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The metric description of elasticity in residually stressed
soft materials

Efi Efrati,*a Eran Sharonb and Raz Kupfermanc

Living tissue, polymeric sheets and environmentally responsive gel are often described as elastic media.

However, when plants grow, plastic sheets deform irreversibly and hydrogels swell differentially the

different material elements within an object change their rest lengths often resulting in objects that

possess no stress-free configuration making the standard elastic description inappropriate. In this paper

we review an elastic framework based on Riemannian geometry devised to describe such objects

lacking a stress-free configuration. In this framework the growth or irreversible deformation are

associated with the change of a reference Riemannian metric that prescribes local distances within the

body, and the elastic problem is one of optimal embedding. We discuss and resolve points of

controversy regarding the Riemannian metric formulation. We give examples for dimensionally reduced

theories, such as plates and shells theories, which arise naturally and discuss the relation between

geometric frustration and residual stress.
1 Introduction

In the past few years there has been a revived interest in the
continuum description of growth and plasticity in amorphous
materials, and the generation of residual stress.1–4 This interest
may be attributed, in part, to the availability of new responsive
materials in which spatially inhomogeneous swelling and
shrinking can be controlled by simple external triggers, for
example by a uniform heating.5 In addition, there has been an
increasing interest in the mechanics of biological systems and
the precise control of biomimetic devices.6,7 These interests in
the quantitative mechanical description of so and responsive
matter have been accompanied by an effort to formulate the
existing elastic theories within a purely geometric framework,
which facilitates a more rigorous approach to dimensionally
reduced theories.8

The Riemannian-metric description of residually stressed
so materials is aimed to describe a wide class of amorphous
materials, in which local irreversible deformations determine
local rest lengths rather than prescribe a conguration. These
non-elastic deformations (which in fact can be reversible,
however depend on external conditions, such as temperature of
humidity, and are therefore irreversible from an elastic point of
view) include growth in plants (both by cell proliferation9

and cell expansion10), hygroscopic motion,7,11 environmentally
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responsive gels,5,12 and plastic deformations in amorphous
solids.13 There are fundamental differences between these
different types of irreversible deformations. Thermodynamic
inequalities (e.g. entropy production) that govern plastic
deformations do not hold for general irreversible processes. In
growth processes, even mass conservation may not hold (due to
nutrient ow, which is not considered within the elastic
framework). Yet, despite these differences, the elastic theories
that treat the bodies' response aer the irreversible deformation
took place follow similar lines. Some of the ideas presented
below in the context of growth and other irreversible deforma-
tions can be traced back to ideas and notions presented over
y years ago in the context of plasticity. These include the
concepts of inclusions and eigenstrains,14 continuous distri-
bution of dislocations,15–18 and material inhomogeneities.19 For
brevity, from this point onward we will refer to the non-elastic
portion of the deformations as irreversible deformations, a term
which in our context should be interpreted as any of the
processes described above: growth, plasticity, and external
stimuli response (temperature, humidity, etc.).

In standard elastic theories the main descriptor of the
system is the strain tensor, which quanties the deviation of the
conguration that the body assumes from its stress-free rest
conguration. The constitutive relations assign to every strain a
stress tensor, from which one obtains the equations of elastic
equilibrium; in hyper-elasticity these constitutive relations can
be derived from an elastic energy density functional. As we
demonstrate in Section (5.1) below, local irreversible deforma-
tions, which prescribe changes in the local rest lengths, oen
lead to bodies that possess no stress-free conguration, making
such a rest conguration-based formulation inappropriate.
Soft Matter, 2013, 9, 8187–8197 | 8187
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† Continuous and non-singular.
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There are numerous different elastic theories accounting for
irreversible deformations and aimed at describing bodies
lacking a stress-free conguration. These theories adopt
different approaches yet share some common traits. In partic-
ular all theories distinguish between deformations that are due
to irreversible processes and deformations that are due to the
elastic response. The decomposition of the total deformation
into a reversible and an irreversible component is, however,
done differently in different theories.

One of the most successful and widely adopted elastic
frameworks for describing irreversibly deformed so media is
due to Rodriguez, Hoger and McCulloch;20 it adopts the
Bilby–Kroner–Lee multiplicative decomposition of deforma-
tion gradients.21–23 The deformation of an initially stress-free
object into the (possibly) residually stressed nal congura-
tion is considered as a composition of two deformations. The
rst deformation is irreversible and maps the stress-free state
into a “virtual conguration”. The second deformation is due
to the elastic response and maps the “virtual conguration”
of the body to its deformed nal conguration. The gradient
of the full mapping becomes a product of two “gradient like”
terms. We dene this approach mathematically and review
further details of this decomposition in Appendix B. The
deformed conguration of the body, the “virtual con-
guration” of the body and the mapping between these
two congurations form the basic components of the
elastic description in this approach. The constitutive laws in
this framework, even in the small strain limit, are non-linear
in the components of the elastic deformation gradient-like
term.

In contrast, in the metric description no explicit use of the
conguration of the body is made. The theory is formulated in
terms of metric tensors (prescribing local distances) and
employs intrinsic Riemannian geometric quantities. While
capable of describing large strains, it is particularly attractive
when applied to cases of small strain and arbitrary rotations,
in which the constitutive laws become linear in the unknown
metric. The non-linear nature of the problem remains in the
form of the non-linear compatibility conditions imposed on
the metric of the deformed body. The decomposition of an
observed deformation into an irreversible contribution and an
elastic contribution resembles an additive decomposition of
strains. While some aspects of such additive decomposition
have been shown to lead to inconsistencies,24 we show (in
Appendix B) that this is not the case in the metric description.
Moreover, as the metric description is fully covariant, it does
not make use of the initial stress-free conguration of the
body, and only refers to the local attempted rest-lengths which
incorporate the results of the growth process. While in almost
all cases the results obtained from the metric approach agree
with results obtained via the multiplicative decomposition, the
metric approach has two main advantages: (i) it is purely
geometric, allowing for the immediate adaptation of many
embedding results from Riemannian geometry, and (ii) it
forms a non-linear extension of the standard small displace-
ment theory, thus makes most of the quantities involved easy
to interpret.
8188 | Soft Matter, 2013, 9, 8187–8197
We next review qualitatively the central notions that neces-
sitate the departure from the standard elastic description:
incompatibility and residual stress.
2 Incompatibility and residual stress

In themetric formulation, an irreversible deformation results in
new local “rest distances”. The prescription of local distances in
a body, endows it with a geometric structure captured by a
reference metric, �g. This geometric structure may however be
incompatible with the known laws of Euclidean space (for
example, the sum of internal angles in a triangle may not equal
180 degrees). As the body assumes its current conguration in
Euclidean space, its adapted geometric state needs to obey the
laws of Euclidean space. In particular, the metric, g, associated
with its adapted conguration reects the geometric structure
and laws of Euclidean space. Hence, the rest distances dictated
by the reference metric �g cannot be everywhere satised (by the
metric g), giving rise to geometric incompatibility with Euclidean
space, or for short incompatibility.

The notion of incompatibility is central in the geometric
formulation of irreversible deformations. The mechanical
manifestation of incompatibility is the presence of residual
stress, which is the stress present within a body in the absence
of external forces or constraints.

Whenever the metric �g induced by the growth is incompat-
ible, there exists no Euclidean† metric g that coincides with �g
almost everywhere, (see for example ref. 25 p. 26). Thus, if a
growth prole induces an incompatible metric, the prescribed
rest lengths cannot be obeyed everywhere simultaneously,
giving rise to residual strain. This residual strain in turn gives
rise to residual stress through the specic constitutive relations
of the material. Even though incompatibility and residual stress
are intimately connected, they are not synonymous as they are
not related by any local law. Incompatibility is a local property
which is estimated through the metric (encoding distances) and
its rst and second derivatives, whereas the residual stress also
depends on global properties, such as the shape, topology and
size of the body.

In the appendix we give an explicit example of the above
distinctions in a two dimensional setup. We demonstrate that
uniform (constant) incompatibility gives rise to residual stress
whose magnitude increases as we consider larger domains.
3 The signature of residual stress

The notion of geometric incompatibility was introduced in
the context of elasticity in the description of plastic defor-
mations and defects in solids. Kröner26 provides the following
explanation:

“If the [residually] stressed body is cut into small elements, in
which the [residual] stress is then relaxed, we obtain an assembly
of elements which do not t together. Thus, an incompatible
deformation implies that a non-tting collection of elastic
elements is united to a compact body. If the non-tting occurs on
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Revealing the residual stress: the Bauhinia pod, like many other legumes,
is designed to disperse its enclosed seeds. When it is green, the pod is soft and
flat, but when the time comes to spread its seeds, the pod dries and shrinks non-
isotropically and differentially across its thin dimension. This differential shrinkage
is manifested as residual stress which, when sufficiently large, snaps the pod open
and disperses the seeds. The opening of the seed pod into two separate valves
relieves a large portion of the residual stress, yet each of the separate valves
remains residually stressed. This is demonstrated by the successive introduction of
cuts to the open valves. (a) A closed Bauhinia pod. (b) An open Bauhinia pod after
seeds have been dispersed. (c) A wide segment of a Bauhinia pod. (d) A narrow
segment of the same Bauhinia pod whose width is a quarter of the one in (c) and
has the same length; its configuration is very different than that of the wider
segment. (e) A part of a Bauhinia pod with five longitudinal sections. It is easy to
see that the six sliced pieces on the left part of the pod cannot fit together
without the introduction of substantial strain.
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the innitesimal scale, thenwe canobtain an internal stress state
which varies continuously through the body.”

This statement can also be interpreted the other way around:
the residual stress present in the equilibrium conguration of a
body can be revealed by dissecting the body into small elements.
Once dissected, the pieces of the body relax the residual stress
throughdeformations thatwere unaccessiblewhen the bodywas
a whole. In general, the relaxed fragments no longer t together;
if they do, then the residual stress can be neglected in the elastic
description of the body. See Fig. 1 for an example.
4 The metric tensor and the Riemannian
curvature

In order to quantify incompatibility we resort to tools from
differential geometry, namely the metric tensor and the Rie-
mannian curvature tensor. We endow a body with a set of
material curvilinear coordinates x ˛ U 3 R

3, i.e. we associate
every material point in the body with a triplet (x1, x2, x3) which
varies continuously throughout the body and deforms with the
body (keeping the identity of the material point with which it is
identied). We associate the conguration the body assumes in
space with a mapping r: U / D. This mapping induces on the
body a metric g whose components are

gij ¼ vir$vjr, (1)

where vi h v/vxi and Latin indices take the values {1, 2, 3}.
The generalization of the Pythagorean equality gives local
distances by

ds2 ¼ gijdx
idxj, (2)

where we have used the Einstein summation convention
whereby any product of a repeating upper and lower index is
This journal is ª The Royal Society of Chemistry 2013
summed over its range. The components of the mapping
gradient are given by

Fij ¼ vjri. (3)

The metric can be represented using the mapping gradient
as g ¼ FTF. Note that not every 3-by-3 matrix, F, can represent a
mapping gradient. A necessary and sufficient condition is that
its rows have a vanishing curl. For the metric tensor, the
condition that g is of the form (1) is non-linear and slightly more
complicated: the necessary and sufficient condition for a
symmetric positive denite 3-by-3 matrix g to be the metric
tensor of a body in Euclidean space is that all (six) independent
components of the Riemannian curvature tensor associated
with it vanish.25 The components of the Riemannian curvature
tensor are given by

Rk
lij ¼ viG

k
jl � vjG

k
il + Gk

ipG
p
jl � Gk

jpG
p
il, (4)

where the components of the Christoffel symbols, G, are
given by

Gi
jk ¼

1

2
gil
�
vjglk þ vkglj � vlgjk

�
:

The vanishing of the independent components of the Rie-
mannian curvature tensor are also called the compatibility
conditions, and a metric that complies with these compatibility
conditions is called a Euclidean (or compatible) metric. For
simply connected domains, every Euclidean metric determines
a conguration, r, which is unique up to rigid motions.
5 Irreversible deformation profiles and
metric prescription

Formulating irreversible deformations in terms of a metric
tensor provides a natural description of the geometry of
processes such as growth, plasticity and temperature response.
Using this formulation we can easily determine which defor-
mation proles will result in a residually stressed body, and
conversely, characterize the intrinsic geometric structure of the
body independently of the underlaying deformation prole
leading to it. In this context we conclude that (i) a generic
irreversible deformation will result in a residually stressed body,
and (ii) different irreversible deformation proles may lead to
the exact same intrinsic geometry. Below we exemplify these
two principles by specic examples.
5.1 Generation of incompatibility in non-uniform isotropic
expansion

Consider a strain-free body, parameterized by Cartesian coor-
dinates, i.e. g ¼ �g ¼ I. Allow every point in the body to expand
isotropically but non-homogeneously by a factor l(x), thus
giving rise to a reference metric �g ¼ l2I. Such expansion may
result for example from thermal expansion, or from growth
induced by turgor pressure in plants' cells. We now ask a simple
question: which isotropic growth proles result in a compatible
Soft Matter, 2013, 9, 8187–8197 | 8189
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reference metric, i.e. are realizable by an Euclidean metric, g,
and therefore do not induce residual stress?

To answer this question we write down the components of
the Riemannian curvature tensor (4) of the metric �g in terms of
the expansion factor l and its derivatives. Taking independent
linear combination of the covariant components of the Rie-
mannian curvature tensor yields the following compatibility
conditions:

2(v1l)
2 � lv1v1l � Dl ¼ 0, 2v1lv2l � lv1v2l ¼ 0,

2(v2l)
2 � lv2v2l � Dl ¼ 0, 2v1lv3l � lv1v3l ¼ 0,

2(v3l)
2 � lv3v3l � Dl ¼ 0, 2v2lv3l � lv2v3l ¼ 0,

where D ¼ V$V ¼ v2
1 + v2

2 + v3
2 is the standard Laplacian oper-

ator. It takes straightforward algebra and integration to nd that
the only non-constant solution of the above equations is

l ¼ C2

jx� x0j2
;

for some constants C and x0. Every other isotropic expansion
prole of an initially Euclidean 3D body will give rise to a non-
Euclidean metric and inevitably result in a residually stressed
body. This result, which also appears in ref. 27 and 28, may be
surprising when considering growth proles. However it is a
consequence of a well-known geometric result whereby all
conformal mappings in R

3 are inversions of a sphere.29 It
implies that any growth that does not result in residual stress
requires delicate global control, or some mechanical feedback.
‡ This assumption fails if the ambient space is not isotropic or not homogeneous
or in cases where the embedding is not orientation preserving.
5.2 Different growth proles leading to the same intrinsic
geometry

We now give an example of three different growth proles of an
initially Euclidean geometry that lead to the same nal refer-
ence metric. We endow the body, prior to its growth, with
cylindrical coordinates, (r, q, z). As in eqn (2) we express the
corresponding metric as the square of an innitesimal length
element:

ds0
2 ¼ dr2 + r2dq2 + dz2, (5)

dened in the cylindrical domain 0# r# 1=
ffiffiffi
2

p
.

� Planar isotropic expansion:
Consider an isotropic expansion in the (r, q) plane by a factor

l(r) ¼ 2c/(1 + c2r2), where c ¼ 2� ffiffiffi
2

p
. As a result, the innites-

imal length element becomes dsI
2 ¼ l2dr2 + l2r2dq2 + dz2.

Setting r(r)¼ 2arctan(cr) the new length element takes the form,

dsI
2 ¼ dr2 + sin2(r)dq2 + dz2, 0 # r # p/4.

� Radial expansion:
Consider now an expansion only in the radial direction by a

factor of hðrÞ ¼ ð1� r2Þ�1
2. As a result, the innitesimal length

element becomes dsII
2 ¼ h2dr2 + r2dq2 + dz2. Setting r(r) ¼

arcsin(r), the new length element takes the form,

dsII
2 ¼ dr2 + sin2(r)dq2 + dz2, 0 # r # p/4,
8190 | Soft Matter, 2013, 9, 8187–8197
� Azimuthal shrinkage:
Finally, consider a uniform planar isotropic expansion by a

factor a ¼ p=ð2 ffiffiffi
2

p Þ followed by an azimuthal shrinkage by a
factor of j(r) ¼ sin(ar)/(ar). The resulting length element is
dsIII

2 ¼ a2dr2 + a2j2r2dq2 + dz2. An explicit substitution of j and
setting r ¼ ar gives

dsIII
2 ¼ dr2 + sin(r)2dq2 + dz2, 0 # r # p/4,

Note that �gI ¼ �gII ¼ �gIII, thus all three growth proles lead to
the exact same intrinsic geometry. While the equivalence of the
growth proles is apparent in the (r, q) coordinates, this is not
easily identied when the metrics are given with respect to the
original coordinates (r, q).
6 Hyper-elasticity in the metric formulation

When the reference metric of an unconstrained body is
Euclidean, it determines aunique (up to rigidmotions) stress-free
conguration which, in the absence of external forces, the body
will trivially adopt. However, whenever the reference metric is
non-Euclidean, the equilibrium conguration of the body will
depend on the form of the elastic energy. Specically, two bodies
possessing the exact same intrinsic geometry but having two
different constitutive relationswill result in different equilibrium
congurations.Wenow turn to study the elastic energywithin the
framework of a geometric description of hyper-elasticity.

The basic principle of hyper-elasticity states that the elastic
work done by a body is derived from a local potential, i.e., (i) it
depends on the conguration of the body but is independent of
the path (in conguration space) leading to the specic
conguration and (ii) it is a sum over local energy contributions.
At this point one may derive the form of the elastic energy from
a Lagrangian–Riemannian approach, or within an Eulerian
setting starting from the embedded body.

While the purely geometric Lagrangian approach is more
natural to the problem, the Eulerian approach is closer in spirit
to the classical derivations of the theory for hyper-elastic solids,
and is more physically intuitive. We next present the latter.

The assumption of hyper-elasticity states that we may write
the elastic energy as a volume integral:

E ¼
ð
U

~W dV ;

where ~W is the elastic energy density. For an unconstrained
body, the local energy contribution is independent of the
absolute position of the material element in R

3, and depends
only on the deformation gradient, ~W ¼ ~W ðVrðxÞ; xÞ. Moreover,
the energy density in an unconstrained body is also invariant
under rigid motions, therefore, the metric tensor, g, which
determines the conguration up to rigid motions, may be used
as the unknown describing the conguration in the elastic
energy.‡ We therefore write an energy density function with
This journal is ª The Royal Society of Chemistry 2013
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respect to the variable g (which in the elastic context is known as
the right Cauchy–Green deformation tensor25,30),

E ¼
ð
U

~W ðg; xÞ dV :

We further assume that at every point x the energy density,
~W , possesses a unique zero which we denote by g ¼ �g(x), i.e.

~W ðg; xÞ ¼ 05g ¼ g ðxÞ:

The tensor �g is the reference metric, which would be
assumed by the body in a state of zero stress (in ref. 31 the term
target metric was used). �g is a local property of the body, which
in the present case is determined by the growth process. We
may now write an energy density per unit of reference volume
W ¼ ~W

ffiffiffiffiffiffiffiffiffiffiffiffiffijgj=jgjp
, where |$| denotes a determinant. If the elastic

properties of an amorphous growing body are homogenous, the
only spatially varying properties in the body are those captured
by the reference metric. We may therefore write

E ¼
ð
U

W ðg; gÞ
ffiffiffiffiffiffi
jgj

p
dx1dx2dx3; (6)

where both the reference metric, �g, and the body's metric g are
assumed continuous and non-singular. If either is allowed to be
singular, then non-orientation preserving realizations of the
metric become possible thus invalidating the above consider-
ations. For a non-singular reference metric �g obtaining an
elastic equilibrium consists of nding a Riemannianly at,
continuous, and non-singular metric, g that minimizes (6).
6.1 The stress distribution at equilibrium

Identifying the second Piola–Kirchhoff stress tensor as25,32

Sij ¼ 2
vW
vgij

; (7)

we obtain the Euler–Lagrange equations

1ffiffiffiffiffiffijgjp vi

� ffiffiffiffiffiffi
jgj

p
Sij
�
þ G

j
ikS

ik ¼ 0: (8)

An alternative form of these equations in which their contra-
variant nature is more apparent is

V�iS
ij + (Gj

kl � �Gj
kl)S

kl ¼ 0,

where V� denotes the covariant derivative with respect to the
metric �g, (for details see ref. 3). Whenever �g is non-Euclidean,
there must be a metric discrepancy between g and �g which, as
discussed above, will manifest as residual stress.

In the absence of external forces the eld of residual stress
must be self balancing. This property poses restrictions on the
possible states of residual stress within a body.33 The restric-
tions for the eld of residual stress may be obtained by
considering a scalar eld c with a non vanishing gradient vi ¼
Vic, which satises

Vivj ¼ ViVjc ¼ 0, (9)
This journal is ª The Royal Society of Chemistry 2013
where the covariant derivative above is taken with respect to the
metric g. For all such test functions c the quadratic form Sijvivj
must average to zero when integrated over the entire body, i.e.,ð

U

vivjS
ij
ffiffiffiffiffiffi
jgj

p
dx1dx2dx3 ¼ 0: (10)

The proof follows immediately from integration by parts and
explicit substitution of the divergence equation for the stress
(8). In particular, as the integrand is a quadratic form in the
gradient, vi, every non trivial residual stress eld must contain
both tension and compression, as discussed in ref. 34. This
result can be further understood if we consider the Eulerian
coordinates, (x, y, z), which form a Cartesian set in the deformed
conguration. For such a choice of coordinates the metric is
trivial, i.e. g ¼ I, and all test function gradients vi which comply
with (9) are constant, and can therefore be taken outside the
integral. As the components of the constant gradients vi can be
chosen arbitrarily, the above result (10) implies that each of the
Cartesian components of the second Piola–Kirchhoff stress
tensor must average to zero.

6.2 Linear (Hookean) constitutive relations

The Green-St. Venant strain tensor can be expressed using the
metric tensor25 by

3 ¼ 1

2
ðg � gÞ:

The assumptions in the previous subsection imply that

W ¼ 0 5 3 ¼ 0.

Thus for small strain

W ¼ Aijkl3ij3kl + O (33).

For an isotropic and homogenous solid the rank-four elas-
ticity tensor is fully determined by the reference metric �g and
two additional constants, which we identify as the material's
Young's modulus, Y, and Poisson ratio, n:

Aijkl ¼ Y

1þ n

�
1

2
ðgik gjl þ gil gjkÞ þ n

1� 2n
gij gkl

�
; (11)

where �gij are the components of the reciprocal reference metric,
i.e. �gil�g lk ¼ dik. If we dene the raising and lowering of indices
with respect to the reference metric, the elasticity tensor (11)
gives rise to a stress–strain relation of the form

Sij ¼ Aijkl3kl ¼ Y

1þ n

h
3ij þ n

1� 2n
gij3kk

i
; (12)

and an energy density

W ¼ 1

2
Sij3ij ¼ Y

1þ n

h
3ij 3

j
i þ

n

1� 2n
3kk 3

i
i

i
: (13)

Comments:
(1) In cases where �g is Euclidean, eqn (12) coincides with that

of standard non-linear Hookean elasticity.25
Soft Matter, 2013, 9, 8187–8197 | 8191
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(2) Although the metric description may resemble the addi-
tive decomposition of elastic–plastic strains as

g � I ¼ (g � �g) + (�g � I ),

there are vast differences between the two. In fact, in some
aspects, the metric description is closer in spirit to the multi-
plicative decomposition of deformation gradients as it does not
make use of a plastic strain. In Appendix B we give a thorough
account of the points of differences and similarities between
these two elastic frameworks.

(3) The Hookean description (13) is expected to be valid for
all small elastic strains, 3, regardless of how much irreversible
deformation (change in the referencemetric, �g) has occurred. In
fact, in the metric description there is no cumulative plastic
strain, and the system has no memory of the irreversible
deformations it underwent; only the nal rest distances are
retained. However, plastic history dependent effects such as
stiffness variations due to plastic ow may be easily incorpo-
rated through equations of the form

_Y ¼ f
�
Y ; g; _g;S

�
;

which relates the material's Young's modulus, Y, to the plastic
ow rate _g, rather than the total plastic ow. In general, the time
scales associated with changes in the reference metric and with
variations in the Young's modulus are much longer than any
typical elastic time scale. We therefore assume that the metric g
at every instant solves the elastic problem as given by the
Young's modulus and reference metric at that time.
7 Application to thin growing elastic sheets

In general, observing the effect of residual stress in a three-
dimensional body without compromising its integrity is diffi-
cult. In thin bodies, however, bending deformations have a low
energetic cost, hence large deformations may occur even for
small residual stress elds. One of the main motivations that
has driven the formulation and study of the metric formulation
is its application to thin sheets.3,25

Natural growth processes that result in slender structures
oen allow an elastic description as thin elastic sheets. Plant
leaves,35 ower's petals,10 algae blades36 and seed pods valves7

are a few examples of such structures. While tissue growth may
be sensitive to mechanical stress, the time scale associated with
this response is much longer than the elastic relaxation time of
these structures, thus the elastic problem posed by a given
growth prole can be considered decoupled from the growth
process. As growth is a local process that occurs simultaneously
at distant points within the tissue, it is likely to generate
geometric incompatibility, which will manifest as residual
stress. The geometric incompatibility enables very simple
growth proles to generate very complex three dimensional
shapes. In particular such systems may present patterns over
scales much smaller than the spatial length scale associated
with the growth process35 andmay also exhibit stress focusing.37

Determining the expected shape and mechanical state
produced by a given incompatible growth prole of a thin body
8192 | Soft Matter, 2013, 9, 8187–8197
provides a better understanding of the growth process, and
also allows for new design methods for the production of thin
structures.

7.1 Geometry of surfaces and incompatibility

When considering a thin elastic body, it is natural to construct
dimensionally reduced theories by identifying the body with its
mid-surface and describing its elastic behavior in terms of
properties of its mid-surface. Mathematically, a surface
embedded in Euclidean space is a mapping r: S / R

3, where
S 3 R

2. Endowing the surface with material two dimensional
coordinates xa (Greek indices assume the values {1, 2}), induces
a rst and second fundamental forms on the surface through

aab ¼ var$vbr, bab ¼ vavbr$n̂,

where n̂ is the normal to the surface. The rst fundamental form
is simply the metric tensor of the surface. The second funda-
mental form measures the normal curvature of the surface. The
two fundamental forms of a surface are not independent and
must comply with three algebraic differential equations called
the Gauss–Peterson–Mainardi–Codazzi (GPMC) equations:38

|b| ¼ g1aR
a
212 h |a|K,

v1b22 + Ga
22ba1 ¼ v2b12 + Ga

12ba2,

v2b11 + Ga
11ba2 ¼ v1b21 + Ga

21ba1, (14)

where K is the Gaussian curvature. The GPMC equations are
necessary and sufficient conditions for a symmetric positive
denite matrix a, and a symmetric matrix b, to be the rst and
second fundamental forms of an immersed surface. The GPMC
equations are related to the vanishing of the Riemannian
curvature tensor in three dimensions, and are also called
compatibility conditions (see ref. 25 for further discussion on
this subject). Compatible rst and second fundamental forms
dene, up to rigid motions, a unique surface.

7.2 Non Euclidean plates and shells

The covariant nature of the metric formulation provides a
description that is invariant under different choices for the
coordinates used to parameterize the body. We may therefore
choose a particular convenient set of coordinates for the
parametrization of slender bodies. Following3,25,39 we choose a
semi-geodesic set of coordinates with respect to the mid-
surface. In such a parametrization the x3 parametric curves
(characterized by constant values for x1 and x2) form geodesic
curves which intersect the mid-surface (x2 ¼ 0) perpendicularly
(see also ref. 40 p. 136). Moreover, x3 may be chosen as an arc-
length parameter for these curves resulting in the following
form for the reference metric:

g ¼
0
@ g11 g12 0

g21 g22 0

0 0 1

1
A:

Here x3 ˛ [�t/2, t/2], where t is the local thickness, and the x3 ¼
0 plane corresponds to the mid-surface. We dene the reduced
two dimensional reference fundamental forms
This journal is ª The Royal Society of Chemistry 2013
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aab ¼ gab
		
x3¼ 0

; bab ¼ � 1

2
v3 aab

				
x3¼0

:

Using the reference fundamental forms we may express the
three dimensional elastic energy in terms of a two dimensional
energy density

E ¼
ð ð ð

W ðg; gÞ
ffiffiffiffiffiffi
jgj

p
dx1dx2dx3

z

ð ​ ð ​
W 2Dða; a; b; bÞ

ffiffiffiffiffi
jaj

p
dx1dx2:

Carrying out a formal expansion of the elastic energy density
in powers of the thickness, we obtain a reduced energy density,

W 2D(x1, x2) ¼ W S(x
1, x2) + W B(x

1, x2), (15)

where

W S

�
x1; x2

�¼ t

8
A abgdðaab � aabÞðagd � agdÞ

W B

�
x1; x2

�¼ t3

24
A abgdðbab � babÞðbgd � bgdÞ;

and the reduced two dimensional elastic tensor is

A abgd ¼ Y

1þ n

�
1

2
ðgag gbd þ gad gbgÞ þ n

1� n
gab ggd

�
:

Comments:
(1) The above reduced energy density is valid for slow spa-

tially varying metric and thickness, and for small thickness. The
correction terms to (15) are O(t4), and O(t3|a � ā|).

(2) For compatible reference fundamental forms, ā and �b, the
above equations reduce to the Koiter shell energy.41

(3) When �b ¼ 0, there are no structural variations across the
thin dimensions. If the two dimensional metric, ā, is associated
with a non-vanishing Gaussian curvature, then ā and �b are
incompatible. Such thin bodies were considered in detail in ref.
3 and 42, and were termed non-Euclidean plates.

(4) The above energy density was obtained through a formal
asymptotic expansion. In particular the assumption that |a � ā|
� 1 can only be justied in an L2 sense rather than locally. The
limit for non-Euclidean plates was proved rigorously by Lewicka
and Pakzad;43 Kupferman and Solomon8 generalized this proof
for all slender metrically incompatible bodies, including non-
Euclidean shells and rods.
7.3 Examples of incompatible thin growing sheets

The shaping of thin living tissue can occur via various mecha-
nisms that induce differential growth35 and differential or
homogenous shrinkage and swelling.7 These processes endow
the thin sheet with reference rst and second fundamental
forms, which in view of Section 5.1, need not be compatible
with each other. The elastic equilibrium of such bodies is
This journal is ª The Royal Society of Chemistry 2013
determined by the minimization of the total elastic energy as
given in eqn (15). In the general case, the equilibrium cong-
uration, where both the reference curvatures and the reference
metric are not trivial, cannot be easily deduced from (15). We
next present two simplied types of incompatible thin sheets.
The rst type, termed non Euclidean plates, exhibits a vanishing
reference curvature but a non-Euclidean 2D metric. The second
type is associated with an Euclidean 2D metric, but possess non
trivial reference curvatures.

7.3.1 Non Euclidean plates. If an initially at stress-free
sheet grows laterally, such that the growth prole does not vary
across its thin dimension, then all sections parallel to the mid-
surface of the sheets share the exact same geometry. In such a
case, as can be easily deduced from symmetry consideration,
the sheet possess zero reference curvature and is therefore
plate-like. However, the two dimensional geometry of the mid-
surface section may be non-Euclidean determining non-zero
reference Gaussian curvature. In such cases, the generation of
curvatures is required in order to relieve plane strain. Such
bodies were termed non-Euclidean plates, and were treated
extensively in ref. 3 and 44–46. Non-Euclidean plates can be
used to model growing thin sheets for which the dominant
shaping mechanism is planar growth. For very thin sheets, the
elastic equilibrium conguration constitutes an isometry of the
reference metric ā. Such an isometry is usually not unique, and
the equilibrium conguration is obtained by the bending
energy minimizing isometry.

7.3.2 Euclidean sheets with non-trivial curvatures.
Endowing a geometrically Euclidean sheet with a single non-
zero constant principal curvature makes it into a simple cylin-
drical shell. If, however, two non-trivial principal curvatures are
prescribed, then there is no Euclidean surface that can simul-
taneously obey them both. Consider a thin growing sheet
composed of two laminae. If one of the laminae shrinks
homogeneously and uni-axially (leaving lengths on one of the
lateral dimensions unchanged), then a single reference prin-
cipal curvature is induced and the sheet will adopt a cylindrical
conguration. If, however, both laminae shrink uni-axially with
different principal axes, then the sheet is endowed with two
non-trivial uni-axial curvatures. Such a scenario occurs natu-
rally in some seed pods dehiscence, as has been demonstrated
for legumes.7,47

If the sheet is very thin, the elastic equilibrium must be an
isometry of the reference metric and will fully obey one of the
reference curvatures, while setting the other to zero.7 Two such
local equilibria exist, corresponding to the two different curva-
tures. If the sheet is not thin, its 2Dmetric may be violated and a
wide variety of solutions exist.
8 Discussion

The metric description of elastic residually stressed solids was
suggested by Kondo as early as 1955.15 In this work, the rst of a
series of memoirs, he writes about tensor calculus and Rie-
mannian geometry.

“.it is strange that the rst practical eld of application was
not the theory of elasticity, especially of residual strains.”
Soft Matter, 2013, 9, 8187–8197 | 8193
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More than half a decade later the concept of residual stress is
still commonly favored over the fundamental geometric concept
of residual strain, and the isotropic invariants of the deforma-
tion gradient are commonly used instead of a Riemannian
geometric description of elasticity.

Kondo blames general relativity for giving “a metaphorical
appearance to Riemannian expression, banishing it for a time
from the attention of engineers”. It is, however, general rela-
tivity that rendered the present covariant formulation accessible
and popular. Another factor which contributed to the lack of
use of the metric formulation is the immediate departure
from Riemannian geometry in the description of plasticity in
crystals.16,17

Two recent independent research themes have contributed
to the revival of the metric description. The rst is the
advancements in dimensionally reduced theories. Due to the
freedom of choice of natural curvilinear coordinates, and
the ability to properly describe large rotations, the description
of dimensionally reduced theories becomes relatively simple
and transparent when done via the Riemannian metric
description. As a result the metric description has been recently
employed in “text book treatments” of compatible elasticity
focusing on thin elastic bodies.25 The second theme is the
success of mechanical modeling of some living tissue as
amorphous elastic media.7 In such living tissues, due to the
generation of residual stress, the Riemannian description is
also very natural.

In this work we have attempted to elucidate the structure of
the metric formulation of elasticity and show how it relates to
other commonly used elastic formulations. We demonstrated
different types of irreversible deformations using a Riemannian
formulation, and showed the natural emergence of geometric
frustration. We have also discussed the relation between the
local property of geometric frustration and the resulting global
property of residual stress.

While to some extent the choice between the metric formu-
lation and the multiplicative formulation is a matter of taste
and habit, we nd the metric description natural to the elastic
description of irreversibly deforming amorphous bodies, in that
it provides an invaluable relation between the concept of
residual stress and geometric frustration. We hope that this
work render this approach more accessible.
A Two dimensional residual stress
calculation in a uniformly frustrated system

In this section we demonstrate the main difference between
residual stress and residual strain. While the latter is a local
property, the former depends also on global properties such as
the domain size and shape.

Let �g be a 2D reference metric corresponding to a uniform
Gaussian curvature, �K . We now seek an elastic energy mini-
mizing conguration in the space of constant Gaussian curva-
ture, K¼ const. We assume the domain of consideration and the
parametrization such that both the reference metric and the
embedding metric g are uniformly close to the Euclidean
metric, |�g � I| # d, and |g � I| # d.
8194 | Soft Matter, 2013, 9, 8187–8197
To leading order in d eqn (8) reduces to the Cartesian
divergence equation.

viS
ij ¼ 0,

which implies the existence of a scalar function F (Airy stress
potential) such that

v1v1F ¼ S22, v2v2F ¼ S11, v1v2F ¼ �S12.

For simplicity we now consider a material with a vanishing
Poisson ratio and set the Young's modulus to unity. In such a
case the bi-laplacian of the scalar function reads

D2F ¼ �K � K ¼ �DK,

where we have made use of the linearized Gaussian curvature
(in leading order in d) where by

K ¼ � 1

2
ðv1v1g22 þ v2v2g11 � 2v1v2g12Þ:

Note the symmetrybetween embedding ahyperbolic surface in
Euclidean space and the embedding of a at surface on a posi-
tively curved space.We now consider a strip of length L andwidth
w such that w � L � Lgeo where Lgeo is the smallest geometric

lengthscale associated with the curvatures;
1ffiffiffiffi
K

p and
1ffiffiffiffi
K

p .

Assuming that away from the boundaries the solution will not
depend on the coordinate along the long direction, x2, we obtain

S11 ¼ S12 ¼ 0; S22 ¼ �DK

6



x2 � w2

12

�
:

Upon integration we obtain for the elastic energy

E f (DK)2w5L.

The above scaling reads Ef w4A for strips of constant width
and varying area, and scales as E f a2A3 for strips of constant
aspect ratio a ¼ w/L. One can also solve the above equations is
cylindrical geometry to recover the constant aspect ratio scaling
E f A3 under the assumption of axial symmetry. These results
obtained for almost at geometries and general incompatibility
extend the results of Schneider and Gompper obtained for the
energy scaling of defect free crystalline domains of positively
curved surfaces.48
B The multiplicative decomposition of
deformation gradients and its relation to the
metric description

In the Bilby–Kroner–Lee multiplicative decomposition of
deformation gradients21–23 the deformation gradient, F, (dened
in eqn (3)) is decomposed into a product of an elastic part Fe

and a plastic part Fp, namely F ¼ FeFp. The plastic “gradient
This journal is ª The Royal Society of Chemistry 2013
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like” term, Fp is associated with the irreversible deformation of
an initial rest conguration into a virtual conguration,
whereas the elastic “gradient like” term, Fe, is associated with
an elastic relaxation from the virtual conguration to the actual
conguration. In cases where the virtual conguration is not
realizable, neither Fe nor Fp are gradients of a map in R

3, which
is why we call them “gradient like”. Note however, that their
product F is always a gradient of a map in R

3. This multiplica-
tive decomposition has also been adopted for the description of
growth in living tissue.1,20

Lee claimed that in general one cannot consistently
decompose additively a given strain into an elastic strain and a
plastic strain.24 In what follows we interpret the metric
description in view of these claims (aimed primarily against a
description put forward by Green and Naghdi49). We show the
equivalence between the multiplicative decomposition of
growth strains and the metric description. We then consider
two of the difficulties and inconsistencies that arise in the
additive decomposition of strains as elaborated in ref. 24 and
show how a proper interpretation of the metric description
alleviates these inconsistencies. We do not claim any novelty of
the arguments presented here, but rather set to show that they
become transparent and sometimes trivial when considered
within the metric description of hyper-elasticity.
Fig. 2 A combined elastic plastic deformation: (a) the rest configuration of a
body. (b) Uniaxial elastic stretching by a factor of two of the rest configuration. (c)
Plastic shearing of the rest configuration. (d) A combined uniaxial elastic
stretching and a plastic shearing of the rest configuration.
B.1 Relating the various measures of deformation

A common description of growth and plasticity follows the
multiplicative decomposition of deformation gradients.1,20

Within this description an initially unstressed conguration,
x ˛ D, is deformed to assume a nal conguration r ˛ M . The
deformation is considered to be composed of an irreversible
process mapping the unstressed conguration to a “virtual
conguration” followed by an elastic relaxation from the
“virtual conguration” to the nal conguration.

The total deformation is associated with the mapping r(x):
D / M . The deformation gradient is given by F ¼ Vxr. The
mathematical formulation of the above decomposition reads

F ¼ FelFpl,

where we have denoted the irreversible (taken in the context of
ref. 23 to be plastic) deformation gradient like term by Fpl, and
the elastic response gradient like term by Fel. Within the
multiplicative decomposition of deformations the elastic energy
of an amorphous body is assumed to be a function of the
isotropic invariants of the elastic part of the deformation
gradient, Fel.

In the treatment by Green and Naghdi three strains are

dened; the total strain 3tot ¼ 1
2

�ðFÞTðFÞ � I
�
, the plastic strain

3pl ¼ 1
2

�ðFplÞTðFplÞ � I
�
, and the elastic strain dened through

their difference which can be identied with the Green
St-Venant strain:

3el ¼ 3tot � 3pl ¼ 1

2

�
ðFÞTðFÞ � �Fpl

�T�
Fpl
��¼ 1

2
ðg � gÞ
This journal is ª The Royal Society of Chemistry 2013
B.2 The path independent denition of the strain

Consider the a solidbodyat rest as inFig. 2(a). For conveniencewe
set the height and width of the body to unity. Now allow the body
to be plastically deformed into the shape (c) by a shear deforma-
tion quantied by d ¼ tan(q). Now stretch the body by a factor of
two along the y direction to arrive at the conguration (d).
Consider now the alternative route by which the body is rst
elastically stretchedby a factor of two along the ydirection to yield
the conguration denoted in (b), and only then introduced with
theplastic shearbringing it into (d). In this secondpath theplastic

shear angle is a ¼ arctan


1
2
tanðqÞ

�
sq, as the same horizontal

displacement occurs at twice the height. Thus, the two paths
mapping the un-deformed conguration (a) into (d), associate
thismapping with two different plastic strains, although the total
strain and the elastic strain are the same in both paths.

Now consider the same two paths in the metric description.
In a pure elastic deformation the reference metric, �g, is
constant. Whereas in a pure plastic deformation the elastic

strain 3 ¼ 1
2
ð g � gÞ remains constant. We choose the

Lagrangian coordinates only once as Cartesian in the congu-
ration (a) and follow these coordinates as the body deforms. In
the conguration (a) we have

ga ¼


1 0

0 1

�
; ga ¼



1 0

0 1

�
; 3a ¼



0 0

0 0

�
:

We may calculate the metric of the conguration at (c)
explicitly. As the deformation is purely plastic 3c ¼ 3a which
determines �gc.

gc ¼



1 tan ðqÞ
tan ðqÞ cos�2ðqÞ

�
;

gc ¼ gc ¼



1 tan ðqÞ
tan ðqÞ cos�2ðqÞ

�
; 3c ¼ 3a ¼



0 0

0 0

�
:

Soft Matter, 2013, 9, 8187–8197 | 8195
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Fig. 3 An elastic unloading following plastic flow: after Lee24 (and with respect to
the same notations) we consider a cycle in stress space comprised of an elastic
loading (O / Y), a combined elastic loading plastic flow (Y / A), and a purely
elastic relaxation (A / B). In all cases the elastic energy (13) is used, and the
deformations are uniaxial. The plastic flow rule (16) is “switched” on at Y and
“switched” off at A. (a) Load vs. displacement plot: as pointed out in ref. 24 for
such a curve, the two purely elastic regimes show a linear load displacement
dependence (or equivalently nominal stress nominal strain relation). However, the
slope in the two case is different (as exemplified by the translated dotted line).
This is inconsistent with the recovery of original elastic stiffness in plastically
deformedmetals under sufficient rest.50 Moreover, in context of soft materials one
may wish to decouple the material stiffness from its local rest length state in the
elastic description. (b) Covariant stress component vs. total strain: when
comparing the appropriate components of the stress with those of the metric, by
definition of the elastic energy (13), the slope of the stress strain relation in the
two elastic stages is identical. In fact, within the metric description, one cannot
distinguish if the material at the point B has suffered any plastic deformation.
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As the deformation (c) / (d) is purely elastic �g remains unal-
tered. We calculate the metric explicitly to obtain

gd ¼
 

1 2 tan ðaÞ
2 tan ðaÞ 4 cos�2ðaÞ

!
;

gd ¼ gc ¼
 

1 tan ðqÞ
tan ðqÞ cos�2ðqÞ

!
;

3d ¼ 1

2

�
gd � gd

�
:

Taking the alternative route, the deformation (a) / (b) is
purely elastic, thus �g remains unaltered.

gb ¼


1 0
0 4

�
; gb ¼ ga ¼



1 0
0 1

�
; 3b ¼ 1

2



0 0
0 3

�
:

The purely plastic deformation (b) / (d) leaves the elastic
strain unchanged thus we have

gd ¼
 

1 2 tan ðaÞ
2 tan ðaÞ 4 cos�2ðaÞ

!
;

3d ¼ 1

2

�
gd � gd

�¼ 3b ¼ 1

2

 
0 0

0 3

!
:

We may therefore deduce �gd ¼ gd � 23d through

gd ¼



1 2 tan ðaÞ
2 tan ðaÞ 4 cos�2 ðaÞ � 3

�
¼



1 tan ðqÞ
tan ðqÞ cos�2 ðqÞ

�
;

where in the last equality we have made use of the fact that,
2 tan(a) ¼ d ¼ tan(q). The two paths lead to the exact same
reference metric.
B.3 Strain decoupling and memory loss in the metric
description

Consider an elastic body whose energy density is given by (13)
undergoing a uniaxial uniform deformation in three stages. In
the rst stage only elastic extension occurs, i.e. _g ¼ 0. In the
second stage the elastic extension is accompanied by a plastic
response of the form

_gij ¼
1

s
2

Y
Sij ¼ 1

s

�
gij � gij

�
: (16)

In the third stage again only elastic deformations are used to
bring the body to a state of zero stress (while _g ¼ 0).

We choose the uniaxial elongation to occur along the x̂
direction, and impose the x ¼ 0 surface of the body to remain
stationary. Only the face opposite to the face at x ¼ 0 is loaded,
and we denote its x coordinate by X. The total force exerted on
the body may be given by f ¼ fxx̂, where

fx ¼ �vE/vX,

and E above is the elastic energy (13) expressed as a function X
alone.
8196 | Soft Matter, 2013, 9, 8187–8197
The stress is naturally dened as a contravariant tensor
(through the Frechet derivative of a scalar with respect to a
covariant tensor in (7)). It therefore seems natural to study a
uniaxial deformation through comparing Sxx and gxx or 3xx.
However, from the tensorial formulation we know that such a
relation will not yield a simple scalar but a four rank tensor.
This is of course due to the different units of length associated
with each type of tensor. When we seek a simple scalar (such as
local material stiffness), we must therefore compare tensors of
the same type as done below in Fig. 3.
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