Introduction to Mathematical Computation

Assignment #5

Exercise 5.1 A matrix is called *normal* if it has a complete set of orthogonal eigenvectors. Show that for normal matrices,

$$||A||_2 = \operatorname{spr} A.$$

Exercise 5.2 The spectrum $\Sigma(A)$ of a matrix A is the set of its eigenvalues. The ϵ -pseudospectrum of A, which we denote by $\Sigma_{\epsilon}(A)$, is defined as the set of complex numbers z, for which there exists a matrix δA such that $\|\delta A\|_2 \leq \epsilon$ and z is an eigenvalue of $A + \delta A$. In mathematical notation,

$$\Sigma_{\epsilon}(A) = \{ z \in \mathbb{C} : \exists \delta A, \|\delta A\|_2 \le \epsilon, z \in \Sigma(A + \delta A) \}.$$

Show that

$$\Sigma_{\epsilon}(A) = \{ z \in \mathbb{C} : \| (zI - A)^{-1} \|_2 \ge 1/\epsilon \}.$$

Exercise 5.3 Let Ax = b and $(A + \delta A)\hat{x} = (b + \delta b)$. We showed in class that $\delta x = \hat{x} - x$ satisfies the inequality,

$$\|\delta x\|_{2} \leq \|A^{-1}\|_{2} \left(\|\delta A\|_{2}\|\hat{x}\|_{2} + \|\delta b\|_{2}\right).$$

Show that this is not just an upper bound: that for sufficiently small $\|\delta A\|_2$ there exist non-zero δA , δb such that the above in an equality. (**Hint**: follow the lines of the proof that links the reciprocal of the condition number to the distance to the nearest ill-posed problem.)