Chapter 3

Numerical linear algebra

3.1 Motivation

In this chapter we will consider the two following problems:

@ Solve linear systems Ax = b, where x,b € R™ and A € R"*".
@ Find z € R™ that minimizes

m

i=1
where b € R™ and A € R™*". When m > n there are more equations
than unknowns, so that in general, Ax = b cannot be solved.

Example 3.1 (Stokes flow in a cavity) Three equations,

op  Pu  Pu
oz~ 02 T o
op v
dy 0w oy
%4_@:0
ox Oy ’

for the functions u(z,y), v(z,y), and p(z,y); (z,y) € [0,1]>. The boundary
conditions are
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Solve with a staggered grid. A linear system in n? + 2n(n — 1) unknowns.
(And by the way, it is singular).

Example 3.2 (Curve fitting) We are given a set of m points (a;,b;) in the
plane, and we want to find the best cubic polynomial through these points.
L.e, we are looking for the coefficients x1, x9, x3, x4, such that the polynomial

4
ply) = aiy’™
j=1

minimizes
m

Z [p(yi) - bi]2 )

i=1

where the vector p(y;) is of the form Az, and

1y y; yz
I v vy v
A=| 77 7
1 oym ¥2 v

3.2 Vector and matrix norms

Definition 3.1 (Norm) Let X be a (real or complex) linear space. It is normed
if there exists a function || - || : X — R (the norm) with the following prop-
erties:

@ ||z|| = 0 with ||z|| = 0 iff x = 0.
@ |jaz]| < felflz]-
@ [l +yll < llzll -+l

E)(amp[e 3.3 The most common vector norms are the p-norms defined (on

C") by /
n 1/p
[zl = (Z |sz|”> ;
i=1
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which are norms for 1 < p < oo. Another common norm is the infinity-
norm,
[2]loo = max |z;].
1<i<n
It can be shown that || - ||ec = limy, o0 || - [|-

N Exercise 3.1 Show that the p-norms do indeed satisfy the properties of a
norm.

Lemma 3.1 (Holder inequality) Let p,q > 1 with 1/p+ 1/q = 1. Then,

n n 1/p n 1/q
|Zxk3/k| < (Z\xk\p> <Z|xk\q> .
k=1

k=1 k=1

Proof: From Young’s inequality

P ble
< 9
p q
follows
DTV TN SETUT SV 7H S N
lzllpllylle = = Nzl vl — & pllells - Zallylz ~ p «

Lemma 3.2 (MinKowsKi inequality) Let p,q > 1 with 1/p+1/q =1, then

n 1/p n 1/p n 1/p
(Z\xk‘i‘yk\p) < <Z|xk\p> + (Z\Z/k\p> :
k=1 k=1 k=1

Proof: We write
g A ynlP < Jarllen +ylP ™+ lynllze + v

Using Holder’s inequality for the first term,

n n 1/p n
S foullon + P < (Z w) (Z s yk,q@n)

1/q
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Note that ¢(p — 1) = p. Similarly, for the second term

n n l/p n l/q
>yl + yel ™t < (Z \yk|p> (Z |z + M) ,
k=1 k=1 k=1

Summing up,

n n 1/‘1
Dol +wlr < (Z o, +yk|p) (1]lp + 19lly) -
k=1 k=1

Dividing by the factor on the right-hand side, and using the fact that 1—1/q =
1/p we get the required result. Il

Definition 3.2 (Inner product space) Let X be a (complex) vector space. The
function (-,+) : X x X + C is called an inner product if:

Example 3.4 For X = C" the form

i=1

is an inner product.

Lemma 3.3 (Cauchy-Schwarz inequality) The following inequality holds in an
mner product space.

(2, y)I* < (2, 2)(y,y)-
Proof: We have,

0< (fL’ —Qay,r — O[y) = (ZL‘7fL’) - O[(y,l') —E(x,y) + |a|2(yay)
Suppose that (y,z) = r exp(20), then take o =t exp(—:0). For every ¢,

(z,2) — 2rt +t*(y,y) > 0.
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Since we have a quadratic inequality valid for all ¢ we must have

r? = (z,7)(y,y) <0,

which completes the proof. B

Comments:

@® The Cauchy-Schwarz inequality is a special case of Holder’s inequality.

@ A third method of proof is from the inequality
0 < (W, 9)x—(z,9)y, (¥, 9)r—(2,9)y) = (v, y) [(x,2) (¥, y) = [(z, y)]*] -

Lemma 3.4 In an inner product space \/(x,x) is a norm.

Proof: Let ||z|| = v/(x,z). The positivity and the homogeneity are immedi-
ate. The triangle inequality follows from the Cauchy-Schwarz inequality

Iz +yll* = (z +y.2+y) = l2]* + lylI* + (=, 9) + (4, )
< ll2l* + lyl* + 21z ) < =1 + gl + 2llllyl = (=]l + lyl)*.

|

Definition 3.3 An Hermitian matriz A is called positive definite (s.p.d) if
zT Az >0

for all x # 0.

Definition 3.4 (Convergence of sequences) Let (x,,) be a sequence in a normed
linear space X. It is said to converge to a limit x if ||x, — z|| — 0.

In R™ convergence in norm always implies convergence of each of the
component.

Lemma 3.5 The norm || - || is a continuous mapping from X to R.
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Proof: This is an immediate consequence of the triangle inequality, for
[z = [lz —y +yll < [lz —yll + [lyll,

hence
|l =Nyl < llz —yll.

Take now y = x,, and the limit n — oco. W

Definition 3.5 Let || - || and || - ||" be two norms on X. They are called equiv-
alent if there exist constants ci,co > 0 such that

allzll < llz]” < coflz]
forallz € X.

Theorem 3.1 All norms over a finite dimensional vector space are equivalent.

Proof: Let || - || and || - || be two norms. It is sufficient to show the existence
of a constant ¢ > 0 such that

=" < cll

for all z. In fact, it is sufficient to restrict this on the unit ball of the norm
||-]|. Thus, we need to show that for all  on the unit ball of ||-||, the norm ||- ||’
is bounded. This follows from the fact that the norm is a continuous function
and that the unit ball of a finite-dimensional vector space is compact. ll

Lemma 3.6 In R™ the following inequalities hold:

lzlla < flzlly < Vol
2]l < llzll2 < Vnllz]ls
[2][oo < llzlli < 7 |7|co-

N ‘Exercise 3.2 Prove the following inequalities for vector norms:

lzll2 < flzlly < v/nllz]l2
2lloe < ll2ll2 < Vo
[l < flzfls <7 f|2]loo-
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Definition 3.6 (Subordinate matrix norm) Let ||-|| be a norm of X =R™. For

every A : X — X (an operator on the space) we define the following function
-1 (X, X) — R,

= sup 1221

ozeex ||zl

(3.1)
Comments:
@® By the homogeneity of the norm we have

|A]l = sup
0#zeX

AiH — sup ||Az].
[z

flz]l=1
@ Since the norm is continuous and the unit ball is compact then,

| Al} = max [[Az]],

llzll=1

and the latter is always finite.
® By definition, for all A and =z,

[Az || < [l ][]

Theorem 3.2 Eq. (3.1) defines a norm on the space of matrices R™ — R",
which we call the matriz norm subordinate to the vector norm || - ||.

Proof: The positivity and the homogeneity are immediate. It remains to
show the triangle inequality:

A+ B = sup [[(A+ B)z|

llzl=1

< sup ([[Az| +[|Bz])

flz(|=1

< sup [[Az] + sup [[Bz|.
Jall=1 Jall=1

|
Lemma 3.7 For every two matrices A, B and subordinate norm || - ||,
IAB| < [|A[I[|B]-

In particular,

IA*] < (1A
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Proof: Obvious. B

N Exercise 3.3 Show that for every invertible matrix A and norm || - ||,
LA™ > 1.

Example 3.5 (infinity-norm) Consider the infinity norm on vectors. The ma-
trix norm subordinate to the infinity norm is

Z a; ;T = maxz |ai ;|-

N ‘Exercise 3.4 Prove that the matrix norm subordinate to the vector norm
|- 1]y 1s

[Allc = sup max

l[#]loo=1

[A[ly = max Z |zl

1<5<n

Example 3.6 (2-norm) Consider now the matrix 2-norm subordinate to the
vector 2-form
[z]]2 = (@, ).

By definition,
|A||2 = sup (Az, Az) = sup (ATAz, ).

l[z]l2=1 [[z]l2=1

The matrix ATA is Hermitian, hence it can be diagonalized ATA = QTAQ),
where @) is unitary. Then

A3 = sup (QTAQz,z) = sup (AQz,Qz) = sup (Ay,y),

llzlla=1 llzlla=1 lyll2=1
where we have used the fact that y = QQ~'x has unit norm. This gives,
|A[l5 = sup ZA lvil?,
lyll2=1"24

which is maximized by taking y; to choose the maximal eigenvalue. Thus,

||All2 = v/spr ATA,

where we have used the fact that all the eigenvalue of an Hermitian matrix
of the form ATA are real and positive.



Numerical linear algebra 45

N Exercise 3.5  © Let || - || be a norm on R™, and S be an n-by-n non-

singular matrix. Define ||z||" = ||Sx||, and prove that || - ||’ is a norm on
R™.
@ Let || - || be the matrix norm subordinate to the above vector norm.

Define ||A|" = ||[SAS™!||, and prove that || - ||’ is the matrix norm
subordinate to the corresponding vector norm.

N ‘Exercise 3.6 True or false: if || -] is a matrix norm subordinate to a vector
norm, so is || - || = 4| - || (the question is not just whether || - ||’ satisfies the
definition of a norm; the question is whether there exists a vector norm, for
which || - ||’ is the subordinate matrix norm!).

Neumann series Let A be an n-by-n matrix and consider the infinite series
o
k
> A"
k=0

where A" = I. Like for numerical series, this series is said to converge to a
limit B, if the sequence of partial sums

B, = i AF
k=0

converges to B (in norm). Since all norms on finite dimensional spaces are
equivalent, convergence does not depend on the choice of norm. Thus, we
may consider any arbitrary norm || - ||.

Recall the root test for the convergence of numerical series. Since it only
relies on the completeness of the real numbers, it can be generalized as is for
arbitrary complete normed spaces. Thus, if the limit

L= lim [|A"|Y"

exists, then L < 1 implies the (absolute) convergence of the above series, and
L > 1 implies that the series does not converge.

Proposition 3.1 If the series converges absolutely then

iAk =(I—-A"



46 Chapter 3

(and the right hand side exists). It is called the Neumann series of (I —
A)~L

Proof: We may perform a term-by-term multiplication

(I—A)) A= (A — A =T~ lim A",
k=0 k=0 *

but the limit must vanish (in norm) if the series converges. Bl

We still need to establish the conditions under which the Neumann series
converges. First, we show that the limit L always exists:

Proposition 3.2 The limit lim,, ., |A"||"/" exists and is independent of the
choice of norms. The limit is called the spectral radius of A and is denoted

by spr(A).
Proof: Let a,, = log||A"||. Clearly,
Ui = log [|A"T ]| < log [A"[||A™]] = an + am,
i.e., the sequence (a,) is sub-additive. Since the logarithm is a continuous
function on the positive reals, we need to show that the limit
. n 1/n _ . an

lim log [|A"]|"" = lim —

n—o0 n—oo M
exists. This follows directly from the sub-additivity.

Indeed, set m. Then, any integer n can be written as m = mq + r, with
0 <r < m. We have,

n n n
Taking n — oo, the right hand side converges to a,,/m, hence,

a a
limsup — < —=.
n m
Taking then m — oo we have

. a .. a
limsup — < liminf -
n m
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which proves the existence of the limit. The independence on the choice of
norm results from the equivalence of norms, as

Cl/nHAnHl/n S (HAnH/)l/n S Ol/nHAnHl/n'
[ |

Corollary 3.1 The Neumann series Y, AF converges if spr A < 1 and diverges
if sprA > 1.

Thus, the spectral radius of a matrix is always defined, and is a property
that does not depend on the choice of norm. We now relate the spectral
radius with the eigenvalues of A. First, a lemma:

Lemma 3.8 Let S be an invertible matriz. Then, spr S~tAS = spr A.

Proof: This is an immediate consequence of the fact that ||S™!- S| is a
matrix norm and the independence of the spectral radius on the choice of
norm. M

Proposition 3.3 Let X(A) be the set of eigenvalues of A (the spectrum).
Then,

spr A = max |\l
AES(A)

Proof: By the previous lemma it is sufficient to consider A in Jordan canon-
ical form. Furthermore, since all power of A remain block diagonal, and we
are free to choose, say, the infinity norm, we can consider the spectral radius
of a single Jordan block; the spectral radius of A is the maximum over the
spectral radii of its Jordan blocks.

Let then A be an m-by-m Jordan block with eigenvalue A, i.e.,
A=A+ D,

where D has ones above its main diagonal, i.e., it is nil-potent with D™ = 0.
Raising this sum to the n-th power (n > m) we get

An —\"J + TZ)\n_lD 4 (Z) )\n—2D2 4o ( n )/\n—m-l-le—l‘

m—1
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Taking the infinity norm we have
A < (" )P e (A1)
m — 1

Taking the n-th root and going to the limit we obtain that spr A = |[A\|. B
Proposition 3.4 For every matriz A,

sprA < inf 1A,
where the infimum is over all choices of subordinate matriz norms.

Proof: For every eigenvalue A with (normalized) eigenvector u, and every
subordinate matrix norm || - ||,

[A[} = ([ Aull = [A[Jfull = [A].

It remains to take the maximum over all A € ¥(A) and the infimum over all
norms. M

We will now prove that this inequality is in fact an identity. For that we
need the following lemma:

Lemma 3.9 Fvery matriz A can be “almost” diagonalized in the following
sense: for every e > 0 there exists a non-singular matrixz S such that

A=SYA+T)S,

where A is diagonal with its element coinciding with the eigenvalues of A,
and T is strictly upper triangular with ||T||« < €.

Proof: There exists a trasformation into the Jordan canonical form:
A=P YA+ D)P,
where D is nil-potent with ones above its main diagonal. Let now

6 )
0 € .. 0
FE =
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and set E~'P = S. Then
A=ST"'E'A+D)S=S"'(A+E'DE)S,
where T'= EDE~! is given by

—1 i
T = E E DB ;=€7'D;j.

k.l

But since the only non-zero elements are D; ;1 = 1, we have T%"! = ¢, and
1T = €. W

Theorem 3.3 For every matriz A,

spr A = 1”11Hf 1Al

Proof: We have already proved the less-or-equal relation. It remains to show
that for every € > 0 there exists a subordinate matrix norm || - || such that

| Al <sprA+e.

This follows from the fact that every matrix is similar to an almost diago-
nal matrix, and that the spectral radius is invariant under similarity trans-
formations. Thus, for every ¢ we take S as in the lemma above, and set
Il =11S7" - Sllsc, hence

A = |1A + Tlloo < |Alloo + ||T]|oc = spr A + e.
[ |

N Exercise 3.7 A matrix is called normal if it has a complete set of orthog-
onal eigenvectors. Show that for normal matrices,

I|A||2 = spr A.
N ‘Exercise 3.8 Show that spr A < 1 if and only if

lim A%z =0, V.

k—o0

N ‘Exercise 3.9 True or false: the spectral radius spr A is a matrix norm.
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N ‘Exercise 3.10 Is the inequality spr AB < spr Aspr B true for all pairs of
n-by-n matrices? What about if A and B were upper-triangular? Hint: try

to take B = AT and
01
(1)

N ‘Exercise 3.11 Can you use the Neumann series to approximate the inverse
of a matrix A? Under what conditions will this method converge?

N Exercise 3.12 (Computer exercise) Construct a “random” 6-by-6 matrix A.
Then plot the 1,2, and infinity norms of ||A™||*/™ as function of n with the
maximum 7 large enough so that the three curves are sufficiently close to the
expected limit.

Normal operators

Definition 3.7 A matriz A is called normal if it commutes with its adjoint,
ATA = AAT,

Lemma 3.10 A is a normal operator if and only if
| Az = [|ATz]

for every x € R™.

Proof: Suppose first that A is normal, then for all x € R,
|Az|2 = (Ax, Az) = (v, ATAz) = (z, AATz) = (Alz, Alz) = || ATz|2.
Conversely, let ||Az|y = ||[ATz|2. Then,
(z, AATz) = (ATz, ATz) = (Ax, Ax) = (z, AT Ax),
from which follows that
(z,(AAT — ATA)z) = 0, Va € R™.

Since AAT — ATA is symmetric then it must be zero (e.g., because all its
eigenvalues are zero, and it cannot have any nilpotent part). Il
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Lemma 3.11 For every matriz A,

IATAll = [|A]13.

Proof: Recall that the 2-norm of A is given by
|Al|? = spr ATA.

On the other hand, since A'A is Hermitian, its 2—norm coincides with its
largest eigenvalue. B

Theorem 3.4 If A is a normal operator then
[A™[|l2 = [[All3,

and in particular spr A = || Al|2.

Proof: Suppose first that A was Hermitian. Then, by the previous lemma
1472 = | ATAll2 = || AII3.

Since A? is also Hermitian we then have |A*|y = || A]|3, and so on for every
n = 2™. Suppose then that A is normal (but no necessarily Hermitian), then
for every n = 2™,

1A™[13 = 1(AT)" A%l = [I(ATA)"]|2 = [[(ATA) I3 = [ Al",

hence ||A,ll2 = [|A|]5. It remains to treat the case of general n. Write then
n=2"—r r>0. We then have

AT = [IA™ |2 < [|A™|2]| All5,

hence ||A]|5 < [|A™||2- The reverse inequality is of course trivial, which proves
the theorem. Il

3.3 Perturbation theory and condition number

Consider the linear system
Ax =b,
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and a “nearby” linear system
(A+5A) = (b+ 0b).

The question is under what conditions the smallness of A, b guarantees the
smallness of dx = & — x. If dx is small the problem is well-conditioned, and
it is ill-conditioned otherwise.

Subtracting the two equations we have
Az —x) +0A T = db,
or,
dx = A" (—6AZ +6D).
Taking norms we obtain an inequality
loz ] < AT (ISA 2] + Nlobll)
which we further rearrange as follows,
|| 1 10A[l  1[obl]
T S 1ATHA + ]
1]l [AI ATz

We have thus expressed the relative change in the output as the product of
the relative change in the input (we’ll look more carefully at the second term
later) and the number

k(A) = [ATH[IAL
which is the (relative) condition number. When k(A) is large a small

perturbation in the input can produce a large perturbation in the output.

In practice,  will be the computed solution. Then, provided we have
estimates on the “errors” dA, and 0b, we can estimate the relative error
|0z]|/]|Z]|]. From a theoretical point of view, however, it seems “cleaner”
to obtain an error bound which in independent of dz (via ). This can be
achieved as follows. First from

(A+6A)(z+62) = (b+06b) = (A+35A)6x = (—6Az + ob)

we extract
5 = (A+6A) Y(=6Ax + 6b)
=[A(I + AiléA)]*l(—éA:c + db)
= (I +A'6A) A (—5Ax + 6b).
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Taking now norm and applying the standard inequalities we get

o )
“” H” < (I + A5 A) A7 <II5AH ; '|'| ,"’)

Now, if spr A='dA < 1, we can use the Neumann series to get the following
estimate,

o0 o0 1
II+AT A =11 p_(=AT6A" < )y [IAT " 0A]" = :
; ; L—[[A=t[floA]
Combining with the above,
1] A~ < 160
< I6A[ + T~
el = 1=l A=H[][6 Al [E
_ KA (HMII L _llobl )
T () B \ AT TAT o]
<4 _ (HMH N H&?H) |
(BT \TA] o
where we have used the fact that [|A||||z|| > [|Az| = ||b]|. In this (cleaner)
formulation the condition number is
K(A)
1— k(AR5

which is close to x(A) provided that §A is sufficiently small, and more pre-

cisely, that x(A) gl = [A7Y[[l6A] < 1.

We conclude this section by establishing another meaning to the condition
number. It is the reciprocal on the distance to the nearest ill-posed problem.
A large condition number means that the problem is close in a geometrical
sense to a singular problem.

Theorem 3.5 Let A be non-singular, then

1 [0A]2
A+ 0A
(A = min { Tall, + 0A is singular

where k(A) is expressed in terms of 2-norm (Euclidean).
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Proof: Since k(A) = ||Al|2 [|A7Y|2, we need to show that

1
1A=

= min {[[0A]|2 : A+ JA is singular} .

If |0A]l2 < ﬁ, then ||A7!||2||6A]|2 < 1, which implies the convergence of

the Neumann series

D (—ATHA) = (14 ATIA) T = AT A+ 5A)
n=0
ie.,
6A]]2 < ﬁ = A+ A is not singular,
2
or,

1
min {||0A|]z : A+ 0A is singular} > AT,
2
To show that this is an equality it is sufficient to construct a §A of norm

—— so that A + 6A is singular. By definition, there exists an z € R”

A=
on the unit sphere for which ||[A™ x|y = ||A7Y||s. Let then y = ﬁ, be
another unit vector and construct
T
Yy
0A=——"—.
A=z
First note that
1 1 1
§A|s = ———— max |lzy’ 2|, = max |y z| = ,
194l = ey, e Vow =l = gy, e 2l = ey

where we have used the fact that ||z|s = 1, and the fact that |y” 2| is maxi-
mized for z = y?. Finally, A 4+ §A is singular because

T
Ty T
A+6Ay=(A- Ay — —— =
(A+04)y ( \|A‘1||2)y YA !
|

Comment: Note how the theorem relies on the use of the Euclidean norm.
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N ‘Exercise 3.13 The spectrum Y(A) of a matrix A is the set of its eigen-
values. The e-pseudospectrum of A, which we denote by 3.(A), is defined
as the set of complex numbers z, for which there exists a matrix dA such
that ||0Al|s < € and z is an eigenvalue of A+ JA. In mathematical notation,

S(A)={z€C: A, |6Alls <€, z € N(A+5A)}.

Show that
Y (A) = {z eC: ||(z] — A)_ng > 1/6}.

N Exercise 3.14 Let Ax = b and (A + §A)Z = (b+ 0b). We showed in class
that dx = & — x satisfies the inequality,

ozl < [IA7H 2 (I8A[l2ll 22 + [13b]]2) -

Show that this is not just an upper bound: that for sufficiently small ||§A]|2
there exist non-zero A, db such that the above in an equality. (Hint: follow
the lines of the proof that links the reciprocal of the condition number to the
distance to the nearest ill-posed problem.)

3.4 Direct methods for linear systems

Algorithms for solving the linear system Ax = b are divided into two sorts:
direct methods give, in the absence of roundoff errors, an exact solution
after a finite number of steps (of floating point operations); all direct methods
are variations of Gaussian elimination. In contrast, iterative methods
compute a sequence of iterates (x,,), until x,, is sufficiently close to satisfying
the equation. Iterative methods may be much more efficient in certain cases,
notably when the matrix A is sparse.

3.4.1 Matrix factorization

The basic direct method algorithm uses matrix factorization—the repre-
sentation of a matrix A as a product of “simpler” matrices. Suppose that A
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was lower-triangular:

ai | by
a21 A22 X2 by
Ap1 Ap2 - Ann Tp bn

Then the system can easily be solved using forward-substitution:

Algorithm 3.4.1: FORWARD-SUBSTITUTION(A, b)

fori=1ton
do z; = (bi — St az‘kak> Jai

Similarly, if A was upper-diagonal,

a1 a2 -+ Qip X by
Qg2 -+ QAap X2 by
Ann Ty by,

Then the system can easily be solved using backward-substitution:

Algorithm 3.4.2: BACKWARD-SUBSTITUTION(A, b)

for i = n downto 1
do Xr; = (b, — ZZ:iJrl aikxk) /aii

Finally, if A is a permutation matrix, i.e., an identity matrix with its
rows permuted, then the system Az = b only requires the permutation of the
rows of b.

Matrix factorization consists of expressing any non-singular matrix A as
a product A = PLU, where P is a permutation matrix, L is non-singular
lower-triangular and U is non-singular upper-triangular. Then, the system
Ax = b is solved as follows:

LUz =P 'b=P"b permute the entries of b
Uz = L™ (PTb) forward substitution
= UYL 'PTh) backward substitution.
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This is the general idea. We now review these steps is a systematic manner.

Lemma 3.12 Let P, Py, P, be n-by-n permutation matrices and A be an n-by-
n matrix. Then,

@® PA is the same as A with its rows permuted and AP is the same as A
with its column permuted.

® pl=pT,
® det P = #£1.

@ PP, is also a permutation matrix.

Proof: Let m : [1,n] — [1,n] be a permutation function (ono-to-one and
onto). Then, the entries of the matrix P are of the form P;; = 0,-1(;) ;. Now,

PA);; = Z Or=1(i) kCkj = Gr=1(i),j
k=1

j = Z Aik57r—1(k),j@kj = Qix(4)>

which proves the first assertion. Next,

PTP Z(S ~1(3) Ok, 7= 1(j Z(S% (k)0 = 0ij,

which proves the second assertion. The determinant of a permutation matrix
is £1 because when two rows of a matrix are interchanged the determinant
changes sign. Finally, if P, and P, are permutation matrices with maps m
and 7o, then

P1P2 25 25 Z)k(skﬂ'z

= 5 i) = 5@1(”;1(@-))4-
m

Definition 3.8 The m-th principal sub-matrix of an n-by-n matriz A is
the square matrix with entries a;;, 1 < 1,5 < m.
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Definition 3.9 A lower triangular matriz L is called unit lower triangular
if its diagonal entries are 1.

Theorem 3.6 A matriz A has a unique decomposition A = LU with L unit
lower triangular and U non-singular upper triangular if and only if all its
principal sub-matrices are non-singular.

Proof: Suppose first that A = LU with the above properties. Then, for
every 1 < m < n,

(An A12> _ <L11 ) (Un U12)
Agr Ax Loy Lo Us)’

where Aj; is the m-th principal sub-matrix, L, and Loy are unit lower tri-
angular and Uy; and Uyy are upper triangular. Now,

All = Lll Ull

is non-singular because det A;; = det L1y det Uy = HZL u; # 0, where the
last step is a consequence of U being triangular and non-singular.

Conversely, suppose that all the principal sub-matrices of A are non-
singular. We will show the existence of L, U by induction on n. For n =1,
a = 1-a. Suppose that the decomposition holds all (n—1)-by-(n—1) matrices.

Let A’ be of the form )
;o b
= ()

where b, ¢ are column vectors of length (n — 1) and d is a scalar. By assump-
tion, A = LU. Thus, we need to find vectors [,u € R*! and a scalar v such

()5 ) ()

Expanding we have

b= Lu
g =1
d=1Tu+~.

The first and second equation for u, [l can be solved because by assumption
L and U are invertible. Finally, v is extracted from the third equation. It
must be non-zero otherwise A’ would be singular. l
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A matrix A may be regular and yet the LU decomposition may fail. This
is where permutations are necessary.

Theorem 3.7 Let A be a non-singular n-by-n matriz. Then there exist per-
mutation matrices Py, Py, a unit lower triangular matriz L and an upper
triangular matriz L, such that

PlAP, = LU.

FEither Py or Py can be taken to be a unit matriz.

Proof: The proof is by induction. The case n = 1 is trivial. Assume this
is true for dimension n — 1. Let then A be a non-singular matrix. Thus,
every row and every column has a non-zero element, and we can find permu-
tation matrices P{, Py such that a;; = (P{APj)1; # 0 (only one of them is
necessary ).

Now, we solve the block problem

, ;o a1 A% . 1 0 U111 qlg
PlAPQ_ (A21 A22 N L21 I 0 A22 ’

where AQQ, I and AQQ are (n — 1)—by—(n — 1) matrices, and A127 A21 LQl, U12
and are (n — 1)-vectors; uy; is a scalar. Expanding, we get

T -~
U1 = a1, A12 = U12, A21 = L21U11, A22 = L21U12 + Azz'

Since det A # 0 and multiplication by a permutation matrix can at most
change the sign of the determinant, we have

0 # det PlAP, = 1 - uy; - det Ay,

from which we deduce that /~1~22 is non-singular. Applying the induction, there
exist permutation matrices P;, P, and triangular matrices Log, Usg such that

p112122p2 = Z22022-
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Substituting we get
1 0 U111 UT
PP, = (L21 I) ( 0o Pr EQQ&QJ—”; )
_(1 O)(1~O~)(u11 ~U1T2>
" \Lay I)\O PlLy 0 UypPy
(e ) (5 i)
-~ \Lay PlLy 0 UxpPl

(1 0N 1 0 fun ULRY) (1 0
~\0 PI)\PiLy Ln)\ 0 Uy )\0 Pf

The two outer matrices are permutation matrices whereas the two middle
matrices satisfy the required conditions. This completes the proof. B

A practical choice of the permutation matrix, known as Gaussian elimi-
nation with partial pivoting (GEPP) is given is the following corollary:

Corollary 3.2 It is possible to choose Py =1 and P| so that a1y is the largest
entry in absolute value in its column.

The PLU with partial pivoting algorithm is implemented as follows:

Algorithm 3.4.3: LU FACTORIZATION(A)

fori=1ton—1
(/* permute only with rows under ¢ */
permute the rows of A, L such that a; # 0
/* calculate Loy */
for j=i1+1ton
do lji = aji/aii
/* calculate U */
for j=iton
do Uij; = Q45
/* change Ay into Agy * /
for j=i+1ton
dofor k=i+1ton
do A = Ajk — lﬂum

\
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Comments:

@ It can be checked that once [;; and w;; are computed, the corresponding
entries of A are not used anymore. This means that U, L can overwrite
A. (No need to keep the diagonal terms of L.)

@ Since the algorithm involves row permutation, the output must also
provide the permutation matrix, which can be represented by a vector.

® In practice, there is no need to actually permute the entries of the
matrix. This can be done “logically” only.

Operation count The number of operations needed for LU factorization can
be deduced directly from the algorithm:

n—1

Z (Z + Z Z 2> :Z[(n—i)+2(n—i)2] :§n3+0(n2).

Since the forward and backward substitution require O(n?) operations, the

number of operations needed to solve the system Ax = b is roughly %n?’.

N Exercise 3.15 Show that every matrix of the form

b 3)

a,b,# 0, has an LU decomposition. Show that even if the diagonal elements
of L are 1 the decomposition is not unique.

N ‘Exercise 3.16 Show that if A = LU is symmetric then the columns of L
are proportional to the rows of U.

N ‘Exercise 3.17 Show that every symmetric positive-definite matrix has an
LU-decomposition.

N Exercise 3.18 Suppose you want to solve the equation AX = B, where
Ais n-by-n and X, B are n-by-m. One algorithm would factorize A = PLU
and then solve the system column after column using forward and backward
substitution. The other algorithm would compute A~! using Gaussian elim-
ination and then perform matrix multiplication to get X = A™'B. Count
the number of operations in each algorithm and determine which is more
efficient.
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N ‘Exercise 3.19 Determine the LU factorization of the matrix

6 10 O
12 26 4
0 9 12

N ‘Exercise 3.20 (Computer exercise) Construct in Matlab an n-by-n matrix
A (its entries are not important, but make sure it is non-singular), and verify
how long its takes to perform the operation B=inv (A) ;. Repeat the procedure
for n = 10, 100, 1000, 2000.

3.4.2 Error analysis
The two-step approach for obtaining error bounds is as follows:

@ Analyze the accumulation of roundoff errors to show that the algorithm
for solving Ax = b generates the exact solution z of the nearby problem
(A+06A)T = (b+ 6b), where §A, 6b (the backward errors) are small.

@ Having obtained estimates for the backward errors, apply perturbation
theory to bound the error & — x.

Note that perturbation theory assumes that 0 A, 0b are given. In fact, these
perturbations are just “backward error estimates” of the roundoff errors
present in the computation.

We start with backward error estimates, in the course of which we will
get a better understanding of the role of pivoting (row permutation). As a
demonstration, consider the matrix

0.0001 1
=)
with an arithmetic device accurate to three decimal digits. Note first that
k(A) = [AllollA™ o = 2 x 2,

so that the result is quite insensitive to perturbations in the input. Consider
now an LU decomposition, taking into account roundoff errors:

0.0001 1 . 1 0 U1 U2
1 1 B 521 1 0 U22 .
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Then,

w1 = 11(0.0001/1) = 0.0001

Uy = fl(1/uy11) = 10000

U =1

ugy = fI(1 — ly1u1o) = fi(1 — 10000 - 1) = —10000.
However,

1 0\ /0.0001 1 ~(0.0001 1
10000 1 0 —10000) 1 0"

Thus, the as entry has been completely forgotten! In our terminology, the
method is not backward stable because

[0Aflc A= LUJl _ 1

Al Al 2

The relative backward error is large, and combined with the estimated con-
dition number, the relative error in x could be as large as 2.

Had we used GEPP, the order of the rows would have been reversed,
1 I (1 0\ fuir up
0.0001 1) \ly 1 0 wup.)’

uy = fl(1/1) =1
= (0. 0001/u11) = 0.0001
(
(

yielding

U1 = il 1/ )
U992 = (1 — Eglulg) ﬂ(]_ — 0.0001 - ]_) = ].,

which combined back gives

1 o0\ /1 1\ [ 1 1
0.0001 1/ \0 1)~ \0.0001 1.0001)"

164« [|[A—LU|% _ 0.0001
[ Al oo [ Alloo 2

and
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3.5 lterative methods

3.5.1 lterative refinement

Let’s start with a complementation of direct methods. Suppose we want to
solve the system Az = b, i.e., we want to find the vector x = A~'b, but due
to roundoff errors (and possible other sources of errors), we obtain instead a
vector

o = /I_lb.

Clearly, we can substitute the computed solution back into the linear system,
and find out that the residual,

def
b— Al’o = To

differs from zero. Let ey = x¢o — = be the error. Subtracting b — Ax = 0
from the residual equation, we obtain

ABO =T0.

That is, the error satisfies a linear equation with the same matrix A and the
restdual vector on its right hand side.

Thus, we will solve the equation for ey, but again we can only do it
approximately. The next approximation we get for the solution is

Ty = T+ 121_17’0 =g+ A_l(b - AJIO>
Once more, we define the residual,
mr = b— AZL‘h

and notice that the error satisfies once again a linear system, Ae; = r1, thus
the next correction is x5 = x1 + A7 (b — Az;), and inductively, we get

Tpyl = Tp + A‘l(b — Ax,). (3.2)

The algorithm for iterative refinement is given by
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Algorithm 3.5.1: ITERATIVE REFINEMENT(A, b, €)

r=0

fori=1ton
r==b— Ax
if [|7]| <e

do then break
Solve Ae =r
r=x+e
return (z)

Of course, if the solver is exact, the refinement procedure ends after one
cycle.

Theorem 3.8 If A~ is sufficiently close to A~' in the sense that spr(I —
Afl_l) < 1, then the iterative refinement procedure converges to the solution
z of the system Az = b. (Note that equivalently, we need || — AA™|| in any
subordinate matrix norm.)

Proof: We start by showing that

T, =AY (I — AATHR,

k=0

We do it inductively. For n = 0 we have zq = A~1b. Suppose this was correct
for n — 1, then

Ty = Tp_1+ A‘l(b — Az, )

n—1 n—1

= A" 12(1 AA™ DD 4 A7 — ATTAATYY (1 — AATHRD
k=0 k=0
[n—1 -1

:frl (I —AA Y 4T AA ZI AA YD
LEk=0 =0
B n—1

= AV T4+ (T —-AAYHD (I—-AAH*|b
L k=0

=A (I — AA=HkD
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We have a Neumann series which converges if and only if spr(I — AA™!) < 1,
giving in the limit

lim z, = A" Y (AA™ )= A = x.

n—oo

3.5.2 Analysis of iterative methods

Example 3.7 (Jacobi iterations) Consider the following example

Txy — 61y =3
—8I1 + 91’2 = —4,
whose solution is z = (1/5,—4/15). We may try to solve this system by the
following iterative procedure:

S _ 346 x5

! 7
41 8™
(n+1) 1
T4 =—5

From a matrix point of view this is equivalent to taking the system

() ()= (%)

and splitting it as follows,

70\ (a\" 0 =6\ e\, (3
09 ) N —8 0 i) -4/
This iterative methods, based on a splitting of the matrix A into its diagonal

part and its off-diagonal part is called Jacobi’s method.

The following table gives a number of iterates:

1 04286 —0.4444
10 0.1487 —0.1982
20 0.1868 —0.2491
40 0.1991 —0.2655
80 0.2000 —0.2667
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Example 3.8 (Gauss-Seidel iterations) Consider now the same system, but
with a slightly different iterative method:

x(n+1) _ 3+ 6x§")

! 7
m+1)  —4+8 2"
:L‘2 -_—— .

9

The idea here is to use the entries which have already been computed in the
present iteration. In matrix notation we have

70y (@ (0 =6 (a\", (3

-8 9) \zy N 0 0 T —-4)"
This iterative method, based on a splitting of the matrix A into its lower-
triangular part and the remainder is called the Gauss-Seidel method.

The following table gives a number of iterates:

noor 2

1 04286 —0.0635
10 0.2198 —0.2491
20 0.2013 —0.2655
40 0.2000 —0.2667
80 0.2000 —0.2667

N ‘Exercise 3.21 Write an algorithm (i.e., a list of intructions in some pseudo-
code) that calculates the solution to the linear system, Az = b, by Gauss-
Seidel’s iterative procedure. The algorithm receives as input the matrix A
and the vector b, and returns the solution x. Try to make the algorithm
efficient.

N Exercise 3.22 (Computer exercise) Solve the system

2 1 0 0 0 7 1
1 -2 1 0 0 o 0
0 1 -2 1 0 2| =10
o 0 1 -2 1 74 0
0o 0 0 1 -2/ \as 0
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using both the Jacobi and the Gauss-Seidel iterations. Plot a graph of the
norm of the errors as function of the number of iterations. Use the same
graph for both methods for comparison.

We are now ready for a general analysis of iterative methods. Suppose
we want to solve the system Ax = b. For any non-singular matrix () we can
equivalently write Qz = (Q — A)x + b, which leads to the iterative method

Definition 3.10 An iterative method is said to be convergent if it converges
for any initial vector xg.

The goal is to choose a splitting matrix () such that (1) @ is easy to
invert, and (2) the iterations converge fast.

Theorem 3.9 Let A be a non-singular matriz, and Q be such that spr(l —
Q'A) < 1. Then the iterative method is convergent.

Proof: We have
Tpy1 = (I — Q7 Az, + Q0.

It is easy to see by induction that
n—1
mn=(I—-Q A\ "zo + > (I - Q' AFQ™D,
k=0

and as we've already seen, the Neumann series converges iff spr(I —Q1'A) <
1. If it converges, the first term also converges to zero (the initial condition
is forgotten). The limit is

lim z, = (Q A 'Q v =A"b=1z.

n—oo

Definition 3.11 A matriz A is called diagonally dominant if for any row

Z?
@il > layl.

JFi
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Proposition 3.5 If A is diagonally dominant then Jacobi’s method converges.

Proof: For Jacobi’s method the matrix () comprises the diagonal of A, there-
fore, Q7' A consists of the rows of A divided by the diagonal term, and

0 1=
I—-Q1tA);,; = 3 .

Because A is diagonally dominant,

1 —=Q" 1A||oo_many (I - Q' A)yl =

Z|a”| <1

u‘ i

N ‘Exercise 3.23 Show that the Jacobi iteration converges for 2-by-2 sym-
metric positive-definite systems.

Hint Suppose that the matrix to be inverted is

a b
A= :
First, express the positive-definiteness of A as a condition on a,b,c. Then,
proceed to write the matrix (I — Q7'A), where @ is the splitting matrix

corresponding to the Jacobi iterative procedure. It remains to find a norm
in which || — Q'A|| < 1 or compute the spectral radius.

N ‘Exercise 3.24 Will Jacobi’s iterative method converge for

10 2 3
4 50 6
7 8 90

N ‘Exercise 3.25 Explain why at least one eigenvalue of the Gauss-Seidel
iterative matrix must be zero.

N ‘Exercise 3.26 Show that if A is strictly diagonally dominant then the
Gauss-Seidel iteration converges.
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N ‘Exercise 3.27 What is the explicit form of the iteration matrix G = (I —
Q'A) in the Gauss-Seidel method when

2 -1
-1 2 -1

3.6 Acceleration methods

3.6.1 The extrapolation method
Consider a general iterative method for linear systems
Tni1 = Gz, + c.

For the system Az = b we had G = (I — Q7'A) and ¢ = Q~'b, but for now
this does not matter. We know that the iteration will converge if spr G < 1.

Consider now the one-parameter family of methods,

= [’7G + (1 - ’y)]]xn + e d:ef G”/xn + YE,

v € R. Can we choose 7 such to optimize the rate of convergence, i.e., such
to minimize the spectral radius of G.,? Note that (1) if the method converges
then it converges to the desired solution, and (2) v = 1 reduces to the original
procedure.

Recall that (1) the spectral radius is the largest eigenvalue (in absolute
value), and that (2) if A € 3(A) and p(\) € X(p(A)) for any polynomial p.
Suppose that we even don’t really know the eigenvalues of the original matrix
G, but we only know that they are real (true for symmetric or Hermitian
matrices) and within the segment [a, b]. Then, the spectrum of G, lies within

5(Gy) S{yve+(1—7):2€lab]}.
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< )4 —'— — Y .

The expression on the right-hand side is the quantity we want to minimize,

" = i 1—7)].
7" = arg in max vz + (1 =7

Problems of this type are call min-max problems. They are very common
in optimization.
Theorem 3.10 If 1 & [a,b], then
. 2
R

and
SpI'Gj; S I |’}/*|d7

where d = dist(1, [a, b]).
Proof: Since 1 ¢ [a,b], then we either have b < 1 or @ > 1. Let’s focus on

the first case; the second case is treated the same way. The solution to this
problem is best viewed graphically:

From the figure we see that the optimal v is when the absolute values of
the two extreme cases coincide, i.e., when

Ya-1)+1=-(0b-1)—-1,
from which we readily obtain 2 = (2 — a — b)y*. Substituting the value of v*

nto
max |vz + (1 —7)],

a<z<b
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whose maximum is attained at either z = a, b, we get
sprGys <77 (b—1)+1=1-[y"|d,
since v* is positive and d =1—5. B

Example 3.9 The method of extrapolation can be of use even if the original
method does not converge, i.e., even if spr G > 1. Consider for example the
following iterative method for solving the linear systems Ax = b,

It is known as Richardson’s method. If we know that A has real eigenvalues
ranging between Ay, and An.y, then in the above notation

a=1— Apax and b=1— dpin-

If 1 ¢ [a,b], i.e, all the eigenvalues of A have the same sign, then This means
that the optimal extrapolation method is

Tpt1 = [’7*(] - A) + (1 - 7*)1] T, + b,

where
2
)\max + >\min .
Suppose that Ay, > 0, then the spectral radius of the resulting iteration
matrix is bounded by

*

")/:

2)\min o )\max - )\min

G <1-— = .
Pt T AmaX + >\min )\max + /\min

It is easy to see that the bounds remains unchanged if A\, < 0.

3.6.2 Chebyshev acceleration

Chebyshev’s acceleration method takes the idea even further. Suppose we
have an iterative method,

Tny1 = Gxn +c,
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and that we have used it to generate the sequence xg,z1,...,x,. Can we
use this existing sequence to get even closer to the solution? Specifically,
consider a linear combination,

n

Uy = E Qp Tk -

k=0

We want to optimize this expression, with respect to the coefficients a,, ; such
that wu, is as close as possible to the fixed point z = Gz + ¢. Assume that

for all n,
Z Qp | = 1.
k=0

Then,
n n
Uy — T = g A kTk — T = g Ak (Tk — ).
k=0 k=0

Now, since (z — x) = (Gag—1 + ¢) — (Gx + ¢) = G(xr_1 — z), repeated
application of this recursion gives

Uy — T = Z&n’ka(ﬂfo —2) ¥ . (G)(xo — ),

k=0

where p,,(2) = Y j_, ankz". Optimality will be achieved if we take the co-
efficients a, ; such to minimize the norm of p,(G), or instead, its spectral
radius. Note that

sprp,(G) = max |z| = max |p,(2)].

pron(G) = _max |z = max |p,(2)

Suppose all we knew was that the eigenvalues of G lie in a set S. Then,
our goal is to find a polynomial of degree n, satisfying p,(1) = 1, which
minimizes

max [p, (2)]-

That is, we are facing another min-max problem,

p; = arg min max |p,(z)|.
Pn zeS

This can be quite a challenging problem. We will solve it again for the case
where the spectrum of G is real, and confined to the set S = [a, b].
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Definition 3.12 (Chebyshev polynomials) The Chebyshev polynomials, Ty.(x),

kE=0,1,..., are a family of polynomials defined recursively by
T(](Z'> =1
Ti(z)=x

Toi1(x) =22 T, (x) — Thoq(z).

Applying the iterative relation we have
Ty(z) = 22 — 1
Ts(z) = 42 — 32
Ty(z) = 8z — 8% + 1.
Note that for y € [—1, 1], we can express y as cosz, in which case

1

Ty(y) = Ty(cosz) = 2cos’ x — 1 = cos 2z = cos(2cos ' y)

T3(y) = Ts(cosz) = 4cos® x — 3cosw = cos 3z = cos(3cos ™

Y),

and so on. This suggests the following relation:

Lemma 3.13 For x € [—1,1] the Chebyshev polynomials have the following
explicit representation:

T, (x) = cos(ncos™* z).

Proof: We have the following relations,

cos|(n + 1)0] = cos b cos nf — sin @ sin nd

cos[(n — 1)8] = cos O cosnf + sin 0 sin nb,
which upon addition gives
cos[(n + 1)8] = 2 cos @ cosnf — cos[(n — 1)6].

Set now x = cosf, we get

1

cos[(n + 1) cos™ ! 2] = 22 cos[n cos 2] — cos[(n — 1) cos™ ! 7],

i.e., the functions cos[n cos™ z] satisfy the same recursion relations as the
Chebyshev polynomials. It only remains to verify that they are identical for
n=20,1. &
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Properties of the Chebyshev polynomials

® T,(x) is a polynomial of degree n.
@ |T,(x)] <1 forxz e [-1,1].
® For j=0,1,...,n,

T, (cos %) = cos(jm) = (1)

These are the extrema of T, (z).
@ For j=1,2,...,n,

T, (008@) — cos <(j _ %)w) ~0.

That is, the n-th Chebyshev polynomial has n real-valued roots and all
reside within the segment [—1,1].

Proposition 3.6 Let p,(z) be a polynomial of degree n with p(Z) = 1, Z ¢
[—1,1]. Then

>
_max [pa(2)] 2 .0

Equality is satisfied for p,(z) = T,,(2)/Tn(2).

This proposition states that given that p, equals one at a point z,, there
is a limit on how small it can be in the interval [—1,1]. The Chebyshev
polynomials are optimal, within the class of polynomials of the same degree,
in that they can fit within a strip of minimal width.

Proof: Consider the n 4+ 1 points z; = cos(ir/n) € [—1,1], i = 0,1,...,
Recall that these are the extrema of the Chebyshev polynomials, T;,(z;)
(=1)".

We now proceed by contradiction, and assume that

[

pul2)] <
S TR EI
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4-th Chebyshev polynomial 5-th Chebyshev polynomial
T

Chapter 3

T T 3 T T T T T

Figure 3.1:

The functions Ty(z), T5(x), Tio(z), and 111 (z).
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If this holds, then a-forteriori,

1
T (2)]

|pn(2i)] <0, i=0,1,...,n

This can be re-arranged as follows

(_1)iTn(Zi)
sgn[T5,(2)] Tn(Z)

sgn [T, (2)](—1)"pa(z) — <0,

TN [l - 7| <0
Consider now the function
1O =m) - 2

7

It is a polynomial of degree at most n; its sign alternates at the z;, implying
the presence of n roots on the interval [—1, 1]; it has a root at z = Z. This is

impossible, contradicting the assumption. H

Proposition 3.7 Let p,(z) be a polynomial of degree n, p,(1) =1, and let a,b

be real numbers such that 1 & [a,b]. Then,

max [pu(2)] > e
0222 PN ST (D))
where
2z —b—a
w(z) = ————.

b—a
Equality is obtained for p,(z) = T,,(w(2))/T,(w(1)).

Note that a polynomial of degree n composed with a linear function is

still a polynomial of degree n,

Proof: Take the case a < b < 1. Then,

2—b— 1—0 gef -
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The converse relation is
1
A(w) = 50— a)w+a+b)

and z(w) = 1.
Let p, we a polynomial of degree n satisfying p,(1) = 1, and define
qn(w) = pp(z(w)). We have g,(w) = p,(1) = 1, hence, by the previous

proposition,
0a(w)| > oy
—igus NS T @)
Substituting the definition of g, this is equivalent to

1
= >
_max |pa(z(w))] = max |pn(2)| = 7o)

We have thus shown that among all polynomials of degree n satisfying
pn(1) = 1, the one that minimizes its maximum norm in the interval [a, ] is
T (w(2)) , 2z—b—a
— ith w(z) = ————.

T,(w(1)) v S
What does this have to do with acceleration methods? Recall that we assume
the existence of an iterative procedure,

pn(Z) =

Tnt1 = Gxn +c,

where spr G € [a, ], and we want to improve it by taking instead

n
Up = E An kLl
k=0

where ZZZO an i = 1. We've seen that this amounts to an iterative method
with iteration matrix p,(G), where p,, is the polynomial with coefficients a,, t.
Thus, what we want is to find the polynomial that minimizes

max |pn(2)l,

and now we know which it is. This will ensure that

error(0)
error(n) < ————,
[T (w(1))]
and the right hand side decays exponentially fast in n. We are still facing a
practical problem of implementation. This will be dealt with now.
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Lemma 3.14 The family of polynomials p,(z) = %25833 can be constructed

recursively as follows:

po(z) =1
2z—b—a
=5y

Pu(2) = onpr(2)pn-1(2) + (1 = 0n)pn-2,

where the constants o, are defined by

o =2 an:(l—ﬁ>_l.

Proof: By the recursive property of the Chebyshev polynomials,
Tn(w(2)) = 2w(z) Thoy(w(2)) = To-a(w(2)).
Dividing by T, (w(1)), and converting T}’s into p’s:

() = 2T )t - 22,

It remains to show that

P d:ef 2’LU<1) Tnfl(’w<1))
! T (w(1))

= o, and -

That their sum is indeed one follows from the Chebyshev recursion relation.
It is also obvious that p; = 2. Finally,

2w( ) Tna(w(1))
)

Pn—1 =

—1(w(1)

B 2w(1) Sty Tu(w(1))

2w(1)Tn—1(w(1)) Tn(w(l))
Tu(w(D)  2w(l)
1 —
= —Ru)P—.

Pk

It only remains to invert this relation.
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Theorem 3.11 The sequence (u,) of Chebyshev’s acceleration’s method can be
constructed as follows:

uy =y (Gro+c¢)+ (1 —v)xg
Uy =0k [Y(Gxpoy +¢) + (L —=y)zpa] + (1 — 0p)tpn_o,

where v = 2/(2 — b — a) and the o, are as above.

Comments:

@ The (u,) are constructed directly without generating the (x,,).

@ The first step is extrapolation, and the next ones are “weighted extrap-
olations”.

® The Chebyshev polynomials are not apparent (they are hiding...).

Proof: Start with n =1,
U = 41,171 + aiolo = a1 (GZ’O + C) -+ a1,0Zg-

The coefficients a; o and a;; are the coefficients of the polynomial p;(z). By
Lemma 3.14,
2 a+b
a = - = a = —-——
R 7 Lo 2—b—a

Now to the n-th iterate. Recall that

Uy = Zamkxk =x+ Zamk(a:k — ) =2+ pp(G)(xo — ).
k=0 k=0

=1—-7.

By Lemma 3.14,

pn<G) = O-npl(G>pnfl(G) + (1 - Un>pn—2(G)7

and p1(G) = vG + (1 — v)I. Applying this on zq — z we get
Up — =0, [YG + (1 = NI (tp_1 — ) + (1 — 0) (Up_2 — T)
=0, [YGup—1 + (1 — Y)up_1] — 0, 7Gx + (1 — 7)2]
+ (1 —0y)upo— (1 —0,)z.

It remains to gather the terms multiplying x. Since x = Gz + ¢ is a fixed
point,

—0, [7Gr + (1 —y)z] — (1 — 0,)x = 0y — .
Substituting into the above we get the desired result. H
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N ‘Exercise 3.28 (Computer exercise) The goal is to solve the system of equa-
tions:

4 -1 -1 0 7 —4
1 4 0 -1 x| 0
-1 0 4 -1 o 4

0 -1 -1 4 o —4

@ Write explicitly the Jacobi iterative procedure,
" = Ga* + .

@ What is is range of eigenvalues of the matrix G?
® Is the Jacobi iterative procedure convergent?

@ Write an algorithm for the Chebyshev acceleration method based on
Jacobi iterations.

® Implement both procedures and compare their performance.

3.7 The singular value decomposition (SVD)

Relevant, among other things, to the mean-square minimization: find x € R"
that minimizes ||Az —bl|5, where A € R™*" and € R™ (more equations than
unknowns). It has many other uses.

Since we are going to consider vectors in R™ and R", and operators
between these two spaces, we will use the notation || - ||, and || - ||, for the
corresponding vector 2-norms. Similarly, we will use || - ||uxn, etc., for the
operator 2-norms. We will also use I,,,, I,, to denote the identity operators
in the two spaces.

Recall that the norm of an m-by-n matrix (it will always be assumed that
m > n) is defined by

|A|lmxn = sup ||Az|[, = sup (Azx, Ax),,.
llzlln=1 (z.2)n=1
A matrix @ is called orthogonal if its columns form an orthonormal set. If
the matrix is n-by-n, then its columns form a basis in R”, and QTQ = I,,.
Since @ is invertible, it immediately follows that Q7 = Q~!, hence QQT = I,
as well. If Q is an m-by-n orthogonal matrix, then Q7Q = I,,, but the m-
by-m matrix QQ7T is not an identity.
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Lemma 3.15 Let v € R™, and Q be an orthogonal m-by-n matriz, m > n,
then [|Q|lm = [||7-

Proof: This is immediate by

1Qz[[}, = (Qz, Q1) = (2,QT Q) = (2, 2)n = [|2]|,-
|

Lemma 3.16 Let A be an n-by-n matrix, V be an orthogonal n-by-n matriz,
and U by an orthogonal m-by-n matrix. Then,

||UAVT”m><n = ||A||n><n

Proof: By definition,
|UAVT|2 . = sup (UAVT2,UAVTz),,

mxn
(va)n:]-

= sup (AVTz AVTz),

(z,2)n=1
= sup (Ay,Ay),
(y,y)n=1

= || Al

nxn?

where we have used the previous lemma in the passage from the first to the
second line, and the fact that and x on the unit sphere can be expressed as
Vy, with y on the unit sphere. ll

Theorem 3.12 (SV'D decomposition) Let A be an m-by-n matriz, m > n.
Then, A can be decomposed as

A=UxVT,

where U is an m-by-n orthogonal matrixz, V is an n-by-n orthogonal matrizx,
and ¥ is an n-by-n diagonal matriz with entries o1 > 09 > -+ > 0, > 0.

The columns of U, u;, are called the left singular vectors, the columns
of V', v;, are called the right singular vectors, and the o; are called the
singular values. This theorem states that in some sense “every matrix is
diagonal”. Indeed, for every right singular vector v;,

A’Ui = UEVTUZ' = []26Z = O'Z'Uel' = O;U;.
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Thus, it is always possible to find an orthogonal basis {v;} in R", and an
orthogonal set {w;} in R™, such that any z = Y " a;v; is mapped into
Ar =30 oia;u,.

Proof: The proof goes by induction, assuming this can be done for an (m—1)-
by-(n—1) matrix. The basis of induction is a column vector, which can always
be represented as a normalized column vector, times its norm, times one.

Let then A be given, and set v to be a vector on the unit sphere, ||v|, = 1,
such that ||Av]|;, = ||A|lmxn (such a vector necessarily exists). Set then u =
Av/||Av||m, which is a unit vector in R™. We have one vector v € R™, which
we complete (by Gram-Schmidt orthonormalization) into an orthogonal basis
U= (u, U) e R™m UTU = UUT = I,,,. Similarly, we complete v € R” into
an orthonormal basis V = (v, V) € R®*". Consider the m-by-n matrix

T T T AT/
T _(u -\ (uAv ut AV
vrAv = (UT> Al V) = (UTAU UTAV) ‘

Note that u € R™, U e Rmf(m’l), v € R and f/~ € R”X(”*l). Hence,
uTAv e R, uTAV € R>=D UT Ay € Rm=Dx1 and UTAV € Rim—1x(n=1),
Now,
u” Av = || Av ||t w = || Allxn & o,
and . 3
U Av = || Av||,, UTu = 0,
due to the orthogonality of u and each of the rows of U. Thus,

T
T . o w
U AV_(O A1>,

where w? = uT AV and A; = UTAV. We are going to prove that w = 0 as
well. On the one hand we have

2

2 2 T
HUTAV (") :‘ (" T “’) > (02 + wlw)?.
wj Ajw .
On the other hand
o\ |I? 2 o\ |I?
T T _ 2 2 T
HU AV (w) ) <|uravy . (w) = 1A, (07 + w'w),
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where we have used the above lemma for HUTAVHian = ||A|2 .. Since
|A|? ., = o2, it follows from these two inequalities that

(0 + wiw)? < o?(o? + w'w),

i.e., w =0 as claimed.
Thus,

T L g O
UTAY = ( ’ A1> |
At this stage, we use the inductive hypothesis for matrices of size (m — 1) x
(n — 1), and write A; = U3, V", which gives,

= (5 ndi) = 8) G 2) 6 %)
=l 8] G G R

It remains to show that o is larger or equal to all the diagonal entries of ¥,
but this follows at once from the fact that

o 0 —maXU 0
021 n><n_ ‘ 021 u

Having proved the existence of such a decomposition, we turn to prove a
number of algebraic properties of SVD.

hence

0= ”AHan = '

This concludes the proof. B

Theorem 3.13 Let A =UXVT be an SVD of the m-by-n matriz A. Then,

@ If A is square symmetric with eigenvalues \;, and orthogonal diagonal-
izing transformation U = (uy, ..., u,), i.e., A = UAUT, then an SVD
of A is with o; = |\;|, the same U and V' with columns v; = sgn(\;)u;.

@ The eigenvalues of the n-by-n (symmetric) matriz AT A are 02, and the
corresponding eigenvalues are the right singular vectors v;.

® The eigenvalues of the m-by-m (symmetric) matriv AAT are o? and
m—n zeros. The corresponding eigenvectors are the left singular vectors
supplemented with a set of m — n orthogonal vectors.
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@ If A has full rank (its columns are independent), then the vector x € R"
that minimizes ||Ax — b||,, is x = VI 1UTD.

® ||Allmxn = o1. If, furthermore, A is square and non-singular then
|A= xn = 1/, hence the condition number is 01/,
® Suppose that o1 > 0, > --- >0, > 041 =--- =0 —n=0. Then the

rank of A isr, and

null A = span(v,11,...,vy,)

range A = span(uy, ..., u,).

@ Write V = (vy,...,v,) and U = (uy,...,u,). Then,

n

T

A= g oiu;
i=1

i.e., it is a sum of rank-1 matrices. The matriz of rank k < n that is

closest to A 1is
2
T
Ay = E o;u;v;
i=1

and ||A — Ag|l2 = o1 Ak can also be written as
A =US VT,

where ¥y = diag(oy,...,0%,0,...,0).
Proof-

@ This is obvious.
@ We have
ATA=vyxTutusyt =vetsy?,
where we have used the fact that UTU = 1I,,. This is an eigen-
decomposition of ATA.

® Take an m-by-(m — n) matrix U such that (U,U) is orthogonal (use
Gram-Schmidt). Then,

AAT = (U, 0)xviveET (U, 0)T = (U, U)sxt (U, U)T,



