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Abstract

We present methods for predicting the solution of time-dependent partial dif-
ferential equations when that solution is so complex that it cannot be properly
resolved numerically, but when prior statistical information can be found. The
sparse numerical data are viewed as constraints on the solution, and the gist of
our proposal is a set of methods for advancing the constraints in time so that
regression methods can be used to reconstruct the mean future. For linear equa-
tions we offer general recipes for advancing the constraints; the methods are gen-
eralized to certain classes of nonlinear problems, and the conditions under which
strongly nonlinear problems and partial statistical information can be handled are
briefly discussed. Our methods are related to certain data acquisition schemes in
oceanography and meteorology.c© 1999 John Wiley & Sons, Inc.

1 Introduction

There are many problems in science whose solution is described in principle
by a set of partial differential equations, but where the solutions of the equations
are so complicated that in practice they cannot be found because they cannot be
properly resolved; well-known examples include problems in statistical physics,
such as many-body problems, as well as turbulence. There exists a large literature
on methods for overcoming the lack of resolution by making additional, problem-
specific assumptions.

The use of additional information cannot be avoided; our proposal in the present
paper is to use prior statistical information and view the initial data that can be rep-
resented on the computer as constraints that limit the range of possible solutions.
The resulting constrained statistics are then used to predict appropriate mean val-
ues and moments of future solutions. The availability of statistical information
is not questioned here, and examples of what constitutes useful information are
given. The greatest difficulty in the program just outlined is to find the future effect
of initial constraints. For linear equations and in the presence of sufficient prior
information, we solve this problem completely, at least in principle, and in certain
other cases we solve it approximately. We also prepare the terrain for a discussion
of nonlinear problems and of problems where the prior information is incomplete.
Our approach provides predictions that, in a sense specified below, are the best
information allowed by the lack of resolution.
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We consider partial differential equations of the form

ut = R(u,ux,uxx, . . .) ,(1.1)

where the subscripts denote differentiation,x is a space variable,t is the time, and
R is a (generally nonlinear) function of its arguments. We suppose that the solu-
tion of equation (1.1) is so complicated that it cannot be calculated accurately, for
example, because it is chaotic, or nonsmooth, or because the number of spatial di-
mensions is too large. Assume for the time being that for every timet, we know
a probability measureµ, the “prior measure,” on the space of solutions of equa-
tion (1.1) viewed as functions ofx. We suppose that we can only muster sufficient
computational power to calculateN quantities, and that if theseN quantities were
Fourier coefficients of the solution or point values of the solution, the information
that they contain would not be sufficient to calculateR(u, . . .) andut accurately
enough for a time integration starting from specific initial data. We assume that the
N quantities we know initially are the values ofN functionals of the solution, of
the form

(gα(0),u(0)) =
∫

gα(x,0)u(x,0)dx, α = 1, . . . ,N ,(1.2)

where the argument 0 ing refers to the initial timet = 0; we denote the value of
theαth functional byūα(0), so that

ūα(0) = (gα(0),u(0)) .(1.3)

If the “constraining kernels”g are local in space, one can think of theuα as local
averages of the solution; in the special casegα = δ(x−xα), ū is a point value of the
solution atx = xα. The set of functionsu that satisfy theN initial constraints (1.3),
the “initial constrained ensemble,” is a subset of the set of functions that carry
the measureµ at time t = 0 and inherits fromµ a measure conditioned by the
constraints; in other words, we pick initial data from the subset of functions on
which the probability measure is defined that obey the initial constraints. If the
problem is unresolved, this set of initial data contains functions that differ from
each other significantly, and the prior measure allows us to assign probabilities to
the occurrence of given functions in that initial ensemble. In physicists’ notation,
the constrained measure can be written as

µ
N

∏
α=1

δ[(gα(0),u)− ūα(0)](1.4)

where the normalization factor has been omitted.
If one uses each function in the initial constrained ensemble as an initial value

for the partial differential equation (1.1), one obtains a set of solutions which, for
each timet, inherits a measure from the initial conditions. Even when the prior
measureµ does not change in time, the constrained measure does: For example,
if one assumes that initially the functions assume certain values atN given points,
there is no reason to believe that the solutions of the differential equation continue
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to assume the very same values at these points later in time; indeed, if the prior
measureµ is ergodic with respect to the equation, the constrained measure will
converge in time to the prior measure.

To predict the future, we have to know how the constrained measure evolves in
time. Our central hypothesis is that as the constrained measure evolves, it continues
to be well approximated as the prior measure constrained by constraints of the
form (1.3), but with kernelsgα(x, t) and constraint values ¯uα(t) that may change
in time. In physicists’ notation, the time-dependent constrained measure can be
written as

µ
N

∏
α=1

δ[(gα(t),u)− ūα(t)] .(1.5)

If these kernels and values are known at a later time, one can use them to calculate
averages with respect to the constrained measure and thus find the future averaged
over the “invisible” degrees of freedom that cannot be represented in an unresolved
calculation. In a sense explained below, our calculation minimizes the error on the
average among all schemes that use the information available in the initial data.
The central problem is to find the evolution of the constraining kernelsgα(x, t) and
of the values ¯uα(t) of the constraints.

We shall denote averages with respect to the prior measureµ by brackets〈〉,
and averages with respect to the constrained measure by subscripted brackets,〈〉ū.

We restrict ourselves in most of the present paper to problems where the prior
measure is invariant in time. If one takes a subset of the functions that carry the
measure initially (for example, those functions that at some fixed pointx0 take
values between two given numbersa andb), then the differential equations may
well take the corresponding solutions out of this set, but these solutions will be
replaced by others so that the probability of finding a solution in the given subset
remains fixed. Such measures are the analogues of equilibrium distributions in the
kinetic theory of gases, where particles may collide and move but their distribution
remains fixed.

Our approach shifts the burden of predicting the solution of unresolved prob-
lems from guessing relations between large-scale computable quantities and small
scale, “invisible” quantities to determining appropriate prior distributions. In prob-
lems where invariant, i.e., equilibrium, measures serve as prior distributions, our
approach is a numerical version of near-equilibrium statistical mechanics. Our
use of prior and constrained “posterior” statistics is reminiscent of Bayesian meth-
ods, augmented here by the key device of time-dependent constraints determined
by differential equations. Our construction is related to certain data acquisition
schemes (see [5, 16, 19]) where one tries to make predictions on the basis of uncer-
tain equations, partial and uncertain data, and prior information about the statistics
of the errors. A simplified version of our methods has been briefly explained in
[9]. A number of interesting attempts have been made over the years to fill in data
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from coarse grids in difficult computations so as to enhance accuracy without refin-
ing the grid (see, e.g., [14, 20]). Time dependence has similarly been approached
through the estimation of time derivatives [1, 12]. Without a prior measure and
a prescription for its constrained time evolution, however, the usefulness of such
methods is necessarily limited.

The paper is organized as follows: In the next section we present for later use
some lemmas on Gaussian distributions and related constrained expectations. In
the third section we present a general discussion of the problem of advancing con-
straints; in particular, we show that in the linear case the assumption according to
which the constrained measure remains the prior measure constrained by a fixed
number of affine constraints is true, and that the exact evolution of the kernels
is dual to the evolution of the solutions of the partial differential equation. We
also discuss approximate evolutions of the constraints that may be easier to use
in practice, and show that the constructions can be extended to certain nonlinear
problems. In the three sections that follow, we apply our techniques to a linear
problem, a nonlinear problem, and a problem with random forcing. Finally, we
provide a short discussion of what one should do in problems that are strongly
nonlinear and where the prior information is incomplete.

2 Gaussian Distributions and Constrained Expectations
under Affine Constraints

We begin by presenting three elementary lemmas that relate Gaussian prior
measures to the corresponding constrained measures. In all the examples we con-
sider in the present paper, the measures either are Gaussian or can be viewed as
perturbations of Gaussian measures. The general case of an arbitrary prior mea-
sure requires more sophisticated tools and will be briefly discussed in the final
section. The Gaussian and near-Gaussian cases are sufficient to explain the ideas
and are often encountered in practice.

Consider first a finite collection of random variablesu1, . . . ,un. This collec-
tion has a Gaussian distribution when the values of the random variables have a
probability distribution function of the form

P(s1 < u1 ≤ s1 +ds1, . . . ,sn < un ≤ sn +dsn)

= f (s)ds1 · · ·dsN = Z−1exp
(−1

2siai j sj +bisi
)

ds1 · · ·dsN ,
(2.1)

whereai j are the entries of a symmetric positive definite matrixA, i, j = 1, . . . ,n,
thebi are the entries of a vectorb, Z is a normalizing constant, and repeated indices
imply summation. The means of theui are

〈ui〉 = a−1
i j bj ,(2.2)

where thea−1
i j are the entries of the matrixA−1, and the covariances of theui are

Cov[ui ,uj ] ≡
〈
uiuj

〉−〈ui〉
〈
uj

〉
= a−1

i j .(2.3)
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The expectations of higher moments are determined by Wick’s theorem [13]:

(2.4) 〈(ui1 −〈ui1〉) . . .(uil −〈uil 〉)〉 =


0, l odd,

∑
all possible pairings

of{i1...il}

Cov[uip1
,uip2

] . . .Cov[uipl−1
,uipl

], l even.

Suppose we drawu = u1, . . . ,un from a Gaussian distribution but accept only
the samples that satisfyN < n affine constraints,

ūα = gαiui , α = 1, . . . ,N,(2.5)

where theN numbers ¯uα are given, thegαi are the components of anN×n matrix
G, of which theN column vectors indexed byα are linearly independent. Sym-
bolically, we write thatu is distributed according to the constrained probability
density

fū(u) =
1
Z′ f (u)

N

∏
α=1

δ[gαiui − ūα] ,(2.6)

whereZ′ is a normalization constant.
The mean ofu with respect to the constrained probability density (2.6) is given

explicitly in terms ofA, b, and the constraint dataG andū by

〈ui〉ū = a−1
i j bj +(a−1

i j gα j)m−1
αβ

[
ūβ −gβka

−1
kl bl

]
(2.7)

where, as before, thea−1
αβ are the entries ofA−1, and similarly form−1

αβ andM−1,
where the matrixM has as entries the unconstrained covariances of the constrained
quantities,

mαβ =
〈
(gαiui)

(
gβ juj

)〉−〈gαiui〉
〈
gβiui

〉
= gαia

−1
i j gβ j .(2.8)

The covariances of theu with respect to the constrained probability density (2.6)
are

Covū[ui ,uj ] = a−1
i j −(

gαka
−1
ki

)
m−1

αβ

(
a−1

jl gβl

)
.(2.9)

Wick’s theorem applies to these constrained expectations exactly as it applied to
the unconstrained expectations:

(2.10)
〈
(ui1 −〈ui1〉ū) . . .(uil −〈uil 〉ū)

〉
ū =


0, l odd,

∑
all possible pairings

of{i1...il}

Covū[uip1
,uip2

] . . .Covū[uipl−1
uipl

] , l even,

Equations (2.7) and (2.9) can be derived from standard linear regression theory
(see, e.g., [17]). The derivation of the constrained version of Wick’s theorem (2.10)
proceeds by noting that a delta function can be represented as a limit of a Gaussian
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variable with a small variance∆2/2; therefore, the constrained probability den-
sity (2.6) can be written as

(2.11) fū(u) = lim
∆→0

1
Z′ exp

(
−1

2
uiai j uj +biui

)
×

N

∏
α=1

1√
π∆

exp

[
− 1

∆2 (gαiui − ūα)2
]
.

For any finite value of∆, the constrained probability density is proportional to an
exponential of a quadratic form of the vectoru; i.e., it is Gaussian, and therefore
Wick’s theorem applies. An appropriate limit can then be taken.

Equation (2.7) shows that constraints alter means in a way that is linear in the ¯uα
and independent of multiplicative factors in the covariance. Equation (2.9) shows
that constrained covariances are determined by the matrixG alone, without ref-
erence to the ¯uα. Equation (2.10) shows that the constrained Gaussian distribu-
tion (2.6), while not satisfying the requirement that the covariance matrix be non-
singular, retains a key property of Gaussian densities.

In the applications below we shall use Gaussian variables parameterized by a
continuous variablex, i.e., Gaussian random functionsu= u(x); their means〈u(x)〉
and covariancesa−1(x,y) = 〈u(x)u(y)〉−〈u(x)〉〈u(y)〉 will be defined for allx and
y in an appropriate range rather than only for integer values ofi and j. The matrix
A−1 becomes the integral operator whose kernel is the functiona−1. The kernel
a = a(x,y) of the operatorA inverse toA−1 is defined by∫

dya−1(x,y)a(y,z) = δ(x,z) .(2.12)

The vectors with entriesgαi become functionsgα(x), and the constraint equations
(10) become equations (2) of the introduction. The regression formula (2.7) be-
comes

〈u(x)〉ū = 〈u(x)〉+cβ(x)
[
ūβ −

〈∫
gβ(y)u(y)dy

〉]
(2.13)

where

cβ(x) =
{∫

a−1(x,y)gα(y)dy

}
m−1

αβ ,(2.14)

and them−1
αβ are the entries of the matrixM−1 whose inverseM has entries

mαβ =
∫∫

gα(x)a−1(x,y)gβ(y)dxdy.(2.15)

The formula for the constrained covariance can be obtained from (2.9) by replacing
eachi by an x, each j by a y, and each summation over a Latin index by the
corresponding integration. Wick’s theorem survives with the appropriate changes
in notation. Note that the Greek indices that refer to theN initial data survive as
integers.
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3 Updating Constraints

We now turn to the central problem of updating the constraints (1.3) in time.
Consider the special case of equation (1.1):

ut = Lu,(3.1)

whereL is a linear operator. We are looking for the average (and possibly higher
moments) of the solution at timet, knowing that att = 0 theN equations (1.3) were
satisfied, with given constraining kernelsgα = gα(0) = gα(x,0) and given values
ūα(0) of the constraints. The problem at hand is to find kernelsgα(t) and constraint
values ¯uα(t) that will encode the same information as the initial constraints.

A first construction proceeds as follows: Differentiate theαth constraint with
respect tot:

d
dt

ūα(t) = ((gα)t ,u)+((gα),ut) = ((gα)t +L†gα,u)(3.2)

whereL† is the operator adjoint toL. If we choosegα(t) so that it satisfies the
equation

(gα)t +L†gα = 0,(3.3)

and if we set, in addition, ¯u(t) = ū(0), the resulting constraint

(gα(t),u(t)) = ūα(0)(3.4)

will be satisfied at timet by all solutions that satisfied the initial constraint. An
analogous equation has been proposed for data acquisition [5]. The constrained
probability distribution defined by these constraints is the probability distribution
that develops from the initial constrained distribution; indeed, in physicists’ nota-
tion, we write the constrained measure in the form

µū(t) = fū[du] = f (u)[du]
N

∏
α=1

δ[(gα(t),u)− ūα(t)] ,(3.5)

where[du] is a formal product of differentials,f (u) is the prior probability density,
and fū(u) is the constrained probability density. The evolution of any probability
density is given by the Liouville equation [18],

∂ f
∂t

+
∫ δ f

δu
Ludx= 0,(3.6)

whereδ/δu denotes a functional derivative. One can readily verify that iff (u), the
prior density, is time-invariant (∂ f/∂t = 0), then the constrained probability density
fū(u) satisfies (3.6) when the kernels obey (3.3). The constraints that satisfy (3.3)
are therefore equivalent to the initial constraints and encode the same informa-
tion. We call an evolution described by−L† dual to the evolution described by
L. Formula (3.3) solves the problem of determining the kernelsgα and determines
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completely the evolution of all the moments ofu. We have also proved in the lin-
ear case the validity of our assumption according to which the constrained measure
remains for all time the prior measure subjected toN affine constraints.

It is natural to look for ways of updating constraints that are easier than solving
equation (3.3), as well as easier to generalize to nonlinear problems. One starting
point is the equations (2.7) and (2.9), which express the constrained means and
variances in terms of the constraints. (Our discussion now will be restricted to the
Gaussian case; for the more general situation, see the concluding section below.)
By means of Wick’s theorem, one can also express the higher-order moments at
all pointsx in terms of the constraining kernels and the values of the constraints.
The knowledge of the means, covariances, etc., at allx makes it possible to eval-
uate quantities such as〈ut〉 = 〈u〉t , 〈(u2)t〉 = 〈u2〉t , and the derivatives of various
covariances and of higher moments, at theN points of the computational grid, and
therefore calculate all these moments a short time∆t later. According to our main
assumption, these later moments can be obtained by constraining the prior measure
by a new set ofN constraints; if we allow the functionsgα to depend oǹ −1 pa-
rameters, and if one calculates` moments per grid point, equations (2.7) and (2.9)
and their higher-order analogues constitute`n nonlinear equations for the unknown
parameters at time∆t and for the constraint values ¯u(∆t).

Given the new constraining kernels and the new constraint values, the calcula-
tion can be repeated, and if it is repeated often and one makes∆ → 0, one obtains a
set of of ordinary differential equations for the parameters and the constraints. The
simplest approximation in this sequence of approximations is one in which only
the mean is used to update the constraints; one can then choose as parameter the
valueūα of the constraint and keep thegα constant in time, for example, equal to
the bell-shaped functiongα = exp[−(x−xα)2/2σ]/

√
2πσ, with width σ, centered

at x = xα. Multiplication of equation (2.7) bygαi and summation overi yields

ūα(t) = gαi〈ui〉ū ;(3.7)

differentiation with respect tot gives

dūα

dt
= gαi

〈
dui

dt

〉
ū

(3.8)

or, in the continuum version,

dūα

dt
=

〈(
gα,

du
dt

)〉
ū
= 〈(gα,Lu)〉ū .(3.9)

To understand what is being assumed here, consider the derivative of the con-
straint equation (3.2) when the kernelgα is time invariant:

d
dt

ūα(t) = (gα,ut) = (gα,Lu) .(3.10)
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If the constraint(gα,u(t)) = ūα(t) were indeed the evolute of the initial constraint
(gα,u(0)) = ūα(0), then the right-hand side of equation (3.10) would be a (non-
random) function oft. If the constraint(gα,u(t)) = ūα(t) is not the evolute of the
initial constraint, then the right-hand side of equation (3.10) is a random variable;
the approximation (3.8) replaces this random variable by its mean. If the stan-
dard deviation of(gα,Lu) in the constrained ensemble were zero, equation (3.8)
would be exact and not an approximation; if the constrained standard deviation of
(gα,Lu) is small, equation (3.8) is a good approximation. To make the constrained
standard deviation of(gα,Lu) small,gα should have a support of nontrivial width
so that(gα,Lu) is a (locally) averaged quantity; the spatial derivatives ofgα should
also be smooth, so that the derivatives inL are averaged. The approximate proce-
dure is useful if(gα,Lu) has a small constrained standard deviation with kernelsgα
whose width (for example,σ in the Gaussian case) is comparable to the distance
between points. Note the analogy with the conditions under which vortex methods
converge [8]; they, too, rely on fixed kernels to approximate a varying field.

Given the kernelsgα, the information we have at any one time consists of the
values of theN constraints. Suppose we use this information in some arbitrary way
to construct an approximationu∗t to ut = Lu; u∗t is a function of the ¯uα,α = 1, . . . ,N,
sayu∗t = D(ū1, . . . , ūN). Given a specific memberu = u(x) of the constrained en-
semble, the error in the approximation is

E[u(·)] = Lu−D(ū1, . . . , ūN) .(3.11)

Linear regression, used to obtain the means〈u(x)〉ū from the knowledge of the
prior measure and the constraints, guarantees that the value of the time derivative
we calculated in the preceding paragraph minimizes the mean square error〈

[Lu−D(ū1, . . .)]2
〉

(3.12)

over all approximationsD(. . .). In this sense, our approximation of the time deriv-
ative is optimal.

The exact procedure for evolvinggα (equation (3.3)) requires the solution of the
partial differential equation for the functionsgα; when the equation has constant
coefficients, one may use as thegα the spatial translates of a single functiong and
reduce the amount of work. Furthermore, in the exact construction, once the con-
straining kernels have been calculated, the moments of the solution can be found
from the formulas in the previous section, and the equationut = Lu is not used any
further. In the second, approximate construction where thegα are fixed and the
ūα vary, the latter have to be determined from the evolution of the mean solution
in time so that the right-hand side of (3.8) can be evaluated, requiring the solution
of N ordinary differential equations (see the examples in the following sections).
These two procedures are merely the extreme members of a continuum of possibil-
ities: One can solve equation (3.3) approximately, for example, by expandinggα in
a series and using as an approximategα(t) only the first few terms in the series that
results from the application of (3.3): The approximategα(t) can then be inserted
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into equation (3.2) to obtain an equation for ¯uα(t) whose solution varies slowly and
where the constrained variance of the right-hand side may be smaller than in the
case of an invariantgα.

Note that the approximation (3.8) is applicable as it stands to nonlinear equa-
tions; for nonlinear equations, one also has a whole range of intermediate possi-
bilities. For example, one may write the nonlinear operatorR of equation (1.1) as
R= L+Q, whereL is linear; then one finds

dūα

dt
= ((gα)t ,u)+(gα,Lu+Q(u)) = ((gα)t +L†gα,u)+(g,Q(u)) .(3.13)

If one uses equation (3.3) to determine thegα(t), one finds

dūα

dt
= 〈(gα,Q(u))〉ū .(3.14)

The art is to find partitionsR = L + Q that minimize the constrained variance of
(gα,Q). Such partitions are reminiscent of the interaction picture in quantum me-
chanics.

4 Example 1: A Linear Schrödinger Equation

Consider the Schrödinger equation on the unit circle with a constant potential,

iut = −uxx+m2u,(4.1)

whereu is a complex-valued function on the circle andm2 is a constant. This
equation is the Hamilton equation of motion for the Hamiltonian

H[u] =
∫ 2π

0

[|ux|2 +m2|u|2]dx(4.2)

(see [11]). Equation (4.1) preserves the density of the canonical ensemble,

f0[u] = e−H[u] ,(4.3)

where the temperature has been chosen equal to 1.
The measure defined by equation (4.3) is absolutely continuous with respect to

a Wiener measure [15], and its samples are, with probability 1, almost nowhere
differentiable. The corresponding solutions of the equations of motion are weak
and difficult to approximate numerically.

By symmetry we see that the unconstrained means〈u(x)〉 and〈u∗(x)〉 are zero.
To extract the covariance functionA−1 from the probability density (4.3), we write
H[u] as a double integral,

H[u] =
∫ 2π

0

∫ 2π

0

[
u∗x(x)δ(x−y)ux(y)+m2u∗(x)δ(x−y)u(y)

]
dxdy,(4.4)

whereu∗ is the complex conjugate ofu. Integration by parts shows that the entries
of the functional matrixA are

a(x,y) = −δ′′(x−y)+m2δ(x−y) ,(4.5)
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whereδ(x) is aδ-function andδ′′(x) is the second derivative of aδ-function. The
inverse of this function,a−1(x,y), is the functionK(x,y) that satisfies∫ 2π

0
a(x,y)K(y,z)dy= δ(x,z) .(4.6)

Using the explicit form (4.5) ofA, we see thatK(x,y) is translation invariant, i.e.,
a function only of(x−y), and that it satisfies

−d2K
dx2 (x−y)+m2K(x−y) = δ(x−y) .(4.7)

This equation can easily be solved by Fourier series. The result is

K(x,y) = a−1(x,y) =
1
2π

∞

∑
k=−∞

eik(x−y)

k2 +m2 .(4.8)

We suppose that the initial data for equation (4.1) are drawn from the distribu-
tion (4.3) and thatN initial observations have been made at theN grid points we
can afford:

ūα(0) = (gα,u(0)) =
∫ 2π

0
u(x,0)gα(x)dx,(4.9)

whereα = 1, . . . ,N, so that thexα = 2πα/N form a regular mesh on the circle. We
consider first an approximation where the functionsgα are fixed in time, and we
furthermore take them to be translates of each other:gα(x) = g(x−xα). We pick

g(x) =
1√
πσ

∞

∑
τ=−∞

exp

[
−(x−2πτ)2

σ2

]
,(4.10)

i.e., a normalized Gaussian function whose width isσ, with suitable images to
enforce periodicity; we will pickσ to be equal to the mesh spacing 2π/N. The
Fourier representation ofg(x) is

g(x) =
1
2π

∞

∑
k=−∞

eikxe−
1
4k2σ2

.(4.11)

Given the constraints (4.9), we can find the mean initial condition everywhere
by applying equation (2.7), which becomes

〈u(x)〉ū = cβ(x)ūβ(4.12)

where

cβ(x) =
{∫ 2π

0
a−1(x,y)g(y−xα)dy

}
m−1

αβ

=

{
1
2π

∞

∑
k=−∞

eik(x−xα) e−
1
4k2σ2

k2 +m2

}
m−1

αβ ,

(4.13)
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FIGURE 4.1. Example of a regression curve for the linear Schrödinger
equation. Five constraint values (•) were chosen, representing local av-
erages ofp(x) = Imu(x) on a uniformly spaced grid. The constraining
kernels are translates of each other and have a Gaussian profile of width
2π/5 and are centered at the grid points. The solid line represents the
constrained mean function〈p(x)〉ū obtained by taking the imaginary part
of equation (4.12).

andm−1
αβ are the entries of the matrixM−1 whose inverseM has entries

mαβ =
∫ 2π

0

∫ 2π

0
g(x−xα)a−1(x,y)g(y−xβ)dxdy

=
1
2π

∞

∑
k=−∞

eik(xα−xβ) e−
1
2k2σ2

k2 +m2 .

(4.14)

These Fourier series are easily evaluated numerically. An example of a regres-
sion for randomly chosen values of ¯uα is shown in Figure 4.1.

We apply the approximate procedure in which the constraining kernelsgα(x)
are fixed and only the values of the constraints ¯uα change. The mean derivative of
u is, from equation (4.1),
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〈ut(x)〉ū =
〈
iuxx(x)− im2u(x)

〉
ū

= i
d2

dx2 〈u(x)〉ū− im2 〈u(x)〉ū

=
{

i
d2cγ

dx2 (x)− im2cγ(x)
}

ūγ .

(4.15)

Substituting the Fourier representation ofcβ(x) from equation (4.13), we find

〈ut(x)〉ū = −igβ(x)m−1
βγ ūγ .(4.16)

Multiplication of equation (4.16) bygα and an integration yields, as in equa-
tion (3.8), the approximation

dūα

dt
= −

∫ 2π

0
gα(y)〈ut(y)〉ū dy= −i

{∫ 2π

0
gα(y)gβ(y)dy

}
m−1

βγ ūγ ,(4.17)

where the integral in braces is another periodic Gaussian,∫ 2π

0
gα(y)gβ(y)dy=

1
2π

∞

∑
k=−∞

eik(xα−xβ)e−
1
2k2σ2

.(4.18)

The important point about formula (4.17) is that it represents a closed system of
ordinary differential equations for the ¯uα’s. The matrix elements in braces need be
computed only once to define the scheme and are easily evaluated for allα andβ.

We next calculate the exact mean future of the unresolved Schrödinger equation
so that it can be compared with the result of the scheme we just presented. This
could be done by using regression to find the mean solution at the initial time and
then using the Green function to propagate this mean solution to a future time. In-
stead, we shall use the exact formalism (equation (3.3)) to find the time-dependent
constraining kernels. A comment on these two ways of getting exact mean solu-
tions in linear problems can be found below.

Starting from the initial kernels (4.11), the later kernels obey the dual equation,
which is a time-reversed Schrödinger equation. Its solution is

gα(x, t) =
1
2π

∞

∑
k=−∞

eik(x−xα)ei(k2+m2)te−
1
4k2σ2

.(4.19)

The mean solution at timet is constructed by regression from the probability
density (4.3) and the constraining kernels (4.19). Repeating the calculation that led
to (4.12), we find

〈u(x, t)〉ū(t) = cβ(x, t)ūβ(4.20)

where

cβ(x, t) =
1
2π

∞

∑
k=−∞

eik(x−xα) e−
1
4k2σ2

k2 +m2ei(k2+m2)tm−1
αβ (t) ,(4.21)
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FIGURE 4.2. Evolution in time of the mean variables〈(gα, p(t))〉ū,
wherep(x, t) = Imu(x, t), andgα is a time-independent Gaussian con-
straint kernel as in the text. The symbols (α = 1H, α = 2N, α = 3�,
α = 4�, α = 5•) are the exact values of these quantities as determined
by equation (4.20). The solid lines are the approximations obtained by
integrating the system of ordinary differential equations (4.17).

mαβ(t) =
1

2π

∞

∑
k=−∞

eik(xα−xβ) e−
1
2k2σ2

k2 +m2e2i(k2+m2)t ,(4.22)

and as usual, them−1
αβ are the entries of the matrix inverse to the matrix whose

entries aremαβ.
We can use this exact formula for mean futures (4.20) to test the accuracy of

the approximation (4.17). Figure 4.2 compares the approximate prediction with
the exact mean solution for initial values ¯u(0) of the constraints picked at random.
The approximation is not distinguishable from the exact solution on the scale of
the plot for the duration of the calculation. Note that we have efficiently calculated
the average behavior of an ensemble of solutions, the individual members of which
are very difficult to evaluate.

As a final comment, we wish to point out that our techniques are useful even
in linear problems where other ways of using regression to predict the mean future
are available. First, we have seen and will see again below that our techniques are
starting points for approximation. In addition, our methods apply for linear equa-
tions with nonconstant coefficients. Alternate techniques for advancing the mean
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solution exactly in linear problems require the knowledge of a Green function,
which is a function of 2d arguments, whered is the number of space dimensions.
Our methods, even when an exact solution is wanted, require a knowledge ofN
functions ofd arguments—a much smaller amount of information to store.

5 Example 2: A Nonlinear Hamiltonian System

We now consider a nonlinear generalization of the method demonstrated in the
preceding section. We want to exhibit the power of our method by comparing the
solutions that it yields with exact solutions; in the nonlinear case, exact solutions
of problems with random data are hard to find, and we resort to a stratagem. Even
though our method applies to the full nonlinear partial differential equation, we
study a finite-dimensional system ofn ordinary differential equations that is for-
mally an approximation of a nonlinear Schrödinger equation:

i
duj

dt
= −uj+1−2uj +uj−1

∆2 +Re(uj)3 + i Im(uj)3, j = 1, . . . ,n,(5.1)

where then dependent variablesuj are complex-valued and∆ = 1
n. This system is

nonintegrable forn > 1; it is the Hamilton equation of motion for the Hamiltonian

(5.2) H(q1, . . . ,qn, p1, . . . , pn) =

1
2

n

∑
j=1

[(
qj+1−qj

∆

)2

+
(

pj+1− pj

∆

)2

+
1
2

(
q4

j + p4
j

)]
,

whereqj andpj are canonical variables related tou by uj = qj + ip j . The differ-
ential equations preserve the canonical density,

F(q, p) = e−H(q,p) .(5.3)

The approximation is only formal because we shall be considering nonsmooth data
which give rise to weak solutions that cannot be readily found by difference meth-
ods.

The probability density (5.3) is not Gaussian, raising a technical difficulty in
computing constrained expectation values. We adopt an approximate procedure
where the density (5.3) is approximated by a Gaussian density that yields the same
means and covariances. The means are zero by symmetry,〈

qj
〉

= 0 =
〈
pj

〉
(5.4)

(positive and negative values of these have equal weight). Also, allp’s andq’s are
uncorrelated: 〈

qj pk
〉

= 0,(5.5)

since the density factors into a product of a density for theq’s and a density for
the p’s. Thus

〈
qjqk

〉
=

〈
pj pk

〉
are the only nontrivial covariances. Finally, since
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FIGURE 5.1. The covariance
〈
qiqj

〉
=

〈
pi pj

〉
as a function of the sepa-

rationi− j for the probability density (5.3). These values were computed
by a metropolis Monte Carlo algorithm with 105 samples. The statistical
error is less than 1%.

the Hamiltonian is translation invariant, these covariances depend only on the sep-
aration of j andk and are symmetric inj − k. We thus haven2 numbers to deter-
mine: 〈q1q1〉, 〈q1q2〉, . . . ,

〈
q1qn/2

〉
. We compute these numbers by a metropolis

Monte Carlo algorithm [6]. The covariances obtained in this way are shown in
Figure 5.1. With the unconstrained means and covariances in hand, the regression
formula (2.7) can be used.

We assume that the number of degrees of freedomn is large; at timet = 0, we
observe a small numberN of quantities of the form

ūα(0) =
n

∑
j=1

gα juj , α = 1, . . . ,N,(5.6)

and try to predict the mean future of the right-hand sides of equation (5.6) when
theuj evolve according to the full system of equations (5.1); i.e., we try to predict
the mean of a small number of quantities that depend on the full system of ordinary
differential equations without solving the latter. In the calculations we exhibit, we
chosen = 16 andN = 2 so that we reduced the number of degrees of freedom by
a factor of 8; we are also seeking to save the effort of averaging the solution of
(5.1) over many initial data drawn from the canonical distribution (5.3). We pick
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as constraining kernels discretized Gaussian functions centered atj = 1 and j = 9,

g1 j =
1
Z

exp

{
−d2( j,1)

n2σ2

}
, g2 j =

1
Z

exp

{
−d2( j,9)

n2σ2

}
,(5.7)

whereσ = 0.25, d( j,k) is a distance function over the periodic index axis (i.e.,
it is the minimum of| j − k|, | j − k+ n|, and| j − k−n|) andZ is a constant that
normalizes the kernels so that1

n ∑n
j=1gα j = 1.

Again, our first approximation is with fixed constraining kernelsgα j , evolving
the values ¯pα andq̄α of the constraints. Since the equations of motion are nonlinear,
the time derivatives no longer commute with the regressions. Instead, we evaluate
the mean time derivatives in (5.1) by Wick’s theorem (equation (2.10)), which in
this case reduces to 〈[

pj −
〈
pj

〉
q̄p̄

]3
〉

q̄p̄
= 0,(5.8)

from which we may deduce that〈
dqj

dt

〉
q̄p̄

= −
〈

pj+1−2pj + pj−1

∆2

〉
q̄p̄

+
〈
p3

j

〉
q̄p̄

= −
〈

pj+1−2pj + pj−1

∆2

〉
q̄p̄
−2

〈
pj

〉3
q̄p̄ +3

〈
p2

j

〉
q̄p̄

〈
pj

〉
q̄p̄ .

(5.9)

Our lemmas allow us to evaluate this expression explicitly in terms of the ¯qα and
p̄α. Specifically, 〈

pj
〉

q̄p̄ =
[〈

pj pk
〉

gαk
]
m−1

αβ p̄β ,(5.10)

with

mαβ = gα j
〈
pj pk

〉
gβk ,(5.11)

and

〈
p2

j

〉
q̄p̄

=
〈
pj

〉2
q̄p̄ +

〈
p2

j

〉− [〈
pj pk

〉
gαk

]
m−1

αβ
[
gβl

〈
pl pj

〉]
(no sum overj) .

(5.12)

In the approximation (3.8), the equations for the values of the constraints are
obtained by multiplying equation (5.9) bygα j (with summation over the index
j). Substituting the numerical values of the (unconstrained) covariance matrix, we
obtain the following equation for ¯q1:

dq̄1

dt
= −19.5(p̄2− p̄1)+

[
1.50p̄3

1−0.88p̄2
1p̄2 +0.27p̄1p̄2

2 +0.11p̄3
2

]
.(5.13)

The equation for ¯q2 is obtained by substituting 1↔ 2; the equations for ¯p1 and p̄2

are obtained by the transformation ¯p→ q̄ andq̄→−p̄.
We compare the effective equations (5.13) with the exact mean solution of the

underlying equations (5.1) as follows: First, we generate many initial conditions
consistent with the constraints. Next, we evolve each initial condition using a
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Runge-Kutta method. Finally, we average the results for the variables ¯p(t) andq̄(t)
and compare with the prediction from the effective equations (5.13). Figure 5.2
shows this comparison. Once again, the system of two equations (5.13) reproduces
the average behavior of the resolved equations (5.1) to the resolution of the plot,
but at a very much smaller computational cost.

6 Example 3: A Stochastically Driven Heat Equation

We now turn to a more difficult problem: a linear equation with random forcing.
This problem poses a challenge to our methodology because at first sight the dual
evolution is undefined. However, we shall see that the machinery above extends to
this problem if one focuses on the right variables. We consider a one-dimensional
bar located at 0≤ x≤ 1, heated at its center by a fluctuating heat source and cooled
at its ends by heat baths. The temperatureu(x, t) of the bar is described by

ut = uxx+J(t)δ
(
x− 1

2

)
,(6.1)

whereJ(t) is a random function of time,δ(x) is a δ-function, andx = 1
2 is the

location of the source. The boundary conditions are

u(0, t) = u(1, t) = 0.(6.2)

We shall use an even number of computational points so that the heat source always
falls between them; the heat source being singular, this is an unresolved problem:
The key contribution to the dynamics occurs between computational points. As-
sume thatJ(t) is white noise; i.e.,J(t) is a Gaussian random function of time that
has as mean and covariance:

〈J(t)〉 = J , 〈J(t1)J(t2)〉 = J
2 +J2 δ(t1− t2) ,(6.3)

for some numbersJ andJ2.
The solutionu(x, t) of (6.1) depends onJ(t) and on some initial condition for

u(x,0). However, after long times it depends only onJ(t):

u(x, t) =
∫ 0

−∞
dt′K(x,−t ′)J(t + t ′) ,(6.4)

whereK(x, t) is the solution of

Kt = Kxx,(6.5)

with initial conditionK(x,0) = δ(x− 1
2) and boundary conditions

K(0, t) = K(1, t) = 0.

The heat kernelK is readily computed and so are, after suitably long times, average
values ofu and of functionals ofu. Formula (6.3) defines the prior distribution of
the solutions.
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FIGURE 5.2. Evolution intime of the mean variables〈gαi pi(t)〉p̄q̄ for
the nonlinear equations (5.1). The symbols represent the values of these
quantities obtained by solving the 16 equations (5.1) for 104 initial con-
ditions compatible with specific constraint values and averaging. The
solid lines are the values of the four corresponding functions obtained
by integrating equation (5.13). Figures (a) and (b) are for the time inter-
vals[0,1] and[0,10], respectively.
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In a Fourier representation, the kernelK can be written as

K(x, t) =
∞

∑
k=1

2sin

(
kπ
2

)
e−k2π2t sin(kπx) .(6.6)

The unconstrained means are

〈u(x)〉 =
〈∫ ∞

0
K(x, t)J(t)dt

〉
= J

∫ ∞

0
K(x, t)dt =

J
2

{
x, x < 1

2 ,

1−x, x > 1
2 .

(6.7)

The unconstrained covariance is

Cov[u(x),u(y)] ≡ 〈u(x)u(y)〉−〈u(x)〉〈u(y)〉 = J2
∫ ∞

0
K(x, t)K(y, t)dt(6.8)

(which we leave in integral form).
Suppose that we observe the functionu at time t = 0 on a mesh ofN points

xα = α/N. We denote the values ofu at these mesh points by

ūα = u(xα) , α = 1, . . . ,N;(6.9)

our constraints are of the standard form (1.3) with constraining kernels

gα(x) = δ(x−xα) .(6.10)

As in the previous example, we use a regression (2.7) to obtain the function
〈u(x)〉ū from the N constraints (6.9). The regression formula for this ensemble
with δ-function constraining kernels is

〈u(x)〉ū = 〈u(x)〉+Cov[u(x),u(xα)]m−1
αβ

[
ūβ −

〈
u(xβ)

〉]
,(6.11)

where them−1
αβ are the entries of the matrixM−1 whose inverse is the matrixM

with entries

mαβ =
〈
(gα,u)

(
gβ,u

)〉−〈(gα,u)〉〈(gβ,u)
〉

.(6.12)

Once again, this formula only involves readily evaluated Fourier series. An exam-
ple of a regression with randomly chosen point values ¯u(0) is shown in Figure 6.1.

To calculate the time evolution of the constrained measure, we proceed as fol-
lows: The valuesu(xα,0) at timet = 0 constitute affine constraints on the stochastic
source:

ūα(0) =
∫ 0

−∞
K(xα,−t ′)J(t ′)dt′ .(6.13)

This constraint onJ is of our standard form, with

gα(t ′,0) = K(xα,−t ′) .(6.14)

The values of the source term at positive time do not affect the value ofu(xα,0),
and thus as time advances the constraints recede into the past. Thus the constraint
onJ when the time has advanced tot is

gα(t ′, t) = K(xα, t − t ′) .(6.15)
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FIGURE 6.1. An example of a regression for the heat equation withJ =
1, J2 = 1, and eightδ-function constraining kernels.

We apply our lemmas to obtain future constrained expectations ofJ and then
compute the corresponding expectations ofu through the relationship (6.4). The
means and covariances ofJ without constraints were given in equation (6.3):

〈J(t)〉 = J , a−1(t1, t2) = J2δ(t1− t2) .(6.16)

The time-dependent constraints (6.15) allow us to define a time-dependent matrix
M with entries

mαβ(t) =
〈
(gα(t),J)(gβ(t),J)

〉−〈(gα(t),J)〉〈(gβ(t),J)
〉

= J2
∫ 0

−∞
K(xα, t − t ′)K(xβ, t − t ′)dt′ .

(6.17)

The future constraints (6.15) imply that at timet > 0,

〈
J(t ′)

〉
ū =

〈
J(t ′)

〉
+

{∫ 0

−∞
gα(t ′′, t)a−1(t ′′, t ′)dt′′

}
m−1

αβ (t)

× [ūβ −
〈
(gβ(t),J)

〉
]

= J+J2K(xα, t − t ′)m−1
αβ (t)

[
ūβ −J

∫ 0

−∞
K(xβ, t − t ′′)dt′′

]
.

(6.18)
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Given the constrainedJ, we can calculate the futureu: The mean ofu(x, t) given
theN values ¯uα(0) = u(xα,0) is

〈u(x, t)〉ū =
∫ 0

−∞
K(x,−t ′)

〈
J(t ′)

〉
ū dt′

= 〈u(x)〉+J2

{∫ 0

−∞
K(x,−t ′)K(xα, t − t ′)dt′

}
m−1

αβ (t)

× [
ūβ −

〈
u(xβ)

〉]
.

(6.19)

Future covariances can be obtained in a similar way. Note that the constraining ker-
nels move backwards in time, a motion dual to the forward unfolding in time of the
stationary stochastic processJ. Our machinery thus applies provided one uses the
appropriate variables. Note also that the prediction (6.19) decays to unconstrained
averages after long times.

One may wonder whether it is possible to calculate the evolution of the solu-
tion u of the original equation (6.1) by evolving directly constraints onu without
going back toJ. The answer is apparently negative. No exact kernel evolution
analogous to (3.3) can be defined, because no operator dual toL can be defined in
the presence of the noise. One can also prove that the constant-kernel evolution
approximation (3.8) is inaccurate in this case.

7 Conclusions and Further Work

We have presented methods for updating constraints in time that can be used
to predict the future behavior of solutions of time-dependent partial differential
equations on the basis of unresolved computations and partial data. We have con-
centrated on explaining the ideas, and the examples we have discussed have been
relatively simple; in particular, they have explicitly known invariant measures that
were either Gaussian or nearly Gaussian. For practical application, it is important
to transcend these restrictive assumptions.

The assumption of near-Gaussianity is inessential. It can presumably be some-
times overcome by an assumption of local Gaussianity (i.e., the assumption that
in a small neighborhood the probability densities are nearly Gaussian but with pa-
rameters that vary smoothly from neighborhood to neighborhood). A global al-
ternative, when the prior measure is non-Gaussian, is to look for the measure that
satisfies the constraints and is nearest to the prior measure; “nearest” should be
interpreted in the sense of “having the smallest relative entropy with respect to the
prior measure” [10]. Algorithms for finding such measures can be built in anal-
ogy to the constrained optimization methods of [7, 21, 22]. In strongly nonlinear
problems, the simplified approximation (3.8) may be useful if it is supplemented
by conditions on higher-order moments, as discussed at the end of Section 3.

A full knowledge of a prior measure is a luxury one cannot always expect.
However, one can readily see from the discussion above that one can make do
with the knowledge of covariances and maybe some higher-order moments and, in
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addition, that this knowledge is needed only on scales comparable to the distance
between computational points and smaller. Such knowledge is often available from
asymptotics and scaling [2, 3, 4].

It is obvious that the constraints need not be all imposed at the initial time;
subsequent information may sometimes be useful. Information about the right
balance between increasing the number of data points and investing more effort
into a careful updating of time-dependent constraining kernels awaits a broader
experience with this type of prediction method.
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[19] Rozovskĭı, B. L. Stochastic evolution systems. Linear theory and applications to nonlinear
filtering. Translated from the Russian by A. Yarkho. Mathematics and Its Applications (Soviet
Series), 35. Kluwer Academic, Dordrecht, 1990.

[20] Scotti, A.; Meneveau, C. Fractal model for coarse-grained partial differential equations.Phys.
Rev. Lett.78 (1997), 867–870.

[21] Turkington, B. Statistical equilibrium measures and coherent states in two-dimensional turbu-
lence.Comm. Pure Appl. Math.52 (1999), no. 7, 781–809.

[22] Turkington, B.; Whitaker, N. Statistical equilibrium computations of coherent structures in tur-
bulent shear layers.SIAM J. Sci. Comput.17 (1996), no. 6, 1414–1433.

ALEXANDRE J. CHORIN ANTON P. KAST

Lawrence Berkeley National Lawrence Berkeley National
Laboratory Laboratory

Department of Mathematics Department of Mathematics
One Cyclotron Road One Cyclotron Road
MS 50A-215 MS 50A-215
Berkeley, CA 94720 Berkeley, CA 94720
E-mail: chorin@math.berkeley.edu E-mail: anton@math.lbl.gov

RAZ KUPFERMAN

Lawrence Berkeley National
Laboratory

Department of Mathematics
One Cyclotron Road
MS 50A-215
Berkeley, CA 94720
E-mail: raz@snake.lbl.gov

Received May 1998.


