Introduction to Mathematical Computation

Assignment #7

Exercise 7.1 Write an algorithm (i.e., a list of intructions in some pseudocode) that calculates the solution to the linear system, Ax = b, by Gauss-Seidel's iterative procedure. The algorithm receives as input the matrix Aand the vector b, and returns the solution x. Try to make the algorithm efficient.

Exercise 7.2 Show that the Jacobi iteration converges for 2-by-2 symmetric positive-definite systems.

Hint Suppose that the matrix to be inverted is

$$A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right).$$

First, express the positive-definiteness of A as a condition on a, b, c. Then, proceed to write the matrix $(I - Q^{-1}A)$, where Q is the splitting matrix corresponding to the Jacobi iterative procedure. It remains to find a norm in which $||I - Q^{-1}A|| < 1$ or compute the spectral radius.

Exercise 7.3 Will Jacobi's iterative method converge for

$$\begin{pmatrix} 10 & 2 & 3 \\ 4 & 50 & 6 \\ 7 & 8 & 90 \end{pmatrix}.$$

Exercise 7.4 Explain why at least one eigenvalue of the Gauss-Seidel iterative matrix must be zero.

Exercise 7.5 Show that if A is strictly diagonally dominant then the Gauss-Seidel iteration converges.

Exercise 7.6 What is the explicit form of the iteration matrix $G = (I - Q^{-1}A)$ in the Gauss-Seidel method when

$$A = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2 \end{pmatrix}$$

Exercise 7.7 (Computer exercise) Solve the system

$$\begin{pmatrix} -2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

using both the Jacobi and the Gauss-Seidel iterations. Plot a graph of the norm of the errors as function of the number of iterations. Use the same graph for both methods for comparison.