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What are viscoelastic 
fluids?
Basic facts



Viscoelastic fluids are complex fluids that have “memory”
(the state-of-stress depends on the flow history) 

Visco: friction, irreversibility, loss of memory
Elastic: recoil, internal energy storage

Most viscoelastic fluids are made of, or contain polymers
(polymer solutions and polymer melts)

(Viscoelasticity is a matter of time scales: internal relaxation 
time versus macroscopic time scales)



Applications in industry



Most material processing is performed in the liquid state 
(molding, extrusion), and processing rates are limited by flow 
instabilities.

The fluid mechanics of complex materials is called rheology

Fibre spinning Extrusio!



Die swe" Rod climbing

“Peculiar” behavior of viscoelastic 
fluids



Adding a few parts per mi"ion of polymers into a solvent can 
suppress turbulent flow and result in up to 80% drag 
reduction (first reported in 1949 by Toms).

There is no accepted model that explains this mechanism.

Drag reduction



The modelling of 
polymeric fluids

From microscopic models to constitutive laws



u(x, t)

p(x, t)

τ(x, t)

The Eulerian velocity field
The pressure field
The stress tensor

Like all fluids, viscoelastic fluids are governed by a 
momentum equation:

∂u

∂t
+ (u ·∇)u = −∇p + ∇ · τ

Viscoelastic flows are incompressible:

∇ · u = 0



For Newtonian (viscous) fluids, the stress depends only on 
the instantaneous rate of deformation (Newton’s law):

τ = ν(∇u + ∇u
T )

For polymeric fluids there is an additional source of stress due 
to the polymers:

τ = νs(∇u + ∇u
T ) + τp

∂u

∂t
+ (u ·∇)u = −∇p + ν∆u

Substitution into the momentum equation gives the Navier-
Stokes equations:



In a viscoelastic fluid, the extra-stress due to polymers 
satisfies its own evolution equation. The relation between 
the extra-stress and the history of the flow is called the 
constitutive law of the fluid.

The modelling of constitutive laws for particular fluids is an 
active field of research. Many are derived from molecular 
models supplemented with closure approximations.



For example, stochastic model of dumbbells:

mr̈ = −kr + ζ(ṙ − r ·∇u) + noise

τp = nk < rr >

r(t) : the elongation of the polymer 

By solving the corresponding Smulochowski equation one 
obtains the upper-convected Maxwell equation

∂τp

∂t
+ (u ·∇)τp − (∇u)τp − τp(∇u)T = −

1

λ
τp +

νp

λ
(∇u + ∇u

T )

convection
deformation

relaxation
source



∂τp

∂t
+ (u ·∇)τp − (∇u)τp − τp(∇u)T = −

1

λ
τp +

νp

λ
(∇u + ∇u

T )

The model of a Newtonian stress supplemented with an 
extra-stress that satisfies the U.C. Maxwell equation is called 
the Oldroyd-B model. 

νp

λ

The polymeric viscosity

The relaxation time (Weissenberg number, We)

When We is small (additional) Newtonian viscosity

τp ≈ νp(∇u + ∇u
T )

It is when We>1 (memory range comparable to characteristic 
flow time) that life becomes interesting (and complicated).



The high-Weissenberg 
number problem

A 30 year old mystery



Computational rheology started in the early 1970s.
Mostly finite-element methods for steady 2D flows
(but also some finite volumes, finite differences, spectral 
methods, and particle tracking methods).

A" methods, without exception, were found to break down at a 
“%ustratingly low value” of the Weissenberg number (usually 
around We=1; precise critical value varies with the flow 
geometry).

The reason for this breakdown has remained somewhat of a 
mystery. Evidence that it is a numerical phenomenon (but 
inconclusive whether higher resolution delays of promotes 
breakdown). Yet, some still blame the invalidity of the 
constitutive laws.



Benchmark problem: flow through a 4:1 contraction
Breakdown for an Oldroyd-B 
fluid at We around 2.8 
(Walters and Webster, 2003)

Benchmark problem: flow past a cylinder

Breakdown for an 
Oldroyd-B fluid at W' 
around  0.9 
(Fan et al. 1999).



The high-Weissenberg number problem has haunted 
computational rheology for over 30 years. It limits 
tremendously the application of simulations in viscoelastic 
material processing. 



A fundamental numerical 
instability

A simple cartoon that explains a lo(



Take the simplest constitutive model (Oldroyd B), and 
your favorite numerical scheme (finite-differences, 
with upwinding, projection, and implicit for parabolic 
terms). 

Above a certain We, the numerical solution blows up in 
time exponentially.  

Let’s be idiots:

What can go wrong?
∂τp

∂t
+ (u ·∇)τp − (∇u)τp − τp(∇u)T = −

1

λ
τp +

νp

λ
(∇u + ∇u

T )

exponential growthconvection

For high We and large deformation rate, the only term that ca! 
balance the exponential blowup is the convection.



This observation calls for a simple test problem:

A one-dimensional linear scalar equation with constant 
coefficients (is there anything simpler?)

∂φ

∂t
+ a

∂φ

∂x
= b φ

φ(0, t) = 1

x ∈ [0, 1]

The scalar field φ(x,t) moves to the right with velocity a>0, 
and is amplified at a rate b>0.

Steady state solution: φ(x) = exp(−b x/a)



Now apply any numerical method to solve this problem. For 
example, first-order upwind scheme:

φn+1
i

− φn
i

∆t
= a

φn
i
− φn

i−1

∆x
+ b φn

i

φn+1
i

=

(
1 −

a∆t

∆x
+ ∆t b

)
φn

i +
a∆t

∆x
φn

i−1

which we rewrite as

The numerical solution blows up unless 

∆x <
a

b

Restrictive when velocity is 
low and amplification is larg'

Numerics does not let you stay too long in a region of fast growth



All schemes that are based on polynomial interpolation under-
estimate the outgoing flux because the true profile is 
exponential. 

The computed outgoing flux fails to balance the exponential 
amplification

Interpretation of the new stability condition

In a way or 
another all 
methods 
compute 
numerical fluxes

True solution

Reconstructed solution



For the U.C. Maxwell eq. the corresponding stability 
condition is

∆x <
|u|

2
√−det∇u − 1/λ

Troubles in the vicinity of stagnation points and 
geometrical singularities (e.g. re-entrant corners)



The solution

Solve equations for the logarith*



Since the failure stems from bad interpolation of 
exponentials, let’s evolve instead the logarithm!

∂φ

∂t
+ a

∂φ

∂x
= b φOriginal equation:

ψ(x, t) = log φ(x, t)Transformation:

∂ψ

∂t
+ a

∂ψ

∂x
= bTransformed equation:

ψn+1
i

=

(
1 −

a∆t

∆x

)
ψn

i +
a∆t

∆x
ψn

i−1 + ∆t b

Use your favorite scheme:

No restriction on Δx!!!



Cheater! you converted 
multiplicative growth into 
additive growth.

OK, then exponentiate the discrete equation for ψ, and 
expand exp(b Δt) ~ 1 + b Δt:

φn+1
i = (φn

i )1−a∆t/∆x(φn
i−1)

a∆t/∆x + ∆t bφn
i

Convection uses geometric weights

Multiplicative growth and yet unconditiona"y stabl'



Reformulating 
constitutive laws

The log-conformation representatio!



This little analysis suggests that we should evolve the 
logarithm of the extra-stress tensor

The stress is a second-rank tensor and therefore has a 
logarithm only if it is symmetric positive-definit'

The extra-stress does not preserve positivity,  but the 
conformation tensor

does
σ = τp +

νp

λ
I



Goal: reformulate the constitutive law as an equation for
ψ(x, t) = log σ(x, t)

The U.C. Maxwell equation in terms of the conformation 
tensor:

∂σ

∂t
+ (u ·∇)σ − (∇u)σ − σ(∇u)T = −

1

λ
(σ − I)

Transformation of convection: easy! every reversible function 
of σ(x,t) satisfies the exact same equation.

∂σ

∂t
+ (u ·∇)σ = 0

∂ψ

∂t
+ (u ·∇)ψ = 0implies

Transformation of relaxation: straightforward change of 
variables

∂σ

∂t
= −

1

λ
(σ − I)

∂ψ

∂t
= −

1

λ
(I − e−ψ)implies



Transformation of deformation: based on the following 
decomposition

Let σ be a symmetric positive-definite tensor, then the velocity 
gradient ∇u has a decomposition

where Ω,N are anti-symmetric and B is symmetric and commutes 
with σ

∇u = Ω + B + Nσ
−1

Decomposition of the velocity gradient into a rotational 
component, an extensional component, and a “nu"” componen(



We claim that solving the constitutive laws using this 
representation (detailed scheme less important) will not exhibit 
a high Weissenberg number problem!

Constitutive law for the log-conformation

∂ψ

∂t
+ (u ·∇)ψ − (Ωψ − ψΩ) − 2B = −

1

λ
(I − e−ψ)

rotation (additive) extension



Implementation
Not so important....



σ = τp +
νp

λ
I

Second-order in space and time

Temporal discretization with a two-step backward 
differentiation formula

Spatial discretization with a sta,ered grid (i,j)−cell

i,j

ci,j
ui+1/2,j

vi,j+1/2

ui−1/2,j

vi,j−1/2

p

The system:

ψ(x, t) = log σ(x, t)

∂u

∂t
+ (u ·∇)u = −∇p + ∇ · τ

∂ψ

∂t
+ (u ·∇)ψ − (Ωψ − ψΩ) − 2B = −

1

λ
(I − e−ψ)



Numerical results
Lid-driven cavity



x

y

Lid-driven cavity
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Solution converges 
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Stokes flow)



u ψxx

time
 relative 

error 
N=64

 relative 
error 
N=128

 rate
 relative 

error 
N=64

 relative 
error 
N=128

 rate

t=1 1.9 × 10
−3

3.7 × 10
−4 2.36 5.1 × 10

−3
1.1 × 10

−3 2.20

t=2 9.5 × 10
−3

2.1 × 10
−3 2.16 2.1 × 10

−2
5.1 × 10

−3 2.08

t=4 1.4 × 10
−2

5.1 × 10
−3 1.44 6.1 × 10

−2
1.8 × 10

−2 1.75

Numerical convergence analysis
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Results for higher W'
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We=5

50 100 150 200 250

50

100

150

200

250

s
tr

e
a

m
 f

u
n

c
ti
o

n

N = 256   Re = 0   Wi = 5   t = 20

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
y
y

N = 256   Re = 0   Wi = 5   t = 20

!3

!2

!1

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
x
y

N = 256   Re = 0   Wi = 5   t = 20

!3

!2

!1

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
x
x

N = 256   Re = 0   Wi = 5   t = 20

!1

0

1

2

3

4

5

6

7

8



Some remarks



1. Our results indicate that the HWNP 
instability is history

2. Works equally well with finite elements 
(Collaboration with Martien Hulsen)

3. Easily extended to particle tracking methods 
(e.g., Brownian configuration fields)

4. Method readily extended to nonlinear 
constitutive laws, and 3-dimensions

5. At high We loss of resolution and accuracy 
(back to standard numerical analysis...)

6. New horizons (e.g., turbulent drag reduction)



Time for the next speaker to prepare his/her 
transparencies

Epilogue



Find an acronym!!

High standards have been set by H.-C. Öttinger who 
invented CONFFESSITT (Calculation Of Non-Newtonian 
Flow: Finite Elements & Stochastic SImulation Techniques)

What about MAL-COTE (MAtrix Logarithm of the 
COnformation TEnsor)?


