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Abstract

We present methods for predicting the solution of time-dependent partial dif-
ferential equations when that solution is so complex that it cannot be properly
resolved numerically, but when prior statistical information can be found. The
sparse numerical data are viewed as constraints on the solution, and the gist of
our proposal is a set of methods for advancing the constraints in time so that
regression methods can be used to reconstruct the mean future. For linear equa-
tions we offer general recipes for advancing the constraints; the methods are gen-
eralized to certain classes of nonlinear problems, and the conditions under which
strongly nonlinear problems and partial statistical information can be handled are
briefly discussed. Our methods are related to certain data acquisition schemes in
oceanography and meteorologg. 1999 John Wiley & Sons, Inc.

1 Introduction

There are many problems in science whose solution is described in principle
by a set of partial differential equations, but where the solutions of the equations
are so complicated that in practice they cannot be found because they cannot be
properly resolved; well-known examples include problems in statistical physics,
such as many-body problems, as well as turbulence. There exists a large literature
on methods for overcoming the lack of resolution by making additional, problem-
specific assumptions.

The use of additional information cannot be avoided; our proposal in the present
paper is to use prior statistical information and view the initial data that can be rep-
resented on the computer as constraints that limit the range of possible solutions.
The resulting constrained statistics are then used to predict appropriate mean val-
ues and moments of future solutions. The availability of statistical information
is not questioned here, and examples of what constitutes useful information are
given. The greatest difficulty in the program just outlined is to find the future effect
of initial constraints. For linear equations and in the presence of sufficient prior
information, we solve this problem completely, at least in principle, and in certain
other cases we solve it approximately. We also prepare the terrain for a discussion
of nonlinear problems and of problems where the prior information is incomplete.
Our approach provides predictions that, in a sense specified below, are the best
information allowed by the lack of resolution.
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We consider partial differential equations of the form
(1.2) U = R(U, U, Uy, . .. ),

where the subscripts denote differentiatigms a space variablé,is the time, and

R is a (generally nonlinear) function of its arguments. We suppose that the solu-
tion of equation (1.1) is so complicated that it cannot be calculated accurately, for
example, because it is chaotic, or nonsmooth, or because the number of spatial di-
mensions is too large. Assume for the time being that for every tjm& know

a probability measurg, the “prior measure,” on the space of solutions of equa-
tion (1.1) viewed as functions of We suppose that we can only muster sufficient
computational power to calculal¢ quantities, and that if thedé quantities were
Fourier coefficients of the solution or point values of the solution, the information
that they contain would not be sufficient to calcul&ey,...) andu; accurately
enough for a time integration starting from specific initial data. We assume that the
N quantities we know initially are the values Nffunctionals of the solution, of

the form

(1.2) (0a(0),u(0)) :/ga(x,O)u(x,O)dx7 a=1...N,

where the argument O ig refers to the initial time = O; we denote the value of
the o™ functional byug (0), so that

(1.3) U (0) = (9u(0), u(0)).

If the “constraining kernelsy are local in space, one can think of tleas local
averages of the solution; in the special cgge- d(X— Xq), Uis a point value of the
solution atx = X4. The set of functions that satisfy the\ initial constraints (1.3),
the “initial constrained ensemble,” is a subset of the set of functions that carry
the measurel at timet = 0 and inherits fromy a measure conditioned by the
constraints; in other words, we pick initial data from the subset of functions on
which the probability measure is defined that obey the initial constraints. If the
problem is unresolved, this set of initial data contains functions that differ from
each other significantly, and the prior measure allows us to assign probabilities to
the occurrence of given functions in that initial ensemble. In physicists’ notation,
the constrained measure can be written as

N
(1.4) 1] 81(0u(0).0) ~ & (0)

where the normalization factor has been omitted.

If one uses each function in the initial constrained ensemble as an initial value
for the partial differential equation (1.1), one obtains a set of solutions which, for
each timet, inherits a measure from the initial conditions. Even when the prior
measureu does not change in time, the constrained measure does: For example,
if one assumes that initially the functions assume certain valudggaten points,
there is no reason to believe that the solutions of the differential equation continue
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to assume the very same values at these points later in time; indeed, if the prior
measureal is ergodic with respect to the equation, the constrained measure will
converge in time to the prior measure.

To predict the future, we have to know how the constrained measure evolves in
time. Our central hypothesis is that as the constrained measure evolves, it continues
to be well approximated as the prior measure constrained by constraints of the
form (1.3), but with kernelg,(x,t) and constraint values, (t) that may change
in time. In physicists’ notation, the time-dependent constrained measure can be
written as

N
(1.5) U] 8l(ga(t), u) — Ua(t)].

a=1
If these kernels and values are known at a later time, one can use them to calculate
averages with respect to the constrained measure and thus find the future averaged
over the “invisible” degrees of freedom that cannot be represented in an unresolved
calculation. In a sense explained below, our calculation minimizes the error on the
average among all schemes that use the information available in the initial data.
The central problem is to find the evolution of the constraining keimgbs t) and
of the valuesiy(t) of the constraints.

We shall denote averages with respect to the prior measbyebrackets ),
and averages with respect to the constrained measure by subscripted bfagkets,

We restrict ourselves in most of the present paper to problems where the prior
measure is invariant in time. If one takes a subset of the functions that carry the
measure initially (for example, those functions that at some fixed pgithke
values between two given numbexsandb), then the differential equations may
well take the corresponding solutions out of this set, but these solutions will be
replaced by others so that the probability of finding a solution in the given subset
remains fixed. Such measures are the analogues of equilibrium distributions in the
kinetic theory of gases, where particles may collide and move but their distribution
remains fixed.

Our approach shifts the burden of predicting the solution of unresolved prob-
lems from guessing relations between large-scale computable quantities and small
scale, “invisible” quantities to determining appropriate prior distributions. In prob-
lems where invariant, i.e., equilibrium, measures serve as prior distributions, our
approach is a numerical version of near-equilibrium statistical mechanics. Our
use of prior and constrained “posterior” statistics is reminiscent of Bayesian meth-
ods, augmented here by the key device of time-dependent constraints determined
by differential equations. Our construction is related to certain data acquisition
schemes (see [5, 16, 19]) where one tries to make predictions on the basis of uncer-
tain equations, partial and uncertain data, and prior information about the statistics
of the errors. A simplified version of our methods has been briefly explained in
[9]. A number of interesting attempts have been made over the years to fill in data
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from coarse grids in difficult computations so as to enhance accuracy without refin-
ing the grid (see, e.g., [14, 20]). Time dependence has similarly been approached
through the estimation of time derivatives [1, 12]. Without a prior measure and
a prescription for its constrained time evolution, however, the usefulness of such
methods is necessarily limited.

The paper is organized as follows: In the next section we present for later use
some lemmas on Gaussian distributions and related constrained expectations. In
the third section we present a general discussion of the problem of advancing con-
straints; in particular, we show that in the linear case the assumption according to
which the constrained measure remains the prior measure constrained by a fixed
number of affine constraints is true, and that the exact evolution of the kernels
is dual to the evolution of the solutions of the partial differential equation. We
also discuss approximate evolutions of the constraints that may be easier to use
in practice, and show that the constructions can be extended to certain nonlinear
problems. In the three sections that follow, we apply our techniques to a linear
problem, a nonlinear problem, and a problem with random forcing. Finally, we
provide a short discussion of what one should do in problems that are strongly
nonlinear and where the prior information is incomplete.

2 Gaussian Distributions and Constrained Expectations
under Affine Constraints

We begin by presenting three elementary lemmas that relate Gaussian prior
measures to the corresponding constrained measures. In all the examples we con-
sider in the present paper, the measures either are Gaussian or can be viewed as
perturbations of Gaussian measures. The general case of an arbitrary prior mea-
sure requires more sophisticated tools and will be briefly discussed in the final
section. The Gaussian and near-Gaussian cases are sufficient to explain the ideas
and are often encountered in practice.

Consider first a finite collection of random variables...,u,. This collec-
tion has a Gaussian distribution when the values of the random variables have a
probability distribution function of the form

P(st<ui <s1+dsp,...,5n < up <& +ds)
= f(s)ds---dsy = Z 'exp(—3sa;sj + bis) ds - dsy,
whereg;; are the entries of a symmetric positive definite magijx, j =1,...,n,

theb; are the entries of a vectbr Z is a normalizing constant, and repeated indices
imply summation. The means of thieare

(2:2) (i) = a;"bj.
where theai‘j1 are the entries of the matrix1, and the covariances of theare

(2.3) Coviui, uj] = (uiuj) — (u) (uj) = a;*.

(2.1)
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The expectations of higher moments are determined by Wick’s theorem [13]:

(2.4)  ((uiy = (Ui)) .. (Ui — (W) =
0, | odd,

; B Covui, , Uiy, ]...Coviui, ,ui,], | even.
all possible pairings
Of{il...i|}

Suppose we draw = uy,..., U, from a Gaussian distribution but accept only
the samples that satisly < n affine constraints,
(25) U_(X:gaiuia a:lv"'7Na

where theN numberau, are given, thay,; are the components of ahx n matrix

G, of which theN column vectors indexed by are linearly independent. Sym-
bolically, we write thatu is distributed according to the constrained probability
density

(2.6) fa(u) = |ﬂ| O[Quilhi — Ua] ,
a=1

whereZ’ is a normalization constant.
The mean oti with respect to the constrained probability density (2.6) is given
explicitly in terms ofA, b, and the constraint data andu by

(2.7) (Ui)g = a;bj + (a5 '9aj )My [Up — Gpicdy 0]
where, as before, thﬂgé are the entries oA, and similarly form;é andM 1,

where the matrit has as entries the unconstrained covariances of the constrained
guantities,

(2.8) Map = {(Goi i) (9pjUj)) — (Gaili) (Gpili) = Gaid; "G -
The covariances of the with respect to the constrained probability density (2.6)
are

(2.9) Covelui, uj] = &;" — (Ga?) M (2% )

Wick’s theorem applies to these constrained expectations exactly as it applied to
the unconstrained expectations:

(2.10) <(ui1 - <Ui1>g) E (ui| - <ui|>J)>LT:
0, | odd,

; Coviluiy, , Ui, | ... Covglui, Ui, ], |even,
all possible pairings
Of{il...i|}
Equations (2.7) and (2.9) can be derived from standard linear regression theory
(see, e.g., [17]). The derivation of the constrained version of Wick’s theorem (2.10)
proceeds by noting that a delta function can be represented as a limit of a Gaussian
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variable with a small variancA2/2; therefore, the constrained probability den-
sity (2.6) can be written as

1 1
(2.11) de):ng‘]ofexp(—QUiajjUj—FbiUi) X

- ex [ ! (i Ui — Ug )
chll i P|~ A2 (Gaill — Ua

For any finite value of\, the constrained probability density is proportional to an
exponential of a quadratic form of the vectari.e., it is Gaussian, and therefore
Wick’s theorem applies. An appropriate limit can then be taken.

Equation (2.7) shows that constraints alter means in a way that is lineanig the
and independent of multiplicative factors in the covariance. Equation (2.9) shows
that constrained covariances are determined by the m@talone, without ref-
erence to thely. Equation (2.10) shows that the constrained Gaussian distribu-
tion (2.6), while not satisfying the requirement that the covariance matrix be non-
singular, retains a key property of Gaussian densities.

In the applications below we shall use Gaussian variables parameterized by a
continuous variablg, i.e., Gaussian random functions- u(x); their meangu(x))
and covariancea™1(x,y) = (u(x)u(y)) — (u(x))(u(y)) will be defined for allx and
y in an appropriate range rather than only for integer valuesaofl j. The matrix
A~1 becomes the integral operator whose kernel is the funetidn The kernel
a= a(x,y) of the operatoA inverse toA~! is defined by

(2.12) /dya‘l(x, y)a(y,z) = 8(x,2).

The vectors with entriegqi become functiongy (x), and the constraint equations
(10) become equations (2) of the introduction. The regression formula (2.7) be-
comes

@1 ()= )+ |G [ amtuay)]

where

2.14) a9 = { [ 8 tx)ga()dy} med.

and them;é are the entries of the matrM—! whose inversé/! has entries
(2.15) mos = [ ga()a (x.y)gp(y)axaly,

The formula for the constrained covariance can be obtained from (2.9) by replacing
eachi by anx, eachj by ay, and each summation over a Latin index by the
corresponding integration. Wick’s theorem survives with the appropriate changes
in notation. Note that the Greek indices that refer to khmitial data survive as
integers.
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3 Updating Constraints

We now turn to the central problem of updating the constraints (1.3) in time.
Consider the special case of equation (1.1):

(3.1) W = Lu,

wherelL is a linear operator. We are looking for the average (and possibly higher
moments) of the solution at tinteknowing that at = 0 theN equations (1.3) were
satisfied, with given constraining kernglg = 94 (0) = ga(X,0) and given values
Uq (0) of the constraints. The problem at hand is to find kergg{s) and constraint
valuesu (t) that will encode the same information as the initial constraints.

A first construction proceeds as follows: Differentiate tie constraint with
respect ta:

& () = (o)) + (), ) = (o)t +L'ge, )

whereL" is the operator adjoint th. If we choosegq(t) so that it satisfies the
equation

(3.2)

(3.3) (Ga)e +L7ga =0,
and if we set, in additiory(t) = u(0), the resulting constraint
(3.4) (Ga(t), u(t)) = Ua(0)

will be satisfied at time by all solutions that satisfied the initial constraint. An
analogous equation has been proposed for data acquisition [5]. The constrained
probability distribution defined by these constraints is the probability distribution
that develops from the initial constrained distribution; indeed, in physicists’ nota-
tion, we write the constrained measure in the form

N
(3.5) Ha(t) = faldu = f(u)[dul |i|15[(ga(t)7u) — Ua(t)],

where[dy] is a formal product of differentiald,(u) is the prior probability density,
and fg(u) is the constrained probability density. The evolution of any probability
density is given by the Liouville equation [18],

of of
(3.6) 5 + 50 Ludx=0,
whered/du denotes a functional derivative. One can readily verify thatif), the
prior density, is time-invariand(f /dt = 0), then the constrained probability density
fa(u) satisfies (3.6) when the kernels obey (3.3). The constraints that satisfy (3.3)
are therefore equivalent to the initial constraints and encode the same informa-
tion. We call an evolution described byLT dual to the evolution described by
L. Formula (3.3) solves the problem of determining the kerggland determines
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completely the evolution of all the momentswfWe have also proved in the lin-
ear case the validity of our assumption according to which the constrained measure
remains for all time the prior measure subjectedltaffine constraints.

Itis natural to look for ways of updating constraints that are easier than solving
equation (3.3), as well as easier to generalize to nonlinear problems. One starting
point is the equations (2.7) and (2.9), which express the constrained means and
variances in terms of the constraints. (Our discussion now will be restricted to the
Gaussian case; for the more general situation, see the concluding section below.)
By means of Wick’s theorem, one can also express the higher-order moments at
all pointsx in terms of the constraining kernels and the values of the constraints.
The knowledge of the means, covariances, etc., at mékes it possible to eval-
uate quantities such ds;) = (u);, ((U?);) = (u?);, and the derivatives of various
covariances and of higher moments, atkhpoints of the computational grid, and
therefore calculate all these moments a short thinkater. According to our main
assumption, these later moments can be obtained by constraining the prior measure
by a new set oN constraints; if we allow the functiorg, to depend orf — 1 pa-
rameters, and if one calculatésnoments per grid point, equations (2.7) and (2.9)
and their higher-order analogues constitt@onlinear equations for the unknown
parameters at timat and for the constraint valuegAt).

Given the new constraining kernels and the new constraint values, the calcula-
tion can be repeated, and if it is repeated often and one ndeke®, one obtains a
set of of ordinary differential equations for the parameters and the constraints. The
simplest approximation in this sequence of approximations is one in which only
the mean is used to update the constraints; one can then choose as parameter the
valueu, of the constraint and keep tlygg constant in time, for example, equal to
the bell-shaped functiogy = exp— (X — X4 )?/20]/+/2m0, with width o, centered
atx = xq. Multiplication of equation (2.7) bgy; and summation overyields

(3.7) Uo (1) = Gai (Ui) &;

differentiation with respect tbgives

dug, ~ /dy
(3.8) dat Jai <a>u

or, in the continuum version,

(3.9) % = <<ga%’>>6= {(GasLU))g-

To understand what is being assumed here, consider the derivative of the con-
straint equation (3.2) when the kermglis time invariant:

(3.10) %Ja(t) = (Ga, W) = (G LU) .
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If the constrain{{gy, u(t)) = uq(t) were indeed the evolute of the initial constraint
(0a,u(0)) = uq(0), then the right-hand side of equation (3.10) would be a (non-
random) function of. If the constrain{gy,u(t)) = uq(t) is not the evolute of the
initial constraint, then the right-hand side of equation (3.10) is a random variable;
the approximation (3.8) replaces this random variable by its mean. If the stan-
dard deviation of(gq,Lu) in the constrained ensemble were zero, equation (3.8)
would be exact and not an approximation; if the constrained standard deviation of
(9a, Lu) is small, equation (3.8) is a good approximation. To make the constrained
standard deviation afgy, Lu) small, gy should have a support of nontrivial width

so that(gq, Lu) is a (locally) averaged quantity; the spatial derivativego$hould

also be smooth, so that the derivatived.iare averaged. The approximate proce-
dure is useful if gq, Lu) has a small constrained standard deviation with kempels
whose width (for exampleg in the Gaussian case) is comparable to the distance
between points. Note the analogy with the conditions under which vortex methods
converge [8]; they, too, rely on fixed kernels to approximate a varying field.

Given the kernelgy, the information we have at any one time consists of the
values of theN constraints. Suppose we use this information in some arbitrary way
to construct an approximatiagi to u; = Lu; u; is a function of theiy,a=1,...,N,
sayu = D(ug,...,uy). Given a specific member= u(x) of the constrained en-
semble, the error in the approximation is

(3.11) E[u(-)] = Lu—D({y,...,0n).

Linear regression, used to obtain the mean)); from the knowledge of the
prior measure and the constraints, guarantees that the value of the time derivative
we calculated in the preceding paragraph minimizes the mean square error

(3.12) ([Lu—D(y,...)}?)

over all approximation®(...). In this sense, our approximation of the time deriv-
ative is optimal.

The exact procedure for evolvilgg (equation (3.3)) requires the solution of the
partial differential equation for the functiomgz; when the equation has constant
coefficients, one may use as tipethe spatial translates of a single functigand
reduce the amount of work. Furthermore, in the exact construction, once the con-
straining kernels have been calculated, the moments of the solution can be found
from the formulas in the previous section, and the equatienlLu is not used any
further. In the second, approximate construction wheregthare fixed and the
Uq vary, the latter have to be determined from the evolution of the mean solution
in time so that the right-hand side of (3.8) can be evaluated, requiring the solution
of N ordinary differential equations (see the examples in the following sections).
These two procedures are merely the extreme members of a continuum of possibil-
ities: One can solve equation (3.3) approximately, for example, by expaggling
a series and using as an approxingté) only the first few terms in the series that
results from the application of (3.3): The approximggét) can then be inserted
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into equation (3.2) to obtain an equation €gr(t) whose solution varies slowly and
where the constrained variance of the right-hand side may be smaller than in the
case of an invariardy.

Note that the approximation (3.8) is applicable as it stands to nonlinear equa-
tions; for nonlinear equations, one also has a whole range of intermediate possi-
bilities. For example, one may write the nonlinear oper&aoff equation (1.1) as
R=L+Q, whereL is linear; then one finds

dug
(3.13) % = ((9a)t,U) + (9a, Lu+ Q(u)) = ((9a)t +|—T9a7u) +(9,Q(u)).
If one uses equation (3.3) to determine tla¢t), one finds
(314 e — {(go. Q)5

The art is to find partition® = L -+ Q that minimize the constrained variance of
(da, Q). Such partitions are reminiscent of the interaction picture in quantum me-
chanics.

4 Example 1: A Linear Schrodinger Equation
Consider the Schrddinger equation on the unit circle with a constant potential,
(4.1) iUy = —Uyx+ MPU,

whereu is a complex-valued function on the circle and is a constant. This
equation is the Hamilton equation of motion for the Hamiltonian

2n
4.2) HIu] :/0 (|2 -+ 2] dx
(see [11]). Equation (4.1) preserves the density of the canonical ensemble,
(4.3) folu] = e MY

where the temperature has been chosen equal to 1.

The measure defined by equation (4.3) is absolutely continuous with respect to
a Wiener measure [15], and its samples are, with probability 1, almost nowhere
differentiable. The corresponding solutions of the equations of motion are weak
and difficult to approximate numerically.

By symmetry we see that the unconstrained meags) and(u*(x)) are zero.
To extract the covariance functigxr! from the probability density (4.3), we write
Hu] as a double integral,

2n 21
@) Hu = [ [ 0030 Y)udy) + mu (8(x—y)u(y)] dxay.

whereu* is the complex conjugate of Integration by parts shows that the entries
of the functional matriXA are

(4.5) a(x,y) = —&'(x—y) +nmPd(x—y),
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whered(x) is ad-function andd”(x) is the second derivative of&function. The
inverse of this functiona—1(x,y), is the functiorK (x,y) that satisfies

2n
(4.6) | axyk2dy=30x2).
Using the explicit form (4.5) oA, we see thaK(x,y) is translation invariant, i.e.,

a function only of(x—y), and that it satisfies

2
Xy PR (x—y) = B(x ).

This equation can easily be solved by Fourier series. The result is

1 o ki)
(4.8) K(x,y) =a t(xy) = Z i@y

(4.7)

We suppose that the initial data for equation (4.1) are drawn from the distribu-
tion (4.3) and thaN initial observations have been made at bhgrid points we
can afford:

21
(4.9) 0 (0) = (G, u(0)) = |~ u(x.0)ga(x)cx,

wherea = 1,... N, so that the; = 2 /N form a regular mesh on the circle. We
consider first an approximation where the functiggsare fixed in time, and we
furthermore take them to be translates of each othgix) = g(X— Xy ). We pick

(4.10) z ox [ (x— 2Trr) }

T—foo

i.e., a normalized Gaussian function whose widtlojswith suitable images to
enforce periodicity; we will picko to be equal to the mesh spacing/A. The
Fourier representation of x) is

(4.11) Z dhxg=akeo®
Given the constraints (4.9), we can find the mean initial condition everywhere
by applying equation (2.7), which becomes

(4.12) (U(X)) 5= Ca(X) g
where

(4.13) ) e
:{i )3 dkcxa) € * ’ }m—l
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FIGURE 4.1. Example of a regssion curve for the linear Schrédinger
equation. Five constraint valuee) (vere chosen, representing local av-
erages ofp(x) = Imu(x) on a uniformly spaced grid. The constraining
kernels are translates of each other and have a Gaussian profile of width
2m/5 and are centered at the grid points. The solid line represents the
constrained mean functigp(x)) ; obtained by taking the imaginary part

of equation (4.12).

andm;é are the entries of the matrM—1 whose invers&! has entries

(4.14) 1 @ o b2

These Fourier series are easily evaluated numerically. An example of a regres-
sion for randomly chosen values af is shown in Figure 4.1.

We apply the approximate procedure in which the constraining kegaélg
are fixed and only the values of the constraimtshange. The mean derivative of
uis, from equation (4.1),
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<ut(X)>u_: <iUxx( —im? u(x >,

2
@.15) = i U00) g I U00)g

- {19 - e ) &

Substituting the Fourier representationcgfx) from equation (4.13), we find

(4.16) (W () g = —igp(X)mg Ty

Multiplication of equation (4.16) by, and an integration yields, as in equa-
tion (3.8), the approximation

du_o( 2n ) 2n iy
@17) 5o =), GO {u®)gdy= —I{ A ga(y)ga(y)dy} Mgy Uy
where the integral in braces is another periodic Gaussian,
@.18) "G vgp)d it p)g K
. , a(Y)gp(y)dy= ZHkZ

The important point about formula (4.17) is that it represents a closed system of
ordinary differential equations for thg’s. The matrix elements in braces need be
computed only once to define the scheme and are easily evaluateddaarall3.

We next calculate the exact mean future of the unresolved Schrédinger equation
so that it can be compared with the result of the scheme we just presented. This
could be done by using regression to find the mean solution at the initial time and
then using the Green function to propagate this mean solution to a future time. In-
stead, we shall use the exact formalism (equation (3.3)) to find the time-dependent
constraining kernels. A comment on these two ways of getting exact mean solu-
tions in linear problems can be found below.

Starting from the initial kernels (4.11), the later kernels obey the dual equation,
which is a time-reversed Schrodinger equation. Its solution is

1 o H HA 11,2+2
4.19 t) = — k(x—Xa) (K +mz)te—3k o}
( ) gG(X7 ) anzz_oo
The mean solution at timeis constructed by regression from the probability

density (4.3) and the constraining kernels (4.19). Repeating the calculation that led
to (4.12), we find

(4.20) <u(xat)>LT(t) = CB(X’t)u_B
where

12 'k(xfx(,)e_‘l‘kzoz (Rt 1
(4.21) cp(x,t) = ZTk:Zooé We‘ My (1),
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FIGURE 4.2. Evolution intime of the mean variable§gq, p(t)))a
wherep(x,t) = Imu(x,t), andgy is a time-independent Gaussian con-
straint kernel as in the text. The symbots#£ 1v, a = 24, o = 3H,

o = 44, a = 5e) are the exact values of these quantities as determined
by equation (4.20). The solid lines are the approximations obtained by
integrating the system of ordinary differential equations (4.17).

e % k22

1O k) (k2 m)t
(4.22) maB(t)—ZT[k:z_me' kZerZe2 ,

and as usual, thm&é are the entries of the matrix inverse to the matrix whose
entries aremgg.

We can use this exact formula for mean futures (4.20) to test the accuracy of
the approximation (4.17). Figure 4.2 compares the approximate prediction with
the exact mean solution for initial valuad)) of the constraints picked at random.
The approximation is not distinguishable from the exact solution on the scale of
the plot for the duration of the calculation. Note that we have efficiently calculated
the average behavior of an ensemble of solutions, the individual members of which
are very difficult to evaluate.

As a final comment, we wish to point out that our techniques are useful even
in linear problems where other ways of using regression to predict the mean future
are available. First, we have seen and will see again below that our techniques are
starting points for approximation. In addition, our methods apply for linear equa-
tions with nonconstant coefficients. Alternate techniques for advancing the mean
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solution exactly in linear problems require the knowledge of a Green function,
which is a function of @ arguments, wherd is the number of space dimensions.
Our methods, even when an exact solution is wanted, require a knowledge of
functions ofd arguments—a much smaller amount of information to store.

5 Example 2: A Nonlinear Hamiltonian System

We now consider a nonlinear generalization of the method demonstrated in the
preceding section. We want to exhibit the power of our method by comparing the
solutions that it yields with exact solutions; in the nonlinear case, exact solutions
of problems with random data are hard to find, and we resort to a stratagem. Even
though our method applies to the full nonlinear partial differential equation, we
study a finite-dimensional system ofordinary differential equations that is for-
mally an approximation of a nonlinear Schrodinger equation:

(51) i%__ujJrl ZAUZJ—'_UJ 1+Re(ul>3+llm(ul)37 j:]-a"'vnv
where then dependent variablag are complex-valued anl = % This system is
nonintegrable fon > 1; it is the Hamilton equation of motion for the Hamiltonian

(52) H(qla--qu?pla”')pn) =

12 /91— a\° [(Pi1i—Pi\> 1,4 4
EJZIKT T\ a +§(qj+pj)

whereq; and p; are canonical variables relatedudy uj = qj +ip;. The differ-
ential equations preserve the canonical density,

(5.3) F(g.p) =P

The approximation is only formal because we shall be considering nonsmooth data
which give rise to weak solutions that cannot be readily found by difference meth-
ods.

The probability density (5.3) is hot Gaussian, raising a technical difficulty in
computing constrained expectation values. We adopt an approximate procedure
where the density (5.3) is approximated by a Gaussian density that yields the same
means and covariances. The means are zero by symmetry,

(5.4) (9j) =0=(p;)

(positive and negative values of these have equal weight). Alsp'sadindg’s are
uncorrelated:

(5.5) (djpx) =0,

since the density factors into a product of a density forgeeand a density for
the p's. Thus(gjak) = (pjpx) are the only nontrivial covariances. Finally, since

)
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FIGURE5.1. The covariancéygj) = (pip;) as a function of the sepa-
rationi — | for the probability density (5.3). These values were computed
by a metropolis Monte Carlo algorithm with 26amples. The statistical
error is less than 1%.

the Hamiltonian is translation invariant, these covariances depend only on the sep-
aration ofj andk and are symmetric in —k. We thus haveé) numbers to deter-
mine: (101), (Q102), --- » <q1qn/2>. We compute these numbers by a metropolis
Monte Carlo algorithm [6]. The covariances obtained in this way are shown in
Figure 5.1. With the unconstrained means and covariances in hand, the regression
formula (2.7) can be used.

We assume that the number of degrees of freeddsriarge; at time = 0, we
observe a small numbé&t of quantities of the form

n
(5.6) a(0)=Y gujtj, a=1,....N,
=1

and try to predict the mean future of the right-hand sides of equation (5.6) when
theu; evolve according to the full system of equations (5.1); i.e., we try to predict
the mean of a small number of quantities that depend on the full system of ordinary
differential equations without solving the latter. In the calculations we exhibit, we
chosen = 16 andN = 2 so that we reduced the number of degrees of freedom by
a factor of 8; we are also seeking to save the effort of averaging the solution of
(5.1) over many initial data drawn from the canonical distribution (5.3). We pick
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as constraining kernels discretized Gaussian functions centejed handj = 9,

(5.7) glj:ZeXp{— U )}7 92j:ZeXp{_ U )},

n2g2 n2g2

whereo = 0.25, d(],k) is a distance function over the periodic index axis (i.e.,
it is the minimum of|j — K|, |j —k+n|, and|j —k—n|) andZ is a constant that
normalizes the kernels so th#\{?zlgdj =1

Again, our first approximation is with fixed constraining kerngjs, evolving
the valueg, andg, of the constraints. Since the equations of motion are nonlinear,
the time derivatives no longer commute with the regressions. Instead, we evaluate
the mean time derivatives in (5.1) by Wick’s theorem (equation (2.10)), which in
this case reduces to

(5.8) <[pj - <pj>q—p}3>= 0,

from which we may deduce that

de> <pj+12pj+pjl> 3
4 —_ _ _|_<p>_
< dt /g5 N? o P

Pj+1—2pPj + Pj-1 3
:_< i+ AZJ i >(ﬁ_2<pj>(ﬁ+3<pj2 Cﬁ<p,~>(ﬁ.

Our lemmas allow us to evaluate this expression explicitly in terms ofighend
pq. Specifically,

(5.9)

(5.10) (Pi)gp = [(PiPK) Gak] My P,
with
(5.11) Mg = Gaj { Pj Pk) Gpk
and
(5.12)
(0F)gp= (Pt (%) — [(PiPi) Gad My [0 (Pipy)]  (no sum overs).

In the approximation (3.8), the equations for the values of the constraints are
obtained by multiplying equation (5.9) by, (with summation over the index
j). Substituting the numerical values of the (unconstrained) covariance matrix, we
obtain the following equation fay;:
(5.13) % = —195(pp — p1) + [1.50p3 — 0.88pZp2 +0.27p1p3 +0.11p3] .
The equation for, is obtained by substituting 4 2; the equations fop; and py
are obtained by the transformatipn— q andg — —p.

We compare the effective equations (5.13) with the exact mean solution of the
underlying equations (5.1) as follows: First, we generate many initial conditions
consistent with the constraints. Next, we evolve each initial condition using a
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Runge-Kutta method. Finally, we average the results for the varigii¢andq(t)

and compare with the prediction from the effective equations (5.13). Figure 5.2
shows this comparison. Once again, the system of two equations (5.13) reproduces
the average behavior of the resolved equations (5.1) to the resolution of the plot,
but at a very much smaller computational cost.

6 Example 3: A Stochastically Driven Heat Equation

We now turn to a more difficult problem: a linear equation with random forcing.
This problem poses a challenge to our methodology because at first sight the dual
evolution is undefined. However, we shall see that the machinery above extends to
this problem if one focuses on the right variables. We consider a one-dimensional
bar located at & x < 1, heated at its center by a fluctuating heat source and cooled
at its ends by heat baths. The temperatiset) of the bar is described by

(6-1) ut:Uxx+J<t)6(X_%)7

whereJ(t) is a random function of timed(x) is a é-function, andx = % is the
location of the source. The boundary conditions are

(6.2) u(0,t) =u(1,t) =0.

We shall use an even number of computational points so that the heat source always
falls between them; the heat source being singular, this is an unresolved problem:
The key contribution to the dynamics occurs between computational points. As-
sume thatl(t) is white noise; i.e.J(t) is a Gaussian random function of time that

has as mean and covariance:

(6.3) Q) =3,  Qt)I(t)) =3 +328(t1 —tz),
for some number3 andJ2.

The solutionu(x,t) of (6.1) depends od(t) and on some initial condition for
u(x,0). However, after long times it depends only &():

0

6.4) u(x,t) = / UK (x, —t') It +1'),

whereK(x,t) is the solution of

(6.5) Ki = Kxx,

with initial conditionK(x,0) = &(x — %) and boundary conditions
K(0,t) = K(1,t) =0.

The heat kernek is readily computed and so are, after suitably long times, average
values ofu and of functionals ofi. Formula (6.3) defines the prior distribution of
the solutions.



0.7

OPTIMAL PREDICTIONS

@

o B0 iy

0af " i

02 "." .‘"w"‘l

m““gs‘ \'mm’m
oF ’ "‘i‘mw "' "‘ "“

ey "y

—oal "‘.‘é;‘mm. “m‘m' . ‘ N”“

' “‘?“"Meeomo:mmom» ommtcmnm--nwmmw. mm.m,
(b)

FIGURE 5.2. Evolution intime of the mean variableq;pi(t)) pg for

the nonlinear equations (5.1). The symbols represent the values of these
quantities obtained by solving the 16 equations (5.1) fdridiial con-
ditions compatible with specific constraint values and averaging. The
solid lines are the values of the four corresponding functions obtained
by integrating equation (5.13). Figures (a) and (b) are for the time inter-
vals[0,1] and[0, 10, respectively.
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In a Fourier representation, the kerietan be written as
> . [(km .
(6.6) Kxt) =y 25m<—> e ¥ Plsin(kmx) .
K=1 2
The unconstrained means are

6.7)  (u(x) = </°°K(x,t)a(t)dt> _ j/mK(x,t)dt _J {X
Jo 0 211
The unconstrained covariance is

(6.8)  Covu(x),u(y)] = (u(x)u(y)) — (u(x)) (u(y)) = J /OmK(XJ)K(y,t)dt

(which we leave in integral form).
Suppose that we observe the functioat timet = 0 on a mesh oN points
Xa = 0 /N. We denote the values afat these mesh points by

x
VA
N

(6.9) Uy =U(Xa), a=1,...,N;
our constraints are of the standard form (1.3) with constraining kernels
(6.10) Ja (X) = (X —Xq) -

As in the previous example, we use a regression (2.7) to obtain the function
(u(x))g from the N constraints (6.9). The regression formula for this ensemble
with &-function constraining kernels is

(6.11) (u(x))g= (u(x)) +Covu(x), u(%a)]myg [Ug — (u(xp))]

where them;é are the entries of the matrid—! whose inverse is the matrid
with entries

(6.12) Mg = ((9a,U) (9, U) ) — (9o, 1)) (g, U)) -

Once again, this formula only involves readily evaluated Fourier series. An exam-
ple of a regression with randomly chosen point valu@ is shown in Figure 6.1.

To calculate the time evolution of the constrained measure, we proceed as fol-
lows: The valuesi(Xy,0) at timet = O constitute affine constraints on the stochastic
source:

0
(6.13) 0o (0) = / K (%, —t)J(t')dY .
This constraint ol is of our standard form, with
(6.14) Ga(t',0) = K(Xa, —t').

The values of the source term at positive time do not affect the valuéxgf0),
and thus as time advances the constraints recede into the past. Thus the constraint
onJ when the time has advancedttis

(6.15) Oa(t',1) = K(Xq,t —t').
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FIGURE6.1. An example of a regssion for the heat equation wilh=
1,J2 =1, and eigh®-function constraining kernels.

We apply our lemmas to obtain future constrained expectatiodsaofd then
compute the corresponding expectationsi tfirough the relationship (6.4). The
means and covariancesbivithout constraints were given in equation (6.3):

(6.16) Q) =3,  al(ty,ty) =325ty —to).

The time-dependent constraints (6.15) allow us to define a time-dependent matrix
M with entries

Myp(t) = ((Ga(t),I)(9a(1).J)) — ((Gu(t), D)) {(gp(t).9))

6.17 —
(6.17) :Jz/o K(Xa,t —t")K(xg,t —t')dt’.

The future constraints (6.15) imply that at timg 0,

()= () + {/Z Ja (t”,t)al(t”,t’)dt”} Mg ()

(6.18) x [Ug — ((gg(t),d))]

0
:j+J2K(xq,t—t’)m;§(t) [LTB—j/ K(xﬁ,t—t”)dt”} :
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Given the constrained, we can calculate the future The mean ofi(x,t) given
theN valuesuy (0) = u(xq,0) is

0
(U, t))g = [ KO —t) (3 gt

— ) +7{ [ Kix =Kt~V by
x [l = (uCx)))]

Future covariances can be obtained in a similar way. Note that the constraining ker-
nels move backwards in time, a motion dual to the forward unfolding in time of the
stationary stochastic proce3sOur machinery thus applies provided one uses the
appropriate variables. Note also that the prediction (6.19) decays to unconstrained
averages after long times.

One may wonder whether it is possible to calculate the evolution of the solu-
tion u of the original equation (6.1) by evolving directly constraintsuowithout
going back toJ. The answer is apparently negative. No exact kernel evolution
analogous to (3.3) can be defined, because no operator duahio be defined in
the presence of the noise. One can also prove that the constant-kernel evolution
approximation (3.8) is inaccurate in this case.

(6.19)

7 Conclusions and Further Work

We have presented methods for updating constraints in time that can be used
to predict the future behavior of solutions of time-dependent partial differential
equations on the basis of unresolved computations and partial data. We have con-
centrated on explaining the ideas, and the examples we have discussed have been
relatively simple; in particular, they have explicitly known invariant measures that
were either Gaussian or nearly Gaussian. For practical application, it is important
to transcend these restrictive assumptions.

The assumption of near-Gaussianity is inessential. It can presumably be some-
times overcome by an assumption of local Gaussianity (i.e., the assumption that
in a small neighborhood the probability densities are nearly Gaussian but with pa-
rameters that vary smoothly from neighborhood to neighborhood). A global al-
ternative, when the prior measure is non-Gaussian, is to look for the measure that
satisfies the constraints and is nearest to the prior measure; “nearest” should be
interpreted in the sense of “having the smallest relative entropy with respect to the
prior measure” [10]. Algorithms for finding such measures can be built in anal-
ogy to the constrained optimization methods of [7, 21, 22]. In strongly nonlinear
problems, the simplified approximation (3.8) may be useful if it is supplemented
by conditions on higher-order moments, as discussed at the end of Section 3.

A full knowledge of a prior measure is a luxury one cannot always expect.
However, one can readily see from the discussion above that one can make do
with the knowledge of covariances and maybe some higher-order moments and, in
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addition, that this knowledge is needed only on scales comparable to the distance
between computational points and smaller. Such knowledge is often available from
asymptotics and scaling [2, 3, 4].

It is obvious that the constraints need not be all imposed at the initial time;
subsequent information may sometimes be useful. Information about the right
balance between increasing the number of data points and investing more effort
into a careful updating of time-dependent constraining kernels awaits a broader
experience with this type of prediction method.
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