Introduction to Mathematical Computation

Assignment #4

Exercise 4.1 Show that the *p*-norms do indeed satisfy the properties of a norm.

Exercise 4.2 Prove the following inequalities for vector norms:

$$\begin{aligned} \|x\|_{2} &\leq \|x\|_{1} &\leq \sqrt{n} \|x\|_{2} \\ \|x\|_{\infty} &\leq \|x\|_{2} &\leq \sqrt{n} \|x\|_{\infty} \\ \|x\|_{\infty} &\leq \|x\|_{1} &\leq n \|x\|_{\infty}. \end{aligned}$$

Exercise 4.3 Show that for every invertible matrix A and norm $\|\cdot\|$,

$$||A|| ||A^{-1}|| \ge 1.$$

Exercise 4.4 Prove that the matrix norm subordinate to the vector norm $\|\cdot\|_1$ is

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$

- **Exercise 4.5** ① Let $\|\cdot\|$ be a norm on \mathbb{R}^n , and S be an $n \times n$ non-singular matrix. Define $\|x\|' = \|Sx\|$, and prove that $\|\cdot\|'$ is a norm on \mathbb{R}^n .
 - 2 Let $\|\cdot\|$ be the matrix norm subordinate to the above vector norm. Define $\|A\|' = \|SAS^{-1}\|$, and prove that $\|\cdot\|'$ is the matrix norm subordinate to the corresponding vector norm.

Exercise 4.6 True or false: if $\|\cdot\|$ is a matrix norm subordinate to a vector norm, so is $\|\cdot\|' = \frac{1}{2} \|\cdot\|$ (the question is not just whether $\|\cdot\|'$ satisfies the definition of a norm; the question is whether there exists a vector norm, for which $\|\cdot\|'$ is the subordinate matrix norm!).

Exercise 4.7 Show that spr A < 1 if and only if

$$\lim_{k \to \infty} A^k x = 0, \qquad \forall x.$$

Exercise 4.8 True or false: the spectral radius spr A is a matrix norm.

Exercise 4.9 (Computer exercise) Construct a "random" 6×6 matrix A. Then plot the 1,2, and infinity norms of $||A^n||^{1/n}$ as function of n with the maximum n large enough so that the three curves are sufficiently close to the expected limit.