
No Justified Complaints:
On Fair Sharing of Multiple Resources

Danny Dolev
Dept. Computer Science
The Hebrew University
Jerusalem, Israel

dolev@cs.huji.ac.il

Dror G. Feitelson
Dept. Computer Science
The Hebrew University
Jerusalem, Israel
feit@cs.huji.ac.il

Joseph Y. Halpern
∗

Computer Science Dept.
Cornell University

Ithaca, NY
halpern@cs.cornell.edu

Raz Kupferman
Institute of Mathematics
The Hebrew University
Jerusalem, Israel

raz@math.huji.ac.il

Nathan Linial
Dept. Computer Science
The Hebrew University
Jerusalem, Israel
nati@cs.huji.ac.il

ABSTRACT
Fair allocation has been studied intensively in both economics and
computer science. This subject has aroused renewed interest with
the advent of virtualization and cloud computing. Prior work has
typically focused on mechanisms for fair sharing of a single re-
source. We consider a variant where each user is entitled to a cer-
tain fraction of the system’s resources, and has a fixed usage profile
describing how much he would want from each resource. We pro-
vide a new definition for the simultaneous fair allocation of multi-
ple continuously-divisible resources that we call bottleneck-based
fairness (BBF). Roughly speaking, an allocation of resources is
considered fair if every user either gets all the resources he wishes
for, or else gets at least his entitlement on some bottleneck resource,
and therefore cannot complain about not receiving more. We show
that BBF has several desirable properties such as providing an in-
centive for sharing, and also promotes high overall utilization of
resources; we also compare BBF carefully to another notion of fair-
ness proposed recently, dominant resource fairness.
Our main technical result is that a fair allocation can be found

for every combination of user requests and entitlements. The allo-
cation profile of each user is proportionate to the user’s profile of
requests. The main problem is that the bottleneck resources are not
known in advance, and indeed one can find instances that allow dif-
ferent solutions with different sets of bottlenecks. Therefore known
techniques such as linear programming do not seem to work. Our
proof uses tools from the theory of ordinary differential equations,
showing the existence of a sequence of points that converge upon
a solution. It is constructive and provides a practical method to
compute the allocations numerically.

∗Much of this work was done while the author was on sabbatical
leave at Hebrew University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITCS’12 January 06-08 2012, Cambridge, MA, USA
Copyright 2012 ACM 978-1-4503-1115-1/12/01 ...$10.00.

Categories and Subject Descriptors
D.4.1 [OPERATINGSYSTEMS]: Process Management—Schedul-
ing; K.6.2 [MANAGEMENT OF COMPUTING AND INFOR-
MATION SYSTEMS]: InstallationManagement—Pricing and re-
source allocation

General Terms
Management, performance

Keywords
Resource allocation, fair share, bottleneck

1. INTRODUCTION
Fair allocation has been widely studied both in economics and

computer science (See [4, 11, 19] for a sample of the wide-ranging
work in this area.) Generally speaking, the notion of fairness may
pertain to mechanisms like bargaining and their relationship to eth-
ical issues (e.g. [18]). We assume fairness to mean that each user
has a certain level of resources to which he is entitled, and take an
allocation to be fair if each user indeed gets at least this level. But
how exactly should the entitlements be interpreted? Specifically,
what does it mean that a user is “entitled to 20% of the system”? Is
this a guarantee for 20% of the CPU cycles? Or maybe 20% of each
and every resource? And what should we do if the user requires,
say, only 3% of the CPU, but over 70% of the network bandwidth?
Reserving 20% of the CPU will cause obvious waste, while curb-
ing the network usage would be unreasonable if no other user can
take up the slack.
Our goal in this paper is to define a notion of fair allocation that

applies when multiple, continuously-divisible resources are to be
allocated. In a nutshell, we observe that allocations need only focus
on contended resources. Our scheme, which we call bottleneck-
based fairness (BBF), therefore requires that each user receives his
entitlement on at least one bottleneck resource. We claim that the
user can then not justify complaining about not getting more. We
then show that a BBF allocation is guaranteed to exist.

2. CONTEXT AND PREVIOUSWORK
This work concerns mostly a collaborative environment. The

different users may represent, e.g., different activities of one orga-

nization or even a set of computational systems that are all owned
by the same entity. Another possible scenario is an installation put
together by a group of mutually trusting partners. In this context a
user’s entitlement may represent that user’s share in the investment
that created the installation and the shared resources.
Simple and direct approaches for scheduling according to enti-

tlements include lottery scheduling [17] and economic models [16],
where each process’s relative share of the resources is expressed by
its share of lottery tickets or capital. Another popular approach is
based on virtual time [7, 14]. The idea is that time is simply counted
at a different rate for different processes, based on their relative al-
locations. In networking research the most common approach is
max-min fairness, where the goal is to maximize the minimal al-
location to any user [15]. Using weights this can be adjusted to
support diverse entitlements.
The main drawback of the approaches above is that they focus on

one resource—the CPU or the bandwidth of a link—irrespective of
contention. This may be inappropriate when the goal is to achieve
a predefined allocation of the resources. For example, by trying
to promote an I/O-bound process (because it deserves more of the
CPU than it is using), we might turn the disk into a bottleneck, and
inadvertently allow the internal scheduling of the disk controller to
dictate the use of the whole system.
In order to avoid such problems, it has recently been suggested

that fair-share scheduling be done in two steps [2, 8]: first, identify
the resource that is the system bottleneck, and then enforce the de-
sired relative allocations on this resource. This approach is in line
with basic results in performance evaluation, as it is well known
that the bottleneck device constrains system performance (this is,
after all, the definition of a bottleneck) [13]. An important mani-
festation of this result is that, in a queueing network, most of the
clients will always be concentrated in the queue of the bottleneck
device. This implies that scheduling the bottleneck device is the
only important activity, and moreover, that judicious scheduling
can be used to control relative resource allocations. The fair us-
age of the bottleneck resource induces some level of usage of other
resources as well, but this need not be controlled, because there is
sufficient capacity on those resources for all contending processes.
The question is what to do if two or more resources become bot-

tlenecks. This may easily happen when different processes pre-
dominantly use distinct resources. For example, consider a situa-
tion where one process makes heavy use of the CPU, a second is
I/O-bound, while a third process uses both CPU and I/O, making
both bottlenecks.
There have been a number of approaches suggested for fairly

allocating multiple resources. Most relevant to our work is the re-
cently proposed notion of dominant resource fairness (DRF) [10].
DRF does not explicitly consider bottlenecks, but rather focuses on
each user’s maximal usage of any single resource. We describe this
in more detail and compare it with our definition in Section 4.

3. BOTTLENECKBASED FAIRNESSWITH
MULTIPLE BOTTLENECKS

Consider a setting with N users and m resources (e.g. CPU and
network and disk bandwidth). Without loss of generality we as-
sume that there is exactly one unit available of each resource. We
assume that each user i is entitled to a fixed percentage ei of the
full capacity, and hence of each resource, where

∑

i ei = 1. Al-
ternatively, the actual number of users may be M " N , where
all theseM users are treated equally (so each user’s entitlement is
1
M
). However, there are only N types of users, of whichMei are

of type i. It is not hard to verify that there is no loss of generality

in handling all users of the same type equally. In this case we are
led to the problem formulation as described next.
Each user i requests a fraction rij of resource j. Obviously the

interesting situation is when for each i there exists a j such that
rij > ei, and for every j,

∑

i rij > 1. Our goal is to find a set of
allocations that allow us to exploit complementary usage profiles to
achieve high utilization, but at the same time respect the different
entitlements. By respecting the entitlements, the allocations can be
claimed to be fair.
An important attribute of our user model is that the request pro-

file of each user is fixed. Thus the allocation to user i is character-
ized by a single factor xi, rather than a separate factor xij for each
resource j. The fraction allocated to i of each resource j will be
xirij . This model reflects a situation where each user is engaged in
a specific type of activity with a well-defined resource usage pro-
file. For example, a user may be serving requests from clients over
the Internet. Each request requires a certain amount of computa-
tion, a certain amount of network activity, and a certain amount of
disk activity. If the rate of requests grows, all of these grow by the
same factor. But if one resource is constrained, limiting the rate of
serving requests, this induces a similar limit in the usage of all other
resources. This is essentially the “knee model” of Etsion et al. [9],
where I/O activity is shown to be linearly proportional to CPU al-
location up to some maximal usage level. It also corresponds to the
task model of Ghodsi et al. [10] when all tasks belonging to a user
have identical resource requirements (which is indeed the specific
model they use in their proofs). Note, however, that this is indeed a
limiting assumption. Specifically, it excludes usage patterns where
one resource is used to compensate for lack of another resource,
as happens, for example, in paging, or when using compression to
reduce bandwidth.
All the above leads to the following problem definition. We want

to find x1, . . . , xN with 0 ≤ xi ≤ 1. Here xi is the fraction of user
i’s request which will be granted. Feasibility of these xi’s means
that our total consumption of each resource is at most one:

∀j :
∑

i

xirij ≤ 1. (1)

Those resources j for which equality holds in (1) are the bottleneck
resources. These are important for our fairness condition, which
we call the “No Justified Complaints” condition. The idea is that a
user cannot justify complaining about his allocation if either he gets
all he asked for, or else he gets his entitlement on some bottleneck,
so giving him more would come at the expense of other users who
have their own entitlements. This is formally expressed as:

∀i : [xi = 1] ∨ [∃j∗ : (
∑

k xkrkj∗ = 1) ∧ (xirij∗ ≥ ei)]. (2)

In the sequel, we call this requirement bottleneck based fairness
(BBF).
Note that it may happen that a user receives less than his enti-

tlement on other resources, including other bottleneck resources,
where the entitlement would seem to indicate that a larger alloca-
tion is mandated. This is where the fixed request profile assump-
tion comes in. Recall that the factor xi is common to all resources.
Thus, giving a user a higher allocation on any resource implies that
his allocation must grow on all resources. The original bottleneck
resource j∗ thus constrains all allocations, even on other bottleneck
resources or resources that are not themselves contended.
Showing that a fair allocation according to this definition exists

turns out to be surprisingly nontrivial. As far as we know, all obvi-
ous approaches (e.g., Linear Programming) seem to fail. We prove
the existence of fair allocations in Section 5.

4. PROPERTIESOFBOTTLENECKBASED
FAIRNESS

In this section, we discuss properties of BBF, and compare it
to DRF. A user’s dominant resource is the one where the user re-
quires the largest fraction, i.e. argmaxj rij . Given the fixed request
profile assumption, in any allocation the user’s maximal usage of
any resource will be his usage of the dominant resource. DRF
fairness is then defined as equalizing these maximal usage levels
across users, or more generally, making them proportional to the
entitlements [10]. In the special case where each user can use the
full capacity of some resource (so the dominant resource j satis-
fies rij = 1) this is equivalent (in our notation) to requiring that
xi ∝ ei.
An important difference between DRF and BBF is that DRF al-

locations can be found using an incremental algorithm [10]. Find-
ing BBF allocations is harder, because we do not know in advance
which resources will be the bottlenecks. But interestingly, the tra-
jectory argument used in the proof that a BBF allocation exists
is actually somewhat similar to the way that allocations are con-
structed for DRF.

4.1 Defining Fairness
BBF and DRF both define a notion of fairness across multiple

resources. At a very basic level, the notion of fairness depends
on perception of utility. In the context of allocating resources on
computer systems, the utility is typically unknown. Consequently
the notion of fairness is ill-defined.
To better understand the difference between utility and alloca-

tion, we recount an example used by Yaari and Bar-Hillel [18].
Jones and Smith are to share a certain number of grapefruit and av-
ocados to obtain certain vitamins they need. They have different
physiological abilities to extract these vitamins from the different
fruit. The overwhelming majority (82%) of people polled agreed
that the most fair division is one that gives them equal shares of ex-
tracted vitamins, despite being quite far from being equal numbers
of actual fruit. Thus respondents clearly favored equal utility as the
criterion for fairness. But such considerations would be impossible
if you do not know their specific ability to extract vitamins, and that
they actually only eat fruit for their vitamins.
When allocating resources we do not know the real utility of

these resources for the users. We are therefore forced to just count
the amount of resources being allocated. The difference between
definitions of fairness is in how this counting is done. A simple
counting rule is asset fairness [10] , where the fractions of all re-
sources used are summed up. Thus the total allocation to user i is
∑

j xirij , and these allocations should be equalized across users.
In DRF, only the largest fraction is considered. To be fair, all users
should receive the same fractions of their respective dominant re-
sources. In BBF we take a system-wide view, and only count the
usage of bottleneck resources. Thus a user may receive more than
his entitlement of non-bottleneck resources, but this is considered
immaterial because there is no contention for those resources.
Interestingly, Ghodsi et al. prove that under DRF each user will

actually be constrained by some resource that is a bottleneck [10].
However, their fairness criterion does not depend on this bottle-
neck, while ours does. As a result DRF may constrain the alloca-
tions of a non-bottleneck resource, and use this as an argument for
being fair to the user. There seems to be no criterion by which to
say that either DRF or BBF is fairer than the other. It may well
be that a user derives much benefit from using the non-bottleneck
resource, and therefore cutting him back on other resources is per-
fectly justified. But given that we do not know that this is the case,
we suggest that it is safer to focus exclusively on the bottleneck

resources.
To further support the focus on bottlenecks, we note that Yaari

and Bar-Hillel extended the Jones and Smith example to a situation
where Smith’s ability to extract vitamins from fruit is extremely
low. In this scenario, a large number of respondents no longer tol-
erated his inefficiency, and broke from the goal of achieving equal
utility. An additional consideration that was not checked in the
study was contention for limited resources. We conjecture that if
a minimal level of vitamin was given as a requirement, especially
if there were many potential beneficiaries rather than just two, re-
spondents would be even less tolerant of inefficiency, and opt for
fair division of the resources (or fruit).
In fact, Ghodsi et al. also mention bottleneck fairness in their

description of DRF, but only as a secondary criterion. They define
bottleneck fairness only when all users have the same dominant re-
source, essentially reducing the scope to the single bottleneck case.
Our work is the first to extend this with a meaningful definition of
fairness for multiple bottlenecks, and when the dominant resources
are different.

4.2 Game-Theoretic Considerations
Ghodsi et al. [10] show that DRF has four desirable attributes,

under the assumption that all tasks belonging to a user have iden-
tical resource requirements (in which case their model reduces to
ours). We now show that BBF also has two of them, and explain
the tradeoff regarding the other two.
The first requirement is what Ghodsi et al. call sharing incen-

tive: each user i should be better off than he would be if he could
work with only his entitlement ei of each resource. Due to the
fixed request profile assumption, if user i gets a fraction ei of each
resource, much of this capacity may remain unused. Indeed, user i
is no better off from his point of view than if he got a fraction z of
his requests, where z = ei/maxj{rij}. In a BBF allocation user
i gets a fraction xi of his requests, where xirij ≥ ei for some bot-
tleneck resource j. Thus xi ≥ z, which means that BBF provides
an incentive for sharing resources, and thus allows the system to
exploit situations where users have complementary requirements.
Another attribute is Pareto efficiency. This means that increasing

the allocation to one user must come at the expense of another. This
follows immediately from doing allocations based on bottlenecks.
The two properties that are more problematic are strategyproof-

ness and envy-freedom. Being strategyproof means that users won’t
benefit from lying about their resource needs. Being envy free
means that users don’t prefer another user’s allocation. Ghodsi et
al. provide one approach to obtain a DRF allocation, and show that
their approach is strategyproof, and its outcome satisfies envy free-
dom. As we show in Section 6 BBF may allow multiple solutions.
This provides flexibility in the sense that secondary objectives may
be used to select among the options. But it may also be suscepti-
ble to manipulations by users who try to influence the decision in
their favor. But note that this effect is limited to the choice among
alternative fair allocations. However, as Ian Kash [private commu-
nication, 2011] has shown, even for an instance of the problem (i.e.,
choice of e1, . . . , en and rij for 1 ≤ i ≤ n and 1 ≤ j ≤ m) that
has a unique BBF allocation, strategyproofness does not hold.

4.3 Utilization Considerations
We now turn to a discussion of how fairness definitions may af-

fect system utilization. First, we observe that if all users have the
same dominant resource, DRF and BBF are equivalent. This fol-
lows since the common dominant resource is the only bottleneck.
Thus the resulting utilization is the same. But in other cases there
may be differences. In fact, it is easy to find examples where BBF

leads to higher overall utilization than DRF, and counterexamples
where the opposite is true.
However, the following claim indicates that BBF may actually

have an edge over DRF. Assume that every user has at least one
resource that he can use to capacity (i.e. for every user i there is a
resource j such that rij = 1). Consider those problems that have a
full-utilization solution, meaning that we can find x1, . . . xN such
that xi ≥ ei and, for every resource j, we have

∑

xirij = 1. We
claim that all such cases are BBF solutions, but there exist such
cases where the DRF solution exhibits very low utilization.
These assumptions are not as restrictive as they may seem. The

requirement that each user has a resource he can use to capacity
just means that users are greedy and want lots of power. Moreover,
every DRF and BBF solution must be such that xi ≥ ei (in the
case of BBF, this is because xi = 1 or xirij ≥ ei for some j
and rij ≤ 1). Since, in a full-utilization solution, all resources
are bottlenecks, and each user has a resource where xirij ≥ ei
(namely, the resource j such that rij = 1), it is easy to see that
a full-utilization solution satisfies BBF. But consider the following
specific example where DRF does badly. Assume Kn users want
resource 1 at full capacity. An additional n users want only a very
small ε of resource 1, and 1/n of all the other resources. DRF
will seek to give each user ∼ 1/Kn of its dominant resource, so
these last n users will get ∼ 1/K of what they want. But BBF can
opt to give the last n users their full request, at very small cost to
the others. With small K (e.g. K = 2), DRF gives a third of the
population just half of what they could get without really benefiting
the others. With small n (e.g. n = 1) it reduces the utilization of
all resources except the first to 1/K.
This example in itself does not prove that BBF is superior to

DRF. It might be the case that other examples will show large uti-
lization differences in the other direction. We are currently attempt-
ing to achieve a more complete characterization of the relative uti-
lization implications of BBF and DRF.

5. EXISTENCE OF A FAIR ALLOCATION
In this section, we prove that an allocation satisfying (1) and (2)

always exists. Note, that (2) deals separately with the case where
xi = 1 and user i’s request is respected in full, and where xi < 1
and we need to at least give i his entitlement on some bottleneck
resource. Consider the following simplification of (2), that leaves
out the first disjunct:

∀i ∃j∗ : (
∑

k xkrkj∗ = 1)∧(xirij∗ ≥ ei). (2′)

We claim that, given a problem X , we can convert it to a prob-
lemX ′ such that an allocation (x1, . . . , xn) forX satisfies (1) and
(2) iff (x1, . . . , xn) satisfies (1) and (2′) for X ′. To convert X to
X ′, we simply add N new dummy resources r′1, . . . , r′N such that
r′ij = 1 if j = i and 0 otherwise. In light of this, the following
theorem establishes that there always exists a solution that satisfies
BBF.

Theorem 1. Given
• entitlements e1, . . . , eN such that ei ≥ 0 for i = 1, . . . , N
and e1 + · · ·+ eN = 1, and

• resource requirements rij such that 0 ≤ rij ≤ 1 and r1j +
· · ·+ rNj ≥ 1 for i = 1, . . . , N and j = 1, . . . ,m,

there exists an allocation x1, . . . , xN , where 0 ≤ xi ≤ 1 for i =
1, . . . , N , such that (1) and (2′) hold.

5.1 A Few Simplifying Assumptions
Before proving the theorem, we make three simplifying assump-

tions, all without loss of generality.

x2

x110
0

1 2
3

1R R
R

Figure 1: Depiction of bounds on xi values due to capacity con-
straints of resources, for N = 2 andm = 3.

We can and will assume that maxj rij ≥ ei, for each user i.
Otherwise, we give user i everything he asked for, remove his re-
quests, renormalize the entitlements of the remaining users so that
they still sum to 1, renormalize the remaining capacity of the dif-
ferent resources so that it is still 1, and renormalize the remaining
requests by the same factors. Again, it’s not hard to see that this can
be done without changing the problem and the possible outcomes.
Also, say that resource j is dominated if the inequality x1r1j +

· · ·+xNrNj ≤ 1 is a consequence of all other inequalities {x1r1s+
· · · + xNrNs ≤ 1|s += j}. Clearly, the existence of such an in-
equality can be efficiently detected by standard linear programming
methods. Again, dominated resources can be eliminated from the
problem without any change.
We turn to prove the existence of a solution x1 . . . xN satisfying

Theorem 1 under these simplifying assumptions. As mentioned,
this is done without loss of generality, and a solution that is found
under the simplifying assumptions can be easily turned into a solu-
tion for the original formulation of the problem.

5.2 Proof Structure
We first establish some notation. The set of all feasible solutions

is the polytope D ⊆ (R+)N , where

D = { (x1, . . . , xN) : 0 ≤ xi ≤ 1, ∀i and
x1r1j + · · ·+ xNrNj ≤ 1, ∀j }.

This is illustrated in Fig. 1 forN = 2.
For x = (x1, . . . , xN) ∈ D, the set of bottleneck resources is

J(x) = {j : 1 ≤ j ≤ m, x1r1j + · · ·+ xNrNj = 1}.

The solution x that we seek must clearly reside on the boundary of
D, for J(x) is empty when x is in D’s interior. So, paraphrasing
(2′), our goal is to find an allocation x = (x1, . . . , xN), such that

∀i ∃j∗ ∈ J(x) : xirij∗ ≥ ei. (3)

This is exactly the source of our difficulty. Given the set of bot-
tleneck resources, the problem of finding x is just a linear program.
Specifically, given an arbitrary subset I ⊆ {1, . . . , m}, the fol-
lowing decision problem is an LP: Is there an x ∈ D for which
J(x) = I such that condition (3) holds?
How can we overcome the difficulty involved in satisfying con-

dition (3) without prior knowledge of the set J(x)? As a first step,
we approximate the polytope D by a subset Q ⊆ D that is convex
and has a smooth boundary. Intuitively,Q “rounds off” the corners
of D (see below for further discussion). Such a set Q is defined by
infinitely many linear inequalities: For every hyperplane H that is

tangent toQ we write a linear inequality that states that x must re-
side “below” H . It would seem that this only complicates matters,
replacing the finitely defined D by Q. However, the problematic
condition (3) takes on a much nicer form when applied to Q, and
becomes a very simple relation involving the contact point of H
andQ, the normal toH , and the vector e (see Equation (7) below).
Moreover, using standard tools from the theory of ordinary differ-
ential equations, we can find a point on the boundary of Q where
this relation holds.
To find the solution, we do not consider a single smooth Q, but

rather a whole parametric familyQt. This family has the properties
that (a) the sets Qt grow as the parameter t increases; (b) they are
all contained in D; and (c) as t → ∞ the sets Qt converge to D.
In the language of the description below, Qt is defined as the set of
those x ∈ D for which f(x) ≤ t. For every t > 0, we find a point
x

(t) on the boundary of Qt such that x(t) satisfies the analogue of
condition (3). As t → ∞, the points x(t) tend to the boundary of
D. We argue that there always exists a convergent subsequence of
the points x(t), and show that the limit point of this subsequence
solves our original problem.
The procedure above hinges on our ability to define the appro-

priate points x(t) that satisfy the required condition. This is based
on considering the tangent to the surface of Qt. Note that the only
essential difference between D and Q is that the latter is defined
by an infinite family of defining linear inequalities, namely, one for
each hyperplaneH that is tangent toQ. Keeping this perspective in
mind, let us apply the original problem definition to a point x ∈ Q.
If x lies in the interior of Q, then none ofQ’s defining inequalities
holds with equality. Thus, as before, J(x) is empty for any x in the
interior of the domain Q. We therefore consider x that lies on the
boundary of Q. In this case, the set J(x) is a singleton, the only
member of which is the inequality corresponding to the hyperplane
H that is tangent toQ and touches it at the point x. The equation of
the tangent hyperplaneH can be written as

∑

νixi = 1, where the
vector (ν1, . . . , νn) is normal toH . Now condition (3) becomes

∀i νixi ≥ ei. (4)

When we sum over all i this becomes
∑

νixi ≥
∑

ei = 1. But
x lies on H , so that

∑

νixi = 1. It follows that all inequalities
in Eq. (4) hold with equality. But we also have, from the definition
of the bottlenecks, that

∑

rijxi = 1. Thus, the normal is simply
defined by the requirements vectors. Moreover, we can use this as
a condition on the gradients of the surfaces ofQt for successive t’s,
and follow a trajectory that leads to a solution on the boundary of
D. This is then the desired constructive proof: it both shows that a
solution exists, and provides a mechanism for finding it. In the next
subsection we formalize this argument.

5.3 Proof of Theorem 1
Construction 1. To every allocationx in the interior of the domain
D, we assign a value

f(x) = −
m
∑

j=1

log

(

1−
N
∑

k=1

xkrkj

)

. (5)

Remark 1. The function f is positive in the interior ofD, diverging
to infinity as x tends to the boundary of D.

Remark 2. Clearly, there are other choices of f that satisfy these
desired properties. This choice seems like the simplest one for our
purposes.

Definition 1. To every number t > 0, there corresponds a level set
of f , namely,

x2

x110
0

1

t=0

t=

2
3

1R R
R

∞

Figure 2: Illustration of level-sets of f from t = 0 to t = ∞.

Γt = {x ∈ D : f(x) = t},

Remark 3. This is an (N − 1)-dimensional hypersurface. (Fig. 2
illustrates this for N = 2.)

Definition 2. To every point x ∈ D, there corresponds a unique
unit vector ν(x) = (ν1(x), . . . , νN (x)), normal to the level set of
f at x.

The unit normal ν(x) is proportional to the gradient of f at x,
implying that

νi(x) = c̃
∂f
∂xi

(x) = c̃
m
∑

j=1

rij

1−
∑N

k=1 xkrkj
, ∀i = 1, . . . , N,

(6)
where the normalization constant c̃ is chosen so as to guarantee that
ν is a unit vector, that is, ν2

1 + · · ·+ ν2
N = 1.

Construction 2. We now construct a vector-valued function

x(t) = (x1(t), . . . , xN(t)), t ≥ 0,

satisfying the following properties:
1. x(t) lies on the level set Γt for all t ≥ 0 (and, in particular,

remains inD).
2. For all t > 0, there exists a t-dependent normalization factor

c(t), such that for every i = 1, . . . , N ,

xi(t) νi(x(t)) = c̃ c(t)ei. (7)

Remark 4. Note that since f(x(0)) = 0 it follows that x(0) = 0,
that is, the vector-valued function x(t) “starts” at the origin.

Remark 5. Substituting (6) into (7) and summing over the index i
determines c̃ c(t). After simple algebraic manipulations, we get
m
∑

j=1

xi(t)rij − (
∑N

k=1 xk(t)rkj)ei

1−
∑N

k=1 xk(t)rkj
= 0, ∀i = 1, . . . , N, ∀t > 0.

(8)

Intuitively, x(t) is a “trajectory” that takes us from the origin
x = 0 to a point on the boundary of D as t grows from 0 to∞1.
1In networking, allocations to flows traversing multiple links are
also viewed as using multiple resources, where again the con-
straints stem from links that become bottlenecks. In this context
max-min fairness can be characterized based on a geometrical rep-
resentation that is very similar to ours [15]. However, the require-
ments from all the resources (links) are equal, making the search
for a solution easier. Specifically, it is often possible to move in a
straight line from the origin to the boundary, in a direction based
on the desired relative allocations, rather than using a more com-
plicated trajectory as we do.

The formal proof now follows from the following sequence of
three lemmas, proved below. First, we show that a trajectory with
the required properties exists (Lemma 4). Given such a trajectory,
we show that a subsequence of this trajectory converges to a point
on the boundary of D (Lemma 2). Finally, this accumulation point
is shown to be a solution to our allocation problem (Lemma 3).
It is convenient to postpone the discussion of whether there in-

deed exists a trajectory x(t) satisfying the required properties, and
consider convergence first.

Lemma 2. Let 0 < t1 < t2 < · · · be a sequence tending to infin-
ity. Let x(t) be a vector-valued function as defined in Construction
2. Then, the sequence x(ti) has a subsequence that converges to
an allocation x∗ on the boundary of D.

PROOF. Consider what happens as t → ∞. Since x(t) ∈
Γt, it follows that x(t) approaches the boundary of D. However,
the function x(t) may not tend to a limit as t → ∞. Neverthe-
less, since D is a compact domain, x(t) has a convergent subse-
quence. That is, there exists an allocation x∗ = (x∗

1, . . . , x
∗
N) on

the boundary of D and a subsequence tn1
< tn2

< . . . such that

lim
k→∞

x(tnk
) = x

∗.

The next lemma shows that this accumulation point is a solution
to the fair allocation problem.

Lemma 3. An allocation x
∗ as resulting from Lemma 2 is a fair

allocation according to our definition.

PROOF. Since x∗ is on the boundary of D, it has a non-empty
set J(x∗) of bottleneck resources such that

x∗
1r1j + · · ·+ x∗

NrNj = 1 ∀j ∈ J(x∗) += ∅.

We then rewrite (8) by splitting the resources j into bottleneck re-
sources and non-bottleneck resources, and setting t = tn:

∑

j %∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1−
∑N

k=1 xk(tn)rkj
+

∑

j∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1−
∑N

k=1 xk(tn)rkj
= 0.

(9)

The two summations behave very differently as n → ∞. For a non-
bottleneck resource j,

∑N
k=1 x

∗
krkj < 1, so the summation over

the non-bottleneck resources tends to a limit obtained by letting
x(tn) → x

∗ term-by-term:

lim
n→∞

∑

j %∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1−
∑N

k=1 xk(tn)rkj

=
∑

j %∈J(x∗)

x∗
i rij − (

∑N
k=1 x

∗
krkj)ei

1−
∑N

k=1 x
∗
krkj

.

(10)

For a bottleneck resource j, the denominator 1−
∑N

k=1 xkrkj tends
to zero as x → x∗, so the limit exists only if the numerator vanishes
as well. But if it were the case that, for a given user i,

x∗
i rij < ei for all j ∈ J(x∗),

then

lim
n→∞

∑

j∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1−
∑N

k=1 xk(tn)rkj
= −∞.

This is a contradiction to the fact that, by (9), the limit should be
the negative of the right-hand side of (10). Hence we conclude that
x

∗ has the property that for all users i, there exists a bottleneck
resource j such that x∗

i rij ≥ ei. Thus, x∗ is a fair allocation.
It remains to show that the trajectory x(t) is indeed well-defined

for all system parameters ei and rij . This is handled by the follow-
ing lemma.

Lemma 4. There exists a function x(t) with the properties speci-
fied in Construction 2.

PROOF. To prove this we show that we can find points satisfying
property 1 that also satisfy property 2. Since x(t) ∈ Γt, we have
f(x(t)) = t, that is,

−
m
∑

j=1

log

(

1−
N
∑

k=1

xk(t)rkj

)

= t. (11)

By (7),
m
∑

j=1

xi(t)rij

1−
∑N

k=1 xk(t)rkj
= c(t)ei, ∀i = 1, . . . , N. (12)

Differentiating both equations with respect to t, we obtain a linear
system of equations for the derivative dx/dt. Differentiating (11),
we get

∑N
k=1

dxk

dt
rkj

1−
∑N

k=1 xk(t)rkj
= 1.

Differentiating (12), we get
m
∑

j=1

dxi

dt
rij

1−
∑N

k=1 xkrkj
+

m
∑

j=1

xirij
∑N

k=1
dxk

dt
rkj

(1−
∑N

k=1 xkrkj)2
=

dc
dt

ei. (13)

Observe that, without loss of generality, we can set dc/dt = 1,
compute the resulting vector of derivatives dx/dt, and then multi-
ply it by a constant for the normalization condition to hold. Thus, it
remains only to show that (13) has a unique solution when dc/dt =
1. To do so, we define an x-dependent matrix with entries

bij =
rij

1−
∑N

k=1 xkrkj
, i = 1, . . . , N, j = 1, . . . ,m .

These entries are non-negative for x ∈ D. We now rewrite (13) in
a more compact form,

m
∑

k=1

dxk

dt

(

m
∑

j=1

bijδik +
N
∑

j=1

xibijbkj

)

= ei.

The term inside the brackets is the (k, i) entry of a symmetric
positive-definite N × N matrix, which immediately implies that
there exists a unique solution dx/dt. Since the dependence of
dx/dt on x is continuous, the existence and uniqueness of x(t)
follows from the Fundamental Theorem of Ordinary Differential
Equations [5]. (More precisely, the fundamental theorem of ODEs
guarantees only the existence and uniqueness of a solution for some
small t; global existence follows from the boundedness of the do-
main D.)
This completes the proof of Theorem 1.
We note that our proof that a fair allocation exists is almost

constructive. The trajectories x(t) can easily be computed nu-
merically using standard ODE integrators (for example, Matlab’s
ode45 function). If x(t) is found to tend to a limit for large t,
then this limit is a fair allocation. The only reservation is that nu-
merical integration only provides approximate solutions (however,

with a controllable error), and can only be carried out over a finite
t interval.
Following our work, Gutman and Nisan [12] have provided a

polynomial-time solution to the problem of finding a BBF allo-
cation. They did so by first providing a characterization of BBF.
To explain their results, we require some definitions, which use
the notation of Section 3.2 Define an allocation for player i to
be a tuple yi = (yi1, . . . , yim) such that yij ≥ 0; intuitively,
yij is the amount of resource j that player i gets. We can asso-
ciate with an allocation yi its utility. To capture BBF, we take
ui(yi) = minj(yij/rij). An allocation yi for player i is parsimo-
nious if there is no allocation y′

i < yi such that ui(y′
i) = ui(yi),

where y′
i < yi if y′

ij ≤ yij for all j and y′
ij < yij for some j. It

is easy to see that yi is parsimonious iff there exists xi such that
yij = xirij for all j. An allocation y = (y1, . . . ,yn) is feasible
if
∑

i yij ≤ 1 for all j. In our setting, a Fisher market equilib-
rium consists of an allocation Y and a vector π = (π1, . . . ,πm)
with πj ≥ 0 for j = 1, . . . ,m (which can be thought of as a price
vector, where πj is the “price” of resource j) such that

1. for i = 1, . . . , n, the vector yi maximizes ui(yi), under the
constraint

∑

j πjyij ≤ ei;

2.
∑

i yij = 1.

Note that although we took ei to be user i’s allocation, in the con-
text of Fisher market equilibrium it can be thought of as user i’s
budget. The constraint

∑

i yij = 1 says that each resource is “used
up”.
Gutman and Nisan show that, given an instance of our prob-

lem (defined by the allocations e1, . . . , en and the requests rij), by
adding a new resource for each player, we can easily convert this
instance to a new instance of the problem such that (1) if (Y,π)
is a Fisher market equilibrium corresponding to the new instance,
and X is a parsimonious allocation such that, for all users i, (a)
Xi ≤ Yi, and (b) ui(Xi) = ui(Yi), thenX is a BBF allocation;
(2) the allocation to the original resources in X gives a BBF solu-
tion for the original instance of the problem. By the results of [6],
a Fisher market equilibrium can be computed in polynomial time.
It easily follows that a BBF allocation can be computed in poly-
nomial time. Moreover, it follows from the results of [6] that the
feasible solution to the constraints (1) that maximizes

∏n
i=1 xi is a

BBF allocation. We note that this statement can be verified directly,
using convex programming duality.

6. UNIQUENESS AND OPEN QUESTIONS
Generally speaking, the BBF allocation problem does not have a

unique solution; moreover, different solutions may depend on dif-
ferent sets of bottlenecks. Consider the following example, with
four users and four resources (N = m = 4). Assume all users
have the same entitlements, that is ei = 0.25 for i = 1, . . . , 4.
Arrange the users and resources in a circle, and make each user
request the full capacity of its resource and those of its neighbors.
Thus the requirements matrix becomes

r =

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

This instance is completely symmetric, and the obvious solution
is a symmetric allocation where xi = 1

3 for i = 1, . . . , 4. In
this solution, all 4 resources are bottlenecks, and all users get more
2We remark that we simplify the definitions of [12].

m N Solutions
4 20 5.4±1.9
5 25 14.6±3.8
6 30 34.8±8.4
7 35 77±20
8 40 186±31
9 45 401±63

Table 1: Average number of solutions ± standard deviation for
randomized resource request matrices of different sizes.

than their entitlements on all the resources they use. But there are 6
additional solutions. Pick any two users i and j, and set xi = xj =
0.25. Let k and l be the other two users, and set xk = xl = 0.375.
Now two resources are bottlenecks (0.25 + 0.375 + 0.375 = 1)
but the other two are not (0.25 + 0.25 + 0.375 = 0.875). Which
resources become bottlenecks depends on the choice of k and l.
This example can easily be generalized as follows. Consider an
example with N = m > 2. The requirements are rii = 0 for all i
and rij = 1 when i += j. All ei = 1/N . For every N − 1 ≥ t ≥ 1
we select an arbitrary set of t users and let the corresponding xi be
1/n. For all other N − t users we let xi = N−t+1

N(N−t) . It is easily
verified that in this case there are exponentially many solutions.
To get some idea of more general results, we provide a brief re-

port about some preliminary numerical experiments that we have
carried out. We start by observing that for a given N × m matrix
R, it is possible to discover all the BBF solutions of the correspond-
ing problem by solving 2m − 1 linear programs. This is done as
follows: Fix a nonempty set of resources J . We can test, using an
LP solver, whether it is possible to satisfy condition (1) with equal-
ity iff j ∈ J along with condition (2) (with respect to the same set
of bottlenecks J).
Our experiment runs as follows: We repeatedly (100 times) sam-

ple a random N × m matrix R whose entries rij are drawn inde-
pendently from the uniform distribution on [0, 1]. For the resulting
matrix we solve the 2m − 1 linear programs described above and
list all the resulting BBF solutions. Needless to say, we had to limit
our search to relatively small values ofm. Our preliminary results
suggest that, for a fixed m, the number of solutions grows very
substantially when the number of players N increases. In fact, the
number of solutions seems to be growing exponentially withm (for
N large) (Table 1).
These preliminary observations are very intriguing and these is-

sues call for a more thorough investigation. Several questions sug-
gest themselves: Of the many available BBF solutions, which should
be preferred? Can the “better” solutions be found efficiently? We
note in particular that the Gutman-Nisan algorithm yields only one
solution, and tells us nothing about the rest of them.
The solution concept we develop here has many properties that

are desirable as well in an environment where different users com-
pete for resources. However, we still do not know much about pos-
sible manipulations in this context, and how they affect the out-
come.
The suggested approach is off-line, and requires full data about

requirements to be available in order to compute a solution. An-
other interesting question is how to formulate an on-line algorithm
that schedules tasks in a way that will lead to the desired alloca-
tions.

7. CONCLUSIONS
To summarize, our main contribution is the definition of what it

means to make a fair allocation of multiple continuously-divisible

resources when users have different requirements for the resources,
and a proof that such an allocation is in fact achievable. The defini-
tion is based on the identification of bottleneck resources, and the
allocation guarantees that each user either receives all he wishes
for, or else gets at least his entitlement on some bottleneck resource.
The proof is constructive in the sense that it describes a method to
find such a solution numerically. The method has in fact been pro-
grammed in Matlab, and was used in our exploration of various
scenarios.
Note that, in the context of on-line scheduling, we may not need

to find an explicit solution in advance. Consider for example the
RSVT scheduler described by Ben-Nun et al. [2]. This is a fair
share scheduler that bases scheduling decisions on the gap between
what each user has consumed and what he was entitled to receive.
To do so, the system keeps a global view of resource usage by the
different users. If there is only one bottleneck in the system, this
would be applied to the bottleneck resource. The question is what
to do if there are multiple bottlenecks. Our results indicate that
the correct course of action is to prioritize each process based on
the minimal gap on any of the bottleneck devices, because this is
where it is easiest to close the gap and achieve the desired entitle-
ment. Once the user achieves his target allocation on any of the
bottleneck devices, he should not be promoted further. This con-
tradicts the intuition that when a user uses multiple resources, his
global priority should be determined by the one where he is farthest
behind. Note that such an algorithm is similar to the construction
used for DRF, and also works if users have different tasks with dif-
ferent resource requirement vectors.
It should also be noted that our proposal pertains to the policy

level, and only suggests the considerations that should be applied
when fair allocations are desired. It can in principle be used with
any available mechanism for actually controlling resource alloca-
tion, for example, resource containers [1].
A possible direction for additional work is to extend the model.

In particular, an interesting question is what to do when the relative
usage of different resources is not linearly related. In such a case,
we need to replace the user-based factors xi by specific factors xij

for each user and resource. This also opens the door for a game
where users adjust their usage profile in response to system allo-
cations — for example, substituting computation for bandwidth by
using compression — and the use of machine learning to predict
performance and make optimizations [3]. Finally, we might con-
sider approaches where users have specific utilities associated with
each resource.

Acknowledgments
Danny Dolev is Incumbent of the Berthold Badler Chair in Com-
puter Science, and was supported in part by the Google Inter-university
center for Electronic Markets and Auctions. Dror Feitelson was
supported by the Israel Science Foundation (grant no. 28/09), and
by an IBM faculty award. Joseph Halpern was supported in part
by NSF grants ITR-0325453, IIS-0534064, IIS-0812045, and IIS-
0911036, by AFOSR grants FA9550-08-1-0438 and FA9550-09-1-
0266, ARO grant W911NF-09-1-0281, and a Fulbright Fellowship.

8. REFERENCES
[1] G. Banga, P. Druschel, and J. C. Mogul, “Resource

containers: A new facility for resource management in server
systems”. In 3rd Symp. Operating Systems Design &
Implementation, pp. 45–58, Feb 1999.

[2] T. Ben-Nun, Y. Etsion, and D. G. Feitelson, “Design and
implementation of a generic resource sharing virtual time
dispatcher”. In 3rd Ann. Haifa Experimental Syst. Conf.,

May 2010.
[3] R. Bitirgen, E. İpek, and J. F. Martínez, “Coordinated

management of multiple interacting resources in chip
multiprocessors: A machine learning approach”. In 41st Intl.
Symp. Microarchitecture, pp. 318–329, Nov 2008.

[4] S. J. Brams and A. D. Taylor, Fair Division: From
Cake-Cutting to Dispute Resolution. Cambidge University
Press, Cambridge, U.K., 1996.

[5] E. A. Coddington and N. Levinson, Theory of Ordinary
Differential Equations. Krieger Pub. Co., 1984.

[6] B. Codenotti and K. Varadarajan, “Efficient computation of
equilibrium prices for markets with Leontief utilities”. In
31st Intl. Colloq. Automata, Lang., & Prog., pp. 257–287,
Springer-Verlag, Jul 2004. Lect. Notes Comput. Sci. vol.
3142.

[7] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time
(BVT) scheduling: supporting latency-sensitive threads in a
general-purpose scheduler”. In 17th Symp. Operating
Systems Principles, pp. 261–276, Dec 1999.

[8] Y. Etsion, T. Ben-Nun, and D. G. Feitelson, “A global
scheduling framework for virtualization environments”. In
5th Intl. Workshop System Management Techniques,
Processes, and Services, May 2009.

[9] Y. Etsion, D. Tsafrir, and D. G. Feitelson, “Process
prioritization using output production: scheduling for
multimedia”. ACM Trans. Multimedia Comput., Commun. &
App. 2(4), pp. 318–342, Nov 2006.

[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness: Fair
allocation of multiple resource types”. In 8th Networked
Systems Design & Implementation, pp. 323–336, Mar 2011.

[11] A. V. Goldberg and J. Hartline, “Envy-free auctions for
digital goods”. In 4th ACM Conf. Electronic Commerce, pp.
29–335, 2003.

[12] A. Gutman and N. Nisan, “Fair allocation without trade”,
Oct 2011. Working paper.

[13] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik, Quantitative System Performance: Computer System
Analysis Using Queueing Network Models. Prentice-Hall,
Inc., 1984.

[14] J. Nieh, C. Vaill, and H. Zhong, “Virtual-Time Round Robin:
An O(1) proportional share scheduler”. In USENIX Ann.
Technical Conf., pp. 245–259, Jun 2001.

[15] B. Radunović and J.-Y. Le Boudec, “A unified framework for
max-min and min-max fairness with applications”.
IEEE/ACM Trans. Networking 15(5), pp. 1073–1083, Oct
2007.

[16] I. Stoica, H. Abdel-Wahab, and A. Pothen, “A
microeconomic scheduler for parallel computers”. In Job
Scheduling Strategies for Parallel Processing, pp. 200–218,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[17] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling:
Flexible proportional-share resource management”. In 1st
Symp. Operating Systems Design & Implementation, pp.
1–11, USENIX, Nov 1994.

[18] M. E. Yaari and M. Bar-Hillel, “On dividing justly”. Social
Choice and Welfare 1(1), pp. 1–24, May 1984.

[19] H. P. Young (ed.), Fair Allocation. Proceedings of Symposia
in Applied Mathematics, American Mathematical Society,
1985.

