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Foreword

These lecture notes were written while teaching the course “Probability 1” at the
Hebrew University. Most of the material was compiled from a number of text-
books, such that A first course in probability by Sheldon Ross, An introduction to
probability theory and its applications by William Feller, and Weighing the odds
by David Williams. These notes are by no means meant to replace a textbook in
probability. By construction, they are limited to the amount of material that can
be taught in a 14 week course of 3 hours. I am grateful to the many students who
have spotted mistakes and helped makes these notes more coherent.
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Chapter 1

Basic Concepts

Discussion: Why is probability theory so often a subject of confusion?
In every mathematical theory there are three distinct aspects:

! A formal set of rules.
" An intuitive background, which assigns a meaning to certain concepts.
# Applications: when and how can the formal framework be applied to solve

a practical problem.

Confusion may arise when these three aspects intermingle.

Discussion: Intuitive background: what do we mean by “the probability of a die
throw resulting in “5” is 1/6?” Discuss the frequentist versus Bayesian points of
view; explain why the frequentist point of view cannot be used as a fundamental
definition of probability (but can certainly guide our intuition).

1.1 The Sample Space

The intuitive meaning of probability is always related to some experiment, whether
real or conceptual (e.g., winning the lottery, that a newborn be a boy, a person’s
height). We assign probabilities to possible outcomes of the experiment. We first
need to develop an abstract model for an experiment. In probability theory an
experiment (real or conceptual) is modeled by all its possible outcomes, i.e., by
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a set, which we call the sample space. Of course, a set is a mathematical entity,
independent of any intuitive background.

Notation: We will usually denote the sample space by Ω and its elements by ω.

Examples:

! Tossing a coin: Ω = {H,T } (but what if the coin falls on its side or runs
away?).

" Tossing a coin three times:

Ω = {(a1, a2, a3) : ai ∈ {H,T }} = {H,T }3.

(Is this the only possibility? for the same experiment we could only observe
the majority.)

# Throwing two distinguishable dice: Ω = {1, . . . , 6}2.
$ Throwing two indistinguishable dice: Ω = {(i, j) : 1 ≤ i ≤ j ≤ 6}.
% A person’s lifetime (in years): Ω = R+ (what about an age limitation?).
& Throwing a dart into a unit circle: if we only measure the radius, Ω = [0, 1].

If we measure position, we could have

Ω = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ < 2π} = [0, 1] × [0, 2π),

but also
Ω =
{
(x, y) : x2 + y2 ≤ 1

}
.

Does it make a difference? What about missing the circle?
' An infinite sequence of coin tosses: Ω = {H,T }ℵ0 (which is isomorphic to

the segment (0, 1)).
( Brownian motion: Ω = C([0, 1];R3).
) A person throws a coin: if the result is Head he takes an exam in probability,

which he either passes or fails; if the result is Tail he goes to sleep and we
measure the duration of his sleep (in hours):

Ω = {H} ×{ 0, 1} ∪{ T } × R+.

The sample space is the primitive notion of probability theory. It provides a model
of an experiment in the sense that every thinkable outcome (even if extremely
unlikely) is completely described by one, and only one, sample point.
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1.2 Events

Suppose that we throw a die. The set of all possible outcomes (the sample space)
is Ω = {1, . . . , 6}. What about the result ”the outcome is even”? Even outcome is
not an element of Ω. It is a property shared by several points in the sample space.
In other words, it corresponds to a subset of Ω ({2, 4, 6}). “The outcome is even”
is therefore not an elementary outcome of the experiment. It is an aggregate of
elementary outcomes, which we will call an event.

Definition 1.1 An event is a property for which it is clear for every ω ∈ Ω
whether it has occurred or not. Mathematically, an event is a subset of the sample
space.

The intuitive terms of “outcome” and “event” have been incorporated within an
abstract framework of a set and its subsets. As such, we can perform on events set-
theoretic operations of union, intersection and complementation. All set-theoretic
relations apply as they are to events.
Let Ω be a sample space which corresponds to a certain experiment. What is the
collection of all possible events? The immediate answer is P(Ω), which is the set
of all subsets (denoted also by 2Ω). It turns out that in many cases it is advisable
to restrict the collection of subsets to which probabilistic questions apply. In other
words, the collection of events is only a subset of 2Ω. While we leave the reasons
to a more advanced course, there are certain requirements that the set of events
has to fulfill:

! If A ⊆ Ω is an event so is Ac (if we are allowed to ask whether A has
occurred, we are allowed to ask whether it has not occurred).

" If A, B ⊆ Ω are events, so is A ∩ B.
# Ω is an event (we can always ask ”has any outcome occurred?”).

A collection of events satisfying these requirements is called an algebra of events.

Definition 1.2 Two events A, B are called disjoint if their intersection is empty.
A collection of events is called mutually disjoint if every pair is disjoint. Let A, B
be events, then

A ∩ Bc = {ω ∈ Ω : (ω ∈ A) and (ω ! B)} ≡ A \ B.

Unions of disjoint sets are denoted by ∪· .
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Proposition 1.1 Let Ω be a sample space and C be an algebra of events. Then,

! ∅ ∈ C .
" If A1, . . . , An ∈ C then ∪n

i=1Ai ∈ C .
# If A1, . . . , An ∈ C then ∩n

i=1Ai ∈ C .

Proof : Easy. Use de Morgan and induction. *

Probability theory is often concerned with infinite sequences of events. A collec-
tion of events C is called a σ-algebra of events, if it is an algebra, and in addition,
(An)∞n=1 ⊂ C implies that

∞⋂

n=1

An ∈ C .

That is, aσ-algebra of events is closed with respect to countably many set-theoretic
operations. We will usually denote the σ-algebra by F .

Discussion: Historic background on the countably-many issue.

Examples:

! A tautological remark: for every event A,

A = {ω ∈ Ω : ω ∈ A} .

" For every ω ∈ Ω the singleton {ω} is an event.
# The experiment is tossing three coins and the event is “second toss was

Head”.
$ The experiment is “waiting for the fish to bite” (in hours), and the event is

“waited more than an hour and less than two”.
% For every event A, {∅, A, Ac,Ω} is a σ-algebra of events.
& For every collection of events we can construct the σ-algebra generated by

this collection.
' The cylinder sets in Brownian motion.
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+ Exercise 1.1 Construct a sample space corresponding to filling a single col-
umn in the Toto. Define two events that are disjoint. Define three events that are
mutually disjoint, and whose union is Ω.

Infinite sequences of events Let (Ω,F ) be a sample space together with a σ-
algebra of events (such a pair is called a measurable space), and let (An)∞n=1 ⊂ F .
We have ∞⋃

n=1

An = {ω ∈ Ω : ω ∈ An for at least one n}

∞⋂

n=1

An = {ω ∈ Ω : ω ∈ An for all n} .

Also,
∞⋃

k=n

Ak = {ω ∈ Ω : ω ∈ Ak for at least one k ≥ n}

(there exists a k ≥ n for which ω ∈ Ak), so that

∞⋂

n=1

∞⋃

k=n

Ak =
{
ω ∈ Ω : ω ∈ Ak for infinitely many k

}

(for every n there exists a k ≥ n for which ω ∈ Ak). We denote,

∞⋂

n=1

∞⋃

k=n

Ak = {ω ∈ Ω : ω ∈ Ak i.o.} ≡ lim sup
n

An.

Similarly,
∞⋂

k=n

Ak = {ω ∈ Ω : ω ∈ Ak for all k ≥ n}

(ω ∈ Ak for all k ≥ n), so that

∞⋃

n=1

∞⋂

k=n

Ak =
{
ω ∈ Ω : ω ∈ Ak eventually

} ≡ lim inf
n

An

(there exists an n such that ω ∈ Ak for all k ≥ n). Clearly,

lim inf
n

An ⊆ lim sup
n

An.
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Definition 1.3 If (An)∞n=1 is a sequence of events such that lim infn An = lim supn An,
then we say that this sequence has a limit, and set

lim
n

An = lim inf
n

An = lim sup
n

An.

In other words, all elements that occur infinitely often also occur eventually
always.

Example: Let Ω be the set of integers, N, and let

Ak = {all the evens/odds for k even/odd} .

Then,
lim sup

k
Ak = Ω and lim inf

k
Ak = ∅.

!!!

Example: Let again Ω = N and let

Ak =
{
k j : j = 0, 1, 2, . . .

}
.

Then,
lim

k
Ak = {1}.

!!!

Definition 1.4 A sequence (An)∞n=1 is called increasing if A1 ⊆ A2 ⊆ . . . , and
decreasing if A1 ⊇ A2 ⊇ . . . .

Proposition 1.2 If (An)∞n=1 is an increasing sequence of events, then it has a limit
given by

lim
n

An =

∞⋃

n=1

An.
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Proof : An increasing sequence has the property that
∞⋃

k=n

Ak =

∞⋃

k=1

Ak, and
∞⋂

k=n

Ak = An,

and the rest is trivial. *

+ Exercise 1.2 Prove that if (An)∞n=1 is a decreasing sequence of events, then it
has a limit given by

lim
n

An =

∞⋂

n=1

An.

1.3 Probability

Let (Ω,F ) be a measurable space. A probability is a function P which assigns
a number to every event in F (the probability that this event has occurred). The
function P has to satisfy the following properties:

! For every event A ∈ F , 0 ≤ P(A) ≤ 1.
" P(Ω) = 1 (the probability that some result has occurred is one).
# Let (An) be a sequence of mutually disjoint events, then

P



∞⋃

n=1

An


 =

∞∑

n=1

P(An).

This property is called countable additivity.

The triple (Ω,F , P) is called a probability space.
The following results are immediate:

Proposition 1.3

! P(∅) = 0.
" For every finite sequence of N disjoint events (An)

P




N⋃

n=1

An


 =

N∑

n=1

P(An).
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Proof : The first claim is proved by noting that for every A ∈ F , A = A ∪· ∅. For
the second claim we take Ak = ∅ for k > n. *

Examples:

! Tossing a coin, and choosing P({H}) = P({T }) = 1/2.
" Throwing a die, and choosing P({i}) = 1/6 for i ∈ {1, . . . , 6}. Explain why

this defines uniquely a probability function.

Proposition 1.4 For every event A ∈ F ,

P(Ac) = 1 − P(A).

If A, B are events such that A ⊆ B, then

P(A) ≤ P(B).

Proof : The first result follows from the fact that A ∪· Ac = Ω. The second result
follows from B = A ∪· (B \ A). *

Proposition 1.5 (Probability of a union) Let (Ω,F , P) be a probability space.
For every two events A, B ∈ F ,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof : We have
A ∪ B = (A \ B) ∪· (B \ A) ∪· (A ∩ B)

A = (A \ B) ∪· (A ∩ B)
B = (B \ A) ∪· (A ∩ B),

and it remains to use the additivity of the probability function to calculate P(A ∪
B) − P(A) − P(B). *
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Proposition 1.6 Let (Ω,F , P) be a probability space. For every three events
A, B,C ∈ F ,

P(A ∪ B ∪C) = P(A) + P(B) + P(C)
− P(A ∩ B) − P(A ∩C) − P(B ∩C)
+ P(A ∩ B ∩C).

Proof : Using the binary relation we have

P(A ∪ B ∪C) = P(A ∪ B) + P(C) − P((A ∪ B) ∩C)
= P(A) + P(B) − P(A ∩ B) + P(C) − P((A ∩C) ∪ (B ∩C)),

and it remains to apply the binary relation for the last expression. *

Proposition 1.7 (Inclusion-exclusion principle) For n events (Ai)n
i=1 we have

P(A1 ∪ · · · ∪ An) =
n∑

i=1

P(Ai) −
∑

i< j

P(Ai ∩ Aj) +
∑

i< j<k

P(Ai ∩ Aj ∩ Ak)

+ (−1)n+1P(A1 ∩ · · · ∩ An)

+ Exercise 1.3 Prove the inclusion-exclusion principle.

+ Exercise 1.4 Let A, B be two events in a probability space. Show that the
probability that either A or B has occurred, but not both, is P(A)+P(B)−2 P(A∩B).

Lemma 1.1 (Boole’s inequality) Let (Ω,F , P) be a probability space. Probabil-
ity is sub-additive in the sense that

P
(∪∞k=1Ak

) ≤
∞∑

k=1

P(Ak)

for every sequence (An) of events.
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Proof : Define the following sequence of events,

B1 = A1 B2 = A2 \ A1, , . . . , Bn = An \
(
∪n−1

k=1Ak

)
.

The Bn are disjoint and their union equals to the union of the An. Also, Bn ⊆ An

for every n. Now,

P
(∪∞k=1Ak

)
= P
(∪∞k=1Bk

)
=

∞∑

k=1

P(Bk) ≤
∞∑

k=1

P(Ak).

*

1.4 Discrete Probability Spaces

The simplest sample spaces to work with are such whose sample spaces include
countably many points. Let Ω be a countable set,

Ω = {a1, a2, . . . } ,
and let F = P(Ω). Then, a probability function, P, on F is fully determined
by its value for every singleton, {aj}, i.e., by the probability assigned to every
elementary event. Indeed, let P({aj}) ≡ pj be given, then since every event A can
be expressed as a finite, or countable union of disjoint singletons,

A = ∪· a j∈A{aj},
it follows from the additivity property that

P(A) =
∑

a j∈A
p j.

A particular case which often arises in applications is when the sample space is
finite (we denote by |Ω| the size of the sample space), and where every elementary
event {ω} has equal probability, p. By the properties of the probability function,

1 = P(Ω) =
∑

a j∈Ω
P({aj}) = p|Ω|,

i.e., p = 1/|Ω|. The probability of every event A is then

P(A) =
∑

a j∈A
P({aj}) = p|A| = |A||Ω| .
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Comment: The probability space, i.e., the sample space, the set of events and the
probability function, are a model of an experiment whose outcome is a priori un-
known. There is no a priori reason why all outcomes should be equally probable.
It is an assumption that has to be made only when believed to be applicable.

Examples:

! Two dice are rolled. What is the probability that the sum is 7? The sample
space isΩ = {(i, j) : 1 ≤ i, j ≤ 6}, and it is natural to assume that each of the
|Ω| = 36 outcomes is equally likely. The event ”the sum is 7” corresponds
to

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} ,
so that P(A) = 6/36.

" There are 11 balls in a jar, 6 white and 5 black. Two balls are taken at
random. What is the probability of having one white and one black.
To solve this problem, it is helpful to imagine that the balls are numbered
from 1 to 11. The sample space consists of all possible pairs,

Ω = {(i, j) : 1 ≤ i < j ≤ 11} ,
and its size is |Ω| =

(
11
2

)
; we assume that all pairs are equally likely. The

event A = one black and one white corresponds to a number of states equal
to the number of possibility to choose one white ball out of six, and one
black ball out of five, i.e.,

P(A) =

(
6
1

)(
5
1

)

(
11
2

) =
6 · 5

10 · 11 : 2
=

6
11
.

# A deck of 52 cards is distributed between four players. What is the proba-
bility that one of the players received all 13 spades?
The sample space Ω is the set of all possible partitions, the number of dif-
ferent partitions being

|Ω| = 52!
13! 13! 13! 13!

(the number of possibilities to order 52 cards divided by the number of
internal orders). Let Ai be the event that the i-th player has all spades, and
A be the event that some player has all spades; clearly,

A = A1 ∪· A2 ∪· A3 ∪· A4.
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For each i,
|Ai| =

39!
13! 13! 13!

,

hence,

P(A) = 4 P(A1) = 4 × 39! 13! 13! 13! 13!
52! 13! 13! 13!

≈ 6.3 × 10−12.

+ Exercise 1.5 Prove that it is not possible to construct a probability function
on the sample space of integers, such that P({i}) = P({ j}) for all i, j.

+ Exercise 1.6 A fair coin is tossed five times. What is the probability that there
was at least one instance of two Heads in a row? Start by building the probability
space.

We are now going to cover a number of examples, all concerning finite probability
spaces with equally likely outcomes. The importance of these examples stems
from the fact that they are representatives of classes of problems which recur in
many applications.

Example: (The birthday paradox) In a random assembly of n people, what is
the probability that none of them share the same date of birth?
We assume that n < 365 and ignore leap years. The sample space is the set of
all possible date-of-birth assignments to n people. This is a sample space of size
|Ω| = 365n. Let An be the event that all dates-of-birth are different. Then,

|An| = 365 × 364 × · · · × (365 − n + 1),

hence
P(An) =

|An|
|Ω| = 1 × 364

365
× · · · × 365 − n + 1

365
.

The results for various n are

P(A23) < 0.5 P(A50) < 0.03 P(A100) < 3.3 × 10−7.

!!!

Comment: Many would have guessed that P(A50) ≈ 1−50/365. This is a “selfish”
thought.
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Example: (The inattentive secretary, or the matching problem) A secretary
places randomly n letters into n envelopes. What is the probability that no letter
reaches its destination? What is the probability that exactly k letters reach their
destination?
As usual, we start by setting the sample space. Assume that the letters and en-
velopes are all numbered from one to n. The sample space consists of all possible
assignments of letters to envelopes, i.e., the set of all permutations of the numbers
1-to-n. The first question can be reformulated as follows: take a random one-to-
one function from {1, . . . , n} to itself; what is the probability that it has no fixed
points?
If A is the event that no letter has reached its destination, then its complement, Ac

is the event that at least one letter has reached its destination (at least one fixed
point). Let furthermore Bi be the event that the i-th letter reached its destination,
then

Ac = ∪n
i=1Bi.

We apply the inclusion-exclusion principle:

P(Ac) =
n∑

i=1

P(Bi) −
∑

i< j

P(Bi ∩ Bj) +
∑

i< j<k

P(Bi ∩ Bj ∩ Bk) − . . .

= n P(B1) −
(
n
2

)
P(B1 ∩ B2) +

(
n
3

)
P(B1 ∩ B2 ∩ B3) − . . . ,

where we have used the symmetry of the problem. Now,

P(B1) =
|B1|
|Ω| =

(n − 1)!
n!

P(B1 ∩ B2) =
|B1 ∩ B2|
|Ω| =

(n − 2)!
n!

,

etc. It follows that

P(Ac) = n
1
n
−
(
n
2

)
(n − 2)!

n!
+

(
n
3

)
(n − 3)!

n!
− · · · + (−1)n+1

(
n
n

)
0!
n!

= 1 − 1
2!
+

1
3!
− · · · + (−1)n+1 1

n!

=

n∑

k=1

(−1)k+1

k!
.
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For large n,

P(A) = 1 − P(Ac) =
n∑

k=0

(−1)k

k!
≈ e−1,

from which we deduce that for large n, the probability that no letter has reached
its destination is 0.37. The fact that the limit is finite may sound surprising (one
could have argued equally well that the limit should be either 0 or 1). Note that as
a side result, the number of permutations that have no fixed points is

|A| = |Ω| P(A) = n!
n∑

k=0

(−1)k

k!
.

Now to the second part of this question. Before we answer what is the number
of permutations that have exactly k fixed points, let’s compute the number of per-
mutations that have only k specific fixed points. This number coincides with the
number of permutations of n − k elements without fixed points,

(n − k)!
n−k∑

%=0

(−1)%

%!
.

The choice of k fixed points is exclusive, so to find the total number of permu-
tations that have exactly k fixed points, we need to multiply this number by the
number of ways to choose k elements out of n. Thus, if C denotes the event that
there are exactly k fixed points, then

|C| =
(
n
k

)
(n − k)!

n−k∑

%=0

(−1)%

%!
,

and

P(C) =
1
k!

n−k∑

%=0

(−1)%

%!
.

For large n and fixed k we have

P(C) ≈ e−1

k!
.

We will return to such expressions later on, in the context of the Poisson distri-
bution. !!!
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+ Exercise 1.7 Seventeen men attend a party (there were also women, but it is
irrelevant). At the end of it, these drunk men collect at random a hat from the hat
hanger. What is the probability that

! At least someone got his own hat.
" John Doe got his own hat.
# Exactly 3 men got their own hats.
$ Exactly 3 men got their own hats, one of which is John Doe.

As usual, start by specifying what is your sample space.

+ Exercise 1.8 A deck of cards is dealt out. What is the probability that the
fourteenth card dealt is an ace? What is the probability that the first ace occurs on
the fourteenth card?

1.5 Probability is a Continuous Function

This section could be omitted in a first course on probability. I decided to include it only
in order to give some flavor of the analytical aspects of probability theory.

An important property of the probability function is its continuity, in the sense
that if a sequence of events (An) has a limit, then P(lim An) = lim P(An).
We start with a “soft” version:

Theorem 1.1 (Continuity for increasing sequences) Let (An) be an increasing se-
quence of events, then

P(lim
n

An) = lim
n

P(An).

Comment: We have already shown that the limit of an increasing sequence of
events exists,

lim
n

An = ∪∞k=1Ak.

Note that for every n,
P(∪n

k=1Ak) = P(An),
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but we can’t just replace n by∞. Moreover, since P(An) is an increasing function
we have

P(An)↗ P(lim
n

An).

Proof : Recall that for an increasing sequence of events, limn An = ∪∞n=1An. Con-
struct now the following sequence of disjoint events,

B1 = A1

B2 = A2 \ A1

B3 = A3 \ A2,

etc. Clearly,

∪· n
i=1Bi = ∪n

i=1Ai = An and hence ∪∞i=1 Ai = ∪· ∞i=1Bi.

Now,

P(lim
n

An) = P(∪∞i=1Ai) = P(∪· ∞i=1Bi)

=

∞∑

i=1

P(Bi) = lim
n

n∑

i=1

P(Bi)

= lim
n

P(∪· n
i=1Bi) = lim

n
P(An).

*

+ Exercise 1.9 (Continuity for decreasing sequences) Prove that if (An) is a de-
creasing sequence of events, then

P(lim
n

An) = lim
n

P(An),

and more precisely, P(An)↘ P(limn An).

Now the next two lemmas are for arbitrary sequences of events, without assuming
the existence of a limit.

Lemma 1.2 (Fatou) Let (An) be a sequence of events, then

P(lim inf
n

An) ≤ lim inf
n

P(An).
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Proof : Recall that

lim inf
n

An = ∪∞n=1 ∩∞k=n Ak ≡ ∪∞n=1Gn

is the set of outcomes that occur “eventually always”. The sequence (Gn) is in-
creasing, and therefore

lim
n

P(Gn) = P(lim
n

Gn) = P(lim inf
n

An).

On the other hand, since Gn = ∩∞k=nAk, it follows that

P(Gn) ≤ inf
k≥n

P(Ak).

The left hand side converges to P(lim infn An) whereas the right hand side con-
verges to lim infn P(An), which concludes the proof. *

Lemma 1.3 (Reverse Fatou) Let (An) be a sequence of events, then

lim sup
n

P(An) ≤ P(lim sup
n

An).

Proof : Recall that

lim sup
n

An = ∩∞n=1 ∪∞k=n Ak ≡ ∩∞n=1Gn

is the set of outcomes that occur “infinitely often”. The sequence (Gn) is decreas-
ing, and therefore

lim
n

P(Gn) = P(lim
n

Gn) = P(lim sup
n

An).

On the other hand, since Gn = ∪∞k=nAk, it follows that

P(Gn) ≥ sup
k≥n

P(Ak).

The left hand side converges to P(lim supn An) whereas the right hand side con-
verges to lim supn P(An), which concludes the proof. *
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Theorem 1.2 (Continuity of probability) If a sequence of events (An) has a limit,
then

P(lim
n

An) = lim
n

P(An).

Proof : This is an immediate consequence of the two Fatou lemmas, for

lim sup
n

P(An) ≤ P(lim sup
n

An) = P(lim inf
n

An) ≤ lim inf
n

P(An).

*

Lemma 1.4 (First Borel-Cantelli) Let (An) be a sequence of events such that∑
n P(An) < ∞. Then,

P(lim sup
n

An) = P({An i.o.}) = 0.

Proof : Let as before Gn = ∪∞k=nAk. Since P(Gn)↘ P(lim supn An), then for all m

P(lim sup
n

An) ≤ P(Gm) ≤
∑

k≥m

P(Ak).

Letting m→ ∞ and using the fact that the right hand side is the tail of a converging
series we get the desired result. *

+ Exercise 1.10 Does the “reverse Borel-Cantelli” hold? Namely, is it true that
if
∑

n P(An) = ∞ then
P(lim sup

n
An) > 0.

Well, no. Construct a counter example.

Example: Consider the following scenario. At a minute to noon we insert into an
urn balls numbered 1-to-10 and remove the ball numbered “10”. At half a minute
to noon we insert balls numbered 11-to-20 and remove the ball numbered “20”,



Basic Concepts 19

and so on. Which balls are inside the urn at noon? Clearly all integers except for
the “10n”.
Now we vary the situation, except that the first time we remove the ball numbered
“1”, next time the ball numbered “2”, etc. Which balls are inside the urn at noon?
none.
In the third variation we remove each time a ball at random (from those inside
the urn). Are there any balls left at noon? If this question is too bizarre, here
is a more sensible picture. Our sample space consists of random sequences of
numbers, whose elements are distinct, and whose first element is in the range 1-
to-10, its second element is in the range 1-to-20, and so on. We are asking what is
the probability that such a sequence contains all integers?
Let’s focus on ball number “1” and denote by En then event that it is still inside
the urn after n steps. We have

P(En) =
9

10
× 18

19
× · · · × 9n

9n + 1
=

n∏

k=1

9k
9k + 1

.

The events (En) form a decreasing sequence, whose countable intersection corre-
sponds to the event that the first ball was not ever removed. Now,

P(lim
n

En) = lim
n

P(En) = lim
n

n∏

k=1

9k
9k + 1

= lim
n




n∏

k=1

9k + 1
9k



−1

= lim
n




n∏

k=1

(
1 +

1
9k

)
−1

= lim
n

[(
1 +

1
9

) (
1 +

1
18

)
. . .

]−1

≤ lim
n

(
1 +

1
9
+

1
18
+ . . .

)−1

= 0.

Thus, there is zero probability that the ball numbered “1” is inside the urn after
infinitely many steps. The same holds ball number “2”, “3”, etc. If Fn denotes the
event that the n-th ball has remained inside the box at noon, then

P(∪∞n=1Fn) ≤
∞∑

n=1

P(Fn) = 0.

!!!
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Chapter 2

Conditional Probability and
Independence

2.1 Conditional Probability

Example: Two dice are tossed. What is the probability that the sum is 8? This is
an easy exercise: we have a sample space Ω that comprises 36 equally-probable
outcomes. The event “the sum is 8” is given by

A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} ,

and therefore P(A) = |A|/|Ω| = 5/36.
But now, suppose someone reveals that the first die resulted in “3”. How does this
change our predictions? This piece of information tells us that “with certainty”
the outcome of the experiment lies in set

F = {(3, i) : 1 ≤ i ≤ 6} ⊂ Ω.

As this point, outcomes that are not in F have to be ruled out. The sample space
can be restricted to F (F becomes the certain event). The event A (sum was
“8”) has to be restricted to its intersection with F. It seems reasonable that “the
probability of A knowing that F has occurred” be defined as

|A ∩ F|
|F| =

|A ∩ F|/|Ω|
|F|/|Ω| =

P(A ∩ F)
P(F)

,

which in the present case is 1/6. !!!
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This example motivates the following definition:

Definition 2.1 Let (Ω,F , P) be a probability space and let F ∈ F be an event
for which P(F) " 0. For every A ∈ F the conditional probability of A given
that F has occurred (or simply, given F) is defined (and denoted) by

P(A|F) :=
P(A ∩ F)

P(F)
.

Comment: Note that conditional probability is defined only if the conditioning
event has finite probability.

Discussion: Like probability itself, conditional probability also has different in-
terpretations depending on wether you are a frequentist or Bayesian. In the fre-
quentist interpretation, we have in mind a large set of n repeated experiments. Let
nB denote the number of times event B occurred, and nA,B denote the number of
times that both events A and B occurred. Then in the frequentist’s world,

P(A|B) = lim
n→∞

nA,B

nB
.

In the Bayesian interpretation, this conditional probability is that belief that A has
occurred after we learned that B has occurred.

Example: There are 10 white balls, 5 yellow balls and 10 black balls in an urn. A
ball is drawn at random, what is the probability that it is yellow (answer: 5/25)?
What is the probability that it is yellow given that it is not black (answer: 5/15)?
Note how the additional information restricts the sample space to a subset. !!!

Example: Jeremy can’t decide whether to study probability theory or literature.
If he takes literature, he will pass with probability 1/2; if he takes probability, he
will pass with probability 1/3. He made his decision based on a coin toss. What
is the probability that he passed the probability exam?
This is an example where the main task is to set up the probabilistic model and
interpret the data. First, the sample space. We can set it to be the product of the
two sets {

prob., lit.
} × {pass, fail

}
.
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If we define the following events:

A =
{
passed

}
=
{
prob., lit.

} × {pass
}

B =
{
probability

}
=
{
prob.

} × {pass, fail
}
,

then we interpret the data as follows:

P(B) = P(Bc) =
1
2

P(A|B) =
1
3

P(A|Bc) =
1
2
.

The quantity to be calculated is P(A ∩ B), and this is obtained as follows:

P(A ∩ B) = P(A|B)P(B) =
1
6
.

!!!

Example: There are 8 red balls and 4 white balls in an urn. Two are drawn at
random. What is the probability that the second was red given that the first was
red?
Answer: it is the probability that both were red divided by the probability that the
first was red. The result is however 7/11, which illuminates the fact that having
drawn the first ball red, we can think of a new initiated experiment. !!!

The next theorem justifies the term conditional probability:

Theorem 2.1 Let (Ω,F , P) be a probability space and F be an event such that
P(F) " 0. Define the set function Q(A) = P(A|F). Then, Q is a probability
function over (Ω,F ).

Proof : We need to show that the three axioms are met. Clearly,

Q(A) =
P(A ∩ F)

P(F)
≤ P(F)

P(F)
= 1.

Also,

Q(Ω) =
P(Ω ∩ F)

P(F)
=

P(F)
P(F)

= 1.
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Finally, let (An) be a sequence of mutually disjoint events. Then the events (An∩F)
are also mutually disjoint, and

Q(∪nAn) =
P((∪nAn) ∩ F)

P(F)
=

P(∪n(An ∩ F))
P(F)

=
1

P(F)

∑

n

P(An ∩ F) =
∑

n

Q(An).

*

In fact, the function Q is a probability function on the smaller space F, with the
σ-algebra

F |F := {F ∩ A : A ∈ F } .

+ Exercise 2.1 Let A, B,C be three events of positive probability. We say that
“A favors B” if P(B|A) > P(B). Is it generally true that if A favors B and B favors
C, then A favors C?

+ Exercise 2.2 Prove the general multiplication rule

P(A ∩ B ∩C) = P(A) P(B|A) P(C|A ∩ B),

with the obvious generalization for more events. Reconsider the “birthday para-
dox” in the light of this formula.

2.2 Bayes’ Rule and the Law of Total Probability

Let (Ai)n
i=1 be a partition of Ω. By that we mean that the Ai are mutually disjoint

and that their union equals Ω (every ω ∈ Ω is in one and only one Ai). Let B be
an event. Then, we can write

B = ∪· n
i=1(B ∩ Ai),

and by additivity,

P(B) =
n∑

i=1

P(B ∩ Ai) =
n∑

i=1

P(B|Ai)P(Ai).

This law is known as the law of total probability; it is very intuitive.
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The next rule is known as Bayes’ law: let A, B be two events (such that P(A), P(B) >
0) then

P(A|B) =
P(A ∩ B)

P(B)
and P(B|A) =

P(B ∩ A)
P(A)

,

from which we readily deduce

P(A|B) = P(B|A)
P(A)
P(B)

.

Bayes’ rule is easily generalized as follows: if (Ai)n
i=1 is a partition of Ω, then

P(Ai|B) =
P(Ai ∩ B)

P(B)
=

P(B|Ai)P(Ai)∑n
j=1 P(B|Aj)P(Aj)

,

where we have used the law of total probability.

Example: A lab screen for the HIV virus. A person that carries the virus is
screened positive in only 95% of the cases. A person who does not carry the virus
is screened positive in 1% of the cases. Given that 0.5% of the population carries
the virus, what is the probability that a person who has been screened positive is
actually a carrier?
Again, we start by setting the sample space,

Ω = {carrier, not carrier} × {+,−} .

Note that the sample space is not a sample of people! If we define the events,

A =
{
the person is a carrier

}
B =
{
the person was screened positive

}
,

it is given that

P(A) = 0.005 P(B|A) = 0.95 P(B|Ac) = 0.01.

Now,

P(A|B) =
P(A ∩ B)

P(B)
=

P(B|A)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac)

=
0.95 · 0.005

0.95 · 0.005 + 0.01 · 0.995
≈ 1

3
.

This is a nice example where fractions fool our intuition. !!!
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+ Exercise 2.3 The following problem is known as Pólya’s urn. At time t = 0
an urn contains two balls, one black and one red. At time t = 1 you draw one ball
at random and replace it together with a new ball of the same color. You repeat
this procedure at every integer time (so that at time t = n there are n + 2 balls.
Calculate

pn,r = P(there are r red balls at time n)

for n = 1, 2, . . . and r = 1, 2, . . . , n + 1. What can you say about the proportion of
red balls as n→ ∞.
Solution: In order to have r red balls at time n there must be either r or r − 1 red
balls at time n − 1. By the law of total probability, we have the recursive formula

pn,r =
(
1 − r

n + 1

)
pn−1,r +

r − 1
n + 1

pn−1,r−1,

with “initial conditions” p0,1 = 1. If we define qn.r = (n + 1)!pn,r, then

qn,r = (n + 1 − r) qn−1,r + (r − 1) qn−1,r−1.

You can easily check that qn,r = n! so that the solution to our problem is pn,r =

1/(n + 1). At any time all the outcomes for the number of red balls are equally
likely!

2.3 Compound experiments

So far we have only “worked” with a restricted class of probability spaces—finite
probability space in which all outcomes have the same probability. The concept
of conditional probabilities is also a mean to define a class of probability spaces,
representing compound experiments where certain parts of the experiment rely
on the outcome of other parts. The simplest way to get insight into it is through
examples.

Example: Consider the following statement: “the probability that a family has
k children is pk (with

∑
k pk = 1), and for any family size, all sex distributions

have equal probabilities”. What is the probability space corresponding to such a
statement?
Since there is no a-priori limit on the number of children (although every family
has a finite number of children), we should take our sample space to be the set of
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all finite sequences of type ”bggbg”:

Ω =
{
a1a2 . . . an : aj ∈ {b, g} , n ∈ N

}
.

This is a countable space so the σ-algebra can include all subsets. What is then
the probability of a point ω ∈ Ω? Suppose that ω is a string of length n, and let An

be the event “the family has n children”, then by the law of total probability

P({ω}) =
∞∑

m=1

P({ω}|Am)P(Am) =
pn

2n .

Having specified the probability of all singletons of a countable space, the proba-
bility space is fully specified.
We can then ask, for example, what is the probability that a family with no girls
has exactly one child? If B denotes the event “no girls”, then

P(A1|B) =
P(A1 ∩ B)

P(B)
=

p1/2
p1/2 + p2/4 + p3/8 + . . .

.

!!!

Example: Consider two dice: die A has four red and two white faces and die B
has two red and four white faces. One throws a coin: if it falls Head then die A is
tossed sequentially, otherwise die B is used.
What is the probability space?

Ω = {H,T } ×
{
a1a2 · · · : aj ∈ {R,W}

}
.

It is a product of two subspaces. What we are really given is a probability on
the first space and a conditional probability on the second space. If AH and AT

represent the events “head has occurred” and “tail has occurred”, then we know
that

P(AH) = P(AT ) =
1
2
,

and facts like
P({RRWR} |AH) =

4
6
· 4

6
· 2

6
· 4

6

P({RRWR} |AT ) =
2
6
· 2

6
· 4

6
· 2

6
.

(No matter for the moment where these numbers come from....) !!!

The following well-known “paradox” demonstrates the confusion that can arise
where the boundaries between formalism and applications are fuzzy.
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Example: The sibling paradox. Suppose that in all families with two children
all the four combinations {bb, bg, gb, gg} are equally probable. Given that a family
with two children has at least one boy, what is the probability that it also has a girl?
The easy answer is 2/3.
Suppose now that one knocks on the door of a family that has two children, and a
boy opens the door and says “I am the oldest child”. What is the probability that
he has a sister? The answer is one half. Repeat the same scenario but this time
the boy says “I am the youngest child”. The answer remains the same. Finally, a
boy opens the door and says nothing. What is the probability that he has a sister:
a half or two thirds???
The resolution of this paradox is that the experiment is not well defined. We could
think of two different scenarios: (i) all families decide that boys, when available,
should open the door. In this case if a boy opens the door he just rules out the
possibility of gg, and the likelihood of a girl is 2/3. (ii) When the family hears
knocks on the door, the two siblings toss a coin to decide who opens. In this case,
the sample space is

Ω = {bb, bg, gb, gg} × {1, 2} ,
and all 8 outcomes are equally likely. When a boy opens, he gives us the knowl-
edge that the outcome is in the set

A = {(bb, 1), (bb, 2), (bg, 1), (gb, 2)} .

If B is the event that there is a girl, then

P(B|A) =
P(A ∩ B)

P(A)
=

P({(bg, 1), (gb, 2)})
P(A)

=
2/8
4/8
=

1
2
.

!!!

+ Exercise 2.4 Consider the following generic compound experiment: one per-
forms a first experiment to which corresponds a probability space (Ω0,F0, P0),
where Ω0 is a finite set of size n. Depending on the outcome of the first experi-
ment, the person conducts a second experiment. If the outcome was ω j ∈ Ω0 (with
1 ≤ j ≤ n), he conducts an experiment to which corresponds a probability space
(Ω j,F j, Pj). Construct a probability space that corresponds to the compound ex-
periment.

NEEDED: exercises on compound experiments.
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2.4 Independence

Definition 2.2 Let A and B be two events in a probability space (Ω,F , P). We
say that A is independent of B if the knowledge that B has occurred does not alter
the probability that A has occurred. That is,

P(A|B) = P(A).

By the definition of conditional probability, this condition is equivalent to

P(A ∩ B) = P(A)P(B),

which may be taken as an alternative definition of independence. Also, the latter
condition makes sense also if P(A) or P(B) are zero. By the symmetry of this
condition we immediately conclude:

Corollary 2.1 If A is independent of B then B is also independent of A. Indepen-
dence is a mutual property.

Example: A card is randomly drawn from a deck of 52 cards. Let

A = {the card is an Ace}
B =
{
the card is a spade

}
.

Are these events independent? Answer: yes. !!!

Example: Two dice are tossed. Let

A = {the first die is a 4}
B = {the sum is 6} .

Are these events independent (answer: no)? What if the sum was 7 (answer: yes)?
!!!
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Proposition 2.1 Every event is independent of Ω and ∅.

Proof : Immediate. *

Proposition 2.2 If B is independent of A then it is independent of Ac.

Proof : Since B = (B ∩ Ac) ∪· (A ∩ B),

P(B∩ Ac) = P(B)− P(A∩ B) = P(B)− P(A)P(B) = P(B)(1− P(A)) = P(B)P(Ac).

*

Thus, if B is independent of A, it is independent of the collection of sets {Ω, A, Ac, ∅},
which is theσ-algebra generated by A. This innocent distinction will gain mean-
ing in a moment.
Consider then three events A, B,C. What does it mean that they are independent?
What does it mean for A to be independent of B and C? A first, natural guess
would be to say that the knowledge that B has occurred does not affect the prob-
ability of A, as does the knowledge that C has occurred? Does it imply that the
probability of A is indeed independent of any information regarding whether B
and C occurred?

Example: Consider again the toss of two dice and

A = {the sum is 7}
B = {the first die is a 4}
C = {the first die is a 2} .

Clearly, A is independent of B and it is independent of C, but it is not true that B
and C are independent.
But now, what if instead C was that the second die was a 2? It is still true that A is
independent of B and independent of C, but can we claim that it is independent of
B and C? Suppose we knew that both B and C took place. This would certainly
change the probability that A has occurred (it would be zero). This example calls
for a modified definition of independence between multiple events. !!!
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Definition 2.3 The event A is said to be independent of the pair of events B and
C if it is independent of every event in the σ-algebra generated by B and C. That
is, if it is independent of the collection

σ(B,C) = {B,C, Bc,Cc, B ∩C, B ∪C, B ∩Cc, B ∪Cc, . . . ,Ω, ∅} .

Proposition 2.3 A is independent of B and C if and only iff it is independent of
B, C, and B ∩C, that is, if and only if

P(A ∩ B) = P(A)P(B) P(A ∩C) = P(A)P(C)
P(A ∩ B ∩C) = P(A)P(B ∩C).

Proof : The “only if” part is obvious. Now to the “if” part. We need to show that
A is independent of each element in the σ-algebra generated by B and C. What
we already know is that A is independent of B, C, B ∩ C, Bc, Cc, Bc ∪ Cc, Ω, and
∅ (not too bad!). Take for example the event B ∪C:

P(A ∩ (B ∪C)) = P(A ∩ (Bc ∩Cc)c)
= P(A) − P(A ∩ Bc ∩Cc)
= P(A) − P(A ∩ Bc) + P(A ∩ Bc ∩C)
= P(A) − P(A)P(Bc) + P(A ∩C) − P(A ∩C ∩ B)
= P(A) − P(A)(1 − P(B)) + P(A)P(C) − P(A)P(B ∩C)
= P(A) [P(B) + P(C) − P(B ∩C)]
= P(A)P(B ∪C).

The same method applies to all remaining elements of the σ-algebra. *

+ Exercise 2.5 Prove directly that if A is independent of B, C, and B ∩ C, then
it is independent of B \C.
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Corollary 2.2 The events A, B,C are mutually independent in the sense that each
one is independent of the remaining pair if and only if

P(A ∩ B) = P(A)P(B) P(A ∩C) = P(A)P(C)
P(B ∩C) = P(B)P(C) P(A ∩ B ∩C) = P(A)P(B ∩C).

More generally,

Definition 2.4 A collection of events (An) is said to consist of mutually inde-
pendent events if for every subset An1 , . . . , Ank ,

P(An1 ∩ · · · ∩ Ank) =
k∏

j=1

P(An j).

2.5 Repeated Trials

Only now that we have defined the notion of independence we can consider the sit-
uation of an experiment being repeated again and again under identical conditions—
a situation underlying the very notion of probability.
Consider an experiment, i.e., a probability space (Ω0,F0, P0). We want to use
this probability space to construct a compound probability space corresponding
to the idea of repeating the same experiment sequentially n times, the outcome of
each trial being independent of all other trials. For simplicity, we assume that the
single experiment corresponds to a discrete probability space, Ω0 = {a1, a2, . . . }
with atomistic probabilities P0({aj}) = pj.
Consider now the compound experiment of repeating the same experiment n times.
The sample space consists of n-tuples,

Ω =Ω n
0 =
{
(aj1 , aj2 , . . . , ajn) : ajk ∈ Ω0

}
.

Since this is a discrete space, the probability is fully determined by its value for
all singletons. Each singleton,

ω = (aj1 , aj2 , . . . , ajn),
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corresponds to an event, which is the intersection of the n events: “first outcome
was aj1” and “second outcome was aj2”, etc. Since we assume statistical inde-
pendence between trials, its probability should be the product of the individual
probabilities. I.e., it seems reasonable to take

P({(aj1 , aj2 , . . . , ajn)}) = pj1 pj2 . . . pjn . (2.1)

Note that this is not the only possible probability that one can define on Ωn
0!

Proposition 2.4 Definition (2.1) defines a probability function on Ωn
0.

Proof : Immediate. *

The following proposition shows that (2.1) does indeed correspond to a situation
where different trials do not influence each other’s statistics:

Proposition 2.5 Let A1, A2, . . . , An be a sequence of events such that the j-th trial
alone determines whether Aj has occurred; that is, there exists a Bj ⊆ Ω0, such
that

Aj = Ω
j−1
0 × Bj ×Ωn− j

0 .

If the probability is defined by (2.1), then the Aj are mutually independent.

Proof : Consider a pair of such events Aj, Ak, say, j < k. Then,

Aj ∩ Ak = Ω
j−1
0 × Bj ×Ωk− j−1

0 × Bk ×Ωn−k
0 ,

which can be written as

Aj ∩ Ak = ∪· b1∈Ω0 . . . ∪· b j∈Bj . . . ∪· bk∈Bk . . . ∪· bn∈Ω0{(b1, b2, . . . , bn)}.

Using the additivity of the probability,

P(Aj ∩ Ak) =
∑

b1∈Ω0

· · ·
∑

b j∈Bj

· · ·
∑

bk∈Bk

· · ·
∑

bn∈Ω0

P0({b1})P0({b2}) . . . P0({bn})

= P0(Bj)P0(Bk).
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It is easy, by a similar construction to show that in fact

P(Aj) = P0(Bj)

for all j, so that the binary relation has been proved. Similarly, we can take all
triples, quadruples, etc. *

Example: Consider an experiment with two possible outcomes: ”Success” with
probability p and ”Failure” with probability q = 1−p (such an experiment is called
a Bernoulli trial). Consider now an infinite sequence of independent repetitions
of this basic experiment. While we have not formally defined such a probability
space (it is uncountable), we do have a precise probabilistic model for any finite
subset of trials.
(1) What is the probability of at least one success in the first n trials? (2) What is
the probability of exactly k successes in the first n trials? (3) What is the proba-
bility of an infinite sequence of successes?
Let Aj denote the event “the j-th trial was a success”. What we know is that for
all distinct natural numbers j1, . . . , jn,

P(Aj1 ∩ · · · ∩ Ajn) = pn.

To answer the first question, we note that the probability of having only failures in
the first n trials is qn, hence the answer is 1 − qn. To answer the second question,
we note that exactly k successes out of n trials is a disjoint unions of n-choose-
k singletons, the probability of each being pkqn−k. Finally, to answer the third
question, we use the continuity of the probability function,

P(∩∞j=1Aj) = P(∩∞n=1 ∩n
j=1 Aj) = P( lim

n→∞
∩n

j=1Aj) = lim
n→∞

P(∩n
j=1Aj) = lim

n→∞
pn,

which equals 1 if p = 1 and zero otherwise. !!!

Example: (The gambler’s ruin problem, Bernoulli 1713) Consider the follow-
ing game involving two players, which we call Player A and Player B. Player A
starts the game owning i NIS while Player B owns N − i NIS. The game is a game
of zero-sum, where each turn a coin is tossed. The coin has probability p to fall on
Head, in which case Player B pays Player A one NIS; it has probability q = 1 − p
to fall on Tail, in which case Player A pays Player B one NIS. The game ends
when one of the players is broke. What is the probability for Player A to win?
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While the game may end after a finite time, the simplest sample space is that of
an infinite sequence of tosses, Ω = {H,T }N. The event

E = {“Player A wins” },

consists of all sequences in which the number of Heads exceeds the number of
Tails by N − i before the number of Tails has exceeded the number of Heads by i.
If

F = {“first toss was Head”},
then by the law of total probability,

P(E) = P(E|F)P(F) + P(E|Fc)P(Fc) = pP(E|F) + qP(E|Fc).

If the first toss was a Head, then by our assumption of mutual independence, we
can think of the game starting anew with Player A having i + 1 NIS (and i − 1 if
the first toss was Tail). Thus, if αi denote the probability that Player A wins if he
starts with i NIS, then

αi = pαi+1 + qαi−1,

or equivalently,
αi+1 − αi =

q
p

(αi − αi−1).

The “boundary conditions” are α0 = 0 and αN = 1.
This system of equations is easily solved. We have

α2 − α1 =
q
p
α1

α3 − α2 =
q
p

(α2 − α1) =
(

q
p

)2
α1

... =
...

1 − αN−1 =
q
p

(αN−1 − αN−2) =
(

q
p

)N−1

α1.

Summing up,

1 − α1 =


1 +

q
p
+ · · · +

(
q
p

)N−1α1 − α1,

i.e.,

1 =
(q/p)N − 1

q/p − 1
α1,



36 Chapter 2

from which we get that

αi =
(q/p)i − 1
q/p − 1

α1 =
(q/p)i − 1
(q/p)N − 1

.

What is the probability that Player B wins? Exchange i with N − i and p with q.
What is the probability that either of them wins? The answer turns out to be 1!
!!!

2.6 On Zero-One Laws

Events that have probability either zero or one are often very interesting. We will
demonstrate such a situation with a funny example, which is representative of
a class of problems that have been classified by Kolmogorov as 0-1 laws. The
general theory is beyond the scope of this course.
Consider a monkey typing on a typing machine, each second typing a character (a
letter, number, or a space). Each character is typed at random, independent of past
characters. The sample space consists thus of infinite strings of typing-machine
characters. The question that interests us is how many copies of the Collected
Work of Shakespeare (WS) did the monkey produce. We define the following
events:

H =
{
the monkey produces infinitely many copies of WS

}

Hk =
{
the monkey produces at least k copies of WS

}

Hm,k =
{
the monkey produces at least k copies of WS by time m

}

Hm =
{
the monkey produces infinitely many copies of WS after time m + 1

}
.

Of course, Hm = H, i.e., the event of producing infinitely many copies is not
affected by any finite prefix (it is a tail event!).
Now, because the first m characters are independent of the characters from m + 1
on, we have for all m, k,

P(Hm,k ∩ Hm) = P(Hm,k)P(Hm).

and since Hm = H,
P(Hm,k ∩ H) = P(Hm,k)P(H).
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Take now m→ ∞. Clearly, limm→∞ Hm,k = Hk, and

lim
m→∞

(Hm,k ∩ H) = Hk ∩ H = H.

By the continuity of the probability function,

P(H) = P(Hk)P(H).

Finally, taking k → ∞, we have limk→∞ Hk = H, and by the continuity of the
probability function,

P(H) = P(H)P(H),

from which we conclude that P(H) is either zero or one.

2.7 Further examples

In this section we examine more applications of conditional probabilities.

Example: The following example is actually counter-intuitive. Consider an infi-
nite sequence of tosses of a fair coin. There are eight possible outcomes for three
consecutive tosses, which are HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT. It turns
out that for any of those triples, there exists another triple, which is likely to occur
first with probability strictly greater than one half.
Take for example s1 = HHH and s2 = THH, then

P(s2 before s1) = 1 − P(first three tosses are s1) =
7
8
.

Take s3 = TTH, then

P(s3 before s2) = P(TT before s2) > P(TT before HH) =
1
2
.

where the last equality follows by symmetry. !!!

+ Exercise 2.6 Convince yourself that the above statement is indeed correct by
examining all cases.
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Chapter 3

Random Variables (Discrete Case)

3.1 Basic Definitions

Consider a probability space (Ω,F , P), which corresponds to an “experiment”.
The points ω ∈ Ω represent all possible outcomes of the experiment. In many
cases, we are not necessarily interested in the point ω itself, but rather in some
property (function) of it. Consider the following pedagogical example: in a coin
toss, a perfectly legitimate sample space is the set of initial conditions of the toss
(position, velocity and angular velocity of the toss, complemented perhaps with
wind conditions). Yet, all we are interested in is a very complicated function of
this sample space: whether the coin ended up with Head or Tail showing up. The
following is a “preliminary” version of a definition that will be refined further
below:

Definition 3.1 Let (Ω,F , P) be a probability space. A function X : Ω → S
(where S ⊂ R is a set) is called a real-valued random variable.

Example: Two dice are tossed and the random variable X is the sum, i.e.,

X((i, j)) = i + j.

Note that the set S (the range of X) can be chosen to be {2, . . . , 12}. Suppose now
that all our probabilistic interest is in the value of X, rather than the outcome of the
individual dice. In such case, it seems reasonable to construct a new probability
space in which the sample space is S . Since it is a discrete space, the events related
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to X can be taken to be all subsets of S . But now we need a probability function
on (S , 2S ), which will be compatible with the experiment. If A ∈ 2S (e.g., the sum
was greater than 5), the probability that A has occurred is given by

P({ω ∈ Ω : X(ω) ∈ A}) = P(
{
ω ∈ Ω : ω ∈ X−1(A)

}
) = P(X−1(A)).

That is, the probability function associated with the experiment (S , 2S ) is P ◦ X−1.
We call it the distribution of the random variable X and denote it by PX. !!!

Generalization These notions need to be formalized and generalized. In prob-
ability theory, a space (the sample space) comes with a structure (a σ-algebra of
events). Thus, when we consider a function from the sample space Ω to some
other space S , this other space must come with its own structure—its own σ-
algebra of events, which we denote by FS .
The function X : Ω → S is not necessarily one-to-one (although it can always be
made onto by restricting S to be the range of X), therefore X is not necessarily
invertible. Yet, the inverse function X−1 can acquire a well-defined meaning if we
define it on subsets of S ,

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} , ∀A ∈ FS .

There is however nothing to guarantee that for every event A ∈ FS the set X−1(A) ⊂
Ω is an event in F . This is something we want to avoid otherwise it will make no
sense to ask “what is the probability that X(ω) ∈ A?”.

Definition 3.2 Let (Ω,F ) and (S ,FS ) be two measurable spaces (a set and a
σ-algebra of subsets). A function X : Ω → S is called a random variable if
X−1(A) ∈ F for all A ∈ FS . (In the context of measure theory it is called a
measurable function.)1

An important property of the inverse function X−1 is that it preserves (commutes
with) set-theoretic operations:

Proposition 3.1 Let X be a random variable mapping a measurable space (Ω,F )
into a measurable space (S ,FS ). Then,

1Note the analogy with the definition of continuous functions between topological spaces.
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! For every event A ∈ FS

(X−1(A))c = X−1(Ac).

" If A, B ∈ FS are disjoint so are X−1(A), X−1(B) ∈ F .
# X−1(S ) = Ω.
$ If (An) ⊂ FS is a sequence of events, then

X−1(∩∞n=1An) = ∩∞n=1X−1(An).

Proof : Just follow the definitions. *

Example: Let A be an event in a measurable space (Ω,F ). An event is not a
random variable, however, we can always form from an event a binary random
variable (a Bernoulli variable), as follows:

IA(ω) =




1 ω ∈ A
0 otherwise

.

!!!

So far, we completely ignored probabilities and only concentrated on the structure
that the function X induces on the measurable spaces that are its domain and range.
Now, we remember that a probability function is defined on (Ω,F ). We want to
define the probability function that it induces on (S ,FS ).

Definition 3.3 Let X be an (S ,FS )-valued random variable on a probability
space (Ω,F , P). Its distribution PX is a function FS → R defined by

PX(A) = P(X−1(A)).

Proposition 3.2 The distribution PX is a probability function on (S ,FS ).
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Proof : The range of PX is obviously [0, 1]. Also

PX(S ) = P(X−1(S )) = P(Ω) = 1.

Finally, let (An) ⊂ FS be a sequence of disjoint events, then

PX(∪· ∞n=1An) = P(X−1(∪· ∞n=1An)) =P(∪· ∞n=1X−1(An))

=

∞∑

n=1

P(X−1(An)) =

∞∑

n=1

PX(An).

*

Comment: The distribution is defined such that the following diagram commutes

Ω
X−−−−−→ S

∈
E ∈

E

F
X−1

←−−−−− FS

P
E PX

E

[0, 1] [0, 1]

In this chapter, we restrict our attention to random variables whose ranges S are
discrete spaces, and take FS = 2S . Then the distribution is fully specified by its
value for all singletons,

PX({s}) =: pX(s), s ∈ S .

We call the function pX the atomistic distribution of the random variable X.
Note the following identity,

pX(s) = PX({s}) = P(X−1({s}) = P ({ω ∈ Ω : X(ω) = s}) ,

where
P : F → [0, 1] PX : FS → [0, 1] pX : S → [0, 1]

are the probability, the distribution of X, and the atomistic distribution of X, re-
spectively. The function pX is also called the probability mass function (pmf) of
the random variable X.
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Notation: We will often have expressions of the form

P({ω : X(ω) ∈ A}),

which we will write in short-hand notation, P(X ∈ A) (to be read as “the probabil-
ity that the random variable X assumes a value in the set A”).

Example: Three balls are extracted from an urn containing 20 balls numbered
from one to twenty. What is the probability that at least one of the three has a
number 17 or higher.
The sample space is

Ω = {(i, j, k) : 1 ≤ i < j < k ≤ 20} ,

and for every ω ∈ Ω, P({ω}) = 1/
(

20
3

)
. We define the random variable

X((i, j, k)) = k.

It maps every point ω ∈ Ω into a point in the set S = {3, . . . , 20}. To every k ∈ S
corresponds an event in F ,

X−1({k}) = {(i, j, k) : 1 ≤ i < j < k} .

The atomistic distribution of X is

pX(k) = PX({k}) = P(X = k) =

(
k−1

2

)

(
20
3

) .

Then,

PX({17, . . . , 20}) = pX(17) + pX(18) + pX(19) + pX(20)

=

(
20
3

)−1 {(16
2

)
+

(
17
2

)
+

(
18
2

)
+

(
19
2

)}
≈ 0.508.

!!!

Example: Let A be an event in a probability space (Ω,F , P). We have already
defined the random variables IA : Ω→ {0, 1}. The distribution of IA is determined
by its value for the two singletons {0}, {1}. Now,

PIA({1}) = P(I−1
A ({1})) = P({ω : IA(ω) = 1}) = P(A).

!!!
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Example: The coupon collector problem. Consider the following situation:
there are N types of coupons. A coupon collector gets each time unit a coupon at
random. The probability of getting each time a specific coupon is 1/N, indepen-
dently of prior selections. Thus, our sample space consists of infinite sequences
of coupon selections, Ω = {1, . . . ,N}N, and for every finite sub-sequence the cor-
responding probability space is that of equal probability.
A random variable of particular interest is the number of time units T until the
coupon collector has gathered at least one coupon of each sort. This random
variable takes values in the set S = {N,N + 1, . . . } ∪ {∞}. Our goal is to compute
its atomistic distribution pT (k).
Fix an integer n ≥ N, and define the events A1, A2, . . . , AN such that Aj is the event
that no type- j coupon is among the first n coupons. By the inclusion-exclusion
principle,

PT ({n + 1, n + 2, . . . }) = P
(
∪N

j=1Aj

)

=
∑

j

P(Aj) −
∑

j<k

P(Aj ∩ Ak) + . . . .

Now, by the independence of selections, P(Aj) = [(N − 1)/N]n, P(Aj ∩ Ak) =
[(N − 2)/N]n, and so on, so that

PT ({n + 1, n + 2, . . . }) = N
(

N − 1
N

)n
−
(
N
2

) (
N − 2

N

)n
+ . . .

=

N∑

j=1

(
N
j

)
(−1) j+1

(N − j
N

)n
.

Finally,
pT (n) = PT ({n, n + 1, . . . }) − PT ({n + 1, n + 2, . . . }).

!!!

3.2 The Distribution Function

Definition 3.4 Let X : Ω → S be a real-valued random variable (S ⊆ R). Its
distribution function FX is a real-valued function R→ R defined by

FX(x) = P({ω : X(ω) ≤ x}) = P(X ≤ x) = PX((−∞, x]).
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Example: Consider the experiment of tossing two dice and the random variable
X(i, j) = i + j. Then, FX(x) is of the form

!

"

1 2 3 4 5 6 7

!!!

Proposition 3.3 The distribution function FX of any random variable X satisfies
the following properties:

1. FX is non-decreasing.

2. FX(x) tends to zero when x→ −∞.

3. FX(x) tends to one when x→ ∞.

4. Fx is right-continuous.

Proof :

1. Let a ≤ b, then (−∞, a] ⊆ (−∞, b] and since PX is a probability function,

FX(a) = PX((−∞, a]) ≤ PX((−∞, b]) = FX(b).
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2. Let (xn) be a sequence that converges to −∞. Then,

lim
n

FX(xn) = lim
n

PX((−∞, xn]) = PX(lim
n

(−∞, xn]) = PX(∅) = 0.

3. The other limit is treated along the same lines.

4. Same for right continuity: if the sequence (hn) converges to zero from the
right, then

lim
n

FX(x + hn) = lim
n

PX((−∞, x + hn])

= PX(lim
n

(−∞, x + hn])

= PX((−∞, x]) = FX(x).

*

+ Exercise 3.1 Explain why FX is not necessarily left-continuous.

What is the importance of the distribution function? A distribution is a compli-
cated object, as it has to assign a number to any set in the range of X (for the
moment, let’s forget that we deal with discrete variables and consider the more
general case where S may be a continuous subset of R). The distribution function
is a real-valued function (much simpler object) which embodies the same infor-
mation. That is, the distribution function defines uniquely the distribution of any
(measurable) set in R. For example, the distribution of semi-open segments is

PX((a, b]) = PX((−∞, b] \ (−∞, a]) = FX(b) − FX(a).

What about open segments?

PX((a, b)) = PX(lim
n

(a, b − 1/n]) = lim
n

PX((a, b − 1/n]) = FX(b−) − FX(a).

Since every measurable set in R is a countable union of closed, open, or semi-open
disjoint segments, the probability of any such set is fully determined by FX.

3.3 The binomial distribution

Definition 3.5 A random variable over a probability space is called a Bernoulli
variable if its range is the set {0, 1}. The distribution of a Bernoulli variable X is
determined by a single parameter pX(1) := p. In fact, a Bernoulli variable can be
identified with a two-state probability space.



Random Variables (Discrete Case) 47

Definition 3.6 A Bernoulli process is a compound experiment whose constituents
are n independent Bernoulli trials. It is a probability space with sample space

Ω = {0, 1}n,

and probability defined on singletons,

P({(a1, . . . , an)}) = pnumber of ones(1 − p)number of zeros.

Consider a Bernoulli process (this defines a probability space), and set the random
variable X to be the number of “ones” in the sequence (the number of successes
out of n repeated Bernoulli trials). The range of X is {0, . . . , n}, and its atomistic
distribution is

pX(k) =
(
n
k

)
pk(1 − p)n−k. (3.1)

(Note that it sums up to one.)

Definition 3.7 A random variable X over a probability space (Ω,F , P) is called
a binomial variable with parameters (n, p) if it takes integer values between zero
and n and its atomistic distribution is (3.1). We write X ∼ B (n, p).

Discussion: A really important point: one often encounters problems starting
with a statement “X is a binomial random variable, what is the probability that
bla bla bla..” without any mention of the underlying probability space (Ω,F , P).
It this legitimate? There are two answers to this point: (i) if the question only
addresses the random variable X, then it can be fully solved knowing just the
distribution PX; the fact that there exists an underlying probability space is ir-
relevant for the sake of answering this kind of questions. (ii) The triple (Ω =
{0, 1, . . . , n},F = 2Ω, P = PX) is a perfectly legitimate probability space. In this
context the random variable X is the trivial map X(x) = x.

Example: Diapers manufactured by Pamp-ggies are defective with probability
0.01. Each diaper is defective or not independently of other diapers. The company
sells diapers in packs of 10. The customer gets his/her money back only if more
than one diaper in a pack is defective. What is the probability for that to happen?
Every time the customer takes a diaper out of the pack, he faces a Bernoulli trial.
The sample space is {0, 1} (1 is defective) with p(1) = 0.01 and p(0) = 0.99. The
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number of defective diapers X in a pack of ten is a binomial variable B (10, 0.01).
The probability that X be larger than one is

PX({2, 3, . . . , 10}) = 1 − PX({0, 1})
= 1 − pX(0) − pX(1)

= 1 −
(
10
0

)
(0.01)0(0.99)10 −

(
10
1

)
(0.01)1(0.99)9

≈ 0.07.

!!!

Example: An airplane engine breaks down during a flight with probability 1 − p.
An airplane lands safely only if at least half of its engines are functioning upon
landing. What is preferable: a two-engine airplane or a four-engine airplane (or
perhaps you’d better walk)?
Here again, the number of functioning engines is a binomial variable, in one case
X1 ∼ B (2, p) and in the second case X2 ∼ B (4, p). The question is whether
PX1({1, 2}) is larger than PX2({2, 3, 4}) or the other way around. Now,

PX1({1, 2}) =
(
2
1

)
p1(1 − p)1 +

(
2
2

)
p2(1 − p)0

PX2({2, 3, 4}) =
(
4
2

)
p2(1 − p)2 +

(
4
3

)
p3(1 − p)1 +

(
4
4

)
p4(1 − p)0.

Opening the brackets,

PX1({1, 2}) = 2p(1 − p) + p2 = 2p − p2

PX2({2, 3, 4}) = 6p2(1 − p)2 + 4p3(1 − p) + p4 = 3p4 − 8p3 + 6p2.

One should prefer the four-engine airplane if

p(3p3 − 8p2 + 7p − 2) > 0,

which factors into
p(p − 1)2(3p − 2) > 0,

and this holds only if p > 2/3. That is, the higher the probability for a defective
engine, less engines should be used. !!!

Everybody knows that when you toss a fair coin 100 times it will fall Head 50
times... well, at least we know that 50 is the most probable outcome. How proba-
ble is in fact this outcome?
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Example: A fair coin is tossed 2n times, with n 7 1. What is the probability that
the number of Heads equals exactly n?
The number of Heads is a binomial variable X ∼ B

(
2n, 1

2

)
. The probability that

X equals n is given by

pX(n) =
(
2n
n

) (
1
2

)n (1
2

)n
=

(2n)!
(n!)2 22n .

To evaluate this expression we use Stirling’s formula, n! ∼
√

2πnn+1/2e−n, thus,

pX(n) ∼
√

2π(2n)2n+1/2e−2n

22n 2πn2n+1e−2n =
1√
π n

For example, with a hundred tosses (n = 50) the probability that exactly half are
Heads is approximately 1/

√
50π ≈ 0.08. !!!

We conclude this section with a simple fact about the atomistic distribution of a
Binomial variable:

Proposition 3.4 Let X ∼ B (n, p), then pX(k) increases until it reaches a maxi-
mum at k = 9(n + 1)p:, and then decreases.

Proof : Consider the ratio pX(k)/pX(k − 1),

pX(k)
pX(k − 1)

=
n!(k − 1)!(n − k + 1)! pk(1 − p)n−k

k!(n − k)!n!pk−1(1 − p)n−k+1 =
(n − k + 1)p

k(1 − p)
.

pX(k) is increasing if

(n − k + 1)p > k(1 − p) ⇒ (n + 1)p − k > 0.

*

+ Exercise 3.2 In a sequence of Bernoulli trials with probability p for success,
what is the probability that a successes will occur before b failures? (Hint: the
issue is decided after at most a + b − 1 trials).
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+ Exercise 3.3 Show that the probability of getting exactly n Heads in 2n tosses
of a fair coin satisfies the asymptotic relation

P(n Heads) ∼ 1√
πn
.

Remind yourself what we mean by the ∼ sign.

3.4 The Poisson distribution

Definition 3.8 A random variable X is said to have a Poisson distribution with
parameter λ, if it takes values S = {0, 1, 2, . . . , }, and its atomistic distribution is

pX(k) = e−λ
λk

k!
.

(Prove that this defines a probability distribution.) We write X ∼ Poi (λ).

The first question any honorable person should ask is “why”? After all, we can
define infinitely many such distributions, and give them fancy names. The answer
is that certain distributions are important because they frequently occur is real
life. The Poisson distribution appears abundantly in life, for example, when we
measure the number of radio-active decays in a unit of time. In fact, the following
analysis reveals the origins of this distribution.

Comment: Remember the inattentive secretary. When the number of letters n is
large, we saw that the probability that exactly k letters reach their destination is
approximately a Poisson variable with parameter λ = 1.

Consider the following model for radio-active decay. Every ε seconds (a very
short time) a single decay occurs with probability proportional to the length of
the time interval: λε. With probability 1 − λε no decay occurs. Physics tells
us that this probability is independent of history. The number of decays in one
second is therefore a binomial variable X ∼ B (n = 1/ε, p = λε). Note how as
ε → 0, n goes to infinity and p goes to zero, but their product remains finite. The
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probability of observing k decays in one second is

pX(k) =
(
n
k

) (λ
n

)k (
1 − λ

n

)n−k

=
λk

k!
n(n − 1) . . . (n − k + 1)

nk

(
1 − λ

n

)n−k

=
λk

k!

(
1 − 1

n

)
. . .

(
1 − k − 1

n

) (1 − λn
)n

(
1 − λn

)k .

Taking the limit n→ ∞ we get

lim
n→∞

pX(k) = e−λ
λk

k!
.

Thus the Poisson distribution arises from a Binomial distribution when the prob-
ability for success in a single trial is very small but the number of trials is very
large such that their product is finite.

Example: Suppose that the number of typographical errors in a page is a Poisson
variable with parameter 1/2. What is the probability that there is at least one
error?

This exercise is here mainly for didactic purposes. As always, we need to start by
constructing a probability space. The data tells us that the natural space to take is
the sample space Ω = N with a probability P({k}) = e−1/2/(2kk!). Then the answer
is

P({k ∈ N : k ≥ 1}) = 1 − P({0}) = 1 − e−1/2 ≈ 0.395.

While this is a very easy exercise, note that we converted the data about a “Pois-
son variable” into a probability space over the natural numbers with a Poisson
distribution. Indeed, a random variable is a probability space. !!!

+ Exercise 3.4 Assume that the number of eggs laid by an insect is a Poisson
variable with parameter λ. Assume, furthermore, that every egg has a probability
p to develop into an insect. What is the probability that exactly k insects will
survive? If we denote the number of survivors by X, what kind of random variable
is X? (Hint: construct first a probability space as a compound experiment).
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3.5 The Geometric distribution

Consider an infinite sequence of Bernoulli trials with parameter p, i.e., Ω =
{0, 1}N, and define the random variable X to be the number of trials until the first
success is met. This random variables takes values in the set S = {1, 2, . . . }. The
probability that X equals k is the probability of having first (k−1) failures followed
by a success:

pX(k) = PX({k}) = P(X = k) = (1 − p)k−1 p.

A random variable having such an atomistic distribution is said to have a geomet-
ric distribution with parameter p; we write X ∼ Geo (p).

Comment: The number of failures until the success is met, i.e., X−1, is also called
a geometric random variable. We will stick to the above definition.

Example: There are N white balls and M black balls in an urn. Each time, we
take out one ball (with replacement) until we have a black ball. (1) What is the
probability that we need k trials? (2) What is the probability that we need at least
n trials.
The number of trials X is distributed Geo (M/(M + N)). (1) The answer is simply

( N
M + N

)k−1 M
M + N

=
Nk−1M

(M + N)k .

(2) The answer is

M
M + N

∞∑

k=n

( N
M + N

)k−1

=
M

M + N

(
N

M+N

)n−1

1 − N
M+N

=
( N

M + N

)n−1

,

which is obviously the probability of failing the first n − 1 times.
!!!

An important property of the geometric distribution is its lack of memory. That
is, the probability that X = n given that X > k is the same as the probability that
X = n − k (if we know that we failed the first k times, it does not imply that we
will succeed earlier when we start the k + 1-st trial, that is

PX({n}|{k + 1, . . . }) = pX(n − k).
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This makes sense even if n ≤ k, provided we extend PX to all Z. To prove this
claim we follow the definitions. For n > k,

PX({n}|{k + 1, k + 2 . . . }) = PX({n} ∩{ k + 1, . . . })
PX({k + 1, k + 2, . . . })

=
PX({n})

PX({k + 1, k + 2, . . . })

=
(1 − p)n−1 p

(1 − p)k = (1 − p)n−k−1 p = pX(n − k).

3.6 The negative-binomial distribution

A coin with probability p for Heads is tossed until a total of n Heads is obtained.
Let X be the number of failures until n successes were met. We say that X has
the negative-binomial distribution with parameters (n, p). What is pX(k) for
k = 0, 1, 2 . . . ? The answer is simply

pX(k) =
(
n + k − 1

k

)
pn(1 − p)k.

This is is a special instance of negative-binomial distribution, which can be ex-
tended to non-integer n. To allow for non-integer n we note that for integers
Γ(n) = (n − 1)!. Thus, the general negative-binomial distribution with parameters
0 < p < 1 and r > 0 has the atomistic distribution,

pX(k) =
Γ(r + k)
k!Γ(r)

pr(1 − p)k.

We write X ∼ nBin (r, p).

3.7 Other examples

Example: Here is a number theoretic result derived by probabilistic means. Let
s > 1 and let X be a random variable taking values in {1, 2 . . . , } with atomistic
distribution,

pX(k) =
k−s

ζ(s)
,
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where ζ is the Riemann zeta-function,

ζ(s) =
∞∑

n=1

n−s.

Let Am ⊂ N be the set of integers that are divisible by m. Clearly,

PX(Am) =
∑

k divisible by m k−s

∑∞
n=1 n−s =

∑∞
k=1(mk)−s

∑∞
n=1 n−s = m−s.

Next, we claim that the events Ep = {X ∈ Ap}, with p primes are independent.
Indeed, Ap ∩ Aq = Apq, so that

PX(Ap ∩ Aq) = PX(Apq) = (pq)−s = p−sq−s = PX(Ap)PX(Aq).

The same consideration holds for all collections of Ap.
Next, we note that ⋂

p prime

Ac
p = {1},

from which, together with the independence of the Ap, follows that

pX(1) =
∏

p prime

PX(Ac
p),

i.e.,
1
ζ(s)
=
∏

p prime

(
1 − 1

ps

)
,

an identity known as Euler’s formula.
A consequence from this formula is obtained by letting s→ 1,

∏

p prime

(
1 − 1

p

)
= 0.

Taking the logarithm we get that
∑

p prime

log
(
1 − 1

p

)
= −∞.

Since for 0 < x < 0.6 we have log(1 − x) ≥ −2x it follows that

−∞ =
∑

p prime

log
(
1 − 1

p

)
≥ −2

∑

p prime

1
p
,

i.e., the harmonic prime series diverges. !!!
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3.8 Jointly-distributed random variables

Consider a probability space (Ω,F , P) and a pair of random variables, X and Y .
That is, we have two maps between probability spaces:

(Ω,F , P)
X−→ (S X,FX, PX)

(Ω,F , P)
Y−→ (S Y ,FY , PY).

Recall that the probability that X be in a set A ∈ FX is fully determined by the dis-
tribution PX. Now, try to answer the following question: suppose that we are only
given the distributions PX and PY (i.e., we don’t know P). What is the probability
that X(ω) ∈ A and Y(ω) ∈ B, where A ∈ FX and B ∈ FY? We cannot answer this
question. The knowledge of the separate distributions of X and Y is insufficient
to answer questions about events that are joint to X and Y .
The correct way to think about a pair of random variables, is as a mapping Ω →
S X × S Y , i.e.,

ω <→ (X(ω),Y(ω)).

As always, we need to equip S X × S y with a σ-algebra of events FX,Y and we
require that every set A ∈ FX,Y has a pre-image in F . In fact, given the σ-algebra
FX,Y , the σ-algebra FX is a restriction of FX,Y ,

FX =
{
A ⊆ S X : A × S Y ∈ FX,Y

}
,

and similarly for FY .
The joint distribution of the pair X,Y is defined naturally as

PX,Y(A) := P({ω ∈ Ω : (X(ω),Y(ω)) ∈ A}).

Note that one can infer the individual (marginal) distributions of X and Y from
this joint distribution, as

PX(A) = PX,Y(A × S Y) A ∈ FX

PY(B) = PX,Y(S X × B) B ∈ FY .

When both S X and S Y are countable spaces, we define the atomistic joint distri-
bution,

pX,Y(x, y) := PX,Y({(x, y)}) = P(X = x,Y = y).
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Obviously,
pX(x) = PX,Y({x} × S Y) =

∑

y∈S Y

pX,Y(x, y)

pY(y) = PX,Y(S X × {y}) =
∑

x∈S X

pX,Y(x, y).

Finally, we define the joint distribution function,

FX,Y(x, y) := PX,Y((−∞, x] × (−∞, y]) = P(X ≤ x,Y ≤ y).

Example: There are three red balls, four white balls and five blue balls in an urn.
We extract three balls. Let X be the number of red balls and Y the number of white
balls. What is the joint distribution of X and Y?

The natural probability space here is the set of triples out of twelve elements. We
have

(X,Y) : Ω→ {(i, j) : i, j ≥ 0, i + j ≤ 3} .
For example,

pX,Y(0, 0) =

(
5
3

)

(
3

12

) pX,Y(1, 1) =

(
3
1

)(
4
1

)(
5
1

)

(
12
3

) ,

etc. !!!

+ Exercise 3.5 Construct two probability spaces, and on each define two ran-
dom variables, X,Y , such that two PX are the same and the two PY are the same,
but the PX,Y differ.

These notions can be easily generalized to n random variables. X1, . . . , Xn are
viewed as a function fromΩ to the product set S 1×· · ·×S n, with joint distribution

PX1,...,Xn(A) = P({ω : (X1(ω), . . . , Xn(ω)) ∈ A}),

where A ∈ S 1 × · · · × S n. The marginal distributions of subsets of variables, are
obtained, as for example,

PX1,...,Xn−1(A) = PX1,...,Xn(A × S n),

with A ⊆ S 1 × S 2 × · · · × S n−1.
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3.9 Independence of random variables

Let (Ω,F , P) be a probability space and let X : Ω → S be a random variable,
where the set S is equipped with itsσ-algebra of events FS . By the very definition
of a random variable, for every event A ∈ FS , the event X−1(A) is an element of
F . That is,

X−1(FS ) =
{
X−1(A) : A ∈ FS

}
⊆ F .

It is easily verified (given as an exercise) that X−1(FS ) is a σ-algebra, i.e., a sub-
σ-algebra of F . We call it the σ-algebra generated by the random variable X,
and denote it by σ(X). Events in σ(X) are subsets ofΩ (not of S ) that characterize
the outcome of X(ω).
Similarly, when we have a pair of random variables X,Y with a σ-algebra FX,Y ,
they generate (together!) a σ-algebra, σ(X,Y), which consists of all events of the
form

{ω ∈ Ω : (X(ω),Y(ω)) ∈ A} ,
with A ∈ FX,Y . Note that in general FX,Y ⊇ FX ×FY , from which follows that
σ(X,Y) ⊇ σ(X) ∪ σ(Y). Indeed, σ(X) ∪ σ(Y) comprises events of the form

{ω ∈ Ω : X(ω) ∈ A, Y(ω) ∈ B} ,

whereas σ(X,Y) comprises a larger family of events of the form

{ω ∈ Ω : (X(ω),Y(ω)) ∈ C} .

+ Exercise 3.6 Let X be a random variable (=a measurable mapping) from (Ω,F , P)
to the space (S ,FS , PX). Consider the collection of events,

{X−1(A) : A ∈ FS },

which is by assumption a subset of F . Prove that this collection is a σ-algebra.

We are now ready to define the independence of two random variables. Recall
that we already have a definition for the independence of events:

Definition 3.9 Two random variables X,Y over a probability space (Ω,F , P)
are said to be independent if every event in σ(X) is independent of every event in
σ(Y). In other words, they are independent if every information associated with
the value of X does not affect the (conditional) probability of events regarding the
random variable Y.
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Example: Consider the probability space associated with tossing two dice, and let
X(ω) be the sum of the dice and Y(ω) be the value of the first die, i.e.,

X((i, j)) = i + j Y((i, j)) = i.

The ranges of X and Y are S X = {2, . . . , 12} and S Y = {1, . . . , 6}, respectively. The
σ-algebra generated by X is the collection of events of the form

X−1(A) = {(i, j) ∈ Ω : i + j ∈ A, A ⊆ {2, . . . , 12}} ∈ σ(X),

whereas the σ-algebra generated by Y is the collection of events of the form

Y−1(B) = {(i, j) ∈ Ω : i ∈ B ⊆ {1, . . . , 6}} ∈ σ(Y).

Recall that the events X−1({7}) and Y−1({3}) are independent. Does it mean that
X and Y are independent variables? No, for example X−1({6}) and Y−1({3}) are
dependent. It is not true that any information on the outcome of X does not change
the probability of the outcome of Y . !!!

While the definition of independence may seem hard to work with, it is easily
translated into simpler terms. Let A × B be an event in FX,Y with A ∈ FX and
B ∈ FY . If X and Y are independent, then

PX,Y(A × B) = P(X ∈ A,Y ∈ B)
= P({ω : X(ω) ∈ A} ∩ {ω : Y(ω) ∈ B})
= P(X ∈ A)P(Y ∈ B)
= PX(A)PY(B).

In particular, if A = {x} and B = {y} are singletons, then

pX,Y(x, y) = pX(x)pY(y).

Finally, if A = (−∞, x] and B = (−∞, y], then

FX,Y(x, y) = FX(x)FY(y).

Thus, two random variables are independent only if their joint distribution (atomic
joint distribution, joint distribution function) factors into a product of distribu-
tions.
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+ Exercise 3.7 Prove that two random variables X,Y are independent if and only
if

PX,Y(A × B) = PX(A)PY(B)

for every A ∈ FX and B ∈ FY .

These definitions are easily generalized to n random variables. The random vari-
ables X1, . . . , Xn have a joint distribution PX1,...,Xn defined on a σ-algebra of events
of the form

{ω ∈ Ω : (X1(ω), . . . , Xn(ω)) ∈ A} , A ∈ S 1 × · · · × S n.

These variables are mutually independent if for all A1 ∈ F1, . . . , An ∈ Fn,

PX1,...,Xn(A1 × · · · × An) = PX1(A1) . . . PXn(An).

We further extend the definition to a countable number of random variables. An
infinite sequence of random variables is said to me mutually independent if every
finite subset is independent.
We will see now a strong use of independence. But first an important lemma,
which really is the “second half” of a lemma whose first part we have already
seen. Recall the first Borel-Cantelli lemma that states that if an infinite sequence
of events (An) has the property that

∑
P(An) < ∞, then

P(lim sup
n

An) = P(An; i.o.) = 0.

There is also a converse lemma, which however requires the independence of the
events:

Lemma 3.1 (Second Borel-Cantelli) Let (An) be a collection of mutually inde-
pendent events in a probability space (Ω,F , P). If

∑
P(An) = ∞, then

P(lim sup
n

An) = P(An; i.o.) = 1.

Proof : Note that

(lim sup
n

An)c =
(∩∞n=1 ∪∞k=n Ak

)c
= ∪∞n=1 ∩∞k=n Ac

k = lim inf
n

Ac
n.
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Fix n. Because the events are independent we have

P(∩∞k=nAc
k) =

∞∏

k=n

(1 − P(Ak)).

Using the inequality 1 − x ≤ e−x we have

P(∩∞k=nAc
k) ≤

∞∏

k=n

e−P(Ak) = exp

−

∞∑

k=n

P(Ak)

 = 0,

where we have used the divergence of the series. Thus, the event (lim supn An)c is
a countable union of events that have zero probability, and therefore also has zero
probability. It follows that its complement has probability one. *

+ Exercise 3.8 Show, by means of a counter example, why does the second
Borel-Cantelli lemma require the independence of the random variables.

Example: Here is simple application of the second Borel-Cantelli lemma. Con-
sider an infinite sequence of Bernoulli trials with probability 0 < p < 1 for
“success”. What is the probability that the sequence SFS appears infinitely many
times? Let Aj be the event that the sub-sequence aja j+1aj+2 equals SFS, i.e.,

Aj =
{
(an) ∈ {S , F}N : aj = S , aj+1 = F, aj+2 = S

}
.

The events A1, A4, A7, . . . are independent. Since they have an equal finite proba-
bility, p2(1 − p),

∞∑

n=1

P(A3n) = ∞ ⇒ P(lim sup
n

A3n) = 1.

!!!

Example: Here is a more subtle application of the second Borel-Cantelli lemma.
Let (Xn) be an infinite sequence of independent random variables assuming real
positive values, and having the following distribution function,

FX(x) =




0 x ≤ 0
1 − e−x x > 0

.



Random Variables (Discrete Case) 61

(Such random variables are called exponential; we shall study them later on).
Thus, for any positive x,

P(Xj > x) = e−x.

In particular, we may ask about the probability that the n-th variable exceeds
α log n,

P(Xn > α log n) = e−α log n = n−α.

It follows from the two Borel-Cantelli lemmas that

P(Xn > α log n i.o. ) =




0 α > 1
1 α ≤ 1

.

By the same method, we can obtain refined estimates, such as

P(Xn > log n + α log log n i.o. ) =




0 α > 1
1 α ≤ 1

,

and so on. !!!

3.10 Sums of random variables

Let X,Y be two real-valued random variables (i.e., S X × S Y ⊂ R2) with joint
distribution PX,Y . Let Z = X + Y . What is the distribution of Z? To answer this
question we examine the distribution function of Z, and write it as follows:

FZ(z) = P(X + Y ≤ z)
= P(∪x∈S X {ω : X(ω) = x,Y(ω) ≤ z − x})
=
∑

x∈S X

P({ω : X(ω) = x,Y(ω) ≤ z − x})

=
∑

x∈S X

∑

S Y=y≤z−x

pX,Y(x, y).

Similarly, we can derive the atomistic distribution of Z,

pZ(z) = pX+Y(z) =
∑

x∈S X

∑

S Y=y=z−x

pX,Y(x, y) =
∑

x∈S X

pX,Y(x, z − x),
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where the sum may be null if z does not belong to the set

S X + S Y := {z : ∃(x, y) ∈ S X × S Y , z = x + y} .

For the particular case where X and Y are independent we have

FX+Y(z) =
∑

x∈S X

∑

S Y=y≤z−x

pX(x)pY(y) =
∑

x∈S X

pX(x)FY(z − x),

and
pX+Y(z) =

∑

x∈S X

pX(x)pY(z − x),

the last expression being the discrete convolution of pX and pY evaluated at the
point z.

Example: Let X ∼ Poi (λ1) and Y ∼ Poi (λ2) be independent random variables.
What is the distribution of X + Y?

Using the convolution formula, and the fact that Poisson variables assume non-
negative integer values,

pX+Y(k) =
k∑

j=0

pX( j)pY(k − j)

=

k∑

j=0

e−λ1
λ j

1

j!
e−λ2

λk− j
2

(k − j)!

=
e−(λ1+λ2)

k!

k∑

j=0

(
k
j

)
λ j

1λ
k− j
2

=
e−(λ1+λ2)

k!
(λ1 + λ2)k,

i.e., the sum of two independent Poisson variables is a Poisson variable, whose
parameter is the sum of the two parameters. !!!

+ Exercise 3.9 Let X ∼ B (n, p) and Y ∼ B (m, p). Prove that X + Y ∼
B (n + m, p). Give an intuitive explanation for why this must hold.
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3.11 Conditional distributions

Recall our definition of the conditional probability: if A and B are events, then

P(A|B) =
P(A ∩ B)

P(B)
.

This definition embodies the notion of prediction that A has occurred given that B
has occurred. We now extend the notion of conditioning to random variables:

Definition 3.10 Let X,Y be (discrete) random variables over a probability space
(Ω,F , P). We denote their atomistic joint distribution by pX,Y; it is a function
S X × S Y → [0, 1]. The atomistic conditional distribution of X given Y is defined
as

pX|Y(x|y) := P(X = x|Y = y) =
P(X = x,Y = y)

P(Y = y)
=

pX,Y(x, y)
pY(y)

.

(It is defined only for values of y for which pY(y) > 0.)

Example: Let pX,Y be defined by the following table:

Y, X 0 1
0 0.4 0.1
1 0.2 0.3

What is the conditional distribution of X given Y?
Answer:

pX|Y(0|0) =
pX,Y(0, 0)

pY(0)
=

0.4
0.4 + 0.1

pX|Y(1|0) =
pX,Y(1, 0)

pY(0)
=

0.1
0.4 + 0.1

pX|Y(0|1) =
pX,Y(0, 1)

pY(1)
=

0.2
0.2 + 0.3

pX|Y(1|1) =
pX,Y(1, 1)

pY(1)
=

0.3
0.2 + 0.3

.

!!!

Note that we always have

pX,Y(x, y) = pX|Y(x|y)pY(y).



64 Chapter 3

Summing over all y ∈ S Y ,

pX(x) =
∑

y∈S Y

pX,Y(x, y) =
∑

y∈S Y

pX|Y(x|y)pY(y),

which can be identified as the law of total probability formulated in terms of
random variables.

+ Exercise 3.10 True or false: every two random variables X,Y satisfy
∑

x∈S X

pX|Y(x|y) = 1

∑

y∈S Y

pX|Y(x|y) = 1.

Example: Assume that the number of eggs laid by an insect is a Poisson variable
with parameter λ. Assume, furthermore, that every eggs has a probability p to
develop into an insect. What is the probability that exactly k insects will survive?
This problem has been previously given as an exercise. We will solve it now in
terms of conditional distributions. Let X be the number of eggs laid by the insect,
and Y the number of survivors. We don’t even bother to (explicitly) write the prob-
ability space, because we have all the needed data as distributions and conditional
distributions. We know that X has a Poisson distribution with parameter λ, i.e.,

pX(n) = e−λ
λn

n!
n = 0, 1, . . . ,

whereas the distribution of Y conditional on X is binomial,

pY |X(k|n) =
(
n
k

)
pk(1 − p)n−k k = 0, 1, . . . , n.

The distribution of the number of survivors Y is then

pY(k) =
∞∑

n=0

pY |X(k|n)pX(n) =
∞∑

n=k

(
n
k

)
pk(1 − p)n−ke−λ

λn

n!

= e−λ
(λp)k

k!

∞∑

n=k

[λ(1 − p)]n−k

(n − k)!

= e−λ
(λp)k

k!
eλ(1−p) = e−λp (λp)k

k!
.

Thus, Y ∼ Poi (λp). !!!
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Example: Let X ∼ Poi (λ1) and Y ∼ Poi (λ2) be independent random variables.
What is the conditional distribution of X given that X + Y = n?
We start by writing things explicitly,

pX|X+Y(k|n) = P(X = k|X + Y = n)

=
P(X = k, X + Y = n)

P(X + Y = n)

=
pX,Y(k, n − k)

∑n
j=0 pX,Y( j, n − j)

.

At this point we use the fact that the variables are independent and their distribu-
tions are known:

pX|X+Y(k|n) =
e−λ1

λk
1

k! e−λ2
λn−k

2
(n−k)!

∑n
j=0 e−λ1

λ j
1

j! e−λ2
λn− j

2
(n− j)!

=

(
n
k

)
λk

1λ
n−k
2

∑n
j=0

(
n
j

)
λ j

1λ
n− j
2

=

(
n
k

)
λk

1λ
n−k
2

(λ1 + λ2)n .

Thus, it is a binomial distribution with parameters n and λ1/(λ1 + λ2), which me
may write as

[X conditional on X + Y = n] ∼ B

(
n,

λ1

λ1 + λ2

)
.

!!!

Conditional probabilities can be generalized to multiple variables. For example,

pX,Y |Z(x, y|z) := P(X = x,Y = y|Z = z) =
pX,Y,Z(x, y, z)

pZ(z)

pX|Y,Z(x|y, z) := P(X = x|Y = y,Z = z) =
pX,Y,Z(x, y, z)

pY,Z(y, z)
,

and so on.
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Proposition 3.5 Every three random variables X,Y,Z satisfy

pX,Y,Z(x, y, z) = pX|Y,Z(x|y, z)pY |Z(y|z)pZ(z).

Proof : Immediate. Just follow the definitions. *

Example: Consider a sequence of random variables (Xk)n
k=0, each assuming values

in a finite alphabet A = {1, . . . , s}. Their joint distribution can be expressed as
follows:

p(x0, x1, . . . , xn) = p(xn|x0, . . . , xn−1)p(xn−1|x0, . . . , xn−2) . . . p(x1|x0)p(x0),

where we have omitted the subscripts to simplify notations. There exists a class
of such sequences called Markov chains. In a Markov chain,

p(xn|x0, . . . , xn−1) = p(xn|xn−1),

i.e., the distribution of Xn “depends on its history only through its predecessor”; if
Xn−1 is known, then the knowledge of its predecessors is superfluous for the sake
of predicting Xn. Note that this does not mean that Xn is independent of Xn−2!
Moreover, the function p(xk|xk−1) is the same for all k, i.e., it can be represented
by an s-by-s matrix, M.
Thus, for a Markov chain,

p(x0, x1, . . . , xn) = p(xn|xn−1)p(xn−1|xn−2) . . . p(x1|x0)p(x0)
= Mxn,xn−1 Mxn−1,xn−2 . . .Mx1,x0 p(x0).

.

If we now sum over all values that X0 through Xn−1 can assume, then

p(xn) =
∑

xn−1∈A
· · ·
∑

x0∈A
Mxn,xn−1 Mxn−1,xn−2 . . .Mx1,x0 p(x0) =

∑

x0∈A
Mn

xn,x0
p(x0).

Thus, the distribution on Xn is related to the distribution of X0 through the appli-
cation of the n-power of a matrix (the transition matrix). Situations of interest
are when the distribution of Xn tends to a limit, which does not depend on the
initial distribution of X0. Such Markov chains are said to be ergodic. When the
rate of approach to this limit is exponential, the Markov chain is said to be expo-
nentially mixing. The study of such systems has many applications, which are
unfortunately beyond the scope of this course. !!!
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4.1 Basic definitions

Definition 4.1 Let X be a real-valued random variable over a discrete proba-
bility space (Ω,F , P). We denote the atomistic probability by p(ω) = P({ω}).
The expectation or expected value of X is a real number denoted by E[X], and
defined by

E[X] :=
∑

ω∈Ω
X(ω) p(ω).

It is an average over X(ω), weighted by the probability p(ω).

Comment: The expected value is only defined for random variables for which the
sum converges absolutely. In the context of measure theory, the expectation is the
integral of X over the measure space (Ω,F , P).



68 Chapter 4

The expected value of X can be rewritten in terms of the distribution of X:

E[X] =
∑

ω∈Ω
X(ω) p(ω)

=
∑

x∈S X

∑

ω∈X−1(x)

X(ω) p(ω)

=
∑

x∈S X

x
∑

ω∈X−1(x)

p(ω)

=
∑

x∈S X

x pX(x).

Thus, E[X] is the expected value of the identity function, X(x) = x, with respect
to the probability space (S X,FX, PX).

Example: Let X be the outcome of a tossed die, what is the expected value of X?

In this case S = {1, . . . , 6} and pX(k) = 1
6 , thus

E[X] =
6∑

k=1

k · 1
6
=

21
6
.

!!!

Example: What is the expected value of X, which is a Bernoulli variable with
pX(1) = p? Answer: p. !!!

Example: What is the expected value of X ∼ B (n, p)?

E[X] =
n∑

k=0

k
(
n
k

)
pk(1 − p)n−k

=

n∑

k=1

n!
(n − k)!(k − 1)!

pk(1 − p)n−k

=

n−1∑

k=0

n!
(n − k − 1)!k!

pk+1(1 − p)n−k−1

= np
n−1∑

k=0

(n − 1)!
(n − k − 1)!k!

pk(1 − p)n−k−1

= np.
!!!
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Example: What is the expected value of X ∼ Poi (λ)?

E[X] =
∞∑

k=0

ke−λ
λk

k!
= e−λ

∞∑

k=1

λk

(k − 1)!
= e−λ

∞∑

k=0

λk+1

k!
= λ.

!!!

Example: What is the expected value of X ∼ Geo (p)?

E[X] =
∞∑

k=1

kqk−1 p = p
d

dq

∞∑

k=1

qk = p
d

dq

(
q

1 − q

)
=

p
(1 − q)2 =

1
p
.

If you don’t like this method, you can obtain the same result by noting that

E[X] = p +
∞∑

k=2

kqk−1 p = p +
∞∑

k=1

(k + 1)qk p = p +
∞∑

k=1

qk p + qE[X],

i.e.,
pE[X] = p +

pq
1 − q

= 1.

!!!

+ Exercise 4.1 What is the expected value of the number of times one has to
toss a die until getting a “3”? What is the expected value of the number of times
one has to toss two dice until getting a Shesh-Besh (6, 5)?

Example: Let X be a random variable assuming integer values and having an
atomistic distribution of the form pX(k) = a/k2, where a is a constant. What is a?
What is the expected value of X? !!!

What is the intuitive (until we prove some theorems) meaning of the expected
value? Suppose we repeat the same experiment many times and thus obtain a
sequence (Xk) of random variables that are mutually independent and have the
same distribution. Consider then the statistical average

Y =
1
n

n∑

k=1

Xk =
∑

a∈S
a

number of times the outcome was a
n

.

As n goes to infinity, this ratio tends to pX(a), and Y tends to E[X]. This heuristic
argument lacks rigor (e.g., does it hold when S is an infinite set?), but should give
more insight into the definition of the expected value.
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4.2 The expected value of a function of a random
variable

Example: Consider a random variable X assuming the values {0, 1, 2} and having
a distribution

x 0 1 2
pX(x) 1/2 1/3 1/6

What is the expected value of the random variable X2?
We need to follow the definition, construct the distribution pY of the random vari-
able Y = X2, and then

E[X2] = E[Y] =
∑

y

y pY(y).

This is easy to do, because the distribution of Y is readily inferred from the distri-
bution of X,

y 0 1 4
pY(y) 1/2 1/3 1/6

thus
E[Y] =

1
2
· 0 + 1

3
· 1 + 1

6
· 4 = 1.

Note then that the arithmetic operation we do is equivalent to

E[X2] =
∑

x

x2 pX(x).

The question is whether it is generally true that for any function g : R→ R,

E[g(x)] =
∑

x

g(x) pX(x).

While this may seem intuitive, note that by definition,

E[g(x)] =
∑

y

y pg(X)(y).

!!!



Expectation 71

Theorem 4.1 (The unconscious statistician) Let X be a random variable with
range S X and atomistic distribution pX. Then, for any real valued function g,

E[g(X)] =
∑

x∈S X

g(x) pX(x),

provided that the right-hand side is finite.

Proof : Let Y = g(X) and set S Y = g(S X) be the range set of Y . We need to
calculate E[Y], therefore we need to express the atomistic distribution of Y . Let
y ∈ S Y , then

pY(y) = P({ω : Y(ω) = y}) = P({ω : g(X(ω)) = y})
= P
(
{ω : X(ω) ∈ g−1(y)}

)
,

where g−1(y) may be a subset of S X if g is not one-to-one. Thus,

pY(y) =
∑

S X=x∈g−1(y)

pX(x).

The expected value of Y is then obtained by

E[Y] =
∑

y∈S Y

y pY(y) =
∑

y∈S Y

y
∑

S X=x∈g−1(y)

pX(x)

=
∑

y∈S Y

∑

S X=x∈g−1(y)

g(x)pX(x) =
∑

x∈S X

g(x)pX(x).

*
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Comment: In a sense, this theorem is trivial. Had we followed the original defini-
tion of the expected value, we would have had,

E[g(X)] =
∑

ω∈Ω
g(X(ω)) p(ω)

=
∑

x∈S X

∑

ω∈X−1(x)

g(X(ω)) p(ω)

=
∑

x∈S X

g(x)
∑

ω∈X−1(x)

p(ω)

=
∑

x∈S X

g(x) pX(x).

(This is the way I will prove it next time I teach this course...)

+ Exercise 4.2 Let X be a random variable and f , g be two real valued functions.
Prove that

E[ f (X)g(X)] ≤
(
E[ f 2(X)]

)1/2 (
E[g2(X)]

)1/2
.

Hint: use the Cauchy inequality.

Example: The soccer club of Maccabbi Tel-Aviv plans to sell jerseys carrying the
name of their star Eyal Berkovic. They must place their order at the beginning
of the year. For every sold jersey they gain b Sheqels, but for every jersey that
remains unsold they lose % Sheqels. Suppose that the demand is a random variable
with atomistic distribution p( j), j = 0, 1, . . . . How many jerseys they need to order
to maximize their expected profit?

Let a be the number of jerseys ordered by the club, and X be the demand. The net
profit is then

g(X) =




Xb − (a − X)% X = 0, 1, . . . , a
ab X > a
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The expected gain is deduced using the law of the unconscious statistician,

E[g(X)] =
a∑

j=1

[
jb − (a − j)%

]
p( j) +

∞∑

j=a+1

abp( j)

= −a%
a∑

j=0

p( j) + ab
∞∑

j=a+1

p( j) + (b + %)
a∑

j=0

jp( j)

= ab
∞∑

j=0

p( j) + (b + %)
a∑

j=0

( j − a)p( j)

= ab + (b + %)
a∑

j=0

( j − a)p( j) =: G(a).

We need to maximize this expression with respect to a. The simplest way to do it
is to check what happens when we go from a to a + 1:

G(a + 1) = G(a) + b − (b + %)
a∑

j=0

p( j).

That is, it is profitable to increase a as long as

P(X ≤ a) =
a∑

j=0

p( j) <
b

b + %
.

!!!

Comment: Consider a probability space (Ω,F , P), and let a ∈ R be a constant.
Then E[a] = a. To justify this identity, we consider a to be a constant random
variable X(ω) = a. Then,

pX(a) = P({ω : X(ω) = a}) = P(Ω) = 1,

and the identity follows.
The calculation of the expected value of a function of a random variable is easily
generalized to multiple random variables. Consider a probability space (Ω,F , P)
on which two random variables X,Y are defined, and let g : R2 → R. The theorem
of the unconscious statistician generalizes into

E[g(X,Y)] =
∑

x,y

g(x, y)pX,Y(x, y).
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+ Exercise 4.3 Prove it.

Corollary 4.1 The expectation is a linear functional in the vector space of random
variables: if X,Y are random variables over a probability space (Ω,F , P) and
a, b ∈ R, then

E[aX + bY] = aE[X] + bE[Y].

Proof : By the theorem of the unconscious statistician,

E[aX + bY] =
∑

x,y

(ax + by)pX,Y(x, y)

= a
∑

x

x
∑

y

pX,Y(x, y) + b
∑

y

y
∑

x

pX,Y(x, y)

= aE[X] + bE[Y].

*

This simple fact will be used extensively later on.

4.3 Moments

Definition 4.2 Let X be a random variable over a probability space. The n-th
moment of X is defined by

Mn[X] := E[Xn].
If we denote the expected value of X by µ, then the n-th central moment of X is
defined by

Cn[X] := E[(X − µ)n].
The second central moment of a random variable is called its variance, and it is
denoted by

Var[X] := E[(X − µ)2] = E[X2 − 2µX + µ2]
= E[X2] − 2µE[X] + µ2 = E[X2] − (E[X])2.

(We have used the linearity of the expectation.) The square root of the variance is
called the standard deviation, and is denoted by

σX =
√

Var[X].
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The standard deviation is a measure of the (absolute) distance of the random vari-
able from its expected value (or mean). It provides a measure of how “spread” the
distribution of X is.

Proposition 4.1 If Var[X] = 0, then X(ω) = E[X] with probability one.

Proof : Let µ = E[X]. By definition,

Var[X] =
∑

x

(x − µ)2 pX(x).

This is a sum of non-negative terms. It can only be zero if pX(µ) = 1. *

Example: The second moment of a random variable X ∼ B (n, p) is calculated as
follows:

E[X(X − 1)] =
n∑

k=0

k(k − 1)
(
n
k

)
pk(1 − p)n−k

=

n∑

k=2

n!
(n − k)!(k − 2)!

pk(1 − p)n−k

=

n−2∑

k=0

n!
(n − k − 2)!k!

pk+2(1 − p)n−k−2

= n(n − 1)p2.

Therefore,
E[X2] = n(n − 1)p2 + E[X] = n(n − 1)p2 + np.

The variance of X is

Var[X] = n(n − 1)p2 + np − (np)2 = np(1 − p).

!!!

Example: What is the variance of a Poisson variable X ∼ Poi (λ)? Recalling that
a Poisson variable is the limit of a binomial variable with n → ∞, p → 0, and
np = λ, we deduce that Var[X] = λ. !!!
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+ Exercise 4.4 Calculate the variance of a Poisson variable directly, without us-
ing the limit of a binomial variable.

Proposition 4.2 For any random variable,

Var[aX + b] = a2 Var[X].

Proof :

Var[aX + b] = E[(aX + b − E[aX + b])2] = E[a2(X − E[X])2] = a2 Var[X].

*

Definition 4.3 Let X,Y be a pair of random variables. Their covariance is de-
fined by

Cov[X,Y] := E[(X − E[X])(Y − E[Y])].

Two random variables whose covariance vanishes are said to be uncorrelated.
The correlation coefficient of a pair of random variables is defined by

ρ[X,Y] =
Cov[X,Y]
σXσY

.

The covariance of two variables is a measure of their tendency to be larger than
their expected value together. A negative covariance means that when one of the
variables is larger than its mean, the other is more likely to be less than its mean.

+ Exercise 4.5 Prove that the correlation coefficient of a pair of random vari-
ables assumes values between −1 and 1 (Hint: use the Cauchy-Schwarz inequal-
ity).

Proposition 4.3 If X,Y are independent random variables, and g, h are real val-
ued functions, then

E[g(X)h(Y)] = E[g(X)]E[h(Y)].
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Proof : One only needs to apply the law of the unconscious statistician and use the
fact that the joint distribution is the product of the marginal distributions,

E[g(X)h(Y)] =
∑

x,y

g(x)h(y)pX(x)pY(y)

=



∑

x

g(x)pX(x)





∑

y

h(y)pY(y)




= E[g(X)]E[h(Y)].

*

Corollary 4.2 If X,Y are independent then they are uncorrelated.

Proof : Obvious. *

Is the opposite statement true? Are uncorrelated random variables necessarily
independent? Consider the following joint distribution:

X/Y −1 0 1
0 1/3 0 1/3
1 0 1/3 0

X and Y are not independent, because, for example, knowing that X = 1 implies
that Y = 0. On the other hand,

Cov[X,Y] = E[XY] − E[X]E[Y] = 0 − 1
3
· 0 = 0.

That is, zero correlation does not imply independence.

Proposition 4.4 For any two random variables X,Y,

Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X,Y].
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Proof : Just do it! *

+ Exercise 4.6 Show that for any collection of random variables X1, . . . , Xn,

Var



n∑

k=1

Xk


 =

n∑

k=1

Var[Xk] + 2
∑

i< j

Cov[Xi, Xj].

4.4 Using the linearity of the expectation

In this section we will examine a number of examples that make use of the additive
property of the expectation.

Example: Recall that we calculated the expected value of a binomial variable,
X ∼ B (n, p), and that we obtained E[X] = np. There is an easy way to obtain this
result. A binomial variable can be represented as a sum of independent Bernoulli
variables,

X =
n∑

k=1

Xk, Xk’s Bernoulli with success probability p.

By the additivity of the expectation,

E[X] =
n∑

k=1

E[Xk] = n · p.

The variance can be obtained by the same method. We have

Var[X] = n × Var[X1],

and it remains to verify that

Var[X1] = p(1 − p)2 + (1 − p)(0 − p)2 = (1 − p)(p(1 − p) + p2) = p(1 − p).

Note that the calculation of the expected value does not use the independence
property, whereas the calculation of the variance does. !!!

Example: A hundred dice are tossed. What is the expected value of their sum X?
Let Xk be the outcome of the k-th die. Since E[Xk] = 21/6 = 7/2, we have by
additivity, E[X] = 100 × 7/2 = 350. !!!
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Example: Consider again the problem of the inattentive secretary who puts n
letters randomly into n envelopes. What is the expected number of letters that
reach their destination?
Define for k = 1, . . . , n the Bernoulli variables,

Xk =




1 the k-th letter reached its destination
0 otherwise.

Clearly, pXk(1) = 1/n. If X is the number of letters that reached their destination,
then X =

∑n
k=1 Xk, and by additivity,

E[X] = n × 1
n
= 1.

We then proceed to calculate the variance. We’ve already seen that for the Bernoulli
variable with parameter p the variance equals p(1− p). In this case, the Xk are not
independent therefore we need to calculate their covariance. The variable X1X2 is
also a Bernoulli variable, with parameter 1/n(n − 1), so that

Cov[X1, X2] =
1

n(n − 1)
− 1

n2 .

Putting things together,

Var[X] = n × 1
n

(
1 − 1

n

)
+ 2
(
n
2

)
×
(

1
n(n − 1)

− 1
n2

)

=

(
1 − 1

n

)
+ n(n − 1)

(
1

n(n − 1)
− 1

n2

)
= 1.

Should we be surprised? Recall that X tends as n→ ∞ to a Poisson variable with
parameter λ = 1, so that we expect that in this limit E[X] = Var[X] = 1. It turns
out that this result holds exactly for every finite n. !!!

+ Exercise 4.7 In an urn are N white balls and M black balls. n balls are drawn
randomly. What is the expected value of the number of white balls that were
drawn? (Solve this problem by using the additivity of the expectation.)

Example: Consider a randomized deck of 2n cards, two of type “1”, two of type
“2”, and so on. m cards are randomly drawn. What is the expected value of the
number of pairs that will remain intact? (This problem was solved by Daniel



80 Chapter 4

Bernoulli in the context of the number of married couples remaining intact after
m deaths.)
We define Xk to be a Bernoulli variable taking the value 1 if the k-th couple re-
mains intact. We have

E[Xk] = pXk(1) =

(
2n−2

m

)

(
2n
m

) =
(2n − m)(2n − m − 1)

2n(2n − 1)
.

The desired result is n times this number. !!!

Example: Recall the coupon collector: there are n different coupons, and each
turn there is an equal probability to obtain any coupon. What is the expected value
of the number of coupons that need to be collected before obtaining a complete
set?
Let X be the number of coupons that need to be collected and Xk be the number
of coupons that need to be collected from the moment that we had k different
coupons to the moment we have k + 1 different coupons. Clearly,

X =
n−1∑

k=0

Xk.

Now, suppose we have k different coupons. Every new coupon can be viewed as a
Bernoulli experiment with success probability (n − k)/n. Thus, Xk is a geometric
variable with parameter (n − k)/n, and E[Xk] = n/(n − k). Summing up,

E[X] =
n−1∑

k=0

n
n − k

= n
n∑

k=1

1
k
≈ n log n.

!!!

+ Exercise 4.8 Let X1, . . . , Xn be a sequence of independent random variables
that have the same distribution. We denote E[X1] = µ and Var[X1] = σ2. Find the
expected value and the variance of the empirical mean

S n =
1
n

n∑

k=1

Xk.

We conclude this section with a remark about infinite sums. First a simple lemma:
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Lemma 4.1 Let X be a random variable. If X(ω) ≥ a (with probability one) then
E[X] ≥ a. Also,

E[|X|] ≥ |E[X]|.

Proof : The first result follows from the definition of the expectation. The second
result follows from the inequality

∣∣∣∣∣∣∣

∑

x

x pX(x)

∣∣∣∣∣∣∣
≤
∑

x

|x| pX(x).

*

Theorem 4.2 Let (Xn) be an infinite sequence of random variables such that

∞∑

n=1

E[|Xn|] < ∞.

Then,

E



∞∑

n=1

Xn


 =

∞∑

n=1

E[Xn].

Proof : TO BE COMPLETED. *

The following is an application of the above theorem. Let X be a random variable
assuming positive integer values and having a finite expectation. Define for every
natural i,

Xi(ω) =




1 i ≤ X(ω)
0 otherwise

Then,
∞∑

i=1

Xi(ω) =
∑

i≤X(ω)

1 = X(ω).
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Now,

E[X] =
∞∑

i=1

E[Xi] =
∞∑

i=1

P({ω : X(ω) ≥ i}).

4.5 Conditional expectation

Definition 4.4 Let X,Y be random variables over a probability space (Ω,F , P).
The conditional expectation of X given that Y = y is defined by

E[X|Y = y] :=
∑

x

x pX|Y(x|y).

Note that this definition makes sense because pX|Y(·|y) is an atomistic distribution
on S X.

Example: Let X,Y ∼ B (n, p) be independent. What is the conditional expecta-
tion of X given that X + Y = m?
To answer this question we need to calculate the conditional distribution pX|X+Y .
Now,

pX|X+Y(k|m) =
P(X = k, X + Y = m)

P(X + Y = m)
=

P(X = k,Y = m − k)
P(X + Y = m)

,

with k ≤ m, n. We know what the numerator is. For the denominator, we real-
ize that the sum of two binomial variables with parameters (n, p) is a binomial
variable with parameters (2n, p) (think of two independent sequences of Bernoulli
trials added up). Thus,

pX|X+Y(k|m) =

(
n
k

)
pk(1 − p)n−k

(
n

m−k

)
pm−k(1 − p)n−m+k

(
2n
m

)
pm(1 − p)2n−m

=

(
n
k

)(
n

m−k

)

(
2n
m

) .

The desired result is

E[X|X + Y = m] =
min(m,n)∑

k=0

k

(
n
k

)(
n

m−k

)

(
2n
m

) .

It is not clear how to simplify this expression. A useful trick is to observe that
pX|X+Y(k|m) with m fixed is the probability of obtaining k white balls when one
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draws m balls from an urn containing n white balls and n black balls. Since every
ball is white with probability 1/2, by the additivity of the expectation, the expected
number of white balls is m/2.
Now that we know the result, we may see that we could have reached it much
more easily. By symmetry,

E[X|X + Y = m] = E[Y |X + Y = m],

hence, by the linearity of the expectation,

E[X|X + Y = m] =
1
2
E[X + Y |X + Y = m] =

m
2
.

In particular, this result holds whatever is the distribution of X,Y (as long as it is
the same). !!!

We now refine our definition of the conditional expectation:

Definition 4.5 Let X(ω),Y(ω) be random variables over a probability space (Ω,F , P).
The conditional expectation of X given Y is a random variable Z(ω), which is a
composite function of Y(ω), i.e., Z(ω) = ϕ(Y(ω)), and

ϕ(y) := E[X|Y = y].

Another way to write it is:

E[X|Y](ω) := E[X|Y = y]y=Y(ω).

That is, having performed the experiment, we are given only Y(ω), and the random
variable E[X|Y](ω) is the expected value of X(ω) now that we know Y(ω).

Proposition 4.5 For every two random variables X,Y,

E[E[X|Y]] = E[X].

Proof : What does the proposition say? That
∑

ω∈Ω
E[X|Y](ω) p(ω) =

∑

ω∈Ω
X(ω) p(ω).
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Since E[X|Y](ω) is a composite function of Y(ω) we can use the law of the uncon-
scious statistician to rewrite this as

∑

y

E[X|Y = y] pY(y) =
∑

x

x pX(x).

Indeed,
∑

y

E[X|Y = y] pY(y) =
∑

y

∑

x

x pX|Y(x|y)pY(y)

=
∑

y

∑

x

x pX,Y(x, y) = E[X].

*

This simple proposition is quite useful. It states that the expected value of X can
be computed by averaging over its expectation conditioned over another variable.

Example: A miner is inside a mine, and doesn’t know which of three possible
tunnels will lead him out. If he takes tunnel A he will be out within 3 hours. If he
takes tunnel B he will be back to the same spot after 5 hours. If he takes tunnel C
he will be back to the same spot after 7 hours. He chooses the tunnel at random
with equal probability for each tunnel. If he happens to return to the same spot,
the poor thing is totally disoriented, and has to redraw his choice again with equal
probabilities. What is the expected time until he finds the exit?
The sample space consists of infinite sequences of ”BCACCBA...”, with the stan-
dard probability of independent repeated trials. Let X(ω) be the exit time and Y(ω)
be the label of the first door he chooses. By the above proposition,

E[X] = E[E[X|Y]]
= E[X|Y = A] pY(A) + E[X|Y = B] pY(B) + E[X|Y = C] pY(C)

=
1
3

(3 + E[X|Y = B] + E[X|Y = C]) .

What is E[X|Y = B]? If the miner chose tunnel B, then he wandered for 5 hours,
and then faced again the original problem, independently of his first choice. Thus,

E[X|Y = B] = 5 + E[X] and similarly E[X|Y = C] = 7 + E[X].

Substituting, we get

E[X] = 1 +
1
3

(5 + E[X]) +
1
3

(7 + E[X]) .

This equation is easily solved, E[X] = 15. !!!
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Example: Consider a sequence of independent Bernoulli trials with success prob-
ability p. What is the expected number of trials until one obtains two 1’s in a
row?
Let X(ω) be the number of trials until two 1’s in a row, and let Yj(ω) be the
outcome of the j-th trial. We start by writing

E[X] = E[E[X|Y1]] = pE[X|Y1 = 1] + (1 − p)E[X|Y1 = 0].

By the same argument as above,

E[X|Y1 = 0] = 1 + E[X].

Next, we use a simple generalization of the conditioning method,

E[X|Y1 = 1] = pE[X|Y1 = 1,Y2 = 1] + (1 − p) E[X|Y1 = 1,Y2 = 0].

Using the fact that

E[X|Y1 = 1,Y2 = 1] = 2 and E[X|Y1 = 1,Y2 = 0] = 2 + E[X],

we finally obtain an implicit equation for E[X]:

E[X] = p
[
2p + (1 − p)(2 + E[X])

]
+ (1 − p)(1 + E[X]),

from which we readily obtain

E[X] =
1 + p

p2 .

We can solve this same problem differently. We view the problem in terms of
a three-state space: one can be in the initial state (having to produce two 1’s in
a row), be in state after a single 1, or be in the terminal state after two 1’s in a
row. We label these states S 0, S 1, and S 2. Now every sequence of successes and
failures implies a trajectory on the state space. That is, we can replace the original
sample space of sequences of zero-ones by a sample space of sequences of states
S j. This defined a new compound experiment, with transition probabilities that
can be represented as a graph:

!"
#$

!"
#$

!"
#$
%&
'(

S 0 S 1 S 2
! ! !p p

1 − p 1 − p
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Let now X(ω) be the number of steps until reaching state S 2. The expected value
of X depends on the initial state. The graph suggests the following relations,

E[X|S 0] = 1 + pE[X|S 1] + (1 − p)E[X|S 0]
E[X|S 1] = 1 + pE[X|S 2] + (1 − p)E[X|S 0]
E[X|S 2] = 0

It is easily checked that E[X|S 0] = (1 + p)/p2. !!!

I AM NOT SATISFIED WITH THE WAY THIS IS EXPLAINED. REQUIRES
ELABORATION.

+ Exercise 4.9 Consider a sequence of independent Bernoulli trials with suc-
cess probability p. What is the expected number of trials until one obtains three
1’s in a row? four 1’s in a row?

+ Exercise 4.10 A monkey types randomly on a typing machine. Each character
has a probability of 1/26 of being each of the letters of the alphabet, independently
of the other. What is the expected number of characters that the monkey will type
until generating the string ”ABCD”? What about the string ”ABAB”?

The following paragraphs are provided for those who want to know more.

The conditional expectation E[X|Y](ω) plays a very important role in probability theory.
Its formal definition, which remains valid in the general case (i.e., uncountable spaces),
is somewhat more involved than that presented in this section, but we do have all the
necessary background to formulate it. Recall that a random variable Y(ω) generates a
σ-algebra of events (a sub-σ-algebra of F ),

F ⊇ σ(Y) :=
{
Y−1(A) : A ∈ FY

}
.

Let ϕ be a real valued function defined on S Y , and define a random variable Z(ω) =
ϕ(Y(ω)). The σ-algebra generated by Z is

σ(Z) :=
{
Z−1(B) : B ∈ FZ

}
=
{
Y−1(ϕ−1(B)) : B ∈ FZ

}
⊆ σ(Y).

That is, the σ-algebra generated by a function of a random variable is contained in the
σ-algebra generated by this random variable. In fact, it can be shown that the opposite
is true. If Y,Z are random variables and σ(Z) ⊆ σ(Y), then Z can be expressed as a
composite function of Y .

Recall now our definition of the conditional expectation,

E[X|Y](ω) = E[X|Y = y]y=Y(ω) =
∑

x
x pX|Y (x|Y(ω)) =

∑

x
x

pX,Y (x,Y(ω))
pY (Y(ω))

.
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Let A ∈ F be any event in σ(Y), that is, there exists a B ∈ FY for which Y−1(B) = A.
Now,

∑

ω∈A
E[X|Y](ω) p(ω) =

∑

ω∈A

∑

x
x

pX,Y (x,Y(ω))
pY (Y(ω))

p(ω)

=
∑

x
x
∑

ω∈A

pX,Y (x,Y(ω))
pY (Y(ω))

p(ω)

=
∑

x
x
∑

y∈B

∑

ω∈Y−1(y)

pX,Y (x, y)
pY (y)

p(ω)

=
∑

x
x
∑

y∈B

pX,Y (x, y)
pY (y)

∑

ω∈Y−1(y)

p(ω)

=
∑

x
x
∑

y∈B

pX,Y (x, y).

On the other hand,
∑

ω∈A
X(ω) p(ω) =

∑

y∈B

∑

ω∈Y−1(y)

X(ω) p(ω)

=
∑

x

∑

y∈B

∑

{ω:(X(ω),Y(ω))=(x,y)}
X(ω) p(ω)

=
∑

x
x
∑

y∈B

∑

{ω:(X(ω),Y(ω))=(x,y)}
p(ω)

=
∑

x
x
∑

y∈B

pX,Y (x, y).

That is, for every A ∈ σ(Y),
∑

ω∈A
E[X|Y](ω) p(ω) =

∑

ω∈A
X(ω) p(ω).

This property is in fact the standard definition of the conditional expectation:

Definition 4.6 Let X,Y be random variables over a probability space (Ω,F , P). The
conditional expectation of X given Y is a random variable Z satisfying the following two
properties: (1) σ(Z) ⊆ σ(Y), (2) For every A ∈ σ(Y)

∑

ω∈A
Z(ω) p(ω) =

∑

ω∈A
X(ω) p(ω).

It can be proved that there exists a unique random variable satisfying these properties.
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4.6 The moment generating function

Definition 4.7 Let X be a discrete random variable. Its moment generating
function MX(t) is a real-valued function defined by

MX(t) := E[etX] =
∑

x

etx pX(x).

Example: What is the moment generating function of a binomial variable X ∼
B (n, p)?

MX(t) =
n∑

k=1

etk
(
n
k

)
pk(1 − p)n−k = (1 − p + et p)n.

!!!

Example: What is the moment generating function of a Poisson variable X ∼
Poi (λ)?

MX(t) =
∞∑

k=0

etke−λ
λk

k!
= eλ(e

t−1).

!!!

What are the uses of the moment generating function? Note that

MX(0) = 1
M′X(0) = E[X]
M′′X (0) = E[X2],

and in general, the k-th derivative evaluated at zero equals to the k-th moment.

Example: Verify that we get the correct moments for the binomial and Poisson
variables !!!

Comment: The moment-generating function is the Laplace transform of the
atomistic distribution. It has many uses, which are however beyond the scope
of this course.
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Random Variables (Continuous
Case)

So far, we have purposely limited our consideration to random variables whose
ranges are countable, or discrete. The reason for that is that distributions on count-
able spaces are easily specified by means of the atomistic distribution. The con-
struction of a distribution on an uncountable space is only done rigorously within
the framework of measure theory. Here, we will only provide limited tools that
will allow us to operate with such variables.

5.1 Basic definitions

Definition 5.1 Let (Ω,F , P) be a probability space. A real-valued functionΩ→
R is called a continuous random variable, if there exists a non-negative real-
valued integrable function fX(x), such that

P({ω : X(ω) ≤ a}) = FX(a) =
∫ a

−∞
fX(x) dx.

The function fX is called the probability density function (pdf) of X.

Comment: Recall that a random variable has a σ-algebra of events FX associated
with its range (here R), and we need X−1(A) ∈ F for all A ∈ FX. What is a
suitable σ-algebra for R? These are precisely the issues that we sweep under
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the carpet (well, I can still tell you that it is the σ-algebra generated by all open
subsets of the line).
Thus, a continuous random variable is defined by its pdf. Since a random variable
is by definition defined by its distribution PX, we need to show that the pdf defines
the distribution uniquely. Since we don’t really know how to define distributions
when we don’t even know the set of events, this cannot really be achieved. Yet,
we can at least show the following properties:
(1) For every segment (a, b],

PX((a, b]) = FX(b) − FX(a) =
∫ b

a
fX(x) dx.

(2) For every A expressible as a countable union of disjoint (aj, bj],

PX(A) =
∫

A
fX(x) dx.

(3) Normalization, ∫

R

fX(x) dx = 1.

(4) The distribution of closed sets follows from the continuity of the probability,

PX([a, b]) = P
(
lim
n→∞

(a − 1
n , b]
)
= lim

n→∞

∫ b

a−1/n
fX(x) dx = PX((a, b]).

(5) As a result, PX({a}) = 0 for every a ∈ R, as

P({a}) = PX([a, b]) − PX((a, b]).

Comment: We may consider discrete random variables as having a pdf which is a
sum of δ-functions.

Example: The random variable X has a pdf of the form

fX(x) =




2C(2x − x2) 0 ≤ x ≤ 2
0 otherwise

.

What is the value of the constant C and what is the probability that X(ω) > 1?
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The constant is obtained by normalization,

1 = 2C
∫ 2

0
(2x − x2) dx = 2C

(
4 − 8

3

)
=

8C
3
.

Then,

P(X > 1) = 2C
∫ 2

1
(2x − x2) dx =

1
2
.

!!!

5.2 The uniform distribution

Definition 5.2 A random variable X is called uniformly distributed in [a, b],
denoted X ∼ U (a, b), if its pdf is given by

fX(x) =




1
b−a a ≤ x ≤ b
0 otherwise

.

Example: Buses are arriving at a station every 15 minutes. A person arrives at
the station at a random time, uniformly distributed between 7:00 and 7:30. What
is the probability that he has to wait less than 5 minutes?
Let X(ω) be the arrival time (in minutes past 7:00), and Y(ω) the time he has to
wait. We know that X ∼ U (0, 30). Now,

P(Y < 5) = P({X = 0} ∪ {10 ≤ X < 15} ∪ {25 ≤ X < 30}) = 0 +
5

30
+

5
30
=

1
3
.

!!!

Example: Bertrand’s paradox: consider a random chord of a circle. What is the
probability that the chord is longer than the side of an equilateral triangle inscribed
in that circle?
The “paradox” stems from the fact that the answer depends on the way the random
chord is selected. One possibility is to take the distance of the chord from the
center of the circle r to be U (0,R). Since the chord is longer than the side of the
equilateral triangle when r < R/2, the answer is 1/2. A second possibility is to
take the angle θ between the chord and the tangent to the circle to be U (0, π). The
chord is longer than the side of the triangle when π/3 < θ < 2π/3, in which case
the answer is 1/3.

!!!
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5.3 The normal distribution

Definition 5.3 A random variable X is said to be normally distributed with
parameters µ, σ2, denoted by X ∼ N(µ, σ2), if its pdf is

fX(x) =
1√

2πσ2
exp
(
− (x − µ)2

2σ2

)
.

X is called a standard normal variable if µ = 0 and σ2 = 1.

+ Exercise 5.1 Show that the pdf of a normal variable N(µ, σ2) is normalized.

Proposition 5.1 Let X ∼ N(µ, σ2) and set Y = aX + b, where a > 0. Then

Y ∼ N(aµ + b, a2σ2).

Proof : At this point, where we don’t know how to change variables, we simply
operate on the distribution function of Y ,

FY(y) = P(Y ≤ y) = P(X ≤ a−1(y − b))

=
1√

2πσ2

∫ a−1(y−b)

−∞
exp
(
− (x − µ)2

2σ2

)
dx

=
1/a√
2πσ2

∫ y

−∞
exp
(
− (a−1(u − b) − µ)2

2σ2

)
du

=
1√

2πa2σ2

∫ y

−∞
exp
(
− (u − b − aµ)2

2a2σ2

)
du,

where we have changed variables, x = a−1(u − b). *

Corollary 5.1 If X ∼ N(µ, σ2) then (X − µ)/σ is a standard normal variable.
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Notation: The distribution function of a standard normal variable will be denoted
by Φ(x),

Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2 dy.

(This function is closely related to Gauss’ error function).

The importance of the normal distribution stems from the central limit theorem,
which we will encounter later on. The following theorem is an instance of the
central limit theorem for a particular case:

Theorem 5.1 (DeMoivre-Laplace) Let (Xn) be a sequence of independent
Bernoulli variables with parameter p and set

Yn :=
Xn − p
√

p(1 − p)
.

(The variables Yn have zero expectation and unit variance.) Set then

S n :=
1√
n

n∑

k=1

Yk.

Then S n tends, as n→ ∞, to a standard normal variable in the sense that

lim
n→∞

P (a ≤ S n ≤ b) = Φ(b) − Φ(a).

Comment: This theorem states that the sequence of random variables S n con-
verges to a standard normal variable in distribution, or in law.

Proof : The event {a ≤ S n ≤ b} can be written as


np +

√
np(1 − p) a ≤

n∑

k=1

Xk ≤ np +
√

np(1 − p) b


 ,
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and the sum over Xk is a binomial variable B (n, p). Thus, the probability of this
event is

P (a ≤ S n ≤ b) =
np+
√

np(1−p) b∑

k=np+
√

np(1−p) a

(
n
k

)
pk(1 − p)n−k.

(We will ignore the fact that limits are integer as the correction is negligible as
n → ∞.) As n becomes large (while p remains fixed), n, k, and n − k become
large, hence we use Stirling’s approximation,

(
n
k

)
∼

√
2πn nne−n

√
2πk kke−k

√
2π(n − k) (n − k)n−ke−(n−k)

,

and so (
n
k

)
pk(1 − p)n−k ∼

√
n

2πk(n − k)

(np
k

)k (n(1 − p)
n − k

)n−k

,

where, as usual, the ∼ relation means that the ratio between the two sides tends to
one as n → ∞. The summation variable k takes values that are of order O(

√
n)

around np. This suggests a change of variables, k = np+
√

np(1 − p) m, where m
varies from a to b in units of ∆m = [np(1 − p)]−1/2.
Consider the first term in the above product. As n→ ∞,

lim
n→∞

1
∆m

√
n

2πk(n − k)
= lim

n→∞

√
n√

2πn

√
p(1 − p)

√
(k/n)(1 − k/n)

=
1√
2π
.

Consider the second term, which we can rewrite as
(np

k

)k
=

(
np

np + r
√

n

)np+r
√

n

,

where r =
√

p(1 − p) m. To evaluate the n → ∞ limit it is easier to look at the
logarithm of this expression, whose limit we evaluate using Taylor’s expansion,

log
(np

k

)k
= (np + r

√
n) log

(
1 +

r
p

n−1/2
)−1

= (np + r
√

n) log
(
1 − r

p
n−1/2 +

r2

p2 n−1
)
+ l.o.t

= (np + r
√

n)
(
− r

p
n−1/2 +

r2

2p2 n−1
)
+ l.o.t

= −r
√

n − r2

2p
= −r

√
n − 1

2
(1 − p)m2 + l.o.t.
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Similarly,

log
(
n(1 − p)

n − k

)n−k

= r
√

n − 1
2

pm2 + l.o.t.

Combining the two together we have

lim
n→∞

log


(np

k

)k (n(1 − p)
n − k

)n−k = −
1
2

m2.

Thus, as n→ ∞ we have

lim
n→∞

P (a ≤ S n ≤ b) = lim
n→∞

1√
2π

b∑

m=a

e−m2/2 ∆m = Φ(b) − Φ(a),

which concludes the proof. *

A table of the values of Φ(x) is all that is needed to compute probabilities for
general normal variables. Indeed, if X ∼ N(µ, σ2), then

FX(x) = P(X ≤ x) = P
(X − µ
σ
≤ x − µ
σ

)
= Φ
( x − µ
σ

)
.

Example: The duration of a normal pregnancy (in days) is a normal variable
N (270, 100). A sailor’s wife gave birth to a baby. It turns out that her husband
was on the go during a period that started 290 days before the delivery and ended
240 days before the delivery. What is the probability that the baby was conceived
while he was at home?
Let X be the actual duration of the pregnancy. The question is

P ({X > 290} ∪ {X < 240}) =?,

which we solve as follows,

P ({X > 290} ∪ {X < 240}) = P
({

X − 270
10

> 2
}
∪
{

X − 270
10

< −3
})

=
1√
2π

∫ −3

−∞
e−y2/2 dy +

1√
2π

∫ ∞

2
e−y2/2 dy

= Φ(−3) + [1 − Φ(2)] = 0.241.

(It is with great relief that we learn that after having completed this calculation,
the sailor decided not to slaughter his wife.) !!!
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Example: A fair coin is tossed 40 times. What is the probability that the number
of Heads equals exactly 20?
Since the number of heads is a binomial variable, the answer is

(
40
20

) (
1
2

)20 (1
2

)20

= 0.1268...

We can also approximate the answer using the DeMoivre-Laplace theorem. In-
deed, the random variable

X − 40 × 1
2√

40 × 1
2 × (1 − 1

2 )
≈ N (0, 1) .

The number of heads is a discrete variable, whereas the normal distribution refers
to a continuous one. We will approximate the probability that the number of heads
be 20 by the probability that it is, in a continuous context, between 19.5 and 20.5,
i.e., that

|X − 20|√
10

≤ 1
2
√

10
,

and

P
(

1
2
√

10
≤ X − 20√

10
≤ 1

2
√

10

)
≈ 2
(
Φ

(
1

2
√

10

)
− Φ(0)

)
= 0.127...

!!!

5.4 The exponential distribution

Definition 5.4 A random variable X is said to be exponentially distributed with
parameter λ, denoted X ∼ Exp (λ), if its pdf is

fX(x) =



λ e−λx x ≥ 0
0 x < 0

.

The corresponding distribution function is

FX(x) =




1 − e−λx x ≥ 0
0 x < 0

.
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An exponential distribution is a suitable model in many situations, like the time
until the next earthquake.

Example: Suppose that the duration of a phone call (in minutes) is a random
variable Exp (1/10). What is the probability that a given phone call lasts more
than 10 minutes? The answer is

P(X > 10) = 1 − Fx(10) = e−10/10 ≈ 0.368.

Suppose we know that a phone call has already lasted 10 minutes. What is the
probability that it will last at least 10 more minutes. The perhaps surprising answer
is

P(X > 20|X > 10) =
P(X > 20, X > 10)

P(X > 10)
=

e−2

e−1 = e−1.

More generally, we can show that for every t > s,

P(X > t|X > s) = P(X > t − s).

A random variable satisfying this property is called memoryless. !!!

Proposition 5.2 A random variable that satisfies

P(X > t|X > s) = P(X > t − s) for all t > s > 0

is exponentially distributed.

Proof : It is given that

P(X > t, X > s)
P(X > s)

= P(X > t − s),

or in terms of the distribution function,
1 − FX(t)
1 − FX(s)

= 1 − FX(t − s).

Let g(t) = 1 − FX(t), then for all t > s,

g(t) = g(s)g(t − s),

and the only family of functions satisfying this property is the exponentials. *
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5.5 The Gamma distribution

The Gamma function is defined by

Γ(x) =
∫ ∞

0
tx−1e−t dt

for x > 0. This function is closely related to factorials since Γ(1) = 1 and by
integration by parts,

Γ(n + 1) =
∫ ∞

0
tne−t dt = n

∫ ∞

0
tn−1e−t dt = nΓ(n),

hence Γ(n + 1) = n! for integer n. A random variable X is said to be Gamma-
distributed with parameters r, λ if it assumes positive values and

fX(x) =
λr

Γ(r)
xr−1e−λx.

We denote it by X ∼ Gamma (r, λ). This is a normalized pdf since
∫ ∞

0
fX(x) dx =

1
Γ(r)

∫ ∞

0
(λx)r−1e−λx d(λx) = 1.

Note that for r = 1 we get the pdf of an exponential distribution, i.e.,

Gamma (1, λ) ∼ Exp (λ) .

The significance of the Gamma distribution will be seen later on in this chapter.

5.6 The Beta distribution

A random variable assuming values in [0, 1] is said to have the Beta distribution
with parameters K, L > 0, i.e., X ∼ Beta (K, L), if it has the pdf

fX(x) =
Γ(K + L)
Γ(K)Γ(L)

xK−1(1 − x)L−1.
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5.7 Functions of random variables

In this section we consider the following problem: let X be a continuous random
variable with pdf fX(x). Let g be a real-valued function and Y(ω) = g(X(ω)). What
is the distribution of Y?

Example: Let X ∼ U (0, 1). What is the distribution of Y = Xn?
The random variable Y , like X, assumes values in the interval [0, 1]. Now,

FY(y) = P(Y ≤ y) = P(Xn ≤ y) = P(X ≤ y1/n) = FX(y1/n),

where we used the monotonicity of the power function for positive arguments. In
the case of a uniform distribution,

FX(x) =
∫ x

−∞
fX(x) =




0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

.

Thus,

FY(y) =




0 y < 0
y1/n 0 ≤ y ≤ 1
1 y > 1

.

Differentiating,

fY(y) =
dFY(y)

dy
=




1
n y1/n−1 0 ≤ y ≤ 1
0 otherwise

.

!!!

Example: Let X be a continuous random variable with pdf fX(x). What is the
distribution of Y = X2.
The main difference with the previous exercise is that X may possibly assume both
positive and negative values, in which case the square function is non-monotonic.
Thus, we need to proceed with more care,

FY(y) = P(Y ≤ y) = P(X2 ≤ y)
= P(X ≥ −√y, X ≤ √y)
= FX(

√
y) − FX(−√y).
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Differentiating, we get the pdf

fY(y) =
fX(√y) + fX(−√y)

2√y
.

!!!

With these preliminaries, we can formulate the general theorem:

Theorem 5.2 Let X be a continuous random variable with pdf fX(x). Let g be
a strictly monotonic, differentiable function and set Y(ω) = g(X(ω)). Then the
random variable Y has a pdf

fY(y) =




∣∣∣(g−1)′(y)
∣∣∣ fX(g−1(y)) y is in the range of g(X)

0 otherwise
.

Comment: If g is non-monotonic then g−1(y) may be set-valued and the above
expression has to be replaced by a sum over all “branches” of the inverse function:

∑

g−1(y)

∣∣∣(g−1)′(y)
∣∣∣ fX(g−1(y)).

Proof : Consider the case where g is strictly increasing. Then, g−1 exists, and

FY(y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)),

and upon differentiation,

fY(y) =
d
dy

FX(g−1(y)) = (g−1)′(y) fX(g−1(y)).

The case where g is strictly decreasing is handled similarly. *
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The inverse transformation method An application of this formula is the fol-
lowing. Suppose that you have a computer program that generates a random vari-
able X ∼ U (0, 1). How can we use it to generate a random variable with distribu-
tion function F? The following method is known as the inverse transformation
method.
If F is strictly increasing (we know that it is at least non-decreasing), then we can
define

Y(ω) = F−1(X(ω)).

Note that F−1 maps [0, 1] onto the entire real line, while X has range [0, 1]. More-
over, FX(x) is the identity on [0, 1]. By the above formula,

FY(y) = FX(F(y)) = F(y).

Example: Suppose we want to generate an exponential variable Y ∼ Exp (λ), in
which case F(y) = 1 − e−λy. The inverse function is F−1(x) = − 1

λ log(1 − x), i.e.,
an exponential variable is generated by setting

Y(ω) = −1
λ

log(1 − X(ω)).

In fact, since 1 − X has the same distribution as X, we may equally well take
Y = −λ−1 log X.

!!!

5.8 Multivariate distributions

We proceed to consider joint distributions of multiple random variables. The treat-
ment is fully analogous to that for discrete variables.

Definition 5.5 A pair of random variables X,Y over a probability space (Ω,F , P)
is said to have a continuous joint distribution if there exists an integrable non-
negative bi-variate function fX,Y(x, y) (the joint pdf) such that for every (measur-
able) set A ⊆ R2,

PX,Y(A) = P({ω : (X(ω),Y(ω)) ∈ A}) =
!

A
fX,Y(x, y) dxdy.
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Note that in particular,

FX,Y(x, y) = P({ω : X(ω) ≤ x,Y(ω) ≤ y}) =
∫ x

−∞

∫ y

−∞
fX,Y(x, y) dxdy,

and consequently,

fX,Y(x, y) =
∂2

∂x ∂y
FX,Y(x, y).

Furthermore, if X,Y are jointly continuous, then each random variable is continu-
ous as a single variable. Indeed, for all A ⊆ R,

PX(A) = PX,Y(A × R) =
∫

A

[∫

R

fX,Y(x, y) dy
]

dx,

from which we identify the marginal pdf of X,

fX(x) =
∫

R

fX,Y(x, y) dy,

with an analogous expression for fY(y). The generalization to multivariate dis-
tributions is straightforward.

Example: Consider a uniform distribution inside a circle of radius R,

fX,Y(x, y) =




C x2 + y2 ≤ R2

0 otherwise
.

(1) What is C? (2) What is the marginal distribution of X? (3) What is the proba-
bility that the Euclidean norm of (X,Y) is less than a?
(1) The normalization condition is

∫

x2+y2≤R2
C dxdy = πR2C = 1.

(2) For |x| ≤ R the marginal pdf of X is given by

fX(x) =
∫

R

fX,Y(x, y) dy =
1
πR2

∫ √
R2−x2

−
√

R2−x2
dy =

2
√

R2 − x2

πR2 .

Finally,

P(X2 + Y2 ≤ a2) =
a2

R2 .
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!!!

We next consider how does independence affect the joint pdf. Recall that X,Y are
said to be independent if for all A, B ⊆ R,

PX,Y(A × B) = PX(A)PY(B).

For continuous distributions, this means that for all A, B,
∫

A

∫

B
fX,Y(x, y) dxdy =

∫

A
fX(x) dx

∫

B
fY(y) dy,

from which we conclude that

fX,Y(x, y) = fX(x) fY(y).

Similarly, n random variables with continuous joint distribution are independent
if their joint pdf equals to the product of their marginal pdfs.

Example: Let X,Y,Z be independent variables all being U (0, 1). What is the
probability that X > YZ?

The joint distribution of X,Y,Z is

fX,Y,Z(x, y, z) = fX(x) fY(y) fZ(z) =




1 x, y, z ∈ [0, 1]
0 otherwise

.

Now,

P(X > YZ) =
!

x>yz
dxdydz =

∫ 1

0

∫ 1

0

(∫ 1

yz
dx
)

dydz

=

∫ 1

0

∫ 1

0
(1 − yz) dydz =

∫ 1

0

(
1 − z

2

)
dz = 3

4 .

!!!

Sums of independent random variables Let X,Y be independent continuous
random variables. What is the distribution of X + Y?
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We proceed as usual,

FX+Y(z) = P(X + Y ≤ z) =
!

x+y≤z
fX(x) fY(y) dxdy

=

∫ ∞

−∞

∫ z−y

−∞
fX(x) fY(y) dxdy

=

∫ ∞

−∞
FX(z − y) fY(y) dy.

Differentiating, we obtain,

fX+Y(z) =
d
dz

FX+Y(z) =
∫ ∞

−∞
fX(z − y) fY(y) dy,

i.e., the pdf of a sum is the convolution of the pdfs, fX+Y = fX ∗ fY .

Example: What is the distribution of X+Y when X,Y ∼ U (0, 1) are independent?
We have

fX+Y(z) =
∫ ∞

−∞
fX(z − y) fY(y) dy =

∫ z

z−1
fX(w) dw.

The integral vanishes if z < 0 and if z > 2. Otherwise,

fX+Y(z) =




z 0 ≤ z ≤ 1
2 − z 1 < z ≤ 2

.

!!!

We conclude this section with a general formula for variable transformations. Let
X = (X1, X2) be two random variables with joint pdf fX(x), and set

Y = g(X).

What is the joint pdf of Y = (Y1,Y2)? We will assume that these relations are
invertible, i.e., that

X = g−1(Y).
Furthermore, we assume that g is differentiable. Then,

FY(y) =
!

g(x)≤y
fX(x) dx1dx2 =

∫ y1

−∞

∫ y2

−∞
fX(g−1(u)) |J(u)| du1du2,

where J(y) = ∂(x)/∂(y) is the Jacobian of the transformation. Differentiating
twice with respect to y1, y2 we obtain the joint pdf,

fY(y) = |J(y)| fX(g−1(u)).
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+ Exercise 5.2 Let X1, X2 be two independent random variables with distribu-
tion U (0, 1) (i.e., the variables that two subsequent calls of the rand() function
on a computer would return). Define,

Y1 =
√
−2 log X1 cos(2πX2)

Y2 =
√
−2 log X1 sin(2πX2).

Show that Y1 and Y2 are independent and distributed N (0, 1). This is the standard
way of generating normally-distributed random variables on a computer. This
change of variables is called the Box-Muller transformation (G.E.P. Box and
M.E. Muller, 1958).

Example: Suppose that X ∼ Gamma (K, 1) and Y ∼ Gamma (L, 1) are indepen-
dent, and consider the variables

V =
X

X + Y
and W = X + Y.

The reverse transformation is

X = VW and Y = W(1 − V).

Since X,Y ∈ [0,∞) it follows that V ∈ [0, 1] and W ∈ [0,∞).
The Jacobian is

|J(v,w)| =
∣∣∣∣∣∣
w −w
v 1 − v

∣∣∣∣∣∣ = w.

Thus,

fV,W(v,w) =
(vw)K−1e−vw

Γ(K)
[w(1 − v)]L−1e−w(1−v)

Γ(L)
w

=
wK+L−1e−w

Γ(K + L)
× Γ(K + L)
Γ(K)Γ(L)

vK−1(1 − v)L−1.

This means that

V ∼ Beta (K, L) and W ∼ Gamma (K + L, 1) .

Moreover, they are independent. !!!
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Example: We now develop a general formula for the pdf of ratios. Let X,Y be
random variables, not necessarily independent, and set

V = X and W = X/Y.

The inverse transformation is

X = V and Y = V/W.

The Jacobian is

|J(v,w)| =
∣∣∣∣∣∣
1 1/w
0 −v/w2

∣∣∣∣∣∣ =
∣∣∣∣∣

v
w2

∣∣∣∣∣ .

Thus,
fV,W(v,w) = fX,Y

(
v,

v
w

) ∣∣∣∣∣
v

w2

∣∣∣∣∣ ,

and the uni-variate distribution of W is given by

fW(w) =
∫

fX,Y

(
v,

v
w

) ∣∣∣∣∣
v

w2

∣∣∣∣∣ dv.

!!!

+ Exercise 5.3 Find the distribution of X/Y when X,Y ∼ Exp (1) are indepen-
dent.

Example: Let X ∼ U (0, 1) and let Y be any (continuous) random variable inde-
pendent of X. Define

W = X + Y mod 1.

What is the distribution of W?
Clearly, W assumes value in [0, 1]. We need to express the set {W ≤ c} in terms
of X,Y . If we decompose Y = N + Z, where Z = Y mod 1, then

{W ≤ c} = {Z ≤ c} ∩{ 0 ≤ X ≤ c − Z}
∪ {Z ≤ c} ∩{ 1 − Z ≤ X ≤ 1}
∪ {Z > c} ∩{ 1 − Z ≤ X ≤ 1 − (Z − c)}

It follows that

P(W ≤ c) =
∞∑

n=−∞

∫ 1

0
fY(n + y)

[
c Iz≤c + c Iz>c

]
dz = c,

i.e., no matter what Y is, W ∼ U (0, 1). !!!
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5.9 Conditional distributions and conditional densi-
ties

Remember that in the case of discrete random variables we defined

pX|Y(x|y) := P(X = x|Y = y) =
pX,Y(x, y)

pY(y)
.

Since the pdf is, in a sense, the continuous counterpart of the atomistic distribution,
the following definition seems most appropriate:

Definition 5.6 The conditional probability density function (cpdf) of X given
Y is

fX|Y(x|y) :=
fX,Y(x, y)

fY(y)
.

The question is what is the meaning is this conditional density? First, we note that
viewed as a function of x, with y fixed, it is a density, as it is non-negative, and

∫

R

fX|Y(x|y) dx =

∫
R

fX,Y(x, y) dx
fY(y)

= 1.

Thus, it seems natural to speculate that the integral of the cpdf over a set A is the
probability that X ∈ A given that Y = y,

∫

A
fX|Y(x|y) dx ?

= P(X ∈ A|Y = y).

The problem is that the right hand side is not defined, since the condition (Y = y)
has probability zero!

A heuristic way to resolve the problem is the following (for a rigorous way we
need again measure theory): construct a sequence of sets Bn ⊂ R, such that Bn →
{y} and each of the Bn has finite measure (for example, Bn = (y − 1/n, y + 1/n)),
and define

P(X ∈ A|Y = y) = lim
n→∞

P(X ∈ A|Y ∈ Bn).
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Now, the right-hand side is well-defined, provided the limit exists. Thus,

P(X ∈ A|Y = y) = lim
n→∞

P(X ∈ A,Y ∈ Bn)
P(Y ∈ Bn)

= lim
n→∞

∫
A

∫
Bn

fX,Y(x, u) dudx
∫

Bn
fY(u) du

=

∫

A
lim
n→∞

∫
Bn

fX,Y(x, u) du
∫

Bn
fY(u) du

dx

=

∫

A

fX,Y(x, y)
fY(y)

dx,

where we have used something analogous to l’Hopital’s rule in taking the limit.
This is precisely the identity we wanted to obtain.
What is the cpdf good for? We have the identity

fX,Y(x, y) = fX|Y(x|y) fY(y).

In many cases, it is more natural to define models in terms of conditional densities,
and our formalism tells us how to convert this data into joint distributions.

Example: Let the joint pdf of X,Y be given by

fX,Y(x, y) =




1
y e−x/ye−y x, y ≥ 0
0 otherwise

.

What is the cpdf of X given Y , and what is the probability that X(ω) > 1 given that
Y = y?
For x, y ≥ 0 the cpdf is

fX|Y(x|y) =
1
y e−x/ye−y

∫ ∞
0

1
y e−x/ye−y dx

=
1
y

e−x/y,

and
P(X > 1|Y = y) =

∫ ∞

1
fX|Y(x|y) dx =

1
y

∫ ∞

1
e−x/y dx = e−1/y.

!!!
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5.10 Expectation

Recall our definition of the expectation for discrete probability spaces,

E[X] =
∑

ω∈Ω
X(ω) p(ω),

where p(ω) is the atomistic probability in Ω, i.e., p(ω) = P({ω}). We saw that an
equivalent definition was

E[X] =
∑

x∈S x

x pX(x).

In a more general context, the first expression is the integral of the function X(ω)
over the probability space (Ω,F , P), whereas the second equation is the integral
of the identity function X(x) = x over the probability space (S x,FX, PX). We now
want to generalize these definitions for uncountable spaces.

The definition of the expectation in the general case relies unfortunately on inte-
gration theory, which is part of measure theory. The expectation of X is defined
as

E[X] =
∫

Ω

X(ω) P(dω),

but this is not supposed to make much sense to us. On the other hand, the equiva-
lent definition,

E[X] =
∫

R

x PX(dx),

does make sense if we identify PX(dx) with fX(x) dx. That is, our definition of the
expectation for continuous random variables is

E[X] =
∫

R
x fX(x) dx.

Example: For X ∼ U (a, b),

E[X] =
1

b − a

∫ b

a
x dx =

a + b
2
.

!!!
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Example: For X ∼ Exp (λ),

E[X] =
∫ ∞

0
x λe−λx dx =

1
λ
.

!!!

Example: For X ∼ N(µ, σ2),

E[X] =
1√

2πσ2

∫

R

x e−(x−µ)2/2σ2
dx = µ.

!!!

Lemma 5.1 Let Y be a continuous random variable with pdf fY(y). Then

E[Y] =
∫ ∞

0

[
1 − FY(y) − FY(−y)

]
dy.

Proof : Note that the lemma states that

E[Y] =
∫ ∞

0

[
P(Y > y) − P(Y ≤ −y)

]
dy.

We start with the first expression
∫ ∞

0
P(Y > y) dy =

∫ ∞

0

∫ ∞

y
fY(u) dudy

=

∫ ∞

0

∫ u

0
fY(u) dydu

=

∫ ∞

0
u fY(u) du,

where the passage from the first to the second line involves a change in the order of
integration, with the corresponding change in the limits of integration. Similarly,

∫ ∞

0
P(Y ≤ −y) dy =

∫ ∞

0

∫ −y

−∞
fY(u) dudy

=

∫ 0

−∞

∫ −u

0
fY(u) dydu

= −
∫ 0

−∞
u fY(u) du.
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Subtracting the two expressions we get the desired result. *

Theorem 5.3 (The unconscious statistician) Let X be a continuous random vari-
able and let g : R→ R. Then,

E[g(X)] =
∫

R

g(x) fX(x) dx.

Proof : In principle, we could write the pdf of g(X) and follow the definition of
its expected value. The fact that g does not necessarily have a unique inverse
complicates the task. Thus, we use instead the previous lemma,

E[g(X)] =
∫ ∞

0
P(g(X) > y) dy −

∫ ∞

0
P(g(X) ≤ −y) dy

=

∫ ∞

0

∫

g(x)>y
fX(x) dxdy −

∫ ∞

0

∫

g(x)≤−y
fX(x) dxdy.

We now exchange the order of integration. Note that for the first integral,

{0 < y < ∞, g(x) > y} can be written as {x ∈ R, 0 < y < g(x)}

whereas for the second integral,

{0 < y < ∞, g(x) < −y} can be written as {x ∈ R, 0 < y < −g(x)}

Thus,

E[g(X)] =
∫

R

∫ max(0,g(x))

0
fX(x) dydx −

∫

R

∫ max(0,−g(x))

0
fX(x) dydx

=

∫

R

[
max(0, g(x)) −max(0,−g(x))

]
fX(x) dx

=

∫

R

g(x) fX(x) dx.

*
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Example: What is the variance of X ∼ N(µ, σ2)?

Var[X] =
1√

2πσ2

∫

R

(x − µ)2e−(x−µ)2/2σ2
dx

=
σ3

√
2πσ2

∫

R

u2e−u2/2 du = σ2.

!!!

+ Exercise 5.4 Let X ∼ N(0, σ2). Calculate the moments E[Xk] (hint: consider
separately the cases of odd and even k’s).

The law of the unconscious statistician is readily generalized to multiple random
variables, for example,

E[g(X,Y)] =
!

R2
g(x, y) fX,Y(x, y) dxdy.

+ Exercise 5.5 Show that if X and Y are independent continuous random vari-
ables, then for every two functions f , g,

E[ f (X)g(Y)] = E[ f (X)]E[g(Y)].

5.11 The moment generating function

As for discrete variables the moment generating function is defined as

MX(t) := E[etX] =
∫

R

etx fX(x) dx,

that is, it is the Laplace transform of the pdf. Without providing a proof, we
state that the transformation fX <→ MX is invertible (it is one-to-one), although the
formula for the inverse is complicated and relies on complex analysis.

Comment: A number of other generating functions are commonly defined: first
the characteristic function,

ϕX(t) = E[eıtX] =
∫

R

eıtx fX(x) dx,
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which unlike the moment generating function is always well defined for every t.
Since its use relies on complex analysis we do not use it in this course. Another
used generating function is the probability generating function

gX(t) = E[tX] =
∑

x

tx pX(x).

Example: What is the moment generating function of X ∼ N
(
µ, σ2

)
?

MX(t) =
1√

2πσ2

∫

R

etxe−(x−µ)2/2σ2
dx

=
1√

2πσ2

∫

R

exp
[
− x2 − 2µx + µ2 − 2σ2tx

2σ2

]
dx

=
1√

2πσ2
e−µ

2/2σ2
e(µ+σ2t)2/2σ2

∫

R

exp
[
− (x − µ − σ2t)2

2σ2

]
dx

= exp
[
µt +

σ2

2
t2
]
.

From this we readily obtain, say, the first two moments,

E[X] = M′X(0) = (µ + σ2t)eµt+
1
2σ

2t2
∣∣∣∣
t=0
= µ,

and
E[X2] = M′′X (0) =

[
(µ + σ2t)2 + σ2

]
eµt+

1
2σ

2t2
∣∣∣∣
t=0
= σ2 + µ2,

as expected. !!!

Example: Recall the Gamma-distribution whose pdf is

fX(x) =
λr

Γ(r)
xr−1e−λx.

To calculate its moments it is best to use the moment generating function,

MX(t) =
λr

Γ(r)

∫ ∞

0
etxxr−1e−λx dx =

λr

(λ − t)r ,

defined only for t < λ. We can then calculate the moment, e.g.,

E[X] = M′X(0) = λr r(λ − t)−(r+1)|t=0 =
r
λ
,



114 Chapter 5

and
E[X2] = M′′X (0) = λr r(r + 1)(λ − t)−(r+2)|t=0 =

r(r + 1)
λ2 ,

from which we conclude that

Var[X] =
r
λ2 .

!!!

From the above discussion it follows that the moment generating function embod-
ies the same information as the pdf. A nice property of the moment generating
function is that it converts convolutions into products. Specifically,

Proposition 5.3 Let fX and fY be probability densities functions and let f = fX ∗
fY be their convolution. If MX, MY and M are the moment generating functions
associated with fX, fY and f , respectively, then M = MX MY.

Proof : By definition,

M(t) =
∫

R

etx f (x) dx =
∫

R

etx
∫

R

fX(y) fY(x − y) dy dx

=

∫

R

∫

R

ety fX(y)et(x−y) fY(x − y) dy d(x − y)

=

∫

R

ety fX(y) dy
∫

R

etu fY(u) du = MX(t)MY(t).

*

Example: Here is an application of the above proposition. Let X ∼ N
(
µ1, σ2

1

)

and Y ∼ N
(
µ2, σ2

2

)
be independent variables. We have already calculated their

moment generating function,

MX(t) = exp
[
µ1t +

σ2
1

2
t2
]

MY(t) = exp
[
µ2t +

σ2
2

2
t2
]
.
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By the above proposition, the generating function of their sum is the product of
the generating functions,

MX+Y(t) = exp
[
(µ1 + µ2)t +

σ2
1 + σ

2
2

2
t2
]
,

from which we conclude at once that

X + Y ∼ N
(
µ1 + µ2, σ

2
1 + σ

2
2

)
,

i.e., sums of independent normal variables are normal. !!!

Example: Consider now the sum of n independent exponential random variables
Xi ∼ Exp (λ). Since Exp (λ) ∼ Gamma (1, λ) we know that

MXi(t) =
λ

λ − t
.

The pdf of the sum of n independent random variables,

Y =
n∑

i=1

Xi

is the n-fold convolution of their pdfs, and its generating function is the product
of their generating functions,

MY(t) =
n∏

i=1

MXi(t) =
λn

(λ − t)n ,

which we identify as the generating function of the Gamma (n, λ) distribution.
Thus the Gamma distribution with parameters (n, λ) characterizes the sum
of n independent exponential variables with parameter λ. !!!

+ Exercise 5.6 What is the distribution of X1 + X2 where X1 ∼ Gamma (r1, λ)
and X2 ∼ Gamma (r2, λ) are independent?

Example: A family of distributions that have an important role in statistics are the
χ2
ν distributions with ν = 1, 2 . . . . A random variable Y has the χ2

ν-distribution if it
is distributed like

Y ∼ X2
1 + X2

2 + · · · + X2
ν ,
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where Xi ∼ N (0, 1) are independent.
The distribution of X2

1 is obtained by the change of variable formula,

fX2
1
(x) =

fX1(
√

x) + fX1(−
√

x)
2
√

x
= 2

1√
2π

e−x/2

2
√

x
=

1√
2πx

e−x/2.

The moment generating function is

MX2
1
(t) =

∫ ∞

0
etx 1√

2πx
e−x/2 dx =

2√
2π

∫ ∞

0
e−

1
2 (1−2t)y2

dy = (1 − 2t)−1/2,

and by the addition rule, the moment generating function of the χ2
ν-distribution is

MY(t) = (1 − 2t)−ν/2 =
(1/2)ν/2

(1/2 − t)ν/2
.

We identify this moment generating function as that of Gamma (ν/2, 1/2). !!!

5.12 Other distributions

We conclude this section with two distributions that have major roles in statistics.
Except for the additional exercise in the change of variable formula, the goal is to
know the definition of these very useful distributions.

Definition 5.7 Let X ∼ χ2
r and Y ∼ χ2

s be independent. A random variable that
has the same distribution as

W =
X/r
Y/s

is said to have the Fischer Fr,s distribution.

Since, by the previous section

fX/r(x) =
(r/2)r (rx)r/2−1e− 1

2 rx

Γ( r
2 )

r

fY/s(y) =
(s/2)s (sy)s/2−1e− 1

2 sy

Γ( s
2 )

s,
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it follows from the distribution of ratios formula that

fW(w) =
∫ ∞

0

(
1
2

)r/2
(rv)r/2−1e− 1

2 rv

Γ( r
2 )

r

(
1
2

)s/2
(sv/w2)s/2−1e− 1

2 sv/w2

Γ( s
2 )

s
v

w2 dv

=
1

Γ( r
2 )Γ( s

2 )
(1

2r)r/2( 1
2 s)s/2

ws

∫ ∞

0
vr/2+s/2−1e−

1
2 v(r+s/w2) dv.

Changing variables we get

fW(w) =
1

Γ( r
2 )Γ( s

2 )
( 1

2r)r/2(1
2 s)s/2

ws

[
1
2

(r + s/w2)
]−(r/2+s/2) ∫ ∞

0
ξr/2+s/2−1e−ξ dξ

=
Γ( r

2 +
s
2 )

Γ( r
2 )Γ( s

2 )
( 1

2r)r/2( 1
2 s)s/2

ws

[
1
2

(r + s/w2)
]−(r/2+s/2)

=
Γ( r

2 +
s
2 )

Γ( r
2 )Γ( s

2 )
rr/2ss/2

ws(r + s/w2) 1
2 (r+s)
.

Definition 5.8 Let X ∼ N (0, 1) and Y ∼ χ2
ν be independent. A random variable

that has the same distribution as

W =
X√
Y/ν

is said to have the Student’s tν distribution.

+ Exercise 5.7 Find the pdf of the Student’s tν distribution.
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Chapter 6

Inequalities

6.1 The Markov and Chebyshev inequalities

As you’ve probably seen in today’s front page: the upper tenth percentile earns 12
times more than the average salary. The following theorem will show that this is
not possible.

Theorem 6.1 (Markov inequality) Let X be a random variable assuming non-
negative values. Then for every a ≥ 0,

P(X ≥ a) ≤ E[X]
a
.

Comment: Note first that this is a vacuous statement for a < E[X]. For a > E[X]
this inequality limits the probability that X assumes values larger than its mean.
This is the first time in this course that we derive an inequality. Inequalities, in
general, are an important tool for analysis, where estimates (rather than exact
identities) are needed.

Proof : We will assume a continuous variable. A similar proof holds in the discrete
case.

E[X] =
∫ ∞

0
x fX(x) dx ≥

∫ ∞

a
x fX(x) dx ≥ a

∫ ∞

a
fX(x) dx = a P(X > a).
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*

Theorem 6.2 (Chebyshev inequality) Let X be a random variable with mean
value µ and variance σ2. Then, for every a > 0

P(|X − µ| ≥ a) ≤ σ
2

a2 .

Comment: If we write a = kσ, this theorem states that the probability that a
random variable assumes a value whose absolute distance from its mean is more
than k times its standard deviation is less that 1/k2.
The notable thing about these inequalities is that they make no assumption about
the distribution. As a result, of course, they may provide very loose estimates.

Proof : Since |X − µ|2 is a positive variable we may apply the Markov inequality,

P(|X − µ| ≥ a) = P(|X − µ|2 ≥ a2) ≤ E[|X − µ|2]
a2 =

σ2

a2 .

*

Example: On average, an alcoholic drinks 25 liters of wine every week. What is
the probability that he drinks more than 50 liters of wine on a given week?
Here we apply the Markov inequality. If X is the amount of wine he drinks on a
given week, then

P(X > 50) ≤ E[X]
50
=

1
2
.

!!!

Example: Let X ∼ U (0, 10) what is the probability that |X − E[X]| > 4?
Since E[X] = 5, the answer is 0.2. The Chebyshev inequality, on the other hand
gives,

P(|X − E[X]| > 4) ≤ σ
2

16
=

25/3
16
≈ 0.52.

!!!
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6.2 Jensen’s inequality

Recall that a function f : R→ R is called convex if it is always below its secants,
i.e., if for every x, y and 0 < λ< 1,

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

Proposition 6.1 (Jensen’s inequality) If g is a convex real valued function and X
is a real valued random variable, then

g(E[X]) ≤ E[g(X)],

provided that the expectations exist.

Proof : Let’s start with an easy proof for a particular case. Consider a continuous
random variable and assume that g is twice differentiable (therefore g′′(x) ≥ 0).
Taylor expanding g about µ = E[X],

g(x) = g(µ) + g′(µ) (x − µ) + 1
2

g′′(ξ)(x − µ)2 ≥ g(µ) + g′(µ) (x − µ).

Multiplying both sides by the non-negative functions fX and integrating over x we
get

∫

R

g(x) fX(x) dx ≥
∫

R

g(µ) fX(x) dx +
∫

R

g′(µ) (x − µ) fX(x) dx = g(µ),

which is precisely what we need to show.
What about the more general case? Any convex function is continuous, and has
one-sided derivatives with

g′−(x) := lim
y↑x

g(x) − g(y)
x − y

≤ lim
y↓x

g(x) − g(y)
x − y

=: g′+(x).

For every m ∈ [g′−(µ), g′+(µ)]

g(x) ≥ g(µ) + m(x − µ),

so the same proof holds with m replacing g′(µ). If X is a discrete variable, we use
summation instead of integration. *
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Example: Since exp is a convex function,

exp(t E[X]) ≤ E[etX] = MX(t),

or,
E[X] ≤ 1

t
log MX(t),

for all t > 0. !!!

Example: Consider a discrete random variable assuming the positive values x1, . . . , xn

with equal probability 1/n. Jensen’s inequality for g(x) = − log(x) gives,

− log


1
n

n∑

i=1

xi


 ≤ −

1
n

n∑

i=1

log(xi) = − log



n∏

i=1

x1/n
i


 .

Reversing signs, and exponentiating, we get

1
n

n∑

i=1

xi ≥



n∏

i=1

xi




1/n

,

which is the classical arithmetic mean-geometric mean inequality. In fact, this
inequality can be generalized for arbitrary distributions, pX(xi) = pi, yielding

n∑

i=1

pixi ≥
n∏

i=1

xpi
i .

!!!

6.3 Kolmogorov’s inequality

The Kolmogorov inequality may first seem to be of similar flavor as Chebyshev’s
inequality, but it is considerably stronger. I have decided to include it here because
its proof involves some interesting subtleties. First, a lemma:

Lemma 6.1 If X,Y,Z are random variables such that Y is independent of X and
Z, then

E[XY |Z] = E[X|Z]E[Y].
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Proof : The fact that Y is independent of both X,Z implies that (in the case of
discrete variables),

pX,Y,Z(x, y, z) = pX,Z(x, z)pY(y).

Now, for every z,

E[XY |Z = z] =
∑

x,y

xy pX,Y |Z(x, y|z)

=
∑

x,y

xy
pX,Y,Z(x, y, z)

pZ(z)

=
∑

x,y

xy
pX,Z(x, z)pY(y)

pZ(z)

=
∑

y

y pY(y)
∑

x

x
pX,Z(x, z)

pZ(z)

= E[Y]E[X|Z = z].

*

Theorem 6.3 (Kolmogorov’s inequality) Let X1, . . . , Xn be independent random
variables such that E[Xk] = 0 and Var[Xk] = σ2

k < ∞. Then, for all a > 0,

P
(
max
1≤k≤n
|X1 + · · · + Xk| ≥ a

)
≤ 1

a2

n∑

i=1

σ2
i .

Comment: For n = 1 this is nothing but the Chebyshev inequality. For n > 1
it would still be Chebyshev’s inequality if the maximum over 1 ≤ k ≤ n was
replaced by k = n, since by independence

Var[X1 + · · · + Xn] =
n∑

i=1

σ2
i .

Proof : We introduce the notation S k = X1 + · · · + Xk. This theorem is concerned
with the probability that |S k| > a for some k. We define the random variable N(ω)
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to be the smallest integer k for which |S k| > a; if there is no such number we set
N(ω) = n. We observe the equivalence of events,

{
ω : max

1≤k≤n
|S k| > a

}
=
{
ω : S 2

N(ω) > a2
}
,

and from the Markov inequality

P
(
max
1≤k≤n
|S k| > a

)
≤ 1

a2E[S 2
N].

We need to estimate the right hand side. If we could replace

E[S 2
N] by E[S 2

n] = Var[S n] =
n∑

i=1

σ2
i ,

then we would be done.
The trick is to show that E[S 2

N] ≤ E[S 2
n] by using conditional expectations. If

E[S 2
N |N = k] ≤ E[S 2

n|N = k]

for all 1 ≤ k ≤ n then the inequality holds, since we have then an inequality
between random variables E[S 2

N |N] ≤ E[S 2
n|N], and applying expectations on

both sides gives the desired result.
For k = n, the identity

E[S 2
N |N = n] = E[S 2

n|N = n],

hold trivially. Otherwise, we write

E[S 2
n|N = k] = E[S 2

k |N = k] + E[(Xk+1 + · · · + Xn)2|N = k]
+ 2E[S k(Xk+1 + · · · + Xn)|N = k]

The first term on the right hand side equals E[S 2
N |N = k], whereas the second terms

is non-negative. Remains the third term for which we remark that Xk+1 + · · · + Xn

is independent of both S k and N, and by the previous lemma,

E[S k(Xk+1 + · · · + Xn)|N = k] = E[S k|N = k]E[Xk+1 + · · · + Xn] = 0.

Putting it all together,

E[S 2
n|N = k] ≥ E[S 2

N |N = k].

Since this holds for all k’s we have thus shown that

E[S 2
N] ≤ E[S 2

n] =
n∑

i=1

σ2
i ,

which completes the proof. *
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Limit theorems

Throughout this section we will assume a probability space (Ω,F , P), in which
is defined an infinite sequence of random variables (Xn) and a random variable X.
The fact that for every infinite sequence of distributions it is possible to construct
a probability space with a corresponding sequence of random variables is a non-
trivial fact, whose proof is due to Kolmogorov (see for example Billingsley).

7.1 Convergence of sequences of random variables

Definition 7.1 The sequence (Xn) is said to converge to X almost-surely (or, w.p.
1) if

P
({
ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1.

We write Xn
a.s−→ X.

It is often easier to express this mode of convergence using its complement. Xn(ω)
fails to converge to X(ω) if there exists an ε > 0 such that |Xn(ω)−X(ω)| ≥ ε holds
for infinitely many values of n. Let us denote the following family of events,

Bεn = {ω : |Xn(ω) − X(ω)| ≥ ε} .

Thus, Xn(ω) does not converge almost-surely to X(ω) is there exists an ε > 0 such
that

P(Bεn i.o.) > 0,
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and inversely, it does converge almost-surely to X(ω) if for all ε > 0

P(Bεn i.o.) = P
(
lim sup

n
Bεn

)
= 0.

Definition 7.2 The sequence (Xn) is said to converge to X in the mean-square if

lim
n→∞
E
[
|Xn − X|2

]
= 0.

We write Xn
m.s−→ X.

Definition 7.3 The sequence (Xn) is said to converge to X in probability if for
every ε > 0,

lim
n→∞

P ({ω : |Xn(ω) − X(ω)| > ε}) = 0.

We write Xn
Pr−→ X.

Definition 7.4 The sequence (Xn) is said to converge to X in distribution if for
every a ∈ R,

lim
n→∞

FXn(a) = FX(a),

i.e., if the sequence of distribution functions of the Xn converges point-wise to the
distribution function of X. We write Xn

D−→ X.

Comment: Note that the first three modes of convergence require that the sequence
(Xn) and X are all defined on a joint probability space. Since convergence in
distribution only refers to distribution, each variable could, in principle, belong to
a “separate world”.
The first question to be addressed is whether there exists a hierarchy of modes of
convergence. We want to know which modes of convergence imply which. The
answer is that both almost-sure and mean-square convergence imply convergence
in probability, which in turn implies convergence in distribution. On the other
hand, almost-sure and mean-square convergence do not imply each other.

Proposition 7.1 Almost-sure convergence implies convergence in probability.
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Proof : As we have seen, almost sure convergence means that for every ε > 0

P ({ω : |Xn(ω) − X(ω)| > ε i.o.}) = 0.

Define the family of events

Bεn = {ω : |Xn(ω) − X(ω)| > ε} .

Xn → X almost-surely if for every ε > 0

P
(
lim sup

n→∞
Bεn

)
= 0.

By the Fatou lemma,

lim sup
n→∞

P(Bεn) ≤ P
(
lim sup

n→∞
Bεn

)
= 0,

from which we deduce that

lim
n→∞

P(Bεn) = lim
n→∞

P ({ω : |Xn(ω) − X(ω)| > ε}) = 0,

i.e., Xn → X in probability. *

Proposition 7.2 Mean-square convergence implies convergence in probability.

Proof : This is an immediate consequence of the Markov inequality, for

P(|Xn − X| > ε) = P(|Xn − X|2 > ε2) ≤ E|Xn − X|2
ε2

,

and the right-hand side converges to zero. *

Proposition 7.3 Mean-square convergence does not imply almost sure conver-
gence.
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Proof : All we need is a counter example. Consider a family of independent
Bernoulli variables Xn with atomistic distributions,

pXn(x) =




1/n x = 1
1 − 1/n x = 0

,

and set X = 0. We claim that Xn → X in the mean square, as

E|Xn − X|2 = E[Xn] =
1
n
→ 0.

On the other hand, it does not converge to X almost surely, as for ε = 1/2,
∞∑

n=1

P(|Xn − X| > ε) =
∞∑

n=1

1
n
= ∞,

and by the second lemma of Borel-Cantelli,

P(|Xn − X| > ε i.o.) = 1.

*

Proposition 7.4 Almost-sure convergence does not imply mean square conver-
gence.

Proof : Again we construct a counter example, with

pXn(x) =




1/n2 x = n3

1 − 1/n2 x = 0
,

and again X = 0. We immediately see that Xn does not converge to X in the mean
square, since

E|Xn − X|2 = E[X2
n] =

n6

n2 = ∞.
It remains to show that Xn → X almost-surely. For every ε > 0, and n sufficiently
large, P(|Xn| > ε) = 1/n2, i.e., for every ε > 0,

∞∑

n=1

P(|Xn − X| > ε) < ∞,
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and by the first lemma of Borel-Cantelli,

P(|Xn − X| > ε i.o.) = 0.

*

Comment: In the above example Xn → X in probability, so that the latter does not
imply convergence in the mean square either.

Proposition 7.5 Convergence in probability implies convergence in distribution.

Proof : Let a ∈ R be given, and set ε > 0. On the one hand

FXn(a) = P (Xn ≤ a, X ≤ a + ε) + P (Xn ≤ a, X > a + ε)
= P (Xn ≤ a|X ≤ a + ε) P (X ≤ a + ε) + P (Xn ≤ a, X > a + ε)
≤ P (X ≤ a + ε) + P (Xn < X − ε)
≤ FX(a + ε) + P (|Xn − X| > ε) ,

where we have used the fact that if A implies B then P(A) ≤ P(B)). By a similar
argument

FX(a − ε) = P (X ≤ a − ε, Xn ≤ a) + P (X ≤ a − ε, Xn > a)
= P (X ≤ a − ε |Xn ≤ a) P (Xn ≤ a) + P (X ≤ a − ε, Xn > a)
≤ P (Xn ≤ a) + P (X < Xn − ε)
≤ FXn(a) + P (|Xn − X| > ε) ,

Thus, we have obtained that

FX(a − ε) − P (|Xn − X| > ε) ≤ FXn(a) ≤ FX(a + ε) + P (|Xn − X| > ε) .
Taking now n→ ∞ we have

FX(a − ε) ≤ lim inf
n→∞

FXn(a) ≤ lim sup
n→∞

FXn(a) ≤ FX(a + ε).

Finally, since this inequality holds for any ε > 0 we conclude that

lim
n→∞

FXn(a) = FX(a).

*

To conclude, the various modes of convergence satisfy the following scheme:
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almost surely

in probability

in distribution

in the mean square

+ Exercise 7.1 Prove that if Xn converges in distribution to a constant c, then Xn

converges in probability to c.

+ Exercise 7.2 Prove that if Xn converges to X in probability then it has a sub-
sequence that converges to X almost-surely.

7.2 The weak law of large numbers

Theorem 7.1 (Weak law of large numbers) Let Xn be a sequence of independent
identically distributed random variables on a probability space (Ω,F , P). Set
E[Xi] = µ and Var[Xi] = σ2. Define the sequence of cummulative averages,

S n =
X1 + · · · + Xn

n
.

Then, S n converges to µ in probability, i.e., for every ε > 0,

lim
n→∞

P (|S n − µ| > ε) = 0.

Comments:

! The assumption that the variance is finite is not required; it only simplifies
the proof.

" Take the particular case where

Xi(ω) =




1 ω ∈ A
0 ω ! A.
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Then,
S n = fraction of times ω ∈ A.

The weak law of large numbers states that the fraction of times the outcome
is in a given set converges in probability to E[X1], which is the probability
of this set, P(A).

Proof : This is an immediate consequence of the Chebyshev inequality, for by the
additivity of the expectation and the variance (for independent random variables),

E[S n] = µ and Var[S n] =
σ2

n
.

Then,

P (|S n − µ| > ε) ≤
Var[S n]
ε2

=
σ2

nε2
→ 0.

*

Comment: the first proof is due to Jacob Bernoulli (1713), who proved it for the
particular case of binomial variables.

7.3 The central limit theorem

Theorem 7.2 (Central limit theorem) Let (Xn) be a sequence of i.i.d. random
variables with E[Xi] = 0 and Var[Xi] = 1. Then, the sequence of random variables

S n =
X1 + · · · + Xn√

n

converges in distribution to a random variables X ∼ N(0, 1). That is,

lim
n→∞

P (S n ≤ a) =
1√
2π

∫ a

−∞
e−y2/2 dy.

Comments:
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! If E[Xi] = µ and Var[Xi] = σ2 then the same applies for

S n =
X1 + · · · + Xn − nµ

σ
√

n
=

1√
n

n∑

i=1

Xi − µ
σ
.

" The central limit theorem (CLT) is about a running average rescaled by a
factor of

√
n. If we denote by Yn the running average,

Yn =
X1 + · · · + Xn

n
,

then the CLT states that

P
(
Yn ≤

a√
n

)
∼ Φ(a),

i.e., it provides an estimate of the distribution of Yn at distances O(n−1/2)
from its mean. It is a theorem about small deviations from the mean. There
exist more sophisticated theorems about the distribution of Yn far from the
mean, part of the so-called theory of large deviations.

# There are many variants of this theorem.

Proof : We will use the following fact, which we won’t prove: if the sequence of
moment generating functions MXn(t) of a sequence of random variables (Xn) con-
verges for every t to the moment generating function MX(t) of a random variable
X, then Xn converges to X in distribution. In other words,

MXn(t)→ MX(t) for all t implies that Xn
D−→ X.

Thus, we need to show that the moment generating functions of the S n’s tends
as n → ∞ to exp(t2/2), which is the moment generating function of a standard
normal variable.
Recall that the pdf of a sum of two random variables is the convolution of their
pdf, but the moment generating function of their sum is the product of the their
moment generating function. Inductively,

MX1+X2+...,+Xn(t) =
n∏

i=1

MXi(t) = [MX1(t)]
n,
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where we have used the fact that they are i.i.d., Now, if a random variable Y has a
moment generating function MY , then

MY/a(t) =
∫

R

ety fY/a(y) dy,

but since fY/a(y) = a fY(ay) we get that

MY/a(t) = a
∫

R

ety fY(ay) dy =
∫

R

eaty/a fY(ay) d(ay) = MY(t/a),

from which we deduce that

MS n(t) =
[
MX1

(
t√
n

)]n
.

Take the logarithm of both sides, and write the left hand side explicitly,

log MS n(t) = n log
∫

R

etx/
√

n fX1(x) dx.

Taylor expanding the exponential about t = 0 we have,

log MS n(t) = n log
∫

R

(
1 +

tx√
n
+

t2x2

2n
+

t3x3

6n3/2 eξx/
√

n
)

fX1(x) dx

= n log
(
1 + 0 +

t2

2n
+ O(n−3/2)

)

= n
(

t2

2n
+ O(n−3/2)

)
→ t2

2
.

*

Example: Suppose that an experimentalist wants to measure some quantity. He
knows that due to various sources of errors, the result of every single measurement
is a random variable, whose mean µ is the correct answer, and the variance of
his measurement is σ2. He therefore performs independent measurements and
averages the results. How many such measurements does he need to perform to
be sure, within 95% certainty, that his estimate does not deviate from the true
result by σ/4?
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The question we’re asking is how large should n be in order for the inequality

P


µ −

σ

4
≤ 1

n

n∑

k=1

Xk ≤ µ +
σ

4


 ≥ 0.95

to hold. This is equivalent to asking what should n be for

P


−
√

n
4
≤ 1√

n

n∑

k=1

Xk − µ
σ

≤
√

n
4


 ≥ 0.95.

By the central limit theorem the right hand side is, for large n, approximately

2√
2π

∫ √
n/4

0
e−y2/2 dy,

which turns out to be larger than 0.95 for ≥ 62.
The problem with this argument that it uses the assumption that “n is large”, but
it is not clear what large is. Is n = 62 sufficiently large for this argument to hold?
This problem could have been solved without this difficulty but resorting instead
to the Chebyshev inequality:

P


−
√

n
4
≤ 1√

n

n∑

k=1

Xk − µ
σ

≤
√

n
4


 = 1 − P




∣∣∣∣∣∣∣
1√
n

n∑

k=1

Xk − µ
σ

∣∣∣∣∣∣∣
≥
√

n
4




≥ 1 − 16
n
,

and the right hand side is larger than 0.95 if

n ≥ 16
0.05

= 320.

!!!

Example: The number of students X who are going to fail in the exam is a Poisson
variable with mean 100, i.e, X ∼ Poi(100). I am going to admit that the exam was
too hard if more than 120 student fail. What is the probability for it to happen?
We know the exact answer,

P (X ≥ 120) = e−100
∞∑

k=120

100k

k!
,
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which is a quite useless expression. Let’s base our estimate on the central limit
theorem as follows: a Poisson variable with mean 100 can be expressed as the
sum of one hundred independent variables Xk ∼ Poi(1) (the sum of independent
Poisson variables is again a Poisson variable), that is X =

∑100
k=1 Xk. Now,

P (X ≥ 120) = P




1√
100

100∑

k=1

Xk − 1
1
≥ 20

10


 ,

which by the central limit theorem equals approximately,

P (X ≥ 120) ≈ 1√
2π

∫ ∞

2
e−y2/2 dy ≈ 0.228.

!!!

Example: Let us examine numerically a particular example. Let Xi ∼ Exp (1) be
independent exponential variable and set

S n =
1√
n

n∑

i=1

(Xi − 1).

A sum of n independent exponential variables has distribution Gamma (n, 1), i.e.,
its pdf is

xn−1e−x

Γ(n)
.

The density for this sum shifted by n is

(x + n)n−1e−(x+n)

Γ(n)
,

with x > −n and after dividing by
√

n,

fS n(x) =
√

n
(
√

nx + n)n−1e−(
√

nx+n)

Γ(n)
,

with x > −√n. See Figure 7.1 for a visualization of the approach of the distribu-
tion of S n toward the standard normal distribution.

!!!
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Figure 7.1: The approach of a normalized sum of 1, 2, 4 and 16 exponential ran-
dom variables to the normal distribution.
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7.4 The strong law of large numbers

Our next limit theorem is the strong law of large number, which states that the
running average of a sequence of i.i.d. variables converges to the mean almost-
surely (thus strengthening the weak law of large number, which only provides
convergence in probability).

Theorem 7.3 (Strong law of large numbers) Let (Xn) be an i.i.d. sequence of
random variables with E[Xi] = 0 and Var[Xi] = σ2, then with probability one,

X1 + · · · + Xn

n
→ 0.

Proof : Set ε > 0, and consider the following sequence of events:

An =


max

1≤k≤n

∣∣∣∣∣∣∣

k∑

i=1

Xi

i

∣∣∣∣∣∣∣
> ε


 .

From Komogorov’s inequality,

P(An) ≤ 1
ε2

n∑

k=1

σ2

k2 .

The (An) are an increasing sequence hence, by the continuity of the probability,

lim
n→∞

P(An) = P
(
lim
n→∞

An

)
= P


max

1≤k

∣∣∣∣∣∣∣

k∑

i=1

Xi

i

∣∣∣∣∣∣∣
> ε


 ≤

Cσ2

ε2
,

or equivalently,

P


max

1≤k

∣∣∣∣∣∣∣

k∑

i=1

Xi

i

∣∣∣∣∣∣∣
≤ ε

 ≥ 1 − Cσ2

ε2

Since this holds for all ε > 0, taking ε → ∞ results in

P


max

1≤k

∣∣∣∣∣∣∣

k∑

i=1

Xi

i

∣∣∣∣∣∣∣
< ∞

 = 1.
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from which we infer that

P



∞∑

i=1

Xi

i
< ∞

 = 1,

It is then a consequence of a lemma due to Kronecker that

∞∑

i=1

Xi

i
< ∞ implies lim

n→∞
1
n

n∑

k=1

Xk = 0.

*
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Lemma 7.1 Let X1 ∼ N(µ1, σ2
1) and X2 ∼ N(µ2, σ2

2) be independent. Then,

X1 + X2 ∼ N(µ1 + µ2, σ
2
1 + σ

2
2).

Proof : Rather then working with the convolution formula, we use the moment
generating functions. We have seen that

MX1(t) = exp
(
σ2

1

2
t2 + µ1t

)

MX2(t) = exp
(
σ2

2

2
t2 + µ2t

)
.

Since X1, X2 are independent,

MX1+X2(t) = E
[
eX1+X2

]
= E
[
eX1
]
E
[
eX2
]
,

hence,

MX1+X2(t) = exp
(
σ2

1 + σ
2
2

2
t2 + (µ1 + µ2)t

)
,

from which we identify X1 + X2 as a normal variable with the desired mean and
variance. *

Corollary 7.1 Let Z1,Z2 · · · ∼ N(0, 1) be independent. Then for every n ∈ N,

Z1 + · · · + Zn√
n

∼ N(0, 1).

Theorem 7.4 Let (Xn) be a sequence of i.i.d. RVs with E[Xi] = 0, Var[Xi] = 1 and
E|Xi|3 < ∞; let S n be defined as above. Let Z1,Z2 · · · ∼ N(0, 1) be independent.
Then, for every non-negative function ϕ(x), uniformly three-times differentiable,
and with compact support,

lim
n→∞

∣∣∣∣∣∣Eϕ
(

X1 + · · · + Xn√
n

)
− Eϕ

(
Z1 + · · · + Zn√

n

)∣∣∣∣∣∣ = 0.

Comments: Suppose we could have taken ϕ(x) = I[a,b](x). Then,

Eϕ(X) = P (a ≤ X ≤ b) ,
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and the theorem would imply that

lim
n→∞

∣∣∣∣∣∣P
(
a ≤ X1 + · · · + Xn√

n
≤ b
)
− 1√

2π

∫ b

a
e−y2/2 dy

∣∣∣∣∣∣ = 0.

We are somewhat more restricted by the requirement that ϕ be three time differen-
tiable, but we can approximate the indicator function by a sequence of smoother
functions.

Proof : We start with

Eϕ

(
X1 + · · · + Xn√

n

)
− Eϕ

(
Z1 + · · · + Zn√

n

)

= Eϕ

(
X1 + · · · + Xn√

n

)
− Eϕ

(
X1 + · · · + Xn−1 + Zn√

n

)

+ Eϕ

(
X1 + · · · + Xn−1 + Zn√

n

)
− Eϕ

(
X1 + · · · + Xn−2 + Zn−1 + Zn√

n

)

+ . . . ,

so that
∣∣∣∣∣∣Eϕ
(

X1 + · · · + Xn√
n

)
− Eϕ

(
Z1 + · · · + Zn√

n

)∣∣∣∣∣∣

≤
n∑

i=1

∣∣∣∣∣∣Eϕ
(

X1 + · · · + Xi + Zi+1 + · · · + Zn√
n

)
− Eϕ

(
X1 + · · · + Xi−1 + Zi + · · · + Zn√

n

)
.

∣∣∣∣∣∣

Each of the summands can be estimated as follows:
∣∣∣∣∣∣Eϕ
(

X1 + · · · + Xi + Zi+1 + · · · + Zn√
n

)
− Eϕ

(
X1 + · · · + Xi−1 + Zi + · · · + Zn√

n

)∣∣∣∣∣∣

=

∣∣∣∣∣∣Eϕ
(

Xi√
n
+ un

)
− Eϕ

(
Zi√

n
+ un

)∣∣∣∣∣∣ ,

where the un represent all the other terms. We then Taylor expand up to the third
term, and replace the expectation by

E[·] = E[E[·|un]].



Limit theorems 141

Using the fact that Xn and Zn have the same first and second moments, and the
uniform boundedness of the third derivative of ϕ, we get

∣∣∣∣∣∣Eϕ
(

Xi√
n
+ un

)
− Eϕ

(
Zi√

n
+ un

)∣∣∣∣∣∣ ≤
C

n
√

n
.

Substituting above we conclude that
∣∣∣∣∣∣Eϕ
(

X1 + · · · + Xn√
n

)
− Eϕ

(
Z1 + · · · + Zn√

n

)∣∣∣∣∣∣ ≤
C√

n
→ 0.

*
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Markov chains

8.1 Definitions and basic properties

Let S be a set that could be either finite or countable. S is called the state space;
elements of S are denoted by indices i, j, . . . , i0, i1, . . . .

Definition 8.1 A Markov chain over S is a sequence of random variables X1, X2, . . . ,
satisfying

P(Xn = in|X0 = i0, . . . , Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1).

That is, “the present determines the distribution of the future independently of the
past”. The right hand side is called the transition probability. It depends on n,
and on the two states in−1 and in.

Comments:

! A Markov chain is an instance of a stochastic process.
" We often interpret the index n as time. In a Markov chain time is a discrete

parameter; there are also Markov processes in continuous time (continuous-
time Markov processes) and Markov processes over uncountable state spaces
(e.g., Brownian motion).

# A Markov chain is called time homogeneous if the transition probability is
time-independent, i.e., if

P(Xn = j|Xn−1 = i) = P(Xm = j|Xm−1 = i) ≡ pi, j.
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The matrix P whose entries are pi, j is called the transition matrix (don’t be
bothered by infinite matrices). It is the probability to transition from state i
to state j in a single step.

The transition matrix P is a stochastic matrix. That is, pi, j ≥ 0 for all i, j ∈ S and
∑

j∈S
pi, j = 1

for all i ∈ S (note that the sums over columns do not need to be one; a stochastic
matrix having this additional property, i.e., that PT is also stochastic, is called
doubly stochastic.
In addition to the transition matrix, a Markov chain is also characterized by its
initial distribution, which can be represented by a vector µ with entries

µi = P(X0 = i).

Proposition 8.1 The transition distribution µ and the transition matrix P fully
determine the distribution of the process (i.e., the distribution of the sequence of
random variables).

Proof : A sequence of random variables is fully determined by all its finite-dimensional
marginal distributions. Using the product formula,

P(A ∩ B ∩C ∩ · · · ∩ Z) = P(A|B ∩C ∩ · · · ∩ Z) P(B|C ∩ · · · ∩ Z) · · · P(Z),

along with the Markov property, we have for every n,

P(X0 = i0, . . . , Xn = in) = P(Xn = in|X0 = i0, . . . , Xn−1 = in−1)
× P(Xn−1 = in−1|X0 = i0, . . . , Xn−2 = in−2) · · ·
× P(X1 = i1|X0 = i0)P(X0 = i0)
= µi0 pi0,i1 · · · pin−2,in−1 pin−1,in .

*

Summing the above identity over all values of i1, . . . , in−1 we obtain,

P(Xn = in|X0 = i0) = (Pn)i0,in ≡ p(n)
i0,in .
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Thus, the n-th power of the transition matrix is the n-step transition matrix; p(n)
i, j is

the probability to transition from state i to state j in n steps. It follows at once that
for all n,m,

p(n+m)
i, j =

∑

k∈S
p(n)

i,k p(m)
k, j .

It is also customary to define
p(0)

i, j = δi, j.

Finally, if µ(n) denotes the distribution at time n, i.e.,

µ(n)
j = P(Xn = j),

then
µ(n)

j =
∑

i∈S
P(Xn = j|X0 = i)P(X0 = i) =

∑

i∈S
µi pi, j,

namely,
µ(n) = µPn,

where we interpret µ as a row vector.

Example: Consider a Markov chain with finite state space. We can represent the
states in S as nodes of a graph. Every two nodes i, j are joined by a directed edge
labeled by the probability to transition from i to j is a single step. If pi, j = 0 then
no edge is drawn. This picture is useful for imagining a simulation of the Markov
chain. The initial state is drawn from the distribution µ by “tossing a coin” (well,
more precisely by sampling from U (0, 1)). Then, we transition from this state i0

by drawing the next state from the distribution pi0, j, and so on. !!!

Example: Another example is random walk on Zd. For d = 1 we start, say, at
the origin, X0 = 0. Then

Xn+1 =




Xn − 1 w.p. 1/2
Xn + 1 w.p. 1/2.

In higher dimensions we will assume, for technical reasons, that the process moves
at each step along all d axes. Thus, for d = 2, we have

Xn+1 = Xn + (±1,±1),

each four transitions having equal probability. !!!
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8.2 Transience and recurrence

We define now the following probability:

f (n)
i, j = P(Xn = j, Xn−1 " j, . . . , X1 " j|X0 = i).

It is the probability that the process arrives at state j at time n for the first time,
given that it started in state i. Note that the events “the process arrived to state j for
the first time at time n”, with n varying, are mutually disjoint, and their countable
union is the event that the process arrived to state j eventually. That is,

fi, j =

∞∑

n=1

f (n)
i, j

is the probability that a process that started in state i will eventually get to state j.
In particular, f j, j is the probability that a process starting in state j will eventually
return to its stating point.

Definition 8.2 A state j ∈ S is called persistent if a process stating in this state
has probability one to eventually return to it, i.e., if f j, j = 1. Otherwise, it is called
transient.

Suppose that the process started in state i. The probability that it visited state j for
the first time at time n1, for the second time at time n2, and so on, until the k-th
time at time nk is

f (n1)
i, j f (n2−n1)

j, j · · · f (nk−nk−1)
j, j .

The probability that there were eventually k visits in j is obtained by summing
over all possible values of the n1, . . . , nk, giving,

P(at least k visits in j|X0 = i) = fi, j f k
j, j.

Letting k → ∞ we get that the probability of having infinitely many visits in state
j is

P(Xn = j i.o.|X0 = i) =




fi, j f j, j = 1
0 f j, j < 1.

.

Taking j = i, we get that the process returns to its stating point infinitely many
times with a probability that is either zero or one (yet another zero-one law),

P(Xn = i i.o.|X0 = i) =




1 fi,i = 1
0 fi,i < 1.

.
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This means that

One guaranteed return is equivalent to infinitely many guaranteed returns.

The question is how to identify whether a state is recurrent or transient given the
Markov transition matrix. This is settled by the following theorem:

Theorem 8.1 The following characterization of persistence are equivalent:

fi,i = 1 ⇔ P(Xn = i i.o.|X0 = i) = 1 ⇔
∞∑

n=1

p(n)
i,i = ∞.

Similarly for transience,

fi,i < 1 ⇔ P(Xn = i i.o.|X0 = i) = 0 ⇔
∞∑

n=1

p(n)
i,i < ∞.

Proof : It is enough to show the correctness for transience. We have already seen
that transience is equivalent to the probability of infinitely many returns being
zero. By the first Borel-Cantelli lemma the finiteness of the series implies as well
that the probability of infinitely many returns is zero. It remains to show that
transience implies the finiteness of the series. We have

p(n)
i, j =

n−1∑

s=0

P(Xn = j, Xn−s = j, Xn−s−1 " j, . . . , X1 " j|X0 = i)

=

n−1∑

s=0

P(Xn = j|Xn−s = j)P(Xn−s = j, Xn−s−1 " j, . . . , X1 " j|X0 = i)

=

n−1∑

s=0

p(s)
j, j f (n−s)

i, j .

This decomposition is called a first passage time decomposition. We then set
i = j and sum over n,

m∑

n=1

p(n)
i,i =

m∑

n=1

n−1∑

s=0

p(s)
i,i f (n−s)

i,i =

m−1∑

s=0

m∑

n=s+1

p(s)
i,i f (n−s)

i,i =

m−1∑

s=0

p(s)
i,i

m−s∑

n=1

f (n)
i,i ≤ fi,i

m∑

s=0

p(s)
i,i
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This means that
m∑

n=1

p(n)
i,i ≤ fi,i + fi,i

m∑

s=1

p(s)
i,i ,

where we have used the fact that fi,i(0) = 1, or,

(1 − fi,i)
m∑

n=1

p(n)
i,i ≤ fi,i.

If fi,i < 1 then we have a uniform bound on the series. *

Example: Random walks in Zd. Since

p(n)
0,0 ∼

1
nd/2 ,

then the origin (and any other state by symmetry) is recurrent in dimensions one
and two and transient in dimensions higher than two. !!!

Definition 8.3 A Markov chain is called irreducible if, loosely speaking, it is
possible to reach every state from every other state. More precisely, if for every
i, j ∈ S there exists an n for which

p(n)
i, j > 0.

Theorem 8.2 In an irreducible Markov chain one of the following holds:

! All the states are transient, and for all i, j,

P
(
∪ j∈S {Xn = j i.o.} |X0 = i

)
= 0,

and ∞∑

n=1

p(n)
i, j < ∞.

" All the states are persistent, and for all i, j,

P
(
∩ j∈S {Xn = j i.o.} |X0 = i

)
= 1,

and ∞∑

n=1

p(n)
i, j = ∞.
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Comment: This implies that provided that one state is persistent, irrespectively of
the initial state, the chain is guaranteed to visit every state infinitely many times.
This is highly non-trivial.

Proof : Let i, j ∈ S be given. Since the chain is irreducible, then there exist m, r
such that p(m)

i, j > 0 and p(r)
j,i > 0. For all n,

p(m+n+r)
i,i ≤ p(m)

i, j p(n)
j, j p(r)

j,i .

Summing over n, it follows that if j is transient so is i. That is, transience (and
hence persistence) is a property of all states.
We saw that

p(Xn = j i.o.|X0 = i) =




0 f j, j < 1
fi, j f j, j = 1.

Thus, if the chain is transient, then this is zero for all i, j. By Boole’s inequality
a countable union of the event of zero probability has zero probability. Finally,
using again the first passage trick,

p(n)
i, j =

n∑

s=0

f (s)
i, j p(n−s)

j, j ,

hence,

∞∑

n=1

p(n)
i, j =

∞∑

n=1

n∑

s=0

f (s)
i, j p(n−s)

j, j =

∞∑

s=0

f (s)
i, j

∞∑

n=s

p(n−s)
j, j = fi, j

∞∑

n=0

p(n)
j, j < ∞.

Conversely, suppose the chain is persistent, i.e., f j, j = 1 for all j. We then know
that

p(Xn = j i.o.|X0 = i) = fi, j.

For every m,

p(m)
j,i = P({Xm = i} ∩ {Xn = j i.o.} |X0 = j)

≤
∑

n>m

P(Xm = i, Xm+1 " j, . . . , Xn = j|X0 = j)

=
∑

n>m

p(m)
j,i f (n−m)

i, j = fi, j p(m)
j,i .
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Since there exists an m for which the left-hand side is positive, it follows that
fi, j = 1. Then, the countable intersection of certain events has probability one.
Finally, if

∞∑

n=1

p(n)
i, j < ∞,

then by the first Borel-Cantelli lemma

p(Xn = j i.o.|X0 = i) = 0,

which is a contradiction. *

Corollary 8.1 A finite irreducible Markov chain is persistent.

Proof : Since for all i, ∑

j∈S
p(n)

i, j = 1,

then
1
|S |
∑

j∈S

∞∑

n=1

p(n)
i, j = ∞.

It follows that
∑∞

n=1 p(n)
i, j = ∞ for all i, j. *

8.3 Long-time behavior

We now turn to discuss the long time behavior of Markov chains. Recall that if
µ(n) is the distribution at time n then

µ(n)
i =

∑

j∈S
µ(n−1)

j p j,i,

and inductively,
µ(n)

i =
∑

j∈S
µ(0)

j (Pn) j,i.

The question is whether the distribution has a limit as n→ ∞ and what it is. Note
first that if a limit µ = π exists, then

π = πP,



Markov chains 151

i.e., it is a stationary distribution of the Markov chain; it is also a left eigenvector
of P with eigenvalue 1.

Example: To get some idea on what is going on, consider a two-state Markov
chain with transition matrix

P =
(
1 − p p

q 1 − q

)
,

with 0 < p, q < 1. For such a simple matrix we can easily calculate its n-th power.
The eigenvalues satisfy

[
1 − p − λ p

q 1 − q − λ

]
= 0,

i.e.,
λ2 − (2 − p − q)λ + (1 − p − q) = 0.

Setting 1 − p − q = α we have

λ1,2 =
1
2

(
(1 + α) ±

√
(1 + α)2 − 4α

)
= 1, α.

The eigenvector that corresponds to λ = 1 is (1, 1)T . The eigenvector that corre-
sponds to λ = α satisfies (

q p
q p

) (
x
y

)
= 0,

i.e., (p,−q)T . Normalizing we have

S =
(
1/
√

2 p/
√

p2 + q2

1/
√

2 −q/
√

p2 + q2

)
and S −1 = −

√
2
√

p2 + q2

p + q

(
−q/
√

p2 + q2 −p/
√

p2 + q2

−1/
√

2 1/
√

2

)
.

Since
P = SΛS −1,

it follows that Pn = SΛnS −1 and as n→ ∞

lim
n→∞

Pn = S
(
1 0
0 0

)
S −1 =

1
p + q

(
q p
q p

)
.

For every µ(0) we get

lim
n→∞
µ(n) =

(q, p)
p + q

.

Thus, the distribution converges to the (unique) stationary distribution irrespec-
tively of the initial distribution. !!!


