
Chapter 3

Numerical linear algebra

3.1 Motivation

In this chapter we will consider the two following problems:

➀ Solve linear systems Ax = b, where x, b ∈ Rn and A ∈ Rn×n.

➁ Find x ∈ Rn that minimizes
m∑

i=1

(Ax− b)2
i ,

where b ∈ Rm and A ∈ Rm×n. When m > n there are more equations
than unknowns, so that in general, Ax = b cannot be solved.

Example 3.1 (Stokes flow in a cavity) Three equations,

∂p

∂x
=

∂2u

∂x2
+

∂2u

∂y2

∂p

∂y
=

∂2v

∂x2
+

∂2v

∂y2

∂u

∂x
+

∂u

∂y
= 0,

for the functions u(x, y), v(x, y), and p(x, y); (x, y) ∈ [0, 1]2. The boundary
conditions are

u(0, y) = u(1, y) = u(x, 0) = 0, u(x, 1) = 1

v(0, y) = v(1, y) = v(x, 0) = v(x, 1) = 0.

37
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Solve with a staggered grid. A linear system in n2 + 2n(n − 1) unknowns.
(And by the way, it is singular).

Example 3.2 (Curve fitting) We are given a set of m points (ai, bi) in the
plane, and we want to find the best cubic polynomial through these points.
I.e, we are looking for the coefficients x1, x2, x3, x4, such that the polynomial

p(y) =
4∑

j=1

xjy
j−1

minimizes
m∑

i=1

[p(yi)− bi]
2 ,

where the vector p(yi) is of the form Ax, and

A =


1 y1 y2

1 y3
1

1 y2 y2
2 y3

2
...

...
...

...
1 ym y2

m y3
m



3.2 Vector and matrix norms

Definition 3.1 (Norm) Let X be a (real or complex) linear space. It is normed
if there exists a function ‖ · ‖ : X $→ R (the norm) with the following prop-
erties:

➀ ‖x‖ ≥ 0 with ‖x‖ = 0 iff x = 0.

➁ ‖αx‖ ≤ |α|‖x‖.
➂ ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Example 3.3 The most common vector norms are the p-norms defined (on
Cn) by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

,
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which are norms for 1 ≤ p < ∞. Another common norm is the infinity-
norm,

‖x‖∞ = max
1≤i≤n

|xi|.
It can be shown that ‖ · ‖∞ = limp→∞ ‖ · ‖p.

✎ Exercise 3.1 Show that the p-norms do indeed satisfy the properties of a
norm.

Lemma 3.1 (Hölder inequality) Let p, q > 1 with 1/p + 1/q = 1. Then,

|
n∑

k=1

xkyk| ≤
(

n∑
k=1

|xk|p
)1/p (

n∑
k=1

|xk|q
)1/q

.

Proof : From Young’s inequality

|ab| ≤ |a|p
p

+
|b|q
q

,

follows

|∑n
k=1 xkyk|

‖x‖p‖y‖q
≤

n∑
k=1

|xk|
‖x‖p

|yk|
‖y‖q

≤
n∑

k=1

1

p

|xk|p
‖x‖p

p
+

n∑
k=1

1

q

|yk|q
‖y‖q

q
≤ 1

p
+

1

q
= 1.

■

Lemma 3.2 (Minkowski inequality) Let p, q > 1 with 1/p + 1/q = 1, then(
n∑

k=1

|xk + yk|p
)1/p

≤
(

n∑
k=1

|xk|p
)1/p

+

(
n∑

k=1

|yk|p
)1/p

.

Proof : We write

|xk + yk|p ≤ |xk||xk + yk|p−1 + |yk||xk + yk|p−1.

Using Hölder’s inequality for the first term,

n∑
k=1

|xk||xk + yk|p−1 ≤
(

n∑
k=1

|xk|p
)1/p (

n∑
k=1

|xk + yk|q(p−1)

)1/q

.
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Note that q(p− 1) = p. Similarly, for the second term

n∑
k=1

|yk||xk + yk|p−1 ≤
(

n∑
k=1

|yk|p
)1/p (

n∑
k=1

|xk + yk|p
)1/q

,

Summing up,

n∑
k=1

|xk + yk|p ≤
(

n∑
k=1

|xk + yk|p
)1/q

(‖x‖p + ‖y‖p) .

Dividing by the factor on the right-hand side, and using the fact that 1−1/q =
1/p we get the required result. ■

Definition 3.2 (Inner product space) Let X be a (complex) vector space. The
function (·, ·) : X ×X $→ C is called an inner product if:

➀ (x, y) = (y, x).

➁ (x, y + z) = (x, y) + (x, z) (bilinearity).

➂ (αx, y) = α(x, y).

➃ (x, x) ≥ 0 with (x, x) = 0 iff x = 0.

Example 3.4 For X = Cn the form

(x, y) =
n∑

i=1

xiyi

is an inner product.

Lemma 3.3 (Cauchy-Schwarz inequality) The following inequality holds in an
inner product space.

|(x, y)|2 ≤ (x, x)(y, y).

Proof : We have,

0 ≤ (x− αy, x− αy) = (x, x)− α(y, x)− α(x, y) + |α|2(y, y).

Suppose that (y, x) = r exp(ıθ), then take α = t exp(−ıθ). For every t,

(x, x)− 2rt + t2(y, y) ≥ 0.



Numerical linear algebra 41

Since we have a quadratic inequality valid for all t we must have

r2 − (x, x)(y, y) ≤ 0,

which completes the proof. ■

Comments:

➀ The Cauchy-Schwarz inequality is a special case of Hölder’s inequality.

➁ A third method of proof is from the inequality

0 ≤ ((y, y)x−(x, y)y, (y, y)x−(x, y)y) = (y, y)
[
(x, x)(y, y)− |(x, y)|2] .

Lemma 3.4 In an inner product space
√

(x, x) is a norm.

Proof : Let ‖x‖ =
√

(x, x). The positivity and the homogeneity are immedi-
ate. The triangle inequality follows from the Cauchy-Schwarz inequality

‖x + y‖2 = (x + y, x + y) = ‖x‖2 + ‖y‖2 + (x, y) + (y, x)

≤ ‖x‖2 + ‖y‖2 + 2|(x, y)| ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

■

Definition 3.3 An Hermitian matrix A is called positive definite (s.p.d) if

x†Ax > 0

for all x *= 0.

Definition 3.4 (Convergence of sequences) Let (xn) be a sequence in a normed
linear space X. It is said to converge to a limit x if ‖xn − x‖ → 0.

In Rn convergence in norm always implies convergence of each of the
component.

Lemma 3.5 The norm ‖ · ‖ is a continuous mapping from X to R.



42 Chapter 3

Proof : This is an immediate consequence of the triangle inequality, for

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖,
hence

|‖x‖ − ‖y‖| ≤ ‖x− y‖.
Take now y = xn and the limit n →∞. ■

Definition 3.5 Let ‖ · ‖ and ‖ · ‖′ be two norms on X. They are called equiv-
alent if there exist constants c1, c2 > 0 such that

c1‖x‖ ≤ ‖x‖′ ≤ c2‖x‖
for all x ∈ X.

Theorem 3.1 All norms over a finite dimensional vector space are equivalent.

Proof : Let ‖ · ‖ and ‖ · ‖′ be two norms. It is sufficient to show the existence
of a constant c > 0 such that

‖x‖′ ≤ c‖x‖
for all x. In fact, it is sufficient to restrict this on the unit ball of the norm
‖·‖. Thus, we need to show that for all x on the unit ball of ‖·‖, the norm ‖·‖′
is bounded. This follows from the fact that the norm is a continuous function
and that the unit ball of a finite-dimensional vector space is compact. ■

Lemma 3.6 In Rn the following inequalities hold:

‖x‖2 ≤ ‖x‖1 ≤ √n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤ √n‖x‖∞
‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞.

✎ Exercise 3.2 Prove the following inequalities for vector norms:

‖x‖2 ≤ ‖x‖1 ≤ √n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤ √n‖x‖∞
‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞.
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Definition 3.6 (Subordinate matrix norm) Let ‖·‖ be a norm of X = Rn. For
every A : X $→ X (an operator on the space) we define the following function
‖ · ‖ : B(X, X) $→ R,

‖A‖ = sup
0 '=x∈X

‖Ax‖
‖x‖ . (3.1)

Comments:

➀ By the homogeneity of the norm we have

‖A‖ = sup
0 '=x∈X

∥∥∥∥A
x

‖x‖
∥∥∥∥ = sup

‖x‖=1
‖Ax‖.

➁ Since the norm is continuous and the unit ball is compact then,

‖A‖ = max
‖x‖=1

‖Ax‖,

and the latter is always finite.

➂ By definition, for all A and x,

‖Ax‖ ≤ ‖A‖‖x‖.
Theorem 3.2 Eq. (3.1) defines a norm on the space of matrices Rn $→ Rn,
which we call the matrix norm subordinate to the vector norm ‖ · ‖.

Proof : The positivity and the homogeneity are immediate. It remains to
show the triangle inequality:

‖A + B‖ = sup
‖x‖=1

‖(A + B)x‖

≤ sup
‖x‖=1

(‖Ax‖+ ‖Bx‖)

≤ sup
‖x‖=1

‖Ax‖+ sup
‖x‖=1

‖Bx‖.

■

Lemma 3.7 For every two matrices A, B and subordinate norm ‖ · ‖,
‖AB‖ ≤ ‖A‖‖B‖.

In particular,
‖Ak‖ ≤ ‖A‖k.
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Proof : Obvious. ■

✎ Exercise 3.3 Show that for every invertible matrix A and norm ‖ · ‖,
‖A‖‖A−1‖ ≥ 1.

Example 3.5 (infinity-norm) Consider the infinity norm on vectors. The ma-
trix norm subordinate to the infinity norm is

‖A‖∞ = sup
‖x‖∞=1

max
i

∣∣∣∣∣∑
j

ai,jxj

∣∣∣∣∣ = max
i

∑
j

|ai,j|.

✎ Exercise 3.4 Prove that the matrix norm subordinate to the vector norm
‖ · ‖1 is

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij|.

Example 3.6 (2-norm) Consider now the matrix 2-norm subordinate to the
vector 2-form

‖x‖2 =
√

(x, x).

By definition,

‖A‖2
2 = sup

‖x‖2=1
(Ax, Ax) = sup

‖x‖2=1
(A†Ax, x).

The matrix A†A is Hermitian, hence it can be diagonalized A†A = Q†ΛQ,
where Q is unitary. Then

‖A‖2
2 = sup

‖x‖2=1
(Q†ΛQx, x) = sup

‖x‖2=1
(ΛQx, Qx) = sup

‖y‖2=1
(Λy, y),

where we have used the fact that y = Q−1x has unit norm. This gives,

‖A‖2
2 = sup

‖y‖2=1

n∑
i=1

λi|yi|2,

which is maximized by taking yi to choose the maximal eigenvalue. Thus,

‖A‖2 =
√

spr A†A,

where we have used the fact that all the eigenvalue of an Hermitian matrix
of the form A†A are real and positive.
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✎ Exercise 3.5 ➀ Let ‖ · ‖ be a norm on Rn, and S be an n-by-n non-
singular matrix. Define ‖x‖′ = ‖Sx‖, and prove that ‖ · ‖′ is a norm on
Rn.

➁ Let ‖ · ‖ be the matrix norm subordinate to the above vector norm.
Define ‖A‖′ = ‖SAS−1‖, and prove that ‖ · ‖′ is the matrix norm
subordinate to the corresponding vector norm.

✎ Exercise 3.6 True or false: if ‖·‖ is a matrix norm subordinate to a vector
norm, so is ‖ · ‖′ = 1

2‖ · ‖ (the question is not just whether ‖ · ‖′ satisfies the
definition of a norm; the question is whether there exists a vector norm, for
which ‖ · ‖′ is the subordinate matrix norm!).

Neumann series Let A be an n-by-n matrix and consider the infinite series
∞∑

k=0

Ak,

where A0 = I. Like for numerical series, this series is said to converge to a
limit B, if the sequence of partial sums

Bn =
∞∑

k=0

Ak

converges to B (in norm). Since all norms on finite dimensional spaces are
equivalent, convergence does not depend on the choice of norm. Thus, we
may consider any arbitrary norm ‖ · ‖.

Recall the root test for the convergence of numerical series. Since it only
relies on the completeness of the real numbers, it can be generalized as is for
arbitrary complete normed spaces. Thus, if the limit

L = lim
n→∞

‖An‖1/n

exists, then L < 1 implies the (absolute) convergence of the above series, and
L > 1 implies that the series does not converge.

Proposition 3.1 If the series converges absolutely then

∞∑
k=0

Ak = (I − A)−1
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(and the right hand side exists). It is called the Neumann series of (I −
A)−1.

Proof : We may perform a term-by-term multiplication

(I − A)
∞∑

k=0

Ak =
∞∑

k=0

(Ak − Ak+1) = I − lim
k→∞

Ak,

but the limit must vanish (in norm) if the series converges. ■

We still need to establish the conditions under which the Neumann series
converges. First, we show that the limit L always exists:

Proposition 3.2 The limit limn→∞ ‖An‖1/n exists and is independent of the
choice of norms. The limit is called the spectral radius of A and is denoted
by spr(A).

Proof : Let an = log ‖An‖. Clearly,

an+m = log ‖An+m‖ ≤ log ‖An‖‖Am‖ = an + am,

i.e., the sequence (an) is sub-additive. Since the logarithm is a continuous
function on the positive reals, we need to show that the limit

lim
n→∞

log ‖An‖1/n = lim
n→∞

an

n

exists. This follows directly from the sub-additivity.

Indeed, set m. Then, any integer n can be written as m = mq + r, with
0 ≤ r < m. We have,

an

n
=

amq+r

n
≤ q

n
am +

r

n
ar.

Taking n →∞, the right hand side converges to am/m, hence,

lim sup
an

n
≤ am

m
.

Taking then m →∞ we have

lim sup
an

n
≤ lim inf

am

m
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which proves the existence of the limit. The independence on the choice of
norm results from the equivalence of norms, as

c1/n‖An‖1/n ≤ (‖An‖′)1/n ≤ C1/n‖An‖1/n.

■

Corollary 3.1 The Neumann series
∑

k Ak converges if spr A < 1 and diverges
if spr A > 1.

Thus, the spectral radius of a matrix is always defined, and is a property
that does not depend on the choice of norm. We now relate the spectral
radius with the eigenvalues of A. First, a lemma:

Lemma 3.8 Let S be an invertible matrix.Then, spr S−1AS = spr A.

Proof : This is an immediate consequence of the fact that ‖S−1 · S‖ is a
matrix norm and the independence of the spectral radius on the choice of
norm. ■

Proposition 3.3 Let Σ(A) be the set of eigenvalues of A (the spectrum).
Then,

spr A = max
λ∈Σ(A)

|λ|.

Proof : By the previous lemma it is sufficient to consider A in Jordan canon-
ical form. Furthermore, since all power of A remain block diagonal, and we
are free to choose, say, the infinity norm, we can consider the spectral radius
of a single Jordan block; the spectral radius of A is the maximum over the
spectral radii of its Jordan blocks.

Let then A be an m-by-m Jordan block with eigenvalue λ, i.e.,

A = λI + D,

where D has ones above its main diagonal, i.e., it is nil-potent with Dm = 0.
Raising this sum to the n-th power (n > m) we get

An = λnI + n λn−1D +

(
n

2

)
λn−2D2 + · · ·

(
n

m− 1

)
λn−m+1Dm−1.
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Taking the infinity norm we have

|λ|n ≤ ‖An‖ ≤ m

(
n

m− 1

)
|λ|n−m+1 max

(|λ|m−1, 1
)
.

Taking the n-th root and going to the limit we obtain that spr A = |λ|. ■

Proposition 3.4 For every matrix A,

spr A ≤ inf
‖·‖
‖A‖,

where the infimum is over all choices of subordinate matrix norms.

Proof : For every eigenvalue λ with (normalized) eigenvector u, and every
subordinate matrix norm ‖ · ‖,

‖A‖ ≥ ‖Au‖ = |λ|‖u‖ = |λ|.
It remains to take the maximum over all λ ∈ Σ(A) and the infimum over all
norms. ■

We will now prove that this inequality is in fact an identity. For that we
need the following lemma:

Lemma 3.9 Every matrix A can be “almost” diagonalized in the following
sense: for every ε > 0 there exists a non-singular matrix S such that

A = S−1(Λ + T )S,

where Λ is diagonal with its element coinciding with the eigenvalues of A,
and T is strictly upper triangular with ‖T‖∞ < ε.

Proof : There exists a trasformation into the Jordan canonical form:

A = P−1(Λ + D)P,

where D is nil-potent with ones above its main diagonal. Let now

E =


ε 0 · · · 0
0 ε2 · · · 0
...

...
. . .

...
0 · · · 0 εn

 .
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and set E−1P = S. Then

A = S−1E−1(Λ + D)S = S−1(Λ + E−1DE)S,

where T = EDE−1 is given by

Ti,j =
∑
k,l

E−1
i,k Dk,lEl,j = εj−iDi,j.

But since the only non-zero elements are Di,i+1 = 1, we have T i,i+1 = ε, and
‖T‖∞ = ε. ■

Theorem 3.3 For every matrix A,

spr A = inf
‖·‖
‖A‖.

Proof : We have already proved the less-or-equal relation. It remains to show
that for every ε > 0 there exists a subordinate matrix norm ‖ · ‖ such that

‖A‖ ≤ spr A + ε.

This follows from the fact that every matrix is similar to an almost diago-
nal matrix, and that the spectral radius is invariant under similarity trans-
formations. Thus, for every ε we take S as in the lemma above, and set
‖ · ‖ = ‖S−1 · S‖∞, hence

‖A‖ = ‖Λ + T‖∞ ≤ ‖Λ‖∞ + ‖T‖∞ = spr A + ε.

■

✎ Exercise 3.7 A matrix is called normal if it has a complete set of orthog-
onal eigenvectors. Show that for normal matrices,

‖A‖2 = spr A.

✎ Exercise 3.8 Show that spr A < 1 if and only if

lim
k→∞

Akx = 0, ∀x.

✎ Exercise 3.9 True or false: the spectral radius spr A is a matrix norm.
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✎ Exercise 3.10 Is the inequality spr AB ≤ spr A spr B true for all pairs of
n-by-n matrices? What about if A and B were upper-triangular? Hint: try
to take B = AT and

A =

(
0 1
2 0

)
.

✎ Exercise 3.11 Can you use the Neumann series to approximate the inverse
of a matrix A? Under what conditions will this method converge?

✎ Exercise 3.12 (Computer exercise) Construct a “random” 6-by-6 matrix A.
Then plot the 1,2, and infinity norms of ‖An‖1/n as function of n with the
maximum n large enough so that the three curves are sufficiently close to the
expected limit.

Normal operators

Definition 3.7 A matrix A is called normal if it commutes with its adjoint,
A†A = AA†.

Lemma 3.10 A is a normal operator if and only if

‖Ax‖2 = ‖A†x‖2

for every x ∈ Rn.

Proof : Suppose first that A is normal, then for all x ∈ Rn,

‖Ax‖2
2 = (Ax, Ax) = (x, A†Ax) = (x, AA†x) = (A†x, A†x) = ‖A†x‖2

2.

Conversely, let ‖Ax‖2 = ‖A†x‖2. Then,

(x, AA†x) = (A†x, A†x) = (Ax, Ax) = (x, A†Ax),

from which follows that

(x, (AA† − A†A)x) = 0, ∀x ∈ Rn.

Since AA† − A†A is symmetric then it must be zero (e.g., because all its
eigenvalues are zero, and it cannot have any nilpotent part). ■
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Lemma 3.11 For every matrix A,

‖A†A‖2 = ‖A‖2
2.

Proof : Recall that the 2-norm of A is given by

‖A‖2
2 = spr A†A.

On the other hand, since A†A is Hermitian, its 2−norm coincides with its
largest eigenvalue. ■

Theorem 3.4 If A is a normal operator then

‖An‖2 = ‖A‖n
2 ,

and in particular spr A = ‖A‖2.

Proof : Suppose first that A was Hermitian. Then, by the previous lemma

‖A2‖2 = ‖A†A‖2 = ‖A‖2
2.

Since A2 is also Hermitian we then have ‖A4‖2 = ‖A‖4
2, and so on for every

n = 2m. Suppose then that A is normal (but no necessarily Hermitian), then
for every n = 2m,

‖An‖2
2 = ‖(A†)nAn‖2 = ‖(A†A)n‖2 = ‖(A†A)‖n

2 = ‖A‖2n
2 ,

hence ‖An‖2 = ‖A‖n
2 . It remains to treat the case of general n. Write then

n = 2m − r, r ≥ 0. We then have

‖A‖n+r
2 = ‖An+r‖2 ≤ ‖An‖2‖A‖r

2,

hence ‖A‖n
2 ≤ ‖An‖2. The reverse inequality is of course trivial, which proves

the theorem. ■

3.3 Perturbation theory and condition number

Consider the linear system
Ax = b,
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and a “nearby” linear system

(A + δA)x̂ = (b + δb).

The question is under what conditions the smallness of δA, δb guarantees the
smallness of δx = x̂− x. If δx is small the problem is well-conditioned, and
it is ill-conditioned otherwise.

Subtracting the two equations we have

A(x̂− x) + δA x̂ = δb,

or,
δx = A−1 (−δA x̂ + δb) .

Taking norms we obtain an inequality

‖δx‖ ≤ ‖A−1‖ (‖δA‖ ‖x̂‖+ ‖δb‖) ,

which we further rearrange as follows,

‖δx‖
‖x̂‖ ≤ ‖A

−1‖‖A‖
(‖δA‖
‖A‖ +

‖δb‖
‖A‖‖x̂‖

)
.

We have thus expressed the relative change in the output as the product of
the relative change in the input (we’ll look more carefully at the second term
later) and the number

κ(A) = ‖A−1‖‖A‖,
which is the (relative) condition number. When κ(A) is large a small
perturbation in the input can produce a large perturbation in the output.

In practice, x̂ will be the computed solution. Then, provided we have
estimates on the “errors” δA, and δb, we can estimate the relative error
‖δx‖/‖x̂‖. From a theoretical point of view, however, it seems “cleaner”
to obtain an error bound which in independent of δx (via x̂). This can be
achieved as follows. First from

(A + δA)(x + δx) = (b + δb) ⇒ (A + δA)δx = (−δA x + δb)

we extract

δx = (A + δA)−1(−δA x + δb)

= [A(I + A−1δA)]−1(−δA x + δb)

= (I + A−1δA)−1A−1(−δA x + δb).
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Taking now norm and applying the standard inequalities we get

‖δx‖
‖x‖ ≤ ‖(I + A−1δA)−1‖‖A−1‖

(
‖δA‖+

‖δb‖
‖x‖

)
.

Now, if spr A−1δA < 1, we can use the Neumann series to get the following
estimate,

‖(I+A−1δA)−1‖ = ‖
∞∑

n=0

(−A−1δA)n‖ ≤
∞∑

n=0

‖A−1‖n‖δA‖n =
1

1− ‖A−1‖‖δA‖ .

Combining with the above,

‖δx‖
‖x‖ ≤

‖A−1‖
1− ‖A−1‖‖δA‖

(
‖δA‖+

‖δb‖
‖x‖

)
=

κ(A)

1− κ(A)‖δA‖
‖A‖

(‖δA‖
‖A‖ +

‖δb‖
‖A‖ ‖x‖

)
≤ κ(A)

1− κ(A)‖δA‖
‖A‖

(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
,

where we have used the fact that ‖A‖‖x‖ ≥ ‖Ax‖ = ‖b‖. In this (cleaner)
formulation the condition number is

κ(A)

1− κ(A)‖δA‖
‖A‖

,

which is close to κ(A) provided that δA is sufficiently small, and more pre-
cisely, that κ(A)‖δA‖

‖A‖ = ‖A−1‖‖δA‖ < 1.

We conclude this section by establishing another meaning to the condition
number. It is the reciprocal on the distance to the nearest ill-posed problem.
A large condition number means that the problem is close in a geometrical
sense to a singular problem.

Theorem 3.5 Let A be non-singular, then

1

κ(A)
= min

{‖δA‖2

‖A‖2
: A + δA is singular

}
,

where κ(A) is expressed in terms of 2-norm (Euclidean).
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Proof : Since κ(A) = ‖A‖2 ‖A−1‖2, we need to show that

1

‖A−1‖2
= min {‖δA‖2 : A + δA is singular} .

If ‖δA‖2 < 1
‖A−1‖2 , then ‖A−1‖2‖δA‖2 < 1, which implies the convergence of

the Neumann series

∞∑
n=0

(−A−1δA)n = (1 + A−1δA)−1 = A−1(A + δA)−1,

i.e.,

‖δA‖2 <
1

‖A−1‖2
⇒ A + δA is not singular,

or,

min {‖δA‖2 : A + δA is singular} ≥ 1

‖A−1‖2
.

To show that this is an equality it is sufficient to construct a δA of norm
1

‖A−1‖2 so that A + δA is singular. By definition, there exists an x ∈ Rn

on the unit sphere for which ‖A−1x‖2 = ‖A−1‖2. Let then y = A−1x
‖A−1x‖2 , be

another unit vector and construct

δA = − xyT

‖A−1‖2
.

First note that

‖δA‖2 =
1

‖A−1‖2
max
‖z‖2=1

‖xyT z‖2 =
1

‖A−1‖2
max
‖z‖2=1

|yT z| =
1

‖A−1‖2
,

where we have used the fact that ‖x‖2 = 1, and the fact that |yT z| is maxi-
mized for z = yT . Finally, A + δA is singular because

(A + δA)y =

(
A− xyT

‖A−1‖2

)
y = Ay − x

‖A−1‖2
= 0.

■

Comment: Note how the theorem relies on the use of the Euclidean norm.
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✎ Exercise 3.13 The spectrum Σ(A) of a matrix A is the set of its eigen-
values. The ε-pseudospectrum of A, which we denote by Σε(A), is defined
as the set of complex numbers z, for which there exists a matrix δA such
that ‖δA‖2 ≤ ε and z is an eigenvalue of A + δA. In mathematical notation,

Σε(A) = {z ∈ C : ∃ δA, ‖δA‖2 ≤ ε, z ∈ Σ(A + δA)} .

Show that

Σε(A) =
{
z ∈ C : ‖(zI − A)−1‖2 ≥ 1/ε

}
.

✎ Exercise 3.14 Let Ax = b and (A + δA)x̂ = (b + δb). We showed in class
that δx = x̂− x satisfies the inequality,

‖δx‖2 ≤ ‖A−1‖2 (‖δA‖2‖x̂‖2 + ‖δb‖2) .

Show that this is not just an upper bound: that for sufficiently small ‖δA‖2

there exist non-zero δA, δb such that the above in an equality. (Hint: follow
the lines of the proof that links the reciprocal of the condition number to the
distance to the nearest ill-posed problem.)

3.4 Direct methods for linear systems

Algorithms for solving the linear system Ax = b are divided into two sorts:
direct methods give, in the absence of roundoff errors, an exact solution
after a finite number of steps (of floating point operations); all direct methods
are variations of Gaussian elimination. In contrast, iterative methods
compute a sequence of iterates (xn), until xn is sufficiently close to satisfying
the equation. Iterative methods may be much more efficient in certain cases,
notably when the matrix A is sparse.

3.4.1 Matrix factorization

The basic direct method algorithm uses matrix factorization—the repre-
sentation of a matrix A as a product of “simpler” matrices. Suppose that A
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was lower-triangular:
a11

a21 a22
...

...
. . .

an1 an2 · · · ann




x1

x2
...

xn

 =


b1

b2
...
bn

 .

Then the system can easily be solved using forward-substitution:

Algorithm 3.4.1: forward-substitution(A, b)

for i = 1 to n

do xi =
(
bi −

∑i−1
k=1 aikxk

)
/aii

Similarly, if A was upper-diagonal,
a11 a12 · · · a1n

a22 · · · a2n

. . .
...

ann




x1

x2
...

xn

 =


b1

b2
...
bn

 .

Then the system can easily be solved using backward-substitution:

Algorithm 3.4.2: backward-substitution(A, b)

for i = n downto 1
do xi =

(
bi −

∑n
k=i+1 aikxk

)
/aii

Finally, if A is a permutation matrix, i.e., an identity matrix with its
rows permuted, then the system Ax = b only requires the permutation of the
rows of b.

Matrix factorization consists of expressing any non-singular matrix A as
a product A = PLU , where P is a permutation matrix, L is non-singular
lower-triangular and U is non-singular upper-triangular. Then, the system
Ax = b is solved as follows:

LUx = P−1b = P T b permute the entries of b

Ux = L−1(P T b) forward substitution

x = U−1(L−1P T b) backward substitution.
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This is the general idea. We now review these steps is a systematic manner.

Lemma 3.12 Let P, P1, P2 be n-by-n permutation matrices and A be an n-by-
n matrix. Then,

➀ PA is the same as A with its rows permuted and AP is the same as A
with its column permuted.

➁ P−1 = P T .

➂ det P = ±1.

➃ P1P2 is also a permutation matrix.

Proof : Let π : [1, n] $→ [1, n] be a permutation function (ono-to-one and
onto). Then, the entries of the matrix P are of the form Pij = δπ−1(i),j. Now,

(PA)i,j =
n∑

k=1

δπ−1(i),kakj = aπ−1(i),j

(AK)i,j =
n∑

k=1

Aikδπ−1(k),jakj = ai,π(j),

which proves the first assertion. Next,

(P T P )i,j =
n∑

k=1

δπ−1(i),kδk,π−1(j) =
n∑

k=1

δi,π(k)δπ(k),j = δi,j,

which proves the second assertion. The determinant of a permutation matrix
is ±1 because when two rows of a matrix are interchanged the determinant
changes sign. Finally, if P1 and P2 are permutation matrices with maps π1

and π2, then

(P1P2)i,j =
n∑

k=1

δπ−1
1 (i),kδπ−1

2 (k),j =
n∑

k=1

δπ−1
1 (i),kδk,π2(j)

= δπ−1
1 (i),π2(j) = δπ−1

2 (π−1
1 (i)),j.

■

Definition 3.8 The m-th principal sub-matrix of an n-by-n matrix A is
the square matrix with entries aij, 1 ≤ i, j ≤ m.
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Definition 3.9 A lower triangular matrix L is called unit lower triangular
if its diagonal entries are 1.

Theorem 3.6 A matrix A has a unique decomposition A = LU with L unit
lower triangular and U non-singular upper triangular if and only if all its
principal sub-matrices are non-singular.

Proof : Suppose first that A = LU with the above properties. Then, for
every 1 ≤ m ≤ n,(

A11 A12

A21 A22

)
=

(
L11

L21 L22

) (
U11 U12

U22

)
,

where A11 is the m-th principal sub-matrix, L11 and L22 are unit lower tri-
angular and U11 and U22 are upper triangular. Now,

A11 = L11U11

is non-singular because det A11 = det L11 det U11 =
∏m

i=1 uii *= 0, where the
last step is a consequence of U being triangular and non-singular.

Conversely, suppose that all the principal sub-matrices of A are non-
singular. We will show the existence of L, U by induction on n. For n = 1,
a = 1·a. Suppose that the decomposition holds all (n−1)-by-(n−1) matrices.
Let A′ be of the form

A′ =
(

A b
cT d

)
where b, c are column vectors of length (n− 1) and d is a scalar. By assump-
tion, A = LU . Thus, we need to find vectors l, u ∈ Rn−1 and a scalar γ such
that (

A b
cT d

)
=

(
L
lT 1

) (
U u

γ

)
.

Expanding we have
b = Lu

cT = lT U

d = lT u + γ.

The first and second equation for u, l can be solved because by assumption
L and U are invertible. Finally, γ is extracted from the third equation. It
must be non-zero otherwise A′ would be singular. ■
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A matrix A may be regular and yet the LU decomposition may fail. This
is where permutations are necessary.

Theorem 3.7 Let A be a non-singular n-by-n matrix. Then there exist per-
mutation matrices P1, P2, a unit lower triangular matrix L and an upper
triangular matrix L, such that

P1AP2 = LU.

Either P1 or P2 can be taken to be a unit matrix.

Proof : The proof is by induction. The case n = 1 is trivial. Assume this
is true for dimension n − 1. Let then A be a non-singular matrix. Thus,
every row and every column has a non-zero element, and we can find permu-
tation matrices P ′

1, P
′
2 such that a11 = (P ′

1AP ′
2)11 *= 0 (only one of them is

necessary).

Now, we solve the block problem

P ′
1AP ′

2 =

(
a11 AT

12

A21 A22

)
=

(
1 0

L21 I

) (
u11 UT

12

0 Ã22

)
,

where A22, I and Ã22 are (n− 1)-by-(n− 1) matrices, and A12, A21 L21, U12

and are (n− 1)-vectors; u11 is a scalar. Expanding, we get

u11 = a11, A12 = U12, A21 = L21u11, A22 = L21U
T
12 + Ã22.

Since det A *= 0 and multiplication by a permutation matrix can at most
change the sign of the determinant, we have

0 *= det P ′
1AP ′

2 = 1 · u11 · det Ã22,

from which we deduce that Ã22 is non-singular. Applying the induction, there
exist permutation matrices P̃1, P̃2 and triangular matrices L̃22, Ũ22 such that

P̃1Ã22P̃2 = L̃22Ũ22.
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Substituting we get

P ′
1AP ′

2 =

(
1 0

L21 I

) (
u11 UT

12

0 P̃ T
1 L̃22Ũ22P̃ T

2

)
=

(
1 0

L21 I

) (
1 0
0 P̃ T

1 L̃22

) (
u11 UT

12

0 Ũ22P̃ T
2

)
=

(
1 0

L21 P̃ T
1 L̃22

) (
u11 UT

12

0 Ũ22P̃ T
2

)
=

(
1 0
0 P̃ T

1

) (
1 0

P̃1L21 L̃22

) (
u11 UT

12P̃2

0 Ũ22

) (
1 0
0 P̃ T

2

)
The two outer matrices are permutation matrices whereas the two middle
matrices satisfy the required conditions. This completes the proof. ■

A practical choice of the permutation matrix, known as Gaussian elimi-
nation with partial pivoting (GEPP) is given is the following corollary:

Corollary 3.2 It is possible to choose P ′
2 = I and P ′

1 so that a11 is the largest
entry in absolute value in its column.

The PLU with partial pivoting algorithm is implemented as follows:

Algorithm 3.4.3: LU factorization(A)

for i = 1 to n− 1

/* permute only with rows under i */
permute the rows of A, L such that aii *= 0
/* calculate L21 */
for j = i + 1 to n

do lji = aji/aii

/* calculate U12 */
for j = i to n

do uij = aij

/* change A22 into Ã22 */
for j = i + 1 to n

do for k = i + 1 to n
do ajk = ajk − ljiuik
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Comments:

➀ It can be checked that once lij and uij are computed, the corresponding
entries of A are not used anymore. This means that U,L can overwrite
A. (No need to keep the diagonal terms of L.)

➁ Since the algorithm involves row permutation, the output must also
provide the permutation matrix, which can be represented by a vector.

➂ In practice, there is no need to actually permute the entries of the
matrix. This can be done “logically” only.

Operation count The number of operations needed for LU factorization can
be deduced directly from the algorithm:

n−1∑
i=1

(
n∑

j=i+1

+
n∑

j=i+1

n∑
k=i+1

2

)
=

n−1∑
i=1

[
(n− i) + 2(n− i)2

]
=

2

3
n3 + O(n2).

Since the forward and backward substitution require O(n2) operations, the
number of operations needed to solve the system Ax = b is roughly 2

3n
3.

✎ Exercise 3.15 Show that every matrix of the form(
0 a
0 b

)
a, b, *= 0, has an LU decomposition. Show that even if the diagonal elements
of L are 1 the decomposition is not unique.

✎ Exercise 3.16 Show that if A = LU is symmetric then the columns of L
are proportional to the rows of U .

✎ Exercise 3.17 Show that every symmetric positive-definite matrix has an
LU-decomposition.

✎ Exercise 3.18 Suppose you want to solve the equation AX = B, where
A is n-by-n and X,B are n-by-m. One algorithm would factorize A = PLU
and then solve the system column after column using forward and backward
substitution. The other algorithm would compute A−1 using Gaussian elim-
ination and then perform matrix multiplication to get X = A−1B. Count
the number of operations in each algorithm and determine which is more
efficient.
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✎ Exercise 3.19 Determine the LU factorization of the matrix 6 10 0
12 26 4
0 9 12

 .

✎ Exercise 3.20 (Computer exercise) Construct in Matlab an n-by-n matrix
A (its entries are not important, but make sure it is non-singular), and verify
how long its takes to perform the operation B=inv(A);. Repeat the procedure
for n = 10, 100, 1000, 2000.

3.4.2 Error analysis

The two-step approach for obtaining error bounds is as follows:

➀ Analyze the accumulation of roundoff errors to show that the algorithm
for solving Ax = b generates the exact solution x̂ of the nearby problem
(A+ δA)x̂ = (b+ δb), where δA, δb (the backward errors) are small.

➁ Having obtained estimates for the backward errors, apply perturbation
theory to bound the error x̂− x.

Note that perturbation theory assumes that δA, δb are given. In fact, these
perturbations are just “backward error estimates” of the roundoff errors
present in the computation.

We start with backward error estimates, in the course of which we will
get a better understanding of the role of pivoting (row permutation). As a
demonstration, consider the matrix

A =

(
0.0001 1

1 1

)
with an arithmetic device accurate to three decimal digits. Note first that

κ(A) = ‖A‖∞‖A−1‖∞ ≈ 2× 2,

so that the result is quite insensitive to perturbations in the input. Consider
now an LU decomposition, taking into account roundoff errors:(

0.0001 1
1 1

)
=

(
1 0

*21 1

) (
u11 u12

0 u22

)
.
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Then,
u11 = fl(0.0001/1) = 0.0001

*21 = fl(1/u11) = 10000

u12 = 1

u22 = fl(1− *21u12) = fl(1− 10000 · 1) = −10000.

However, (
1 0

10000 1

) (
0.0001 1

0 −10000

)
=

(
0.0001 1

1 0

)
.

Thus, the a22 entry has been completely forgotten! In our terminology, the
method is not backward stable because

‖δA‖∞
‖A‖∞ =

‖A− LU‖∞
‖A‖∞ =

1

2
.

The relative backward error is large, and combined with the estimated con-
dition number, the relative error in x could be as large as 2.

Had we used GEPP, the order of the rows would have been reversed,(
1 1

0.0001 1

)
=

(
1 0

*21 1

) (
u11 u12

0 u22

)
,

yielding
u11 = fl(1/1) = 1

*21 = fl(0.0001/u11) = 0.0001

u12 = fl(1/1) = 1

u22 = fl(1− *21u12) = fl(1− 0.0001 · 1) = 1,

which combined back gives(
1 0

0.0001 1

) (
1 1
0 1

)
=

(
1 1

0.0001 1.0001

)
,

and
‖δA‖∞
‖A‖∞ =

‖A− LU‖∞
‖A‖∞ =

0.0001

2
.
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3.5 Iterative methods

3.5.1 Iterative refinement

Let’s start with a complementation of direct methods. Suppose we want to
solve the system Ax = b, i.e., we want to find the vector x = A−1b, but due
to roundoff errors (and possible other sources of errors), we obtain instead a
vector

x0 = Ã−1b.

Clearly, we can substitute the computed solution back into the linear system,
and find out that the residual,

b− Ax0
def
= r0

differs from zero. Let e0 = x0 − x be the error. Subtracting b − Ax = 0
from the residual equation, we obtain

Ae0 = r0.

That is, the error satisfies a linear equation with the same matrix A and the
residual vector on its right hand side.

Thus, we will solve the equation for e0, but again we can only do it
approximately. The next approximation we get for the solution is

x1 = x0 + Ã−1r0 = x0 + Ã−1(b− Ax0).

Once more, we define the residual,

r1 = b− Ax1,

and notice that the error satisfies once again a linear system, Ae1 = r1, thus
the next correction is x2 = x1 + Ã−1(b− Ax1), and inductively, we get

xn+1 = xn + Ã−1(b− Axn). (3.2)

The algorithm for iterative refinement is given by
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Algorithm 3.5.1: Iterative refinement(A, b, ε)

x = 0
for i = 1 to n

do


r = b− Ax
if ‖r‖ < ε

then break
Solve Ae = r
x = x + e

return (x)

Of course, if the solver is exact, the refinement procedure ends after one
cycle.

Theorem 3.8 If Ã−1 is sufficiently close to A−1 in the sense that spr(I −
AÃ−1) < 1, then the iterative refinement procedure converges to the solution
x of the system Ax = b. (Note that equivalently, we need ‖I −AÃ−1‖ in any
subordinate matrix norm.)

Proof : We start by showing that

xn = Ã−1
n∑

k=0

(I − AÃ−1)kb.

We do it inductively. For n = 0 we have x0 = Ã−1b. Suppose this was correct
for n− 1, then

xn = xn−1 + Ã−1(b− Axn−1)

= Ã−1
n−1∑
k=0

(I − AÃ−1)kb + Ã−1b− Ã−1AÃ−1
n−1∑
k=0

(I − AÃ−1)kb

= Ã−1

[
n−1∑
k=0

(I − AÃ−1)k + I − AÃ−1
n−1∑
k=0

(I − AÃ−1)k

]
b

= Ã−1

[
I + (I − AÃ−1)

n−1∑
k=0

(I − AÃ−1)k

]
b

= Ã−1
n∑

k=0

(I − AÃ−1)kb.



66 Chapter 3

We have a Neumann series which converges if and only if spr(I−AÃ−1) < 1,
giving in the limit

lim
n→∞

xn = Ã−1(AÃ−1)−1b = A−1b = x.

■

3.5.2 Analysis of iterative methods

Example 3.7 (Jacobi iterations) Consider the following example

7x1 − 6x2 = 3

−8x1 + 9x2 = −4,

whose solution is x = (1/5,−4/15). We may try to solve this system by the
following iterative procedure:

x(n+1)
1 =

3 + 6 x(n)
2

7

x(n+1)
2 =

−4 + 8 x(n)
1

9
.

From a matrix point of view this is equivalent to taking the system(
7 −6
−8 9

) (
x1

x2

)
=

(
3
−4

)
,

and splitting it as follows,(
7 0
0 9

) (
x1

x2

)(n+1)

= −
(

0 −6
−8 0

) (
x1

x2

)(n)

+

(
3
−4

)
.

This iterative methods, based on a splitting of the matrix A into its diagonal
part and its off-diagonal part is called Jacobi’s method.

The following table gives a number of iterates:

n x(n)
1 x(n)

2

1 0.4286 −0.4444
10 0.1487 −0.1982
20 0.1868 −0.2491
40 0.1991 −0.2655
80 0.2000 −0.2667
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Example 3.8 (Gauss-Seidel iterations) Consider now the same system, but
with a slightly different iterative method:

x(n+1)
1 =

3 + 6 x(n)
2

7

x(n+1)
2 =

−4 + 8 x(n+1)
1

9
.

The idea here is to use the entries which have already been computed in the
present iteration. In matrix notation we have(

7 0
−8 9

) (
x1

x2

)(n+1)

= −
(

0 −6
0 0

) (
x1

x2

)(n)

+

(
3
−4

)
.

This iterative method, based on a splitting of the matrix A into its lower-
triangular part and the remainder is called the Gauss-Seidel method.

The following table gives a number of iterates:

n x(n)
1 x(n)

2

1 0.4286 −0.0635
10 0.2198 −0.2491
20 0.2013 −0.2655
40 0.2000 −0.2667
80 0.2000 −0.2667

✎ Exercise 3.21 Write an algorithm (i.e., a list of intructions in some pseudo-
code) that calculates the solution to the linear system, Ax = b, by Gauss-
Seidel’s iterative procedure. The algorithm receives as input the matrix A
and the vector b, and returns the solution x. Try to make the algorithm
efficient.

✎ Exercise 3.22 (Computer exercise) Solve the system
−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2




x1

x2

x3

x4

x5

 =


1
0
0
0
0


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using both the Jacobi and the Gauss-Seidel iterations. Plot a graph of the
norm of the errors as function of the number of iterations. Use the same
graph for both methods for comparison.

We are now ready for a general analysis of iterative methods. Suppose
we want to solve the system Ax = b. For any non-singular matrix Q we can
equivalently write Qx = (Q− A)x + b, which leads to the iterative method

Qxn+1 = (Q− A)xn + b.

Definition 3.10 An iterative method is said to be convergent if it converges
for any initial vector x0.

The goal is to choose a splitting matrix Q such that (1) Q is easy to
invert, and (2) the iterations converge fast.

Theorem 3.9 Let A be a non-singular matrix, and Q be such that spr(I −
Q−1A) < 1. Then the iterative method is convergent.

Proof : We have
xn+1 = (I −Q−1A)xn + Q−1b.

It is easy to see by induction that

xn = (I −Q−1A)nx0 +
n−1∑
k=0

(I −Q−1A)kQ−1b,

and as we’ve already seen, the Neumann series converges iff spr(I−Q−1A) <
1. If it converges, the first term also converges to zero (the initial condition
is forgotten). The limit is

lim
n→∞

xn = (Q−1A)−1Q−1b = A−1b = x.

■

Definition 3.11 A matrix A is called diagonally dominant if for any row
i,

|aii| >
∑
j '=i

|aij|.
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Proposition 3.5 If A is diagonally dominant then Jacobi’s method converges.

Proof : For Jacobi’s method the matrix Q comprises the diagonal of A, there-
fore, Q−1A consists of the rows of A divided by the diagonal term, and

(I −Q−1A)ij =

{
0 i = j

−aij

aii
i *= j

.

Because A is diagonally dominant,

‖I −Q−1A‖∞ = max
i

∑
j

|(I −Q−1A)ij| = max
i

1

|aii|
∑
j '=i

|aij| < 1.

■

✎ Exercise 3.23 Show that the Jacobi iteration converges for 2-by-2 sym-
metric positive-definite systems.

Hint Suppose that the matrix to be inverted is

A =

(
a b
b c

)
.

First, express the positive-definiteness of A as a condition on a, b, c. Then,
proceed to write the matrix (I − Q−1A), where Q is the splitting matrix
corresponding to the Jacobi iterative procedure. It remains to find a norm
in which ‖I −Q−1A‖ < 1 or compute the spectral radius.

✎ Exercise 3.24 Will Jacobi’s iterative method converge for10 2 3
4 50 6
7 8 90

 .

✎ Exercise 3.25 Explain why at least one eigenvalue of the Gauss-Seidel
iterative matrix must be zero.

✎ Exercise 3.26 Show that if A is strictly diagonally dominant then the
Gauss-Seidel iteration converges.



70 Chapter 3

✎ Exercise 3.27 What is the explicit form of the iteration matrix G = (I −
Q−1A) in the Gauss-Seidel method when

A =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2



3.6 Acceleration methods

3.6.1 The extrapolation method

Consider a general iterative method for linear systems

xn+1 = Gxn + c.

For the system Ax = b we had G = (I − Q−1A) and c = Q−1b, but for now
this does not matter. We know that the iteration will converge if spr G < 1.

Consider now the one-parameter family of methods,

xn+1 = γ(Gxn + c) + (1− γ)xn

= [γG + (1− γ)I]xn + γc
def
= Gγxn + γc,

γ ∈ R. Can we choose γ such to optimize the rate of convergence, i.e., such
to minimize the spectral radius of Gγ? Note that (1) if the method converges
then it converges to the desired solution, and (2) γ = 1 reduces to the original
procedure.

Recall that (1) the spectral radius is the largest eigenvalue (in absolute
value), and that (2) if λ ∈ Σ(A) and p(λ) ∈ Σ(p(A)) for any polynomial p.
Suppose that we even don’t really know the eigenvalues of the original matrix
G, but we only know that they are real (true for symmetric or Hermitian
matrices) and within the segment [a, b]. Then, the spectrum of Gγ lies within

Σ(Gγ) ⊆ {γz + (1− γ) : z ∈ [a, b]} .
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This means that
spr Gγ ≤ max

a≤λ≤b
|γλ + (1− γ)|.

The expression on the right-hand side is the quantity we want to minimize,

γ∗ = arg min
γ∈R

max
a≤z≤b

|γz + (1− γ)|.

Problems of this type are call min-max problems. They are very common
in optimization.

Theorem 3.10 If 1 *∈ [a, b], then

γ∗ =
2

2− a− b
,

and
spr G∗

γ ≤ 1− |γ∗|d,

where d = dist(1, [a, b]).

Proof : Since 1 *∈ [a, b], then we either have b < 1 or a > 1. Let’s focus on
the first case; the second case is treated the same way. The solution to this
problem is best viewed graphically:

1

a b 1 z

From the figure we see that the optimal γ is when the absolute values of
the two extreme cases coincide, i.e., when

γ(a− 1) + 1 = −γ(b− 1)− 1,

from which we readily obtain 2 = (2− a− b)γ∗. Substituting the value of γ∗

into
max
a≤z≤b

|γz + (1− γ)|,
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whose maximum is attained at either z = a, b, we get

spr Gγ∗ ≤ γ∗(b− 1) + 1 = 1− |γ∗|d,

since γ∗ is positive and d = 1− b. ■

Example 3.9 The method of extrapolation can be of use even if the original
method does not converge, i.e., even if spr G > 1. Consider for example the
following iterative method for solving the linear systems Ax = b,

xn+1 = (I − A)xn + b.

It is known as Richardson’s method. If we know that A has real eigenvalues
ranging between λmin and λmax, then in the above notation

a = 1− λmax and b = 1− λmin.

If 1 *∈ [a, b], i.e, all the eigenvalues of A have the same sign, then This means
that the optimal extrapolation method is

xn+1 = [γ∗(I − A) + (1− γ∗)I] xn + γ∗b,

where

γ∗ =
2

λmax + λmin
.

Suppose that λmin > 0, then the spectral radius of the resulting iteration
matrix is bounded by

spr Gγ∗ ≤ 1− 2λmin

λmax + λmin
=

λmax − λmin

λmax + λmin
.

It is easy to see that the bounds remains unchanged if λmax < 0.

3.6.2 Chebyshev acceleration

Chebyshev’s acceleration method takes the idea even further. Suppose we
have an iterative method,

xn+1 = Gxn + c,
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and that we have used it to generate the sequence x0, x1, . . . , xn. Can we
use this existing sequence to get even closer to the solution? Specifically,
consider a linear combination,

un =
n∑

k=0

an,kxk.

We want to optimize this expression, with respect to the coefficients an,k such
that un is as close as possible to the fixed point x = Gx + c. Assume that
for all n,

n∑
k=0

an,k = 1.

Then,

un − x =
n∑

k=0

an,kxk − x =
n∑

k=0

an,k(xk − x).

Now, since (xk − x) = (Gxk−1 + c) − (Gx + c) = G(xk−1 − x), repeated
application of this recursion gives

un − x =
n∑

k=0

an,kG
k(x0 − x)

def
= pn(G)(x0 − x),

where pn(z) =
∑n

k=0 an,kzk. Optimality will be achieved if we take the co-
efficients an,k such to minimize the norm of pn(G), or instead, its spectral
radius. Note that

spr pn(G) = max
z∈Σ(pn(G))

|z| = max
z∈Σ(G)

|pn(z)|.

Suppose all we knew was that the eigenvalues of G lie in a set S. Then,
our goal is to find a polynomial of degree n, satisfying pn(1) = 1, which
minimizes

max
z∈S

|pn(z)|.
That is, we are facing another min-max problem,

p∗n = arg min
pn

max
z∈S

|pn(z)|.

This can be quite a challenging problem. We will solve it again for the case
where the spectrum of G is real, and confined to the set S = [a, b].
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Definition 3.12 (Chebyshev polynomials) The Chebyshev polynomials, Tk(x),
k = 0, 1, . . . , are a family of polynomials defined recursively by

T0(x) = 1

T1(x) = x

Tn+1(x) = 2x Tn(x)− Tn−1(x).

Applying the iterative relation we have

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1.

Note that for y ∈ [−1, 1], we can express y as cos x, in which case

T2(y) = T2(cos x) = 2 cos2 x− 1 = cos 2x = cos(2 cos−1 y)

T3(y) = T3(cos x) = 4 cos3 x− 3 cos x = cos 3x = cos(3 cos−1 y),

and so on. This suggests the following relation:

Lemma 3.13 For x ∈ [−1, 1] the Chebyshev polynomials have the following
explicit representation:

Tn(x) = cos(n cos−1 x).

Proof : We have the following relations,

cos[(n + 1)θ] = cos θ cos nθ − sin θ sin nθ

cos[(n− 1)θ] = cos θ cos nθ + sin θ sin nθ,

which upon addition gives

cos[(n + 1)θ] = 2 cos θ cos nθ − cos[(n− 1)θ].

Set now x = cos θ, we get

cos[(n + 1) cos−1 x] = 2 x cos[n cos−1 x]− cos[(n− 1) cos−1 x],

i.e., the functions cos[n cos−1 x] satisfy the same recursion relations as the
Chebyshev polynomials. It only remains to verify that they are identical for
n = 0, 1. ■
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Properties of the Chebyshev polynomials

➀ Tn(x) is a polynomial of degree n.

➁ |Tn(x)| ≤ 1 for x ∈ [−1, 1].

➂ For j = 0, 1, . . . , n,

Tn

(
cos

jπ

n

)
= cos(jπ) = (−1)j.

These are the extrema of Tn(x).

➃ For j = 1, 2, . . . , n,

Tn

(
cos

(j − 1
2)π

n

)
= cos

(
(j − 1

2
)π

)
= 0.

That is, the n-th Chebyshev polynomial has n real-valued roots and all
reside within the segment [−1, 1].

Proposition 3.6 Let pn(z) be a polynomial of degree n with p(z̃) = 1, z̃ *∈
[−1, 1]. Then

max
−1≤z≤1

|pn(z)| ≥ 1

|Tn(z̃)| .

Equality is satisfied for pn(z) = Tn(z)/Tn(z̃).

This proposition states that given that pn equals one at a point zn, there
is a limit on how small it can be in the interval [−1, 1]. The Chebyshev
polynomials are optimal, within the class of polynomials of the same degree,
in that they can fit within a strip of minimal width.

Proof : Consider the n + 1 points zi = cos(iπ/n) ∈ [−1, 1], i = 0, 1, . . . , n.
Recall that these are the extrema of the Chebyshev polynomials, Tn(zi) =
(−1)i.

We now proceed by contradiction, and assume that

max
−1≤z≤1

|pn(z)| <
1

|Tn(z̃)| .
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Figure 3.1: The functions T4(x), T5(x), T10(x), and T11(x).



Numerical linear algebra 77

If this holds, then a-forteriori,

|pn(zi)| − 1

|Tn(z̃)| < 0, i = 0, 1, . . . , n.

This can be re-arranged as follows

sgn[Tn(z̃)](−1)ipn(zi)− (−1)iTn(zi)

sgn[Tn(z̃)] Tn(z̃)
< 0,

or,

sgn[Tn(z̃)](−1)i

[
pn(zi)− Tn(zi)

Tn(z̃)

]
< 0.

Consider now the function

f(z) = pn(z)− Tn(z)

Tn(z̃)
.

It is a polynomial of degree at most n; its sign alternates at the zi, implying
the presence of n roots on the interval [−1, 1]; it has a root at z = z̃. This is
impossible, contradicting the assumption. ■

Proposition 3.7 Let pn(z) be a polynomial of degree n, pn(1) = 1, and let a, b
be real numbers such that 1 *∈ [a, b]. Then,

max
a≤z≤b

|pn(z)| ≥ 1

|Tn(w(1))| ,

where

w(z) =
2z − b− a

b− a
.

Equality is obtained for pn(z) = Tn(w(z))/Tn(w(1)).

Note that a polynomial of degree n composed with a linear function is
still a polynomial of degree n,

Proof : Take the case a < b < 1. Then,

w(1) =
2− b− a

b− a
= 1 + 2

1− b

b− a
def
= w̃ > 1.
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The converse relation is

z(w) =
1

2
[(b− a)w + a + b],

and z(w̃) = 1.

Let pn we a polynomial of degree n satisfying pn(1) = 1, and define
qn(w) = pn(z(w)). We have qn(w̃) = pn(1) = 1, hence, by the previous
proposition,

max
−1≤w≤1

|qn(w)| ≥ 1

|Tn(w̃)| ,
Substituting the definition of qn, this is equivalent to

max
−1≤w≤1

|pn(z(w))| = max
a≤z≤b

|pn(z)| ≥ 1

|Tn(w̃)| .
■

We have thus shown that among all polynomials of degree n satisfying
pn(1) = 1, the one that minimizes its maximum norm in the interval [a, b] is

pn(z) =
Tn(w(z))

Tn(w(1))
, with w(z) =

2z − b− a

b− a
.

What does this have to do with acceleration methods? Recall that we assume
the existence of an iterative procedure,

xn+1 = Gxn + c,

where spr G ∈ [a, b], and we want to improve it by taking instead

un =
n∑

k=0

an,kxk,

where
∑n

k=0 an,k = 1. We’ve seen that this amounts to an iterative method
with iteration matrix pn(G), where pn is the polynomial with coefficients an,k.
Thus, what we want is to find the polynomial that minimizes

max
a≤z≤b

|pn(z)|,
and now we know which it is. This will ensure that

error(n) ≤ error(0)

|Tn(w(1))| ,
and the right hand side decays exponentially fast in n. We are still facing a
practical problem of implementation. This will be dealt with now.
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Lemma 3.14 The family of polynomials pn(z) = Tn(w(z))
Tn(w(1)) can be constructed

recursively as follows:

p0(z) = 1

p1(z) =
2z − b− a

2− b− a
pn(z) = σnp1(z)pn−1(z) + (1− σn)pn−2,

where the constants σn are defined by

σ1 = 2 σn =

(
1− σn−1

2[w(1)]2

)−1

.

Proof : By the recursive property of the Chebyshev polynomials,

Tn(w(z)) = 2w(z) Tn−1(w(z))− Tn−2(w(z)).

Dividing by Tn(w(1)), and converting Tk’s into pk’s:

pn(z) =
2w(1) Tn−1(w(1))

Tn(w(1))
p(z)pn−1(w(z))− Tn−2(w(1))

Tn(w(1))
Tn−2(w(z)).

It remains to show that

ρn
def
=

2w(1) Tn−1(w(1))

Tn(w(1))
= σn and − Tn−2(w(1))

Tn(w(1))
= 1− σn.

That their sum is indeed one follows from the Chebyshev recursion relation.
It is also obvious that ρ1 = 2. Finally,

ρn−1 =
2w(1) Tn−2(w(1))

Tn−1(w(1))

=
2w(1) Tn−2(w(1))

Tn(w(1)) Tn(w(1))
2w(1)Tn−1(w(1))

Tn(w(1))
Tn(w(1))

2w(1)

= −[2w(1)]2
1− ρk

ρk
.

It only remains to invert this relation. ■
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Theorem 3.11 The sequence (un) of Chebyshev’s acceleration’s method can be
constructed as follows:

u1 = γ (Gx0 + c) + (1− γ)x0

un = σk [γ (Gxn−1 + c) + (1− γ)xn−1] + (1− σn)un−2,

where γ = 2/(2− b− a) and the σn are as above.

Comments:

➀ The (un) are constructed directly without generating the (xn).

➁ The first step is extrapolation, and the next ones are “weighted extrap-
olations”.

➂ The Chebyshev polynomials are not apparent (they are hiding...).

Proof : Start with n = 1,

u1 = a1,1x1 + a1,0x0 = a1,1(Gx0 + c) + a1,0x0.

The coefficients a1,0 and a1,1 are the coefficients of the polynomial p1(z). By
Lemma 3.14,

a1,1 =
2

2− b− a
= γ a1,0 = − a + b

2− b− a
= 1− γ.

Now to the n-th iterate. Recall that

un =
n∑

k=0

an,kxk = x +
n∑

k=0

an,k(xk − x) = x + pn(G)(x0 − x).

By Lemma 3.14,

pn(G) = σnp1(G)pn−1(G) + (1− σn)pn−2(G),

and p1(G) = γG + (1− γ)I. Applying this on x0 − x we get

un − x = σn [γG + (1− γ)I] (un−1 − x) + (1− σn)(un−2 − x)

= σn [γGun−1 + (1− γ)un−1]− σn [γGx + (1− γ)x]

+ (1− σn)un−2 − (1− σn)x.

It remains to gather the terms multiplying x. Since x = Gx + c is a fixed
point,

−σn [γGx + (1− γ)x]− (1− σn)x = σnγc− x.

Substituting into the above we get the desired result. ■
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✎ Exercise 3.28 (Computer exercise) The goal is to solve the system of equa-
tions: 

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4




x1

x2

x3

x4

 =


−4

0
4

−4

.


➀ Write explicitly the Jacobi iterative procedure,

xk+1 = Gxk + c.

➁ What is is range of eigenvalues of the matrix G?

➂ Is the Jacobi iterative procedure convergent?

➃ Write an algorithm for the Chebyshev acceleration method based on
Jacobi iterations.

➄ Implement both procedures and compare their performance.

3.7 The singular value decomposition (SVD)

Relevant, among other things, to the mean-square minimization: find x ∈ Rn

that minimizes ‖Ax−b‖2, where A ∈ Rm×n, and ∈ Rm (more equations than
unknowns). It has many other uses.

Since we are going to consider vectors in Rm and Rn, and operators
between these two spaces, we will use the notation ‖ · ‖m and ‖ · ‖n for the
corresponding vector 2-norms. Similarly, we will use ‖ · ‖m×n, etc., for the
operator 2-norms. We will also use Im, In to denote the identity operators
in the two spaces.

Recall that the norm of an m-by-n matrix (it will always be assumed that
m ≥ n) is defined by

‖A‖m×n = sup
‖x‖n=1

‖Ax‖m = sup
(x,x)n=1

√
(Ax, Ax)m.

A matrix Q is called orthogonal if its columns form an orthonormal set. If
the matrix is n-by-n, then its columns form a basis in Rn, and QT Q = In.
Since Q is invertible, it immediately follows that QT = Q−1, hence QQT = In

as well. If Q is an m-by-n orthogonal matrix, then QT Q = In, but the m-
by-m matrix QQT is not an identity.
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Lemma 3.15 Let x ∈ Rn, and Q be an orthogonal m-by-n matrix, m ≥ n,
then ‖Qx‖m = ‖x‖2

n.

Proof : This is immediate by

‖Qx‖2
m = (Qx, Qx)m = (x, QT Qx)n = (x, x)n = ‖x‖n.

■

Lemma 3.16 Let A be an n-by-n matrix, V be an orthogonal n-by-n matrix,
and U by an orthogonal m-by-n matrix. Then,

‖UAV T‖m×n = ‖A‖n×n.

Proof : By definition,

‖UAV T‖2
m×n = sup

(x,x)n=1
(UAV T x, UAV T x)m

= sup
(x,x)n=1

(AV T x, AV T x)n

= sup
(y,y)n=1

(Ay, Ay)n

= ‖A‖2
n×n,

where we have used the previous lemma in the passage from the first to the
second line, and the fact that and x on the unit sphere can be expressed as
V y, with y on the unit sphere. ■

Theorem 3.12 (SVD decomposition) Let A be an m-by-n matrix, m ≥ n.
Then, A can be decomposed as

A = UΣV T ,

where U is an m-by-n orthogonal matrix, V is an n-by-n orthogonal matrix,
and Σ is an n-by-n diagonal matrix with entries σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The columns of U , ui, are called the left singular vectors, the columns
of V , vi, are called the right singular vectors, and the σi are called the
singular values. This theorem states that in some sense “every matrix is
diagonal”. Indeed, for every right singular vector vi,

Avi = UΣV T vi = UΣei = σiUei = σiui.
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Thus, it is always possible to find an orthogonal basis {vi} in Rn, and an
orthogonal set {ui} in Rm, such that any x =

∑n
i=1 aivi is mapped into

Ax =
∑n

i=1 σiaiui.

Proof : The proof goes by induction, assuming this can be done for an (m−1)-
by-(n−1) matrix. The basis of induction is a column vector, which can always
be represented as a normalized column vector, times its norm, times one.

Let then A be given, and set v to be a vector on the unit sphere, ‖v‖n = 1,
such that ‖Av‖m = ‖A‖m×n (such a vector necessarily exists). Set then u =
Av/‖Av‖m, which is a unit vector in Rm. We have one vector u ∈ Rm, which
we complete (by Gram-Schmidt orthonormalization) into an orthogonal basis
U = (u, Ũ) ∈ Rm×m, UT U = UUT = Im. Similarly, we complete v ∈ Rn into
an orthonormal basis V = (v, Ṽ ) ∈ Rn×n. Consider the m-by-n matrix

UT AV =

(
uT

ŨT

)
A

(
v Ṽ

)
=

(
uT Av uT AṼ
ŨT Av ŨT AṼ

)
.

Note that u ∈ Rm, Ũ ∈ Rm×(m−1), v ∈ Rn and Ṽ ∈ Rn×(n−1). Hence,
uT Av ∈ R, uT AṼ ∈ R1×(n−1), ŨT Av ∈ R(m−1)×1, and ŨT AṼ ∈ R(m−1)×(n−1).

Now,

uT Av = ‖Av‖muT u = ‖A‖m×n
def
= σ,

and
ŨT Av = ‖Av‖m ŨT u = 0,

due to the orthogonality of u and each of the rows of Ũ . Thus,

UT AV =

(
σ wT

0 A1

)
,

where wT = uT AṼ and A1 = ŨT AṼ . We are going to prove that w = 0 as
well. On the one hand we have∥∥∥∥UT AV

(
σ
w

)∥∥∥∥2

m

=

∥∥∥∥(
σ2 + wT w

A1w

)∥∥∥∥2

m

≥ (σ2 + wT w)2.

On the other hand∥∥∥∥UT AV

(
σ
w

)∥∥∥∥2

m

≤ ∥∥UT AV
∥∥2

m×n

∥∥∥∥(
σ
w

)∥∥∥∥2

m

= ‖A‖2
m×n (σ2 + wT w),
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where we have used the above lemma for
∥∥UT AV

∥∥2

m×n
= ‖A‖2

m×n. Since

‖A‖2
m×n = σ2, it follows from these two inequalities that

(σ2 + wT w)2 ≤ σ2(σ2 + wT w),

i.e., w = 0 as claimed.

Thus,

UT AV =

(
σ 0
0 A1

)
,

At this stage, we use the inductive hypothesis for matrices of size (m− 1)×
(n− 1), and write A1 = U1Σ1V T

1 , which gives,

UT AV =

(
σ 0
0 U1Σ1V T

1

)
=

(
1 0
0 U1

) (
σ 0
0 Σ1

) (
1 0
0 V1

)T

,

hence

A =

[
U

(
1 0
0 U1

)] (
σ 0
0 Σ1

) [
V

(
1 0
0 V1

)]T

.

It remains to show that σ is larger or equal to all the diagonal entries of Σ,
but this follows at once from the fact that

σ = ‖A‖m×n =

∥∥∥∥(
σ 0
0 Σ1

)∥∥∥∥
n×n

=

∣∣∣∣max
i

(
σ 0
0 Σ1

)
ii

∣∣∣∣ .

This concludes the proof. ■

Having proved the existence of such a decomposition, we turn to prove a
number of algebraic properties of SVD.

Theorem 3.13 Let A = UΣV T be an SVD of the m-by-n matrix A. Then,

➀ If A is square symmetric with eigenvalues λi, and orthogonal diagonal-
izing transformation U = (u1, . . . , un), i.e., A = UΛUT , then an SVD
of A is with σi = |λi|, the same U and V with columns vi = sgn(λi)ui.

➁ The eigenvalues of the n-by-n (symmetric) matrix AT A are σ2
i , and the

corresponding eigenvalues are the right singular vectors vi.

➂ The eigenvalues of the m-by-m (symmetric) matrix AAT are σ2
i and

m−n zeros. The corresponding eigenvectors are the left singular vectors
supplemented with a set of m− n orthogonal vectors.
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➃ If A has full rank (its columns are independent), then the vector x ∈ Rn

that minimizes ‖Ax− b‖m is x = V Σ−1UT b.

➄ ‖A‖m×n = σ1. If, furthermore, A is square and non-singular then
‖A−1‖n×n = 1/σn, hence the condition number is σ1/σn.

➅ Suppose that σ1 ≥ σn ≥ · · · ≥ σr > σr+1 = · · · = σ − n = 0. Then the
rank of A is r, and

null A = span(vr+1, . . . , vn)

range A = span(u1, . . . , ur).

➆ Write V = (v1, . . . , vn) and U = (u1, . . . , un). Then,

A =
n∑

i=1

σiuiv
T
i ,

i.e., it is a sum of rank-1 matrices. The matrix of rank k < n that is
closest to A is

Ak =
k∑

i=1

σiuiv
T
i ,

and ‖A− Ak‖2 = σk+1. Ak can also be written as

Ak = UΣkV
T ,

where Σk = diag(σ1, . . . , σk, 0, . . . , 0).

Proof :

➀ This is obvious.

➁ We have
AT A = V ΣT UT UΣV T = V ΣT ΣV T ,

where we have used the fact that UT U = Im. This is an eigen-
decomposition of AT A.

➂ Take an m-by-(m − n) matrix Ũ such that (U, Ũ) is orthogonal (use
Gram-Schmidt). Then,

AAT = (U, Ũ)ΣV T V ΣT (U, Ũ)T = (U, Ũ)ΣΣT (U, Ũ)T ,


