
Chapter 1

Preliminaries

1.1 Review of calculus

Theorem 1.1 (Mean value theorem) If f ∈ C[a, b] is differentiable in (a, b),
then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 1.2 (Mean value theorem for integrals) Let f ∈ C[a, b] and let g be
integrable on [a, b] and having constant sign. Then, there exists a point c ∈
(a, b) such that ∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

If, in particular, g(x) = 1, then there exists a point where f equals to its
average on the interval.

Theorem 1.3 (Taylor’s theorem) let f ∈ Cn[a, b] with f (n+1) existing on [a, b]
(but not necessarily differentiable). Let x0 ∈ [a, b]. Then, for every x ∈ [a, b]
there exists a point ξ(x) between x0 and x such that

f(x) = Pn(x) + Rn(x),

where

Pn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

1

2 Chapter 1

is the n-th Taylor polynomial of f about x0, and

Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x− x0)

n+1

is the remainder term.

Comment: It is often useful to think of x as x0+h; we know the function and
some of its derivatives at a point x0 and we want to estimate it at another
point at a distance h. Then,

f(x0 + h) =
n∑

k=0

f (k)(x0)

k!
hk +

f (n+1)(x0 + θ(h)h)

(n + 1)!
hn+1,

where 0 < θ(h) < 1. Often, we approximate the function f by its n-th Taylor
polynomial, in which case we refer to the remainder as the truncation
error.

✎ Exercise 1.1 (a) Approximate the function f(x) = cos x at the point x =
0.01 by its second and third Taylor polynomials about the point x0 = 0. Esti-
mate the error. (b) Use the third Taylor polynomial to estimate

∫ 0.1

0 cos x dx.
Estimate the error.

Theorem 1.4 (Multi-dimensional Taylor theorem) TO COMPLETE

✎ Exercise 1.2 Let k be a positive integer and let 0 < α < 1. To what class
of functions Cn(R) does the function xk+α belong?

✎ Exercise 1.3 For small values of x it is standard practice to approximate
the function sin x by x itself. Estimate the error by using Taylor’s theorem.
For what range of x will this approximation give results accurate to six
decimal places?

✎ Exercise 1.4 Find the first two terms in the Taylor expansion of x1/5 about
the point x = 32. Approximate the fifth root of 31.999999 using these two
terms in the series. How accurate is your answer?

✎ Exercise 1.5 The error function defined by

erf(x) =
2√
π

∫ x

0

e−t2 dt

Preliminaries 3

gives the probability that a trial value will lie within x units of the mean,
assuming that the trials have a standard normal distribution. This integral
cannot be evaluated in terms of elementary functions.

➀ Integrate Taylor’s series for e−t2 about t = 0 to show that

erf(x) =
2√
π

∞∑
k=0

(−1)kx2k+1

(2k + 1) k!

(more precisely, use the Taylor expansion for e−x).

➁ Use this series to approximate erf(1) to within 10−7.

1.2 Order of convergence

Definition 1.1 (Rate of convergence) Let (xn) be a converging sequence with
limit L. Its rate of convergence is said to be (at least) linear if there exist a
constant C < 1 and an integer N , such that for all n ≥ N ,

|xn+1 − L| ≤ C |xn − L|.
The rate of convergence is said to be (at least) superlinear if there exists a
sequence εn → 0, such that for all n ≥ N ,

|xn+1 − L| ≤ εn |xn − L|.
The rate of convergence is said to be of order (at least) α if there exists a
constant C such that

|xn+1 − L| ≤ C |xn − L|α.

Comment: Can be generalized for sequences in a normed vector space.

Example 1.1 ➀ The convergence of (1 + 1/n)n to e satisfies

|xn+1 − e|
|xn − e| → 1,

i.e., the rate of convergence is worse than linear.

4 Chapter 1

➁ The sequence 2−n/n is another example of a linear rate of convergence.

➂ Consider the sequence (xn) defined recursively by

xn+1 =
xn

2
+

1

xn
,

with x1 = 1. Then

2xnxn+1 = x2
n + 2

2xnxn+1 − 2
√

2xn = (xn −
√

2)2

2xn(xn+1 −
√

2) = (xn −
√

2)2,

i.e.,

xn+1 −
√

2 =
(xn −

√
2)2

2 xn
.

Clearly, if the distance of the initial value from
√

2 is less than 1/2,
then the sequence converges. The rate is by definition quadratic. The
following table gives the distance of xn from

√
2 for various n

n xn −
√

2
1 −0.41× 10−1

2 8.58× 10−2

3 2.5× 10−3

4 2.12× 10−6

5 1.59× 10−12

Definition 1.2 Let (xn) and (yn) be sequences. We say that xn = O(yn) if
there exist C, N such that

|xn| ≤ C|yn|
for all n ≥ N . We say that xn = o(yn) if

lim
n→∞

xn

yn
= 0.

Comments:

➀ Again generalizable for normed linear spaces.

➁ If xn = O(yn) then there exists a C > 0 such that lim sup xn/yn ≤ C.

Preliminaries 5

➂ f(x) = O(g(x)) as x → x0 means that there exists a neighborhood of
x0 in which |f(x)| ≤ C |g(x)|. Also, f(x) = o(g(x)) if for every ε > 0
there exists a neighborhood of x0 where |f(x)| ≤ ε|g(x)|.

Example 1.2 ➀ Show that xn = O(zn) and yn = O(zn) implies that xn +
yn = O(zn).

➁ Show that if αn → 0, xn = O(αn) and yn = O(αn), then xnyn = o(αn).

✎ Exercise 1.6 Prove that if xn = O(αn) then α−1
n = O(x−1

n). Prove that
the same holds for the o-relation.

✎ Exercise 1.7 Let n be fixed. Show that

n∑
k=0

xk =
1

1− x
+ o(xn)

as x → 0.

1.3 Floating point arithmetic

A real number in scientific notation has the following representation,

±(fraction)× (base)(exponent).

Any real number can be represented in this way. On a computer, the base
is always 2. Due to the finiteness of the number of bits used to represent
numbers, the range of fractions and exponents is limited. A floating point
numbers is a number in scientific notation that fits the format of a computer
word, e.g.,

−0.1101× 2−8.

A floating point is called normalized if the leading digit of the fraction is
1.

Different computers have different ways of storing floating point numbers.
In addition, they may differ in the way they perform arithmetic operations
on floating point numbers. They may differ in

➀ The way results are rounded.

6 Chapter 1

➁ The way they deal with numbers very close to zero (underflow).

➂ The way they deal with numbers that are too big (overflow).

➃ The way they deal with operations such as 0/0,
√−1.

The most common choice of floating point arithmetic is the IEEE standard.

Floating point numbers in the IEEE standard have the following repre-
sentation,

(−1)s (1 + f)× 2e−1023,

where the sign, s, takes one bit, the fraction, f , takes 52 bits, and the
exponent, e, takes 11 bits. Because the number is assumed normalized,
there is no need to store its leading one. We note the following:

➀ The exponent range is between 2−1023 ≈ 10−308 (the underflow thresh-
old), and 21024 ≈ 10308 (the overflow threshold).

➁ Let x be a number within the exponential range and fl(x) be its ap-
proximation by a floating point number. The difference between x and
fl(x) scales with the exponent. The relative representation error,
however, is bounded by

|x− fl(x)|
|x| ≤ 2−53 ≈ 10−16,

which is the relative distance between two consecutive floating point
numbers. The bound in the relative representation error is known as
the machine-ε.

IEEE arithmetic also handles ±∞ and NaN with the rules

1

0
= ∞, ∞+∞ = ∞,

x

±∞ = 0,

and

∞−∞ = NaN,
∞
∞ = NaN,

√−1 = NaN, x + NaN = NaN.

Let * be any of the four arithmetic operations, and let a, b be two floating
point numbers. After the computer performs the operation a* b, the result
has to be stored in a computer word, introducing a roundoff error. Then,

a* b− fl(a* b)

a* b
= δ,

Preliminaries 7

where |δ| ≤ ε. That is

fl(a* b) = a* b (1 + δ).

1.4 Stability and condition numbers

Condition numbers Let X, Y be normed linear spaces and f : X +→ Y . Sup-
pose we want to compute f(x) for some x ∈ X, but we may introduce errors
in x and compute instead f(x + δx), where ‖δx‖ is “small”. A function is
called well-conditioned if small errors in its input result in small errors in
its output, and it is called ill-conditioned otherwise.

Suppose that f is differentiable. Then, under certain assumptions,

f(x + δx) ≈ f(x) + Df(x) δx,

or,
‖f(x + δx)− f(x)‖ ≈ ‖Df(x)‖‖δx‖.

The absolute output error scales like the absolute input error times a multi-
plier, ‖Df(x)‖, which we call the absolute condition number of f at x.
In addition,

‖f(x + δx)− f(x)‖
‖f(x)‖ ≈ ‖Df(x)‖‖x‖

‖f(x)‖ · ‖δx‖‖x‖ .

Here we call the multiplier of the relative input and output errors the rela-
tive condition number of f at x. When the condition number is infinite
the problem (i.e., the function) is called ill-posed. The condition number is
a characteristic of the problem, not of an algorithm.

Backward stability Suppose next that we want to compute a function f(x),
but we use an approximating algorithm which yields instead a result alg(x).
We call alg(x) a backward stable algorithm for f , if there exists a
“small” δx such that

alg(x) = f(x + δx).

I.e., alg(x) gives the exact solution for a slightly different problem. If the
algorithm is backward stable, then

alg(x) ≈ f(x) + Df(x)δx,

8 Chapter 1

i.e.,
‖ alg(x)− f(x)‖ ≈ ‖Df(x)‖‖δx‖,

so that the output error is small provided that the problem is well-conditioned.
To conclude, for an algorithm to gives accurate results, it has to be backward
stable and the problem has to be well-conditioned.

Example 1.3 Consider polynomial functions,

p(x) =
d∑

i=0

aix
i,

which are evaluated on the computer with Horner’s rule:

Algorithm 1.4.1: polynomial evaluation(x)

p = ad

for i = d− 1 downto 0
do p = x ∗ p + ai

return (p)

The graph below shows the result of such a polynomial evaluation for
x9−18x8+144x7−672x6+2016x5−4032x4+5376x3−4608x2+2304x−512 =
(x− 2)9, on the interval [1.92, 2.08].

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10−10

x

p(
x)

Preliminaries 9

We see that the behavior of the function is quite unpredictable in the
interval [1.05, 2.05], and merits the name of noise. In particular, try to
imagine finding the root of p(x) using the bisection algorithm.

Let’s try to understand the situation in terms of condition numbers and
backward stability. First, we rewrite Horner’s rule as follows:

Algorithm 1.4.2: polynomial evaluation(x)

p = ad

for i = d− 1 downto 0
do pi = x ∗ pi+1 + ai

return (p0)

And then, insert a multiplicative term of (1 + δi) each time a floating
point operations is done:

Algorithm 1.4.3: polynomial evaluation(x)

p = ad

for i = d− 1 downto 0
do pi = [x ∗ pi+1(1 + δi) + ai](1 + δ′i)

return (p0)

What do we actually compute? The coefficients ai are in fact ai(1 + δ′i),
and x is really x(1 + δi)(1 + δ′i), so that

p0 =
d∑

i=0

[
(1 + δ′i)

i−1∏
j=0

(1 + δj)(1 + δ′j)

]
aix

i.

This expression can be simplified,

p0 =
d∑

i=0

(1 + δ̄i)aix
i,

where

(1 + δ̄i) = (1 + δ′i)
i−1∏
j=0

(1 + δj)(1 + δ′j).

10 Chapter 1

And we use the fact that

(1 + δ̄i) ≤ (1 + ε)1+2i ≤ 1 + 2dε + O(ε2)

(1− δ̄i) ≥ (1− ε)1+2i ≥ 1− 2dε + O(ε2)

or |δ̄i| ≤ 2dε.

Thus, our algorithm computes exactly a polynomial with slightly different
coefficients āi = (1 + δ̄i)ai, i.e., it is backward stable (the exact solution
of a slightly different problem).

With that, we can compute the error in the computed polynomial:

|p(x)− p0(x)| =

∣∣∣∣∣
d∑

i=0

(1 + δ̄i)aix
i −

d∑
i=0

aix
i

∣∣∣∣∣
=

∣∣∣∣∣
d∑

i=0

δ̄iaix
i

∣∣∣∣∣
≤ 2dε

d∑
i=0

|aix
i|.

This error bound is in fact attainable if the δ̄i have signs opposite to that of
aixi. The relative error (bound) in polynomial evaluation is

|p(x)− p0(x)|
|p(x)| ≤ 2dε

∑d
i=0 |aixi|

|∑d
i=0 aixi| .

Since 2dε is a measure of the input error, the multiplier
∑d

i=0 |aixi|/|∑d
i=0 aixi|

is the relative condition number for polynomial evaluation. The relative error
bound can be computed directly:

Algorithm 1.4.4: polynomial evaluation error(x)

p = ad

p̂ = |ad|
for i = d− 1 downto 0

do

{
p = x ∗ p + ai

p̂ = |x| ∗ p̂ + |ai|
return (2dε p̂)

Preliminaries 11

From the relative error we may infer, for example, a lower bound number
of correct digits,

n = − log10

|p|
p̂

.

In the plot below we show this lower bound along with the actual number of
correct digits. As expected, the relative error grows infinite at the root.

−2 −1 0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

x

sig
ni

fic
an

t d
ig

its

