the stress lost its positive-definiteness (as might
appen in numerical calculations), this feedback mechanism
ould have become positive, leading to blowup in finite time.
his observation agrees with numerical experiments. In [6] loss
f convergence and blowup has been reported to occur after a
oss of positivity. On the other hand, schemes which impose the

ositive-definiteness of the stress are known to be much more
obust (e.g., Brownian configuration fields [7]).

We now revert our attention to the model system (1.3). With-
ut loss of generality, we may express the force field as the

d
s

s
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ivergence of a stress field, f (x) = −div a(x) (the choice of
(x) is non-unique), so that the Stokes system takes the form

∇p+�u = div (a − c), ∇ · u = 0. (1.6)

Let ∇⊥ := (∂/∂y,−∂/∂x)T be the orthogonal gradient oper-
tor; it maps scalar fields into vector fields. Its adjoint −div⊥ :=
−∇⊥·), the orthogonal divergence, maps vector fields into
calar fields. Applying the orthogonal divergence operator on
1.6) and expressing the divergence-free flow field as the orthog-
nal gradient of a stream function, u = ∇⊥ψ, we obtain a
i-harmonic equation for the stream function,
2ψ = div⊥ div(a − c).

The bi-harmonic operator on a torus in not invertible (its
nverse Δ−2 is not uniquely defined), however it is only the
elocity gradient that enters into the model system (1.3), and
he latter is well-defined by the zero-degree integro-differential
perator,

u = ∇∇⊥Δ−2 div⊥ div(a − c) =: P(a − c). (1.7)

Thus, (1.3) can be written as a closed (non-local) equation
or the conformation field c(x, t),

∂c

∂t
= PT(a − c) · c + c · P(a − c), (1.8)

here we have introduced the short-hand notation for matrix
ranspose, [PT(c)](x) := [P(c)(x)]T.

If we endow the space of tensor fields over Ω with the stan-
ard inner-product,

c1, c2) :=
∫
Ω

tr[cT
1 (x) · c2(x)] dx, (1.9)

hen it is easy to verify that the operator P defined by (1.7)
atisfies the following properties: (i) It is a linear operator. (ii)
t is symmetric with respect to the inner-product (1.9). (iii) It is
projection, P ◦ P = P, in fact, an orthogonal projection. (iv)

ts range consists of traceless tensor fields, trP(c) = 0. (v) The
anges ofP andPT are orthogonal; for every pair of tensor fields
1, c2,

PT(c1),P(c2)) = 0.

Additional properties of P can be inferred from these five
roperties, but we defer this to the next section. It should be noted
hat the algebraic properties satisfied by P do not depend on the
eometry of the system; the same would hold in the whole plane,
r for a bounded geometry with suitable boundary conditions.

Eq. (1.8) has a very suggestive form. Viewed as a matrix
inear equation for c with time-dependent amplification matrix
(a − c), the amplification matrix is, in a certain sense, anti-

inear to c (P is a positive operator), i.e., there seems to be a
tabilizing negative feedback. In fact, (1.8) is reminiscent of a
icatti equation in which the quadratic term has a negative coef-
cient; under such conditions it is well known that positive initial

ata yield a solution which, as t → ∞, tends to an equilibrium
olution (a fixed point).

These heuristic considerations have led us to the following
peculation:
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ig. 1. Simulation results of system (1.3) for a lid-driven cavity geometry; the
(x) = I. (a) Time evolution of theL2 norm of the velocity, which decays to zero
rofiles of the xx, xy, and yy-components of log c.

Let c(x, t) be a solution of (1.8) with symmetric positive-
definite initial data c0(x) = c(x, 0), then c(x, t) converges, as
t → ∞, to an equilibrium solution of the system.

By “equilibrium” we mean a state of stress that counters
he external forces (whether these are bulk forces or bound-
ry forces), thus causing the velocity to vanish. Since our model
s closely related to that of a viscoelastic solid (up to the arti-
cial omission of the advection term), our conjecture can be
nderstood in physical terms: a solid cannot be stretched indefi-
itely by a constant force. These considerations hold for systems
riven by forcing; shearing boundary conditions can also be

ast in such category. On the other hand, we do not expect
t to remain correct in situations where (non-trivial) boundary
onditions are prescribed for normal components of the flow
eld.

c
fi
f
s

r wall moves to the left with velocity u(x, 1) = −1. The initial conditions are
entially fast. (b) Time evolution of theL2-norm of the stress. (c–e) Steady-state

We have tested this conjecture numerically, and found that
ndeed, for all choices of inhomogeneous stress fields a(x)
nd (symmetric positive-definite) initial data c0(x), the solu-
ion tends to a steady-state c∗(x), which lies on the equilibrium
anifold, P(a − c∗) = 0.
The convergence of the stress to a static equilibrium was

ound to be extremely robust, even in the presence of singular
eometries. In Fig. 1 we show simulation results for a lid-driven
avity geometry. The flow takes place in a unit square, with the
pper boundary moving to the left with velocity u(x, 1) = −1.
s shown in the figure, a strong stress profile forms near the
oving boundary until, eventually, the velocity field within the
ell vanishes. Thus, the system generates a delta-sheet-like stress
eld, which “shields” the interior of the cell from the singular
orces induced by the discontinuous boundary conditions. The
ame phenomenon repeats in Fig. 2 for a planar 4:1 contracting
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ig. 2. (a–e) Simulation results of system (1.3) for a 4:1 contraction channel,
etails.

hannel, where the fluid is pushed into the system by a fixed
ressure gradient. As pointed out above, we only consider sys-
ems driven by constant forces; no such equilibrium is expected
o form if, instead, the fluid is pushed into the channel at constant
ow rate. Here, strong stresses are generated at the contraction

nlet, canceling eventually the flow induced by the pressure gra-
ient. It should be emphasized, however, that in both cases, the
esults do not converge upon mesh refinement, at least not in any
tandard sense. These simulations are not supposed to reproduce
ny physical reality. They only serve as a demonstration of the
obustness of the negative-feedback mechanism inherent in the
elocity–stress coupling.

All our attempt to prove the validity of the above conjecture
ave so far failed; a detailed account of partial results will be pre-
ented in the next section. Yet, the understanding of the globally

tabilizing mechanism of the dynamics (1.8) seems crucial for
he understanding of the nonlinear feedback mechanism in vis-
oelastic models. In particular, it is of fundamental importance
o understand which properties of this dynamical system should

e
o
a
b

the fluid forced by a constant pressure gradient. See the caption of Fig. 1 for

e retained in finite-dimensional approximations, to preserve the
tabilizing mechanism.

With this in mind, we constructed a family of finite-
imensional dynamical systems (i.e., ordinary differential
ystems), which carry a structure similar to that of (1.8). This
lass of toy models is presented in Section 3. The finite-
imensional toy model is much easier to manipulate, and
he global stability of its equilibrium manifold – which is a
yper-plane – is unambiguously defined. Numerical simula-
ions indicate that the equilibrium manifold is indeed globally
ttracting for positive initial data, yet, despite the much simpler
tructure of the system, we were still unable to prove global sta-
ility. In this respect, the reduction to finite dimension does not
implify the analysis of the stability mechanism.

Most methods for proving the global asymptotic stability of

quilibrium points, or equilibrium manifolds are based, in a way
r another, on the construction of Lyapunov functions; one finds
function of the state space that is on the one hand bounded from
elow, and on the other hand decreases monotonically along tra-
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ectories. Thus, the Lyapunov function tends to a limit as t → ∞,
nd asymptotic convergence to the equilibrium manifold usually
ollows. An examination of particular examples in the present
roblem clarifies why all such methods are bound to fail. The
quilibrium manifold may have subsets that are linearly unsta-
le. Solutions that are initially in the vicinity of these unstable
egions are exponentially repelled from the equilibrium mani-
old, before being eventually attracted to a stable equilibrium
oint. In others words, there exists a continuum of heteroclinic
rbits connecting the equilibrium manifold to itself. These find-
ngs are indicative of a very non-common stability mechanism,
hich, we believe, is intrinsic to many models for viscoelastic
uids.

. Preliminary analysis

Throughout this section it is assumed that the external stress
eld a(x) and the (symmetric positive-definite) initial conditions
0(x) are sufficiently regular, such that a unique solution c(x, t)
xists for all positive times. Whether such an assumption is jus-
ified is not known, and its analysis seems as complex as the
nalysis of the Oldroyd-B model. It should only be pointed out
hat the natural space in which solutions should be sought is
∞,+, the cone of bounded symmetric positive-definite tensor
elds.

First, we show that the positive-definiteness of c(x, t) is guar-
nteed for all times.

roposition 2.1. The scalar-valued function det c(x, t) is con-
erved by the dynamics (1.8).

roof. This is an immediate consequence of the fact that the
ange of P consists of traceless tensor fields (equivalently, that
he flow field is divergence-free),

∂

∂t
log det c = tr

(
c−1 · ∂c

∂t

)

= trPT(a − c) + trP(a − c) = 0. �

orollary 2.1. The tensor field c(x, t) remains symmetric
ositive-definite for all t ≥ 0.

roof. Symmetry follows from the structure of the equations.
ositivity follows from the conservation of the determinant, as

t implies that none of the eigenvalues of c(x, t) can vanish, and
y continuity cannot change sign. �

Our goal is to show that the equilibrium manifold,
= {c ∈L∞,+ : P(a − c) = 0}

s globally attracting for c0 ∈L∞,+. A necessary condition for
his to hold is that (1.8) does not have other equilibria within
∞,+. This is guaranteed by the following proposition.

roposition 2.2. The set of fixed points for (1.8) in L∞,+
oincides with the manifold M.

f
a
e

C
b

l

luid Mech. 144 (2007) 30–41

roof. Note that

∂c−1

∂t
= −c−1 · PT(a − c) − P(a − c) · c−1,

ence, using the orthogonality of the ranges of P and PT,

∂c

∂t
,
∂c−1

∂t

)
= −2‖c1/2 · P(a − c) · c−1/2‖2

2 ≤ 0,

ith equality if and only if P(a − c) = 0. That is, ∂c/∂t = 0 if
nd only if c ∈M. �

Most methods for proving that an equilibrium point, or an
quilibrium manifold are attracting, are based on the construc-
ion of a suitable Lyapunov functional. A natural candidate for
uch a functional is the square of the L2-distance from the equi-
ibrium manifold,

[c(·)] = (P(a − c),P(a − c)).

Differentiating V along trajectories of (1.8), using the self-
djointness and idempotence of P, we get

d

dt
V [c(·, t)] = −2(P(a − c),PT(a − c) · c + c · P(a − c))

= −2‖c1/2 · P(a − c)‖2
2

+2
∫
Ω

detP(a − c) tr c dx.

It is easy to construct pairs a, c for which the right-hand side
t positive, thus excluding V as a Lyapunov functional. Various
ttempts to construct Lyapunov functionals of either “energy
ype” or “entropy type” (see [8]) have failed similarly, raising
he doubt whether the dynamics (1.8) are at all dissipative.

Since the determinant of c(x, t) is preserved, its trace is
ounded from below by

r c(x, t) ≥ 2
√

det c(x, t) = 2
√

det c0(x).

Consider the evolution of the integral of tr c,

d

dt

∫
Ω

tr c dx = 2(c,P(a − c))

= ‖P(a)‖2
2 − ‖P(c)‖2

2 − ‖P(a − c)‖2
2.

An immediate conclusion is that the integral over the trace
f c(x, t), which can be used as a norm on the space of positive-
efinite tensor fields, has at most a linear growth rate,

d

dt

∫
Ω

tr c dx ≤ ‖P(a)‖2
2.

In particular, if P(a) = 0, i.e., in the absence of external
orcing, this norm is monotonically decreasing and c(x, t) must
pproach the equilibrium manifold P(c) = 0. In the presence of
xternal forcing, the most that can be said is the following.
orollary 2.2. Solutions to (1.8) return infinitely often into a
ounded cylinder around the equilibrium manifold,

im inf
t→∞ ‖P(a − c)‖2 ≤ ‖P(a)‖ < ∞.
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roof. Assume, by contradiction, the existence of an ε > 0 and
t0 > 0, such that

P(a − c)‖2 ≥ ‖P(a)‖2 + ε

or all t ≥ t0, then

d

dt

∫
Ω

tr c dx ≤ −ε

or all t ≥ t0, which is impossible since this integral is bounded
rom below. �

The results in this section are based on “algebraic” proper-
ies of the system (1.8) and the projection P. These properties
ield the conservation of the determinant of c(x) and an a-priori
stimate for the L1-like norm

Ω

tr c dx ≤
∫
Ω

tr c0 dx + ‖P(a)‖2
2t.

Such estimates are not powerful enough for an existence
heory, for which L∞-estimates are needed.

. A finite-dimensional toy model

The analysis of infinite-dimensional systems is inherently
ore complex than the analysis of finite-dimensional ones. In

his section we construct a finite-dimensional system that retains
he algebraic structure of the model problem (1.8), with the hope
hat the stabilizing mechanism will then be more transparent. We
ntroduce a class of “toy models” in which the evolution takes
lace in the space X of n-vectors of 2-by-2 matrices. An ele-
ent S ∈X is a vector with entries Si, 1 ≤ i ≤ n, that are 2-by-2
atrices (we denote their components by (S11

i , S
12
i , S

21
i , S

22
i ));

he time-dependent vector S(t) is analogous to the function c(·, t)
n the viscoelastic context. The space X is endowed with the
nner-product

S,R) =
n∑
i=1

tr ST
i Ri, (3.1)

hich is the discrete analog of the inner-product (1.9). To
implify notations we introduce the binary operator • : X×
→ X, defined by (R • S)i = RiSi (an element-by-element
atrix multiplication, also known as a Schur, or Hadamard

roduct). Also, we denote by Xs ⊂ X the subset of vectors
hose entries are symmetric matrices, and by X+

s ⊂ Xs the
one of vectors whose entries are symmetric positive-definite
atrices.
Let P : X→ X be an operator satisfying the following prop-

rties: (i) It is a linear operator. (ii) It is symmetric with respect
o the inner-product (3.1). (iii) It is a projection, P ◦ P = P. (iv)
ts range consists of vectors of traceless matrices, tr[P(S)]i = 0.
v) If we define [PT(S)]i = [P(S)]T

i , then the ranges ofP andPT
re orthogonal. This structure imitates the relation between the
onformation tensor c and the velocity gradient ∇u. In the next
ection, we will see how to actually construct linear operators
ith such properties.

i

r

luid Mech. 144 (2007) 30–41 35

Let A ∈X be given, and consider the following ordinary
ifferential system in X,

dS

dt
= PT(A − S) • S + S • P(A − S), S(0) = S0, (3.2)

hich is the discrete analog of the model system (1.8). All the
esults of the previous section apply verbatim to this toy model.
n particular, the dynamics (3.2) preserve the determinants det Si,
≤ i ≤ n, symmetric positive-definite initial data give rise to

ymmetric positive-definite solutions, and the equilibrium man-
fold

= {S ∈X+
s : P(A − S) = 0}

ontains all equilibrium points in X+
s . Moreover, the growth

ate of
∑n
i=1tr Si is bounded by a constant, and the ω-limit

et of ‖P(A − S)‖2 is not empty. System (3.2) defines a 3n-
imensional polynomial vector field of second degree, which
an be reduced into a 2n-dimensional system by substituting the
invariants det Si. Note that the control of both the sum of traces
nd determinants of the Si implies at once the global existence
f solutions. This does not hold in the infinite-dimensional limit,
here finite averages do not exclude pointwise blowup.
Unlike in the infinite-dimensional case, we are able to for-

ulate a precise conjecture regarding the long-time asymptotic
ehavior of solutions.

onjecture 3.1. Any solution of system (3.2) with initial data
0 ∈X+

s converges, as t → ∞, to a fixed point S∗ ∈M.

. Analysis of the toy model

.1. Explicit representation of P

In this section we analyze the toy model (3.2). We start by
ully characterizing the projection operator P, which was intro-
uced through its defining properties. The following properties
f P result from its definition.

roposition 4.1. Let A = Range(P), B = Range(PT), and C
e the space of element in X of the form f • I, where f ∈ Rn,
∈X is a vector whose entries are 2-by-2 unit matrices, and

f • I)i = fiI. Then,

(i) A ∩B = {0}.
(ii) P(R) = 0 for all R ∈C (i.e., C ⊆ kerP).
iii) dimA = dimB ≤ n.

roof. The first claim is obvious as any pair of orthogonal
ubspaces has intersection {0}.

For every Q ∈X and f ∈ Rn,

P(f • I),Q) = (f • I,P(Q)) =
n∑
fi tr[P(Q)]i = 0,
i=1

.e., P(f • I) = 0, which proves the second claim.
The ranges of P and PT are obviously isomorphic, thus it

emains to show that their dimension cannot be larger than n.
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et dimA = m, and consider the space

= {P(S) − PT(S) : S ∈X},
hich is a linear subspace of X. If U1, . . . ,Um is an orthonor-
al basis forA, then them vectorsP(Uj) − PT(Uj), 1 ≤ j ≤ m

orm an orthogonal set in D, from which we conclude that
imD ≥ m. On the other hand, D coincides with the subspace
f X of n-vectors whose elements are traceless anti-symmetric
-by-2 matrices. Since this subspace if n-dimensional, we con-
lude that

imA = dimB ≤ dimD = n. �

We are next going to examine the structure of operators P
atisfying the postulated properties. The projection P is fully
pecified by prescribing an orthonormal basis {U1, . . . ,Un} for
ts range. Then,

(S) =
n∑
k=1

(Uk,S)Uk. (4.1)

Since each Uk is a vector of traceless matrices, we can write
t in the form

k = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
p1k a1k

b1k −p1k

)

...(
pnk ank

bnk −pnk

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The condition that the Uk form an orthonormal set gives

1

4

n∑
i=1

(2p2
ik + a2

ik + b2
ik) = 1, 1 ≤ k ≤ n;

1

4

n∑
i=1

(2pijpik + aijaik + bijbik) = 0, 1 ≤ j < k ≤ n, (4.2)

hereas the condition that the set of Uj be orthogonal to the set

f (Uk)
T

gives

1

4

n∑
i=1

(2pijpik + aijbik + bijaik) = 0, 1 ≤ j ≤ k ≤ n. (4.3)

Subtracting (4.3) from (4.2) we get

1

4

n∑
i=1

(aik − bik)
2 = 1, 1 ≤ k ≤ n;

1 n∑
(aij − bij)(aik − bik) = 0, 1 ≤ j < k ≤ n. (4.4)
4
i=1

This suggests the following change of variables: introduce
he n-by-n real-valued matrices U and V with entries uij, vij

d
a

luid Mech. 144 (2007) 30–41

efined by

ij := 1

2
(aij − bij), vij := 1

2
(aij + bij).

Then, (4.4) asserts that U is an orthogonal matrix. At this
tage, we can transform the basis {U1, . . . ,Un} such that the
atrix U becomes a unit matrix.
Rewriting (4.2) and (4.3) in terms of the new parameters we

et

n∑
i=1

(p2
ik + v2

ik) = 1, 1 ≤ k ≤ n;

n∑
i=1

(pijpik + vijvik) = 0, 1 ≤ j < k ≤ n.

If we denote by P the n-by-n real matrix with entries pij ,

hen the 2n-by-n matrix (PT,VT)
T

is orthogonal. We have thus
hown that the defining properties of the projection P amount
o the following characterization.

roposition 4.2. The range of P is spanned by an orthonormal
asis {U1, . . . ,Un}, where each Uk is of the form

k = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
p1k v1k + δ1k

v1k − δ1k −p1k

)

...(
pnk vnk + δnk

vnk − δnk −pnk

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.5)

here δij is Kronecker’s delta, and the parameterspij, vij are the
espective entries of n-by-n matrices P,V, such that the 2n-by-n

atrix (PT,VT)
T

is orthogonal.

.2. Change of variables

In this subsection we take advantage of the explicit charac-
erization of P to simplify the structure of the dynamical system
3.2). Substituting the representation (4.1) of the projection into
3.2) the differential system takes the form

dS

dt
=

n∑
k=1

(ak − yk)[(U
k)

T • S + S • Uk], (4.6)

here the real-valued n-vectors y, a with entries yk and ak are
efined by

k := (S,Uk), ak := (A,Uk). (4.7)

We will now rewrite this 3n-dimensional system as a system
or three n-vectors x, r, s, whose components are defined by
i
2 i i i

2 i i i i

The conservation of the determinants and the positive-
efiniteness of the matricesSi imply that each of the xi is positive
nd that
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i := x2
i − r2

i − s2i

re positive integrals of motion.
Substituting the explicit representation (4.5) of the basis vec-

ors Uk into (4.7), the vector y reduces to

= PTr + VTs. (4.8)
By a straightforward substitution, the vectors x, r, s are found

o satisfy the differential system:

dx

dt
= [P(a − y)] • r + [V(a − y)] • s,

dr

dt
= [P(a − y)] • x − (a − y) • s,

ds

dt
= (a − y) • r + [V(a − y)] • x, (4.9)

here here • : Rn × Rn → Rn stands for a term-by-term mul-
iplication of n-vectors.

The differential system (4.9) with y given by (4.8) provides
n alternative representation of our original system (3.2). It is a

n-dimensional system with n invariants βi, and can easily be
educed into a 2n-dimensional system by viewing the βi as given
positive) parameters, and setting

i =
√
βi + r2

i + s2i .

In particular, the equilibrium set of this system is the hyper-
lane y = a.

Since the vector y plays such a distinguished role, it is useful
o transform the system (4.9) once more, into a parametrization
here y is one of the variables. For that, we introduce n-by-n
atrices Q and W, with entries qij, wij , which complement the
atrices P,V, such that the linear transformation

y

z

)
:=
(

PT VT

QT WT

)(
r

s

)

s orthogonal. Eliminating r and s we see that the vectors x, y, z

atisfy the system

Mijk :=

⎛
⎜⎝

0

〈P,P, I〉 +
〈Q,P, I〉 +
dx

dt
= [P(a − y)] • (Py + Qz) + [V(a − y)] • (Vy + Wz),

dy

dt
= PT{[P(a − y)] • x − (a − y) • (Vy + Wz)}

+VT{[V(a − y)] • x + (a − y) • (Py + Qz)},
dz

dt
= QT{[P(a − y)] • x − (a − y) • (Vy + Wz)}

+WT{[V(a − y)] • x + (a − y) • (Py + Qz)}.

c
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This system can be recast in simpler typographical form by
ntroducing a ternary product on n-by-n matrices,

A,B,C〉ijk :=
n∑

m=1

amibmjcmk,

nd noting the following identities,

[(Ax) • (By)]i =
n∑

j,k=1

〈I,A,B〉ijkxjyk,

[AT{(Bx) • y}]i =
n∑

j,k=1

〈A,B, I〉ijkxjyk.

Then,

d

dt

⎛
⎜⎝
xi

yi

zi

⎞
⎟⎠ =

n∑
j,k=1

(aj − yj)Mijk

⎛
⎜⎝
xk

yk

zk

⎞
⎟⎠ , (4.10)

here the Mijk are 3-by-3 matrices given by

〈I,P,P〉 + 〈I,V,V〉 〈I,P,Q〉 + 〈I,V,W〉
, I〉 〈V, I,P〉 − 〈P, I,V〉 〈V, I,Q〉 − 〈P, I,W〉

V, I〉 〈W, I,P〉 − 〈Q, I,V〉 〈W, I,Q〉 − 〈Q, I,W〉

⎞
⎟⎠
ijk

.

In terms of the new variables, the integrals of motion are

i = x2
i − (Py + Qz)2

i − (Vy + Wz)2
i .

.3. Local stability of the equilibrium manifold

All point on the hyper-plane y = a are equilibria (and are
he only equilibria when the integrals of motion βi are positive).
o analyze the linear stability of these equilibria we consider a
erturbation,

(t) = a + δy(t), z(t) = ẑ + δz(t),

nd linearize system (4.10) about the perturbations. The
inearized system has an n-dimensional neutral manifold
hich coincides with the equilibrium hyper-plane. In the n-
imensional space that is perpendicular to the equilibrium
yper-plane the linear system takes the form

d

dt
δy = −C δy,

here the n-by-n matrix C has entries

ij =
n∑
k=1

(〈P,P, I〉 + 〈V,V, I〉)ijkxk
+
n∑
k=1

(〈V, I,P〉 − 〈P, I,V〉)ijkak

+
n∑
k=1

(〈V, I,Q〉 − 〈P, I,W〉)ijkẑk,
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dt
⎜⎝ δz1

δz2

⎟⎠= −
2
⎜⎝ x1 − x2 + a2 + ẑ2 a2 − ẑ2 0 0

−a1 − ẑ1 x1 − x2 − a1 + ẑ1 0 0

⎟⎠
⎛ ⎞
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here here

k =
√
βk + (Pa + Qẑ)2

k + (Va + Wẑ)2
k.

An equilibrium point is linearly stable if and only if all the
igenvalues of C are positive. The example studied in the next
ection shows that equilibria may be linearly unstable, i.e., the
quilibrium manifold may be partitioned into linearly stable and
inearly unstable domains. The only general statement that can
e made about the linearized dynamics is the following.

roposition 4.3. The trace of the matrix C is positive, i.e.,
he dynamics in the vicinity of the equilibrium hyper-plane are
olume contracting.

roof. An explicit summation gives

r C =
n∑
i=1

[xi + vii(Pa + Qẑ)i − pii(Va + Wẑ)i].

Since the columns of the matrix [PT,VT]
T

are orthonor-
al, it follows that v2

ii + p2
ii ≤ 1 and by the Cauchy–Schwarz

nequality,

|vii(Pa + Qẑ)i − pii(Va + Wẑ)i|

≤
√

(Pa + Qẑ)2
i + (Va + Wẑ)2

i ,

ence

r C ≥
n∑
i=1

[
xi −

√
(Pa + Qẑ)2

i + (Va + Wẑ)2
i

]
≥ 0,

here we have used the fact that

2
i = βi + (Pa + Qẑ)2

i + (Va + Wẑ)2
i

> (Pa + Qẑ)2
i + (Va + Wẑ)2

i . �

. An example

The lowest-dimensional systems for which one gets non-
rivial dynamics are for n = 2. That is, a six-dimensional system
hich can be further reduced to four dimensions by substituting

he invariants of motion. Such a system is determined by the
-by-2 matrices P,V, and “forcing” vector a.

Consider the choice

= 1√
2

(
0 1

0 1

)
, V = 1√

2

(
1 0

−1 0

)
,

hich we complement taking

1
(

0 1
)

1
(

1 0
)

= √
2 0 −1

, W = √
2 1 0

.

Substituting into (4.10), it is a matter of tedious, yet,
traightforward algebra to derive the following quadratic
luid Mech. 144 (2007) 30–41

ystem in R6,

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

2
(a1 − y1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0

1 0 0 1 1 1

1 0 0 −1 1 1

0 1 −1 0 0 0

0 −1 −1 0 0 0

0 −1 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+1

2
(a2 − y2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1

0 0 0 0 −1 1

0 0 0 0 1 −1

0 0 0 0 1 −1

1 1 −1 1 0 0

1 −1 1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5.1)

The two invariants of motion are

β1 = x2
1 − 1

2
(y2 + z2)2 − 1

2
(y1 + z1)2,

β2 = x2
2 − 1

2
(y2 − z2)2 − 1

2
(y1 − z1)2.

We start by checking under what conditions is the equi-
ibrium plane y = a linearly stable. Throughout this example,
e take β1 = β2 = 1, so that the vector x is determined by

he vectors y, z, and we consider the above system as four-
imensional. Consider then a perturbation about an equilibrium
oint,

(t) = a + δy(t), z(t) = ẑ + δz(t).

Substituting and linearizing about the fixed point y = a, z =
ˆ, we obtain the linear system

d

⎛
⎜ δy1

δy2

⎞
⎟ 1

⎛
⎜ x1 + x2 + a2 + ẑ2 ẑ2 − a2 0 0

−a1 − ẑ1 x1 + x2 + a1 − ẑ1 0 0

⎞
⎟

×
⎜⎜⎝
δy1

δy2

δz1

δz2

⎟⎟⎠ ,



R. Fattal et al. / J. Non-Newtonian Fluid Mech. 144 (2007) 30–41 39

ne fo

w

o
b
t

−

w
d

a
b
p

t
I
w

v
s
a
f
T
o
i
e
o
m

t
r
e
f
e
o
o
T
p
a
e
b
m
r
c
dence on initial data is only continuous for finite time. Therefore
one cannot apply topological considerations, such as homotopy
theory.
Fig. 3. Region of unstable equilibria on the ẑ-pla

ith the vector x given by

x1 =
√
β1 + 1

2
(a2 + ẑ2)2 + 1

2
(a1 + ẑ1)2,

x2 =
√
β2 + 1

2
(a2 − ẑ2)2 + 1

2
(a1 − ẑ1)2.

As expected, this system has two neutral directions that lie
n the equilibrium plane, so that linear stability is determined
y considering the restriction of this system to the y-plane. The
race of this 2-by-2 matrix equals[
x1 + 1

2
(a1 − ẑ1) + x2 + 1

2
(a2 + ẑ2)

]
,

hich is always negative. The fixed point is stable then if the
eterminant of this matrix is positive, i.e., when

(x1 + x2 + a2 + ẑ2)(x1 + x2 + a1 − ẑ1)

+(a1 + ẑ1)(ẑ2 − a2) > 0.

It turns out that the equilibrium plane can have sets that
re unstable. For fixed values of the vectors a and β, the
oundary of the unstable equilibria are curves on the ẑ

lane.
In Fig. 3 we plot in shaded color sets of unstable equilibria on

he ẑ plane for a = (−10, 10) (left) and a = (−3,−7) (right).
n the first case the domain of unstable equilibria is unbounded,
hereas in the second case it is compact.
The presence of unstable equilibria may shed doubt on the

alidity of Conjecture 3.1. However, numerical solutions that
tart in the vicinity of unstable fixed points indicate that after
transient of exponential repulsion from the equilibrium mani-

old, all trajectories converge back toward a (stable) equilibrium.
his situation is depicted in Fig. 4 where we show the evolution
f y(t) − a (i.e., the displacement from the equilibrium man-

fold) for a trajectory that starts in the vicinity of an unstable
quilibrium. Note the long transient and the “spiking” behavior
f the Euclidean distance of the solution from the equilibrium
anifold.

F
a

z

r a = (−10, 10) (left) and a = (−3,−7) (right).

Although we cannot provide a proof, our calculations indicate
hat all solutions starting in the vicinity of the unstable equilib-
ia, e.g., for the parameters depicted in Fig. 3(right), reach stable
quilibria on the same plane. A trajectory that connects two dif-
erent fixed points is known as a heteroclinic orbit. In the present
xample, since the unstable manifold at an unstable fixed point is
ne dimensional (by Proposition 4.3), there are two heteroclinic
rbits, going in opposite directions, for each unstable point.
hese orbits define a mapping between points on the equilibrium
lane: every linearly unstable point on that plane is mapped into
pair of points, that are linearly stable. This mapping can be

xtended to the whole equilibrium plane in a natural way: a sta-
le point is mapped into itself. Thus, we have defined a bi-valued
apping, which we call the heteroclinic map, from the equilib-

ium plane into itself. Note that this mapping is in general not
ontinuous at the boundary of the unstable set; indeed, the depen-
ig. 4. Evolution of the vector y(t) − a (top) and z(t) (bottom) for the parameters
= (−3,−7) and initial data in the vicinity of the equilibrium point y = a and
= (−5.5,−5.5).
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Fig. 5. The heteroclinic map for the parameters used in Fig. 3(left). Every point
in the green region – the domain of unstable points – is mapped into two points
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n the stable set. The red and blue areas are the images of the green area under
he heteroclinic map. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of the article.)

In Fig. 5 we display the heteroclinic map for a set of points
long the boundaries of the sets of unstable equilibria shown
n Fig. 3(right). That is, for every such point we display the
wo points at the ends of the orbits that emanate from it. Every
oint on the unstable side of the boundary has one heteroclinic
rbit whose end is on the stable side of the boundary (i.e., this
ranch of the heteroclinic map is continuous), and one hetero-
linic orbit that lands on the equilibrium plane at a distant point;
his branch of the heteroclinic map is discontinuous as the initial
oint crosses the boundary of the unstable set. The green area
orresponds to the unstable set, whereas the blue and red areas
re its image under the bi-valued heteroclinic map. Each of the
wo images has a joint boundary with the unstable set, indicating
he continuity of the heteroclinic map along part of the bound-
ry of the unstable set. Note, in addition, the strong cusp in the
ight branch of the heteroclinic mapping. We checked for the
ossibility that this cusp is indicative of a critical trajectory that
iverges asymptotically, but careful computations indicate that
his cusp is finite.

. Conclusions

We have presented here a partial analysis complemented with
umerical results of model systems inspired by the Oldroyd-B
odel in the creeping flow regime. Our primary motivation in

he development of these models was to capture the nonlinear
oupling between the stretching of the conformation tensor and
tress-induced velocity field. Our working hypothesis was that
well-posed system must exhibit a negative feedback, where

he stress field generates a flow field that represses its originat-

ng source. In Section 2 we analyzed a system derived from
he Oldroyd-B model, in which the stress-advection and stress-
elaxation have been discarded. Although we have not been able
o prove it, numerical experiments indicate that such a system

fi
H
fl
t
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lways tends to a static equilibrium, even if this involves the
ormation of highly singular stress fields. It should be pointed
ut, however, that our analysis is only valid for models that
ave non-zero solvent viscosity, and does not apply, for example,
o the upper-convected Maxwell model. Moreover, we restrict
urselves to shearing and forcing boundary conditions, but
ur analysis does not apply to flow geometries with imposed
nflows.

In the succeeding sections we presented and analyzed a finite-
imensional toy model that has the same algebraic structure as
he infinite-dimensional system of Section 2. Here again, simu-
ations indicate that such systems always tends asymptotically in
ime to an equilibrium, but all our attempts to prove this conjec-
ure have failed. An examination of a particular four-dimensional
ystem reveals a surprisingly rich behavior, where the equi-
ibrium manifold may exhibit regions of stable and unstable
quilibria connected by heteroclinic trajectories. Thus, a system
ay start arbitrarily close to an equilibrium, be repelled away

rom the equilibrium manifold (a “spiking” behavior), before
nding back on the manifold at a point which may be distant
rom the starting point.

While we have proved that solutions to the infinite-
imensional system (1.8) (a forteriori, the finite-dimensional
ystem (3.2)) cannot wander far away from the equilibrium man-
fold for too long, we were not able to prove that these solutions
emain bounded. Moreover, it is conceivable that the system
ends asymptotically to the equilibrium manifold without con-
erging to a specific point on that manifold. The equilibrium
anifold consists of stress fields satisfying div c = div a. Thus,

onvergence to the equilibrium manifold may well be accom-
anied with the formation of singular structures that have zero
ivergence. Such a scenario comes in mind in light of the recently
iscovered role of singular divergence-free stress fields in the
inear stability of Couette flow [9].

One of the goals stated in Section 1 was to draw practical
mplications for numerical methods. The obvious implication is
he necessity of preserving the positive-definiteness of the con-
ormation tensor. Indeed, the loss of positive-definiteness, even
t a single point, can have deleterious consequences, notably
lowup. This conclusion is consistent with a longstanding expe-
ience, where the loss of positivity was observed as a precursor of
lowup. Moreover, methods that impose positive-definiteness,
uch as the stochastic method of Brownian configuration fields,
re known to exhibit improved stability.

One aspect of the dynamics which was not addressed in this
aper is the sensitivity of the stable behavior on the precise struc-
ure of the model. As a test, we perturbed the case study (5.1) by
dding small (of the order of 10−3) perturbations to the matrix
lements. Such perturbations completely destroyed the nature of
he equations, causing in many cases solutions to diverge in time.
his means that it is crucial for numerical discretizations to cor-

ectly retain the algebraic properties of the differential operators.
n particular, the discrete projection operator that converts stress

elds into velocity gradients, must be symmetric and positive.
igh-order methods, for example, methods that use nonlinear
ux limiters, often reduce truncation errors on the expense of

he algebraic structure.
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In this respect, the numerical solutions shown in Section 2 are
isappointing. While these results are not intended to capture any
hysical reality, they are instructive. By carefully choosing a dis-
retization that preserves the essential algebraic properties of the
ifferential operators we produced solutions that, for any given
esh, tend to a stable equilibrium, even when singular bound-

ry conditions are imposed. Yet, this stability does not prevent
he stress profile to become increasingly singular as the mesh
s refined. This indicates that the stabilizing mechanism does
ot prevent the formation of singularities. This should not be of
surprise, given that the projection operator P has an infinite-
imensional kernel consisting of all divergence-free stress fields.
he set of divergence-free stress fields includes singular func-

ions, and even distribution-valued (generalized) functions. This
bservation raises once again the question whether models of
ldroyd-type do not miss a crucial ingredient of spatial cou-
ling, for example, stress diffusion (a discussion of this issue
an be found in [10,9]).

In a sense, this paper raises more questions than it solves.
ts interest, we believe, is in the revelation of new aspects
f the stress–flow coupling in viscoelastic models. Moreover,
e believe that a proof of our main conjecture may pave the
ay toward an existence theory for the Oldroyd-B model in

he creeping flow regime. The essential stumblingblock in the
evelopment of an existence theory is to control the growth of
he stress field. Since the equations of motion are quadratic
n the stress, there is a danger of finite-time blowup. Clearly,
o exclude such a scenario, a new control mechanism has
o be revealed. We believe that, if it exists, such a mecha-
ism has to be inherent in the structure of the stress–velocity
oupling.

As a final comment, we note that we have nowhere used

he fact that the matrices were 2-by-2. Preliminary results indi-
ate that our global stability conjecture remains valid for vectors
hose entries are arbitrary d-by-d matrices, as long as the alge-
raic structure remains the same.

[
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