Introduction to Mathematical Computation

Assignment #8

Exercise 8.1 Let $A = U\Sigma V^T$ be an SVD for the *m*-by-*n* matrix *A*. What are the SVDs for the following matrices:

(1) $(A^T A)^{-1}$. (2) $(A^T A)^{-1} A^T$. (3) $A(A^T A)^{-1}$. (4) $A(A^T A)^{-1} A^T$.

Exercise 8.2 Write an algorithm that gets two vectors, (x_0, x_1, \ldots, x_n) and (y_0, y_1, \ldots, y_n) , and a number x, and returns p(x), where p is the interpolating polynomials through the n + 1 points (x_i, y_i) .

Exercise 8.3 Apply Lagrange's interpolation formula to the set of equally spaced pairs:

to obtain an approximation for y(x) at x = 0.

Exercise 8.4 Let $L_i(x)$ be the Lagrange polynomials for the set of point x_0, \ldots, x_n , and let $C_i = L_i(0)$. Show that

$$\sum_{i=0}^{n} C_{i} x_{i}^{j} = \begin{cases} 1 & j = 0\\ 0 & j = 1, \dots, n\\ (-1)^{n} x_{0} x_{1} \cdots x_{n} & j = n+1, \end{cases}$$

and that

$$\sum_{i=0}^{n} L_i(x) = 1.$$

Exercise 8.5 Suppose that p(x) is the interpolation polynomial of the data:

x	3	7	1	2	
y	10	146	2	1	

Find a simple expression, in terms of p(x), for the interpolation polynomial of the data: