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numerical stability as the Weissenberg number increases. Our results show the method to be immune
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man, Time-dependent simulation of viscoelastic flows at high Weissenberg using the log-conformation
representation, J. Non Newtonian Fluid Mech. 126 (2005) 23–37].
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. Introduction

A major obstacle in the computation of polymeric fluid dynamics
as been the so-called high Weissenberg number problem (HWNP).
his term refers to the numerical breakdown of computations
eyond a certain range of the Weissenberg number, Wi , where
he precise onset of this breakdown depends on the model, on
he geometry, and on the numerical scheme. For time-dependent
omputations this breakdown is usually manifested in a numerical
lowup of the solution, i.e., a numerical instability. For steady-state
omputations it is usually manifested in a lack of convergence. Vir-
ually all macroscopic models have been reported to suffer from
his numerical breakdown [12].

Recent progress has been made with the introduction of the
log-conformation” transformation (log-C) [5]. It was realized that
he presence of exponential profiles in the stress tensor, formed
y the combination of stress advection and stress stretching,
mposes a severe stability restriction on the spatial mesh size.

his restriction becomes particularly pronounced in the vicin-
ty of stagnation points. The log-conformation method consists
n replacing the constitutive equation for the conformation ten-
or C by an evolution equation for its matrix logarithm, log C (in
ost macroscopic models, the conformation tensor is symmetric

∗ Corresponding author at: Institute of Mathematics, The Hebrew University,
erusalem 91904, Israel. Tel.: +972 2 658 4159; fax: +972 2 563 0702.
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positive-definite, therefore has a well-defined matrix logarithm).
The balance between advection and deformation no longer imposes
a stability constraint on the spatial mesh when solving the new
equations for logC. The log-C formulation has been implemented
with finite differences [5,6], finite elements [9,13], and finite volume
methods [1] for various constitutive equations and several geome-
tries. In all cases, it has resulted in significant improvement over
previous computations: the numerical instability either vanished
or was deferred to very high values of Wi. It is to be noted however,
that the log-C method loses accuracy at large Wi.

In the 1990s so-called micro–macro models were introduced.
In the micro–macro approach, the conservation laws of mass and
momentum remain in the form of macroscopic equations for the
velocity and pressure fields. The macroscopic constitutive equa-
tion for the stress, however, is replaced by a stochastic system
of equations for variables that represent, in some coarse-grained
sense, the fluctuating polymers. A Kramers formula links between
the two scales, relating the stochastic variables to the macroscopic
stress field. Whilst such methods are expensive computationally,
they offer evident advantages: the model has a clear physical
meaning, and the stochastic equation is easy to discretize. Two
numerical implementations of the micro–macro approach are the
CONNFFESSIT method of Öttinger and co-worker [14] and the
method of Brownian Configuration Fields (BCF) of Hulsen et al.
[10]. In CONNFFESSIT, the polymers are represented by particles

that are advected with the flow, i.e., it is a Lagrangian method.
In BCF, the conformation of the polymers is represented by a
spatially continuous field, which makes it suitable for traditional
schemes based on spatial discretization, hence can be represented
by either Lagrangian or Eulerian formulations. The general expe-

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:claude.mangoubi@gmail.com
mailto:m.a.hulsen@tue.nl
mailto:raz@math.huji.ac.il
dx.doi.org/10.1016/j.jnnfm.2008.11.009
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ience is that micro–macro methods are more robust than their
acroscopic counterparts [10,11]. A natural question is: what is the

ource of this robustness? In particular, are micro–macro meth-
ds sensitive to the numerical instability pointed out in [12], and
f they are, does a logarithmic transformation of variables improve
tability?

The present paper studies numerical aspects of the BCF method
s Wi grows to values of O(1) and beyond. Extended simulations
re performed for the finitely-extensible nonlinear elasticity (FENE)
inetic model, in which each polymer molecule is treated as a
onlinear dumbbell. The chosen geometry is flow around a con-
ned cylinder; while there are no geometric singularities here, two
tagnation points are present at the front and back of the cylin-
er, which is where computations usually fail. We display results
or Weissenberg numbers in the range [0, 5] and maximum elon-
ation parameter, b, of 50 and higher. We also run simulations
or the Hookean dumbbell model, in which we are able to reach

value of Wi = 1.6 without numerical divergence. We explain
he robustness of the BCF in the light of the stability criterion
roposed in [6]. According to this criterion, the BCF method is

ntrinsically better conditioned than macroscopic methods, due to
smaller factor in front of the stretching term. Another part of

his work is the implementation of a logarithmic transformation of
he dumbbell’s extension vector, to check whether stability can be
mproved further. However, in agreement with our stability analy-
is, this transformation does not improve the stability. Lastly, we
mphasize that even though the BCF method is immune to the
umerical instability described in [12], the solutions in the wake
f the cylinder do not converge upon mesh refinement for Wi large
nough.

. The BCF method and its numerical implementation

.1. Background

We now introduce the BCF method. Throughout this paper we
ork within the creeping flow regime. The macroscopic equations

f momentum and mass conservation are:

−∇p+ �s�u + ∇ · � = 0
∇ · u = 0,

(1)

here u = u(t, x) is the velocity field,p = p(t, x) is the pressure field,
= �(t, x) is the extra-stress tensor, and the constant �s is the sol-

ent viscosity. The extra-stress � is obtained from a kinetic model
f the form

� = �p
�

(〈q ⊗ F(q)〉 − I)

dqt + (u · ∇q) dt =
(

�q − 1
2�

F(q)
)

dt + 1√
�

dW t ,
(2)

here � = (∇u)T . The random function q = q(t, x) is called the con-
guration field—it models the extension vector of the polymers. The

unction F(q) is the internal force exerted by a polymer in state q,
nd W = W (t) is a Wiener process. The parameter �p is the poly-
eric viscosity, whereas � is a typical relaxation time of the fluid.

he Weissenberg number is defined as Wi = �U
a , where U and a are

typical velocity and length of the problem. The model is endowed
ith boundary conditions, which in the case of a bounded domain,
, consist of impermeable no-slip boundaries.

The stochastic partial differential Eq. (2) models a stochastic pro-

ess in a space of functions on�. This stochastic equation induces
n evolution on the probability density  (q, x, t) of finding at
osition x and time t the polymers in state q; the density  sat-

sfies a Fokker–Planck equation. Expectations with respect to are
luid Mech. 157 (2009) 188–196 189

denoted by

〈f (q)〉 =
∫
R3
f (q) (q, x, t) dq.

In Brownian simulations, the solution q(t, x) to (2) is simulated
by N random functions qj(t, x), j = 1, . . . , N, which are approxima-
tions to N independent realizations of q(t, x). Each of the qj satisfies
(2) with an independent Brownian noise W j(t). The stress �, which
is given by an expectation with respect to q(t, x) is approximated
by an ensemble average

� = �p
�

⎡
⎣ 1
N

N∑
j=1

qj ⊗ F(qj) − I

⎤
⎦ ,

i.e., � is a stochastic process as well. As a result, the velocity u which
is obtained by solving the Stokes system (1) is random, hence the
coupling between the processes qj . Another quantity with physi-
cal meaning is the conformation tensor, given by C = 〈q ⊗ q〉 and
approximated by the ensemble average 1

N

∑N
j=1qj ⊗ qj .

For the dumbbell spring force F we use the FENE dumbbell
model

F(q) = q

1 − |q|2/b ,

where b is the maximum value that |q|2 is allowed to assume (the
maximum elongation parameter). The macroscopic variables u, p
and � are given in dimensional units, whereas q and F are scaled
such that 〈q ⊗ F〉 = I in the absence of flow.

The BCF method was first presented and implemented in [10]
for the Hookean dumbbell model (which coincides with the FENE
model with b = ∞). At low Wi, results were in agreement with
computations with the equivalent macroscopic Oldroyd-B model.
Results were also displayed for values of Wi for which the macro-
scopic computations break down, indicating that BCF is more robust
than its macroscopic counterpart. The BCF method was also imple-
mented for the FENE and FENE-P models in [11], but only for small
Weissenberg numbers. Other authors have since implemented this
method ([3,8]), but its numerical stability as Wi increases has not
yet been investigated.

2.2. An implicit-in-time BCF scheme

An obstacle to computing at higher Weissenberg numbers (e.g.,
[11]) is the time discretization of the stochastic differential Eq. (2).
The simplest discretization is the forward-Euler method: denoting
the discrete-in-time approximation of q(x, tn) by qn(x), the scheme
is

qn+1 = qn +
(

−un · ∇qn + �nqn − 1
2�

F(qn)
)
�t + 1√

�
�Wn,

where un(x) = u(x, tn), �n(x) = (∇un)T (x), and �Wn is a normally
distributed variable with expectation 0 and variance�t.

In the case of the FENE force, this scheme very quickly leads to an
over-extension of the dumbbells. This means that the updated value
qn+1 is such that |qn+1|2 > b, which violates the model. This can be
remedied by reducing the time-step, but for moderately large � the
restriction on the time step becomes so stringent that it makes it
an impractical solution. An alternative is to use an implicit-in-time
discretization, for example, Öttinger’s predictor-corrector method
[15]. We use a simpler implicit discretization, which is the backward

Euler scheme with only the spring force term treated implicitly. This
leads to the following equation for qn+1:

qn+1 + 1
2�

F(qn+1)�t = qn +
(
−un · ∇qn + �nqn

)
�t + 1√

�
�Wn
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Fig. 1. Geometric setting of the flow problem.

Fig. 2. mesh1.

Table 1
Mesh parameters.

n 1 n 2 n 3 n 4 ı Number of elements

mesh1 8 8 12 6 0.02161 480
mesh2 8 12 16 6 0.01459 784
mesh3 12 16 18 10 0.01101 1104
mesh4 16 16 24 12 0.01101 1920

F
E
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For the FENE force

1 + 1
2�

�t

1 − |qn+1|2/b

)
qn+1 = D(un,qn,�Wn) ≡ Dn,

here

(u,q,�W ) = q + (−u · ∇q + �q)�t + 1√
�
�W

s given at the current time step. Taking absolute values of both
ides, denoting the magnitude of any vector v by v, results in a cubic
quation for qn+1,

qn+1)
3 − Dn(qn+1)

2 − b
(

1 + �t

2�

)
qn+1 + bDn = 0.

Following Öttinger, it can be shown that there is only one root
hich satisfies qn+1 <

√
b. Defining

a1 = −Dn a2 = −b
(

1 + �t

2�

)
a3 = bDn

p = 3a2 − a2
1

9
r = 9a1a2 − 27a3 − 2a3

1
54

� = arccos

(
r√
−p3

)
,

he unique root satisfying qn+1 <
√
b is

n+1 = 2
√

−p cos

(
� + 4�

3

)
− a1

3

The updated vector qn+1 is now recovered with

n+1 =
(

1 + 1
2�

�t

1 − (qn+1)2/b

)−1

Dn.

. Numerical results

.1. Problem setting

We consider planar flow past a confined cylinder. The cylinder
as radius a = 1, and is positioned at the center of a channel of
idth 2H, whereH = 2a. The total length of the flow domain is 30a.

he geometry is depicted in Fig. 1.
We impose periodic conditions at the inflow and outflow bound-
ries. We assume reflection symmetry across the channel axis,
ence we only compute in half of the domain, and impose zero
angential traction along the center-line. The flow is driven by a
onstant flow rate Q, so that the average velocity across the chan-
el is U = Q/2H = 1 and the Weissenberg number is Wi = �. The

ig. 4. (a) Snapshot of the � components on the center-line and along the cylinder wall at
volution of the maximal conformation component c(t) given by (3). The parameters are
Fig. 3. Mesh parameters used in the cylinder problem.

fluid parameters are �s = 0.59 and �p = 0.41. In most calculations
the maximum elongation is b = 50. The value of b = 100 is also used
to allow comparison with results in [9] for the Giesekus model with
mobility parameter ˛ = 0.01.

We use four different meshes, denoted from coarsest to finest
by mesh1 to mesh4. The coarsest mesh is shown in Fig. 2. Speci-
fications for the four meshes are given in Table 1. The parameters
ni are the number of elements along a curve as shown in Fig. 3.
The parameter ı measures the shortest dimension of the small-
est radial element. All our computations use a finite elements
scheme with the DEVSS/DG stabilization. More details can be found

in [10].

t = 10 (�zz is not shown, as it is very small compared to the other components). (b)
b = 50, � = 1,�t = 10−2 and N = 5000.
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ig. 5. (a) Snapshot of the � components on the center-line and around the cylinder
= 50, � = 3,�t = 10−2, and N = 5000.

.2. Low Wi

We first show results using the coarsest mesh at relatively low
eissenberg number, � = 1. We would like to examine the results
hen the macroscopic values reach steady-state in a statistical

ense, which requires solving the system for a sufficiently long time
nterval. It is commonly accepted that a time interval of length at

east 5� is necessary. The results which are displayed in Fig. 4 are
or a time interval of 10� = 10.

In Fig. 4 a we show the three components of the stress ten-
or �xx, �xy and �yy on the center-line and along the cylinder
all at the final time. The s-axis corresponds to arclength along

ig. 6. Snapshot of �xx , �xy and �yy at the center-line and around the cylinder at t = 20.5 fo
20. (b) Evolution of the maximal conformation component (3). The parameters are

the lower boundary of the integration domain. The range 0 ≤
s ≤ � corresponds to the cylinder wall, while s < 0 and s > �
correspond to arclength along the center line, in front of and
behind the cylinder, respectively. We make the following observa-
tions:
�xx: There are two peaks, the highest of which is in the vicinity of

the cylinder wall, approximately at the top, s = �/2, where shear-

ing is strongest because it is tangent to the wall. A weaker peak is
observed in the wake; it is due to the elongation of the polymers
right behind the rear stagnation point. At the rear stagnation point
itself, the dynamics are at equilibrium and �xx 
 0 (theoretically it
should be 0).

r four different meshes. The parameters are b = 50, � = 3,�t = 10−2 and N = 5000.
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�xy: Two extremal values of opposite signs are reached at the
ylinder wall, near the points s = �/4 and s = 3�/4. �xy changes
igns at s = �/2. The second peak is smaller in amplitude. There is
othing visible in the wake, where elongation occurs (theoretically
xy should be 0).
�yy: A first peak is formed at the front of the cylinder due to the

trong elongation dynamics just before the stagnation point; �yy
hen drops to nearly 0 at the stagnation point (again, theoretically it
hould be 0). Two additional peaks form on the side of the cylinder;
s for �xy, the second peak is weaker.

In Fig. 4 b we show the time evolution of the maximum of the
argest component of C over the whole domain

(t) = maxx ∈�maxi,j|Cij(t, x)|. (3)

The transient overshoot is due to the shearing peak on the cylin-
er visible in �xx. It develops very fast, and eventually relaxes. The
uctuations are due to the stochasticity, they decrease when the
umber of fields N increases.

.3. Higher Weissenberg

We next raise the Weissenberg number to � = 3. The time
nterval is 20, which should suffice to reach steady-state. In this
omputation, we also refined the mesh to check for convergence
pon mesh refinement. In Fig. 5 a, the components of the stress
ensor are displayed and in Fig. 5 b the evolution of the maximal
onformation component (3) is shown. The main differences with
he � = 1 results are:

(a) In early stages, the largest peak in �xx develops near the cylinder
wall, but eventually �xx reaches its maximum value in the wake.
This type of behavior is visible in Fig. 5 b; the first peak is due
to overshooting in Cxx next to the cylinder wall, the second to
overshooting in Cyy before the stagnation point in front of the
cylinder, and the last one to overshooting in Cxx in the wake. The
wake region is also much more extended than for Wi = 1.

2) A discontinuity in �xy forms just before the rear stagnation point
at s = �. The same discontinuity has been observed in [4]; its
origin is not clear.

3) The peak in �yy at the front of the cylinder is now comparable
in size to the largest peak in �xx.

4) The two peaks in the vicinity of the cylinder wall in components
�xy, �yy have become closer in amplitude.

In Fig. 6 a we show a magnified graph of �xx in the regions where
t reaches its maxima for the four meshes. Convergence upon mesh
efinement can be seen at the peak near the cylinder wall. In con-
rast, there is no convergence in the wake. This lack of convergence
as been observed before in the simulation of macroscopic models.

nterestingly, the two other components of � seem to converge (see
ig. 6 b and c), even though the maximum value of �yy at the front
f the cylinder is of the same order as the maximum value of �xx in
he wake.

We have run simulations at larger values of Wi , up to Wi = 7.
he trends observed for � = 3 are even stronger. The peak in �xx in
he wake becomes much larger than the peak at the cylinder wall.
he discontinuity in �xy becomes more pronounced and the peak in
yy becomes larger than the peak in �xx. At Wi = 7, we even observe
on-steady behavior in �yy at the front of the cylinder. It is not clear
hether this is a real bifurcation or a numerical artifact.
.4. Larger b

For b = 50, no instability similar to what is known in the macro-
copic models has been observed. We increased b in order to allow
Fluid Mech. 157 (2009) 188–196

the dumbbells larger extension values. This should be more favor-
able to the development of exponential profiles characterized in
[6].

For a FENE model having a large value of b, the elongational-to-
shear viscosity ratio equals 2b. For the Giesekus model, this ratio is
equal to 2/˛. By choosing b = 100, we can then compare our results
to [9], where flow of a Giesekus fluid with ˛ = 0.01 is computed.
There, with the same physical parameters and geometry, it is found
that the critical value for the Wi number beyond which numerical
divergence occurs is 1.2. Here, we found a much higher thresh-
old; until Wi = 6, there was no breakdown. Since the two models
are so different (the FENE model is not a stochastic equivalent of
the Giesekus model), the comparison can only be indicative of an
improved stability of the BCF method compared to macroscopic
methods. For Wi = 7, the computations break down.

For b = 1000 simulations were found to be stable up to Wi = 2.
At Wi = 3, the computations break down. At this point, it is unclear
whether this can be circumvented or whether the breakdown is
really a consequence of the formation of exponential profiles in the
dumbbells.

3.5. Results for a Hookean dumbbell fluid

We have also simulated the flow of a Hookean dumbbell fluid
(the microscopic counterpart of an Oldroyd-B fluid) around a con-
fined cylinder (Fig. 7). It was noticed already in [10] that the BCF
model in this case seems more robust than the corresponding
macroscopic model. While in macroscopic simulations, the criti-
cal Weissenberg number for which computations break down is
about 0.9 in this geometrical setting, we reach a value of 1.6 with-
out numerical divergence, but with very large errors. Here we show
a simulation for Wi = 1, where the result is still smooth. We note
that the threshold value of Wi = 1.6 is similar to the one found in [9]
for the breakdown of the Oldroyd-B model using the log-C method
(in the same setting exactly).

4. The log-BCF transformation

4.1. A logarithmic transformation applied to the BCF method

As mentioned in the introduction, an interesting question is
whether a logarithmic type of transformation applied to the dumb-
bells would improve the stability of the BCF method. The original
log-C transformation was applied to the conformation tensor,
which in our context corresponds to the average 〈q ⊗ q〉. Here, we
need to adapt this idea to a transformation of the Brownian fields.
There are numerous possible choices: we transform the magnitude
of the elongation q and leave unchanged its orientation, defining a
new Brownian field:

w = f (q)
q

q f (q) = log(1 + q).

Note that w = log(1 + q), so that w = 0 if and only if q = 0. An
equation for w(t, x) is derived through Itô’s formula [7]. If a vectorial
stochastic process x(t) in Rn satisfies an SDE

dxt = adt + BdW t
where a ∈Rn,B ∈Rn×n, then the stochastic process y = g(x) satisfies
the SDE

dyt =
(

a · ∇g + 1
2

BBT : ∇∇g
)

dt + (∇g)TBdW t .
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ig. 7. Hookean dumbbell: (a) Snapshot of the � components at the center-line and
he parameters are � = 1,�t = 10−2 and N = 5000.

Applying this to w we get

dwt + (u · ∇w) dt =
(
f ′(q)
q2

(
qT�q
)

q + w

q

(
I − qqT

q2

)
�q − 1

2�
f ′(q)F

)
dt

+
(

1
2�

(
f ′′(q) + 2f ′(q)

q
− 2w
q2

)
q

q

)
dt

+ 1√
�

[
f ′(q)

qqT

q2
+ w

q

(
I − qqT

q2

)]
dW t ,

(4)

here we have used both q,w variables to avoid writing exponen-
ials and logarithms. We have used the fact that if the vector q is
onvected with the flow, then so is the vector w. We can interpret
he first deterministic term on the right-hand side as stretching, the
econd as rotation, the third as relaxation, and the fourth is an addi-
ional drift term arising from second moments of the noise. This is
imilar to the log-C transformation, where the flow deformation
is decomposed into pure stretching and pure rotation. We note

hat the same stochastic differential equation can be obtained by a
erivation similar to the one in [5] for the log-C transformation.

As in the regular BCF case, we expect over-extension to occur
ere as well. To prevent this we can use an implicit in time scheme
s before, by making the spring force implicit:

wn+1+ 1
2�
f ′(qn+1)

qn+1

1 − (qn+1)2/b

)
�t=D(un,qn,wn,�Wn)≡Dn,

here

D(u,q,w,�W ) =
[

−u · ∇w + f ′(q)
q2

(
qT�q
)

q + w

q

(
I − qqT

q2

)
�q

]
�t

+ 1
2�

(
f ′′(q) + 2f ′(q)

q
− 2w
q2

)
q

q
�t

+ 1√
�

[
f ′(q)

qqT

q2
+ w

q

(
I − qqT

q2

)]
�W .

Again, we take the absolute values of both sides and obtain an
lgebraic equation for z = qn+1:

(z) =
(

1 + z − z2

b
− z3

b

)[
log(1 + z) − Dn

]
+ �t

2�
z = 0.

Here we need to use an iterative method to find the appropriate√

oot. In order to prevent solutions with z > b, we look for the roots
f the function h(x) = g(x)(1 − (x2/b))

−1
, which has the same roots

s g(x) and diverging asymptotes at x =
√
b. We use a Newton solver,

ith the additional precaution that if an iterate exceeds
√
bwe set

t to the value of
√
b− 	 for some small value of 	.
d the cylinder at t = 20. (b) Evolution of the maximal conformation component (3).

4.2. Numerical results for the log-BCF transformation

For low values of Wi the results are very similar to those obtained
in Section 3 without the logarithmic transformation. However, a
slight difference already exists at the values of b = 50, � = 1. The
log-BCF method predicts a slightly lower value for the peak in �xx in
the wake than the regular BCF method. We ran simulations for the
large value of � = 5. The log-BCF method seems quite stable, how-
ever comparison of the two methods shows a larger discrepancy in
the wake.

In Fig. 8 a, we compare the profiles of �xx with the two formula-
tions. As expected from the� = 3 case, the peak in the wake is larger
than the peak around the cylinder, in the BCF computation. The log-
BCF computation, however, predicts smaller values in the wake. The
wake is now very extended and does not decay to the equilibrium
value at the end of the computational domain. This means we are
solving in practice a flow around a periodic array of confined cylin-
ders. Comparisons of the two other stress components reveal only
small differences in the vicinity of the peaks.

We have also increased the maximum extension parameter b to
values of 100 and 1000. We were able to reach values of � = 5 and
� = 2, respectively, without numerical breakdown. This is similar
to our findings for the regular BCF method.

A natural question is whether the BCF method is more or less
accurate than the log-transformed BCF. At the moment, we do not
know the answer. We note, however, that since the log-BCF method
is of order one half in time, it may be less accurate. In order to
check this, we have run two simulations with a reduced time-step
of�t = 5 × 10−3, in both the Wi = 3 and Wi = 5 cases. Our findings
do not lead to a clear conclusion; in the Wi = 3 case, reducing the
time-step does not change the results significantly. In the Wi = 5
case, however, the reduced time-step computation predicts a sig-
nificantly higher value of �xx in the wake, which is even higher than
what the regular BCF predicts.

4.3. The Hookean dumbbells case

We implemented our logarithmic transformation with the
Hookean dumbbells. We witnessed a slight improvement, as we
were able to reach Wi = 1.8 without numerical blow-up, but still
with large errors.
5. A theoretical stability criterion

In this section we shed some light on the remarkable stability
properties of the BCF method, compared to its macroscopic coun-
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erparts. For example, macroscopic computations of an Oldroyd-B
uid around a confined cylinder break down, without the log-C reg-
larization, at a Weissenberg number of about 0.9. The BCF solution
f the corresponding Hookean dumbbell model only breaks down
t Wi ≈ 1.6. One important difference between the two approaches
s that BCF preserves the positive definiteness of the conformation
ensor, whereas positive definiteness may be violated in macro-
copic simulations. Yet, even though the breakdown of macroscopic
imulations is often accompanied by the loss of positive definite-
ess, it has been shown [9], at least for the confined cylinder
eometry, that the breakdown occurs precisely at the Weissenberg
umber where the “stability criterion” presented in [6] is violated.
he question we try to answer is whether BCF is better conditioned
ith respect to this stability criterion.

The stability criterion in [6] was derived by analyzing a simple
calar equation in one space dimension that mimics the interplay
etween advection, stretching and relaxation. Let us consider the
ollowing toy-Oldroyd-B model

∂�

∂t
+ u∂�

∂x
= 2u′� − 1

�
�, (5)

here x∈ [0,1], u(x) is given, and u(x), u′(x) are assumed positive.
e choose the boundary and initial condition for �(t, x) arbitrarily

o be �(t,0) = 1, t > 0 and �(0, x) = 1. Here � is analogous to Cxx

nd u and u′ are analogous to the velocity field and its gradient. The
actor of 2 in front of the u′� term arises from the upper convected
erivative.

Under mild restrictions on u(x), the solution to (5) reaches a
teady state irrespectively of initial conditions. Yet, if we discretize
or both the BCF and the logarithmic BCF. The parameters are � = 5, �t = 10−2 and

it with, say, a first-order upwind scheme,

�n+1
j

= �nj − uj�t

�x
(�nj − �nj−1) +�t

(
2u′
j −

1
�

)
�nj ,

we see that the solution �n
j

remains bounded, as n→ ∞, only if

1 − uj�t

�x
+�t

(
2u′
j −

1
�

)
≤ 1,

i.e., if

2u′
j −

1
�

≤ uj
�x
.

If � is sufficiently small such that � ≤ 1/2u′
j

for all j, then this
condition is trivially satisfied. For points where 2u′

j
> 1/� the mesh

size�x has to satisfy the stability condition

�x ≤ uj
2u′
j
− 1/�

.

In order to evaluate the velocity gradient, we use an upwind
approximation for u′, so that at each point

u′
j = uj − uj−1

�x
.

Suppose now that the first point is a stagnation point, with u0 =
0, then

u′
1 = u1

�x
,
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o the stability condition becomes:

i1 := �u1

�x
≤ 1, (6)

here Wi1 is a “numerical Weissenberg number” at the first cell
fter the stagnation point.

The corresponding toy model that mimics BCF is

�t + u∂�
∂x

dt =
(
u′� − 1

2�
�
)

dt + 1√
�

dWt. (7)

The notable difference with (5), except for the presence of a
tochastic forcing, is that the stretching term here is smaller by a
actor of 2. The upwind scheme takes the form

n+1
j

=
[

1 − uj�t

�x
+
(
u′
j −

1
2�

)
�t

]
�nj + uj

�t

�x
�nj−1 + �Wj√

�
.

The stability condition preventing the appearance of exponen-
ial profiles now becomes

′
j −

1
2�

≤ uj
�x
.

Again, if � is sufficiently small such that � ≤ 1/2u′
j
, this con-

ition is trivially satisfied. Otherwise, using as before an upwind
pproximation for u′, the stability condition is trivially satisfied for
i1 ≥ 0.
Let us comment on the above analysis in the light of the actual

omputations. Firstly, condition (6) concerns Wi1, which can be
elated qualitatively to Wi by the following argument. As observed
n [9], the velocity gradient behind the stagnation point is over-
stimated, at least in the meshes considered; in Fig. 9 one can see
hat �u′ ∼ O(1), regardless of the mesh size. Thus, Wi1 and Wi are
f the same order, and (6) really sets a critical Wi. Secondly, the fac-
or of two that arises from the upper convected derivative changes
adically the stability of the equations, instead of causing a scal-
ng of the critical Weissenberg number. While this simple analysis
hows the toy-BCF to be immune to the instability occurring in
he toy-Oldroyd-B, it can only give a hint with regards to the full
wo-dimensional models, where the same type of analysis is more
omplicated. Indeed, the breakdown which eventually occurs in the
imulation of Hookean dumbbells is not predicted here. Moreover,
he stability condition (6) depends on the numerical approximation
sed; some numerical methods may remain unstable.

The above discussion indicates why the BCF method is in general
ore stable than macroscopic models. In our specific example of

he FENE force implementation however, this stability is improved
urther by the implicit scheme applied to the nonlinear force term.

e have found no clear stability criterion for a toy-FENE model,
ince the equation for �n+1

j
is cubic and not linear anymore.

Turning now to the logarithmic type transformation applied to
he dumbbells, it seems less surprising that no major improvement
n stability is visible, as the implicit FENE scheme is already very
obust. In the case of the Hookean dumbbells, we have witnessed a
light improvement but basically the critical Wi number remains of
he same order. We can try to explain this using again a toy model.
et us define  = log(1 + �) where � is the (positive) solution of

∂�

∂t
+ u∂�

∂x
= u′� − 1

2�
�, �(t = 0, x) = �(t, x = 0) = ε > 0,

for simplicity we consider a deterministic version of (7)). Then  

s a solution of the transformed equation

∂ 

∂t
+ u∂ 

∂x
=
(
u′ − 1

2�

)(
1 − e− 

)
 (t = 0, x) =  (t, x = 0) = log(1 + ε)> 0.
luid Mech. 157 (2009) 188–196 195

Writing as before an upwind scheme for  :

 n+1
j

= nj
(

1 − u�t
�x

)
+�t

(
u′− 1

2�

)(
1 − e− 

n
j

)
+u�t
�x
 nj−1, (8)

we note that at startup, when  n
j

is small, we can use the approxi-

mation e
 n
j ≈ 1 + n

j
, to obtain:

 n+1
j

=
[

1 − u�t
�x

+
(
u′ − 1

2�

)
�t
]
 nj + u�t

�x
 nj−1.

This means we would have to impose exactly the same condition
on the grid size as without the transformation in order to prevent
exponential growth. This is different from the log-C method, where
the stability criterion vanishes totally. In our case, if the condition
on �x is not enforced, we might reach highly inaccurate values
for n

j
. At this point the transformation becomes useful, since then

e
− n

j � 1, and (8) is approximated by

 n+1
j

=  nj
(

1 − u�t
�x

)
+
(
u′ − 1

2�

)
�t + u�t

�x
 nj−1,

for which there are no restrictions on the grid size. Of course, we
have prevented blowup at the cost of losing accuracy, which may
be the cause for the numerical failure eventually observed in the
log transformation applied to the Hookean dumbbells.

6. Discussion and conclusion

We have shown, through numerical computations, the BCF
method to be immune to the type of instability observed in macro-
scopic models as the Weissenberg number grows to values of O(1).
This is especially striking in the case where the dumbbell inter-
nal spring force is nonlinear, as in the FENE example. We have also
implemented a logarithmic type of transformation of the BCF field
in order to check whether it improved stability, as in the log-C trans-
formation in the macroscopic case. Stability remains essentially
unchanged, both in the FENE and Hookean dumbbell cases.

Analyzing two simple toy-models, we have gained insight into
the remarkable stability of the BCF model. We argue that the main
reason is the reduction of the stretching term by a factor of two
compared to the macroscopic models. To support this claim, we
have also tested macroscopic models in which the stretching term
was artificially reduced (results not shown). These simulations also
exhibited much better stability properties. These findings resolve a
misconception whereby the BCF model is often thought to be sta-
ble due to the inherent positive-definiteness of the conformation
tensor. Although this might help also, we showed that its stability
should be mainly understood in the light of the stability condition
discovered in [6].

Even though the BCF method seems much more stable than
its macroscopic counterparts, it suffers from a lack of convergence
upon mesh refinement in problematic areas of the geometrical set-
ting (in our case, at the wake of the cylinder). It also remains unclear
why the method eventually breaks down.
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