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Abstract. We present a numerical study of the axisymmetric Couette–Taylor problem using
a finite difference scheme. The scheme is based on a staggered version of a second-order central-
differencing method combined with a discrete Hodge projection. The use of central-differencing
operators obviates the need to trace the characteristic flow associated with the hyperbolic terms.
The result is a simple and efficient scheme which is readily adaptable to other geometries and to more
complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution,
and robustness. The numerical results agree accurately with linear stability theory and with previous
numerical studies.
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1. Introduction. Despite several decades of progress, the accurate computa-
tion of flow problems is still a challenging task. Sophisticated schemes have been
designed to cope with a variety of physical problems. Sophisticated methods are in-
herently difficult to apply, especially if they require additional adaptation for each
specific problem. This is an obstacle that often prevents the use of modern methods
in practical applications, e.g., in mechanical or chemical engineering. It is the purpose
of this paper to show the applicability of a simple, easy-to-implement, computation-
ally efficient, and readily generalizable scheme for flow problems. The realization
and performance of the scheme are demonstrated on the well-studied axisymmetric
Couette–Taylor system.

Many modern finite difference methods used in flow computations are based on
the Godunov paradigm, where the time evolution of a piecewise-polynomial approxi-
mation of the flow field is sought. Typically, this piecewise-polynomial approximation
is reconstructed from its cell averages. In this context, we distinguish between two
main classes of methods: upwind and central methods.

Upwind schemes evaluate averages over the same computational cells that were
used to construct the initial piecewise-polynomial elements. The computation of the
time evolution of the flow field requires the evaluation of fluxes along the cell in-
terfaces, i.e., along the discontinuous breakpoints. Consequently, the characteristic
speeds along such interfaces must be taken into account. Special attention is required
at those interfaces in which there is a combination of forward- and backward-going
waves, where it is necessary to decompose the “Riemann fan” and determine the sep-
arate contribution of each component by tracing the “direction of the wind.” It is the
need to trace characteristic fans, using exact or approximate Riemann solvers, that
greatly complicates the upwind algorithms. The first-order Godunov upwind scheme
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[9] is the forerunner for all the other Godunov-type schemes [16, 24, 11, 22, 7]. For
incompressible flow, the upwind-Godunov scheme was combined with Chorin’s pro-
jection technique [5] by Bell, Colella, and Glaz [2], E and Shu [8], and others. For a
review, see [10, 17, 6] and the references therein.

Central schemes differ from upwind schemes in their way of calculating averages.
In central schemes averages are evaluated over cells on a staggered grid so the break-
points between the piecewise-polynomial elements are now inside the computational
cells. Averages are now integrated over the entire Riemann fan, while the correspond-
ing fluxes are evaluated at the smooth centers of the piecewise-polynomial elements.
This method obviates the need for Riemann solvers resulting in simpler and faster
schemes. The first-order Lax–Friedrichs (LxF) scheme [15] is the canonical example
of such central schemes. Like Godunov’s upwind scheme, it is based on a piecewise-
constant approximation. The LxF scheme, however, introduces excessive numerical
viscosity resulting in relatively poor resolution.

Modern high-resolution central schemes were introduced by Nessyahu and Tadmor
(NT) [21] as a second-order sequel to the LxF scheme in one spatial dimension. The
original NT scheme, which was based on a piecewise-linear approximation, yielded
a considerable improvement in terms of resolution; at the same time, it retained
the relatively simple form of central schemes. The NT scheme was then extended to
higher orders [20] and to several spatial dimensions [12]. This and related work [25, 27]
convincingly demonstrated that central schemes offer a much simpler alternative to
upwind schemes while retaining a comparable resolution.

The central schemes mentioned above were introduced primarily for hyperbolic
conservation laws, such as those governing compressible flow. The conservation laws
for incompressible flow are additionally constrained by the incompressibility condi-
tion, which makes the dynamics nonlocal. The two-dimensional Euler equations in
their vorticity formulation were treated along these lines by Levy and Tadmor, both in
second- and third-order versions [18]. The resolution obtained by the latter is remark-
able. However, there are two major shortcomings to using the vorticity formulation:
boundary conditions are hard to formulate, and the method is not easily extended to
three spatial dimensions.

These problems were resolved by Kupferman and Tadmor (KT) [14], where in-
compressible flow was calculated in a velocity formulation based on the projection
method. The new scheme was tested on the classical doubly periodic shear layer
and on longitudinal flow in a channel. The performance was compared to that of an
upwind scheme. The two methods are comparable in accuracy and resolution. The
new scheme was further found to be immune to the formation of spurious vortical
structures [3].

The simplicity, accuracy, and resolution of the KT scheme make it a promising
candidate for tackling new and more complex problems, for example, in the domain
of non-Newtonian fluids [13]. For that, it has to be generalized in several aspects:
(i) treatment of more complex equations (e.g., coupling to constitutive equations);
(ii) adaptation to various geometries and coordinate systems; and (iii) systematic
treatment of boundary conditions. The last point was addressed only in a partially
satisfactory way in [14].

In this paper, we apply the KT method on the axisymmetric Couette–Taylor
problem. This particular problem was chosen for several reasons. First, it involves
cylindrical coordinates and thus demonstrates how to implement the staggered central
approach for non-Cartesian coordinates. Second, it offers a challenge to the numerical
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treatment of boundary conditions because the centrifugal forces constantly push the
fluid toward the outer cylinder. Finally, the availability of data and analytical results
allows an extensive test of the numerical results.

We find that the generalization to cylindrical coordinates fits very naturally into
the staggered central-differencing methodology. It requires the formulation of the
equations of motion in the appropriate conservative form; averages have to be calcu-
lated with the radius-dependent weight associated with the cylindrical coordinates.

The treatment of boundary conditions demands additional attention due to the
alternation between two different grids. It follows the same lines as in the basic
scheme, except for adaptations resulting from the existence of half-cells and for the
use of one-sided stencils to calculate derivatives.

We investigate the Couette–Taylor problem for the regime of parameters in which
axisymmetric solutions are relevant: azimuthal flow and steady Taylor vortices. We
compare our results with the predictions of linear stability theory and find excellent
agreement. The results are accurate even for a relatively coarse grid.

This paper is organized as follows. In section 2 we present the equations of motion,
both in their advective and conservative form. The latter is the starting point for the
central scheme approach. In section 3 we describe the numerical scheme. For clarity,
we divide the presentation between the treatment of interior and perimeter cells.
The numerical results are described in section 4. A short discussion is presented in
section 5.

2. The axisymmetric Navier–Stokes equations. A circular Couette cell
consists of a fluid confined between two concentrically rotating cylinders. The ge-
ometry imposes the natural choice of cylindrical coordinates: let x = (r, θ, z) and
u = (u, v, w) denote the radial, azimuthal, and axial components of the coordinates
and the flow field respectively. We consider here axisymmetric flow; the flow field
does not depend on the azimuthal coordinate θ. The Navier–Stokes equations which
govern the flow of Newtonian fluids are

∂u
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= −u∂u
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+
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with the incompressibility condition

1

r

∂

∂r
(ru) +

∂w

∂z
= 0,(2)

where p(x, t) is the pressure field and ν̄ is the kinematic viscosity.
As originally explained by Rayleigh [23], the Couette–Taylor instability results

from a radial stratification of the angular momentum density ` = rv. The special role
of angular momentum suggests a change of variables, replacing the equation for v by
an equivalent equation for `. The substitution is straightforward.

The central scheme approach is based on the dual nature of the equations of
motion, which can be formulated both in advective form (1) and in (partially) conser-
vative form. The equivalence of the two representations is guaranteed by the incom-
pressibility condition (2). Unlike in Cartesian coordinates, it is not possible to obtain
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a fully conservative system of equations in cylindrical coordinates. In the context of
conservative systems there are additional terms which play the role of “sources” (e.g.,
the centrifugal force).

A scalar field ψ(x, t) is said to satisfy a hyperbolic conservation law if its equation
of motion is of the general form ∂ψ

∂t = ∇ · j(ψ), where j(ψ) is the flux associated with
the conserved quantity ψ. In axisymmetric cylindrical coordinates, the representation
of the divergence operator is (1

r
∂
∂r r, 0,

∂
∂z ), so hyperbolic conservation laws assume the

specific form

∂ψ
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1
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∂
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jz.(3)

It is now a matter of simple algebra to rewrite (1) in the appropriate conservation
form:
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(4)

The purely conservative equation for ` reflects the fact that angular momentum is
conserved inside the cell.

We next specify the boundary conditions. At the rigid walls, r = Rin and r =
Rout, the no-slip conditions imply that the velocity of the fluid equals that of the
rotating cylinders. If Ωin and Ωout denote the angular velocities of the inner and the
outer cylinders, respectively, then the boundary conditions are

u(Rin) = u(Rout) = w(Rin) = w(Rout) = 0,

`(Rin) = ΩinR
2
in, `(Rout) = ΩoutR

2
out.

(5)

For the axial axis we will assume for convenience periodic boundary conditions. This
has little effect on the solution provided that the height of the cylinders is large
compared to the characteristic wavelength of the flow pattern. This condition is met
in all our calculations.

The number of independent parameters may be reduced by introducing dimen-
sionless variables: we measure length in terms of intercylindrical gap units, Rout−Rin,
and time in terms of the rotation period of the inner cylinder, 1/Ωin. The velocity field
is then expressed in units of Ωin(Rout−Rin) and viscosity in units of Ωin(Rout−Rin)2.
We will denote the dimensionless viscosity by ν. In these units, the boundary condi-
tions for the angular momentum read

`(rL) =
η2

(1− η)2
and `(rR) =

ω

(1− η)2
,(6)

where

rL =
η

1− η and rR =
1

1− η(7)
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denote the cylindrical radii, η ≡ Rin/Rout, and ω ≡ Ωout/Ωin. Thus the model
includes only three independent parameters: η, ω, and ν.

Following [1], we further define the Reynolds numbers associated with the inner
and the outer cylinders as

Rin ≡ Rin(Rout −Rin)Ωin
ν̄

=
η

ν(1− η)
(8)

and

Rout ≡ Rout(Rout −Rin)Ωout
ν̄

=
ω

ν(1− η)
.(9)

For all values of the parameters, these equations have an azimuthal stationary
solution, known as Couette flow:

u(r) = w(r) = 0, `(r) = Ar2 +B,(10)

where the coefficients A and B are given by

A =
ω − η2

1− η2
and B =

(1− ω)η2

(1− η)2(1− η2)
.(11)

3. The numerical scheme. We now turn to the presentation of the central
scheme. We start by describing the scheme for interior cells in section 3.1. We treat
the boundary cells in section 3.2.

3.1. Interior cells. The computational grid consists of rectangular cells of size
∆r and ∆z; at time level tn these cells Ci,j are centered at (ri = rL + i∆r, zj = j∆z),
with i = 0, . . . ,M − 1 and j = 0, . . . , N − 1. The velocity field (u, `, w) is represented
by the point values at the cells’ centers, uni,j = (uni,j , `

n
i,j , w

n
i,j). The pressure gradient

∇p is assumed to be given at the former midtime tn−
1
2 , and is also represented by its

point values (Grp
n− 1

2
i,j , 0, Gzp

n− 1
2

i,j ).

3.1.1. Piecewise-linear reconstruction. The first step is a piecewise-polynomial
reconstruction of the velocity field to recover point values throughout the cell. Second-
order accuracy is guaranteed by a piecewise-linear reconstruction, which takes the
form

un(r, z) = uni,j + u′i,j(r − ri) + u8i,j(z − zj), r, z ∈ Ci,j ,(12)

where u′i,j and u8i,j approximate the r- and z-derivatives at the cells’ centers (ri, zj),
respectively. In general, the recipe for constructing such derivatives requires nonlinear
limiters in order to prevent the formation of nonlinear oscillations [16, 26, 19]. As
reported in [14], the central scheme proves to be quite robust against the formation
and the propagation of spurious oscillations. We therefore calculate u′i,j and u8i,j using
simple central differences

u′i,j = D0
ru

n
i,j and u8i,j = D0

zu
n
i,j ,(13)

where D0
r,z denote the r- and z- central difference operators.
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3.1.2. Calculation of the provisional field. The second step is to evolve the
piecewise-linear approximation to the next time level tn+1. The time evolution of
the flow field is given by (4), subject to the incompressibility constraint imposed by
(2). The latter determines the pressure p(x, t), which could be viewed as a Lagrange
multiplier.

We follow the projection method [5]. Consider the following second-order temporal
discretization of the equations of motion:

un+1 − un

∆t
=
[−(u · ∇)u + ν∇2u

]n+ 1
2 −∇pn+ 1

2 ,(14)

where the updated flow field satisfies the incompressibility condition

∇ · un+1 = 0.(15)

The Hodge decomposition theorem states that any vector field u can be uniquely de-
composed into a divergence-free component which is tangential to the domain bound-
aries, and an irrotational component. Let P denote the operator which projects a
vector field onto the space of divergence-free fields. Then (14) and (15) can be re-
placed by the equivalent set of equations

un+1 = Pu∗(16)

and

∇pn+ 1
2 = ∇pn− 1

2 +
1

∆t
(I− P)u∗,(17)

where

u∗ ≡ un + ∆t
[−(u · ∇)u + ν∇2u

]n+ 1
2 −∆t∇pn− 1

2(18)

is a provisional flow field.

In other words, lacking the knowledge of∇p at the midtime tn+ 1
2 , we approximate

it by its value at the former midtime tn−
1
2 . The result is a provisional field u∗ which

differs from the actual updated flow field un+1 by the gradient of a scalar function,
∆t∇(pn+ 1

2 − pn− 1
2 ). Hence, un+1 is the projection of the provisional field, while the

irrotational residual can be used to update the pressure gradient at time tn+ 1
2 . (The

provisional field in Chorin’s original method did not include the ∇p term, resulting
in a first-order scheme. This addition is due to Bell, Colella, and Glaz [2].)

We now turn to the computation of the provisional field u∗. Its time evolution
can be cast in the general form

∂u∗

∂t
=

1

r

∂

∂r
rF(u∗, r) +

∂

∂z
G(u∗, r) + S(u∗, r),(19)

where F(u∗, r) and G(u∗, r) denote the r- and z-components of the fluxes, and S(u∗, r)
is the source term that includes all terms which do not fit into the conservation form.
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Specifically,

F(u∗, r) =
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r3
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∂r
0

−∂p
∂z

 .

(20)

At time tn, the provisional field u∗ equals the actual flow field un. We evolve u∗ to
time tn+1 by first calculating its cell averages ū∗ over the staggered grid cells Ci+ 1

2 ,j+
1
2
.

Note that in axisymmetric cylindrical coordinates, spatial averages are weighted in
proportion to the radius r. These cell averages can be expressed as integrals over the
control box, Ci+ 1

2 ,j+
1
2
× [tn, tn+1]:

ū∗i+ 1
2 ,j+

1
2
≡ −
∫
C
i+ 1

2
,j+ 1

2

r dr dz u∗

= −
∫
C
i+ 1

2
,j+ 1

2

r dr dz un +

∫ tn+1

tn

dt −
∫
C
i+ 1

2
,j+ 1

2

r dr dz
∂u∗

∂t
.(21)

The computational grid and the control box are sketched in Fig. 1, with the vertical
axis representing time. The notation −∫

Ω
= 1

Ω

∫
Ω

is for normalized integrals, scaled
by their area, length, etc.; here, for example, the volume of the annulus whose cross
section is the staggered cell Ci+ 1

2 ,j+
1
2

is ri+ 1
2
∆r∆z.

The first term in (21) is a simple average of the piecewise-linear function un over
the bottom of the integration box shown in Fig. 1. It involves contributions from the
four intersecting cells Ci,j , Ci+1,j , Ci,j+1, and Ci+1,j+1. A straightforward computation
yields

−
∫
C
i+ 1

2
,j+ 1

2

dr un = µ+
r µ

+
z uni,j +

∆r2

8ri+ 1
2

D+
r µ

+
z uni,j −

∆r2

8
D+
r µ

+
z u′i,j

− ∆r2

24ri+ 1
2

µ+
r µ

+
z u′i,j −

∆z2

8
D+
z µ

+
r u8i,j .

(22)

The notation here is defined as follows. D+
r ui,. ≡ (ui+1,. − ui,.)/∆r and µ+

r ui,. ≡
1
2 (ui+1,. + ui,.) denote forward differences and forward averages in the r-direction,
respectively. The meaning of the related operators D−r , µ−r , D+

z , D−z , µ+
z , and µ−z is

self-evident.

We now discuss the integration over the fluxes F and G. This is where the
virtues of the conservation form enter. For example, the integral

∫
r dr over the

flux F is simple to perform and equals the difference between the fluxes at ri+1 and
ri. This flux difference is then integrated over the two interfaces of the control box
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Fig. 1. The computational grid. At time tn, the data refer to the cells Ci,j centered at
(i∆r, j∆z). At time tn+1, staggered cells Ci+ 1

2
,j+ 1

2
are used.

(Fig. 2):∫ tn+1

tn

dt−
∫
C
i+ 1

2
,j+ 1

2

r dr dz
1

r

∂

∂r
rF(r, z, t) =

1

ri+ 1
2

D+
r

∫ tn+1

tn

dt−
∫
J
j+ 1

2

dz riF(ri, z, t),

(23)
where Jj+ 1

2
refers to the segment of length ∆z centered at zj+ 1

2
.

So far, the procedure is exact. Approximations are required when we integrate
(rF) over the interfaces of the control box. For second-order accuracy, the integral
over z is approximated by the second-order trapezoidal rule. The integral over time is
approximated by the midpoint rule. For that, we need an approximation of the fields

at time tn+ 1
2 at the centers of the cells Ci,j . u

n+ 1
2

i,j can be obtained by a first-order
explicit predictor step.

A slightly different procedure is adopted for the temporal integration of the viscos-
ity terms νur, etc. Stability considerations favor instead the implicit Crank–Nicholson
scheme, which consists of an averaging between values at times tn and tn+1.

The integration over the flux G follows the same lines. There remains the source
term S(u, r) for which the spatial integration can be approximated by a second-order
averaging over the four corners:

−
∫
C
i+ 1

2
,j+ 1

2

r dr dz S(r, z, t) ' 1

ri+ 1
2

µ+
r µ

+
z [rS(ri, zj , t)] .(24)

The time integration is again approximated by the midpoint rule.
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Fig. 2. Integration over the flux F: the integral over the control box Ci+ 1
2
,j+ 1

2
× [tn, tn+1]

reduces to the flux difference ∆r D+
r (rF), integrated over the sides Jj+ 1

2
× [tn, tn+1] (shaded areas).

Thus the calculation of the cell averages ū∗
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]}

,

[
1− ν∆t

2
∇2

]
w̄∗i+ 1

2 ,j+
1
2

= µ+
r µ

+
z w

n
i,j +

∆r2

8ri+ 1
2

D+
r µ

+
z w

n
i,j −

∆r2

8
D+
r µ

+
z w
′
i,j

− ∆r2

24ri+ 1
2

µ+
r µ

+
z w
′
i,j −

∆z2

8
D+
z µ

+
r w
8
i,j

+
∆t

ri+ 1
2

D+
r µ

+
z

{
ri

[
−un+ 1

2
i,j w

n+ 1
2

i,j +
ν

2
w′i,j

]}
+

∆t

ri+ 1
2

D+
z µ

+
r

{
ri

[
−(w

n+ 1
2

i,j )2 +
ν

2
w8i,j

]}
+

∆t

ri+ 1
2

µ+
r µ

+
z

{
ri

[
−Gzpn−

1
2

i,j

]}
,

where, for any staggered grid function fi+ 1
2 ,j+

1
2
, the discrete Laplacian operator

∇2fi+ 1
2 ,j+

1
2

is defined by

∇2fi+ 1
2 ,j+

1
2
≡ 1

ri+ 1
2

D+
r riD

−
r fi+ 1

2 ,j+
1
2

+D+
z D
−
z fi+ 1

2 ,j+
1
2
.(26)

Once we obtain the cell averages of the provisional field ū∗
i+ 1

2 ,j+
1
2

, we need to

convert this result back into point values u∗i+ 1
2 ,j+

1
2

at the staggered cells’ centers. If

the provisional field u∗(r, z) is approximated by a piecewise-linear function,

u∗(r, z) = u∗i+ 1
2 ,j+

1
2

+ (u∗)′i+ 1
2 ,j+

1
2
(r − ri+ 1

2
) + (u∗)8i+ 1

2 ,j+
1
2
(z − zj+ 1

2
),

(r, z) ∈ Ci+ 1
2 ,j+

1
2
,

(27)

then its cell averages are given by

ū∗i+ 1
2 ,j+

1
2

= u∗i+ 1
2 ,j+

1
2

+
∆r2

12ri+ 1
2

(u∗)′i+ 1
2 ,j+

1
2
.(28)
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It is easily verified that (u∗)′
i+ 1

2 ,j+
1
2

≈ (ū∗)′
i+ 1

2 ,j+
1
2

to second-order accuracy. There-

fore the point values are recovered from the average values by

u∗i+ 1
2 ,j+

1
2

= ū∗i+ 1
2 ,j+

1
2
− ∆r2

12ri+ 1
2

D0
r ū
∗
i+ 1

2 ,j+
1
2
.(29)

We note that this procedure may require some modification when limiters are present.
This concludes the second step of the calculation of the provisional field.

3.1.3. Hodge projection. The result obtained in the last section is a non–
divergence-free provisional field u∗. The third step accounts for incompressibility
by extracting its divergence-free part. The remainder (irrotational) part is used to
update the pressure gradient.

In differential form, the new flow field un+1 needs to satisfy the incompressibility
condition

1

r

∂

∂r
(run+1) +

∂wn+1

∂z
= 0.(30)

As the central-differencing approach is based on cell averaging, we choose to impose
the incompressibility condition in its integral form. Integrating the differential condi-
tion over the cell Ci,j we get

∆r D−r

∫
Jj

dz ri+ 1
2
un+1
i+ 1

2 ,j+
1
2

+ ∆z D−r

∫
Ii

dz ri+ 1
2
wn+1
i+ 1

2 ,j+
1
2

= 0,(31)

which is again approximated using the second-order trapezoidal rule. Thus the dis-
crete form of the incompressibility condition is

D−r µ
−
z

(
ri+ 1

2
un+1
i+ 1

2 ,j+
1
2

)
+D−z µ

−
r

(
ri+ 1

2
wn+1
i+ 1

2 ,j+
1
2

)
= 0.(32)

We now perform a discrete Hodge decomposition. We decompose the provisional
field u∗i+ 1

2 ,j+
1
2

into the sum of the updated flow field un+1
i+ 1

2 ,j+
1
2

and the gradient of a

scalar grid function φi,j :

u∗n+1
i+ 1

2 ,j+
1
2

= un+1
i+ 1

2 ,j+
1
2

+D+
r µ

+
z φi,j ,

l∗n+1
i+ 1

2 ,j+
1
2

= ln+1
i+ 1

2 ,j+
1
2

,

w∗n+1
i+ 1

2 ,j+
1
2

= wn+1
i+ 1

2 ,j+
1
2

+D+
z µ

+
r φi,j .

(33)

Up to the specification of boundary conditions (which are discussed in the next
section), the substitution of the decomposition (33) into the discrete incompressibility
condition (32) dictates the scalar potential φi,j . It is the solution of the Poisson
equation

µ+
z µ
−
z D
−
r

(
ri+ 1

2
D+
r φi,j

)
+D+

z D
−
z µ
−
r

(
ri+ 1

2
µ+
r φi,j

)
= ρi,j ,(34)

where

ρi,j ≡ D−r µ−z
(
ri+ 1

2
u∗i+ 1

2 ,j+
1
2

)
+D−z µ

−
r

(
ri+ 1

2
w∗i+ 1

2 ,j+
1
2

)
.(35)



A NUMERICAL STUDY OF THE COUETTE–TAYLOR PROBLEM 869

The calculation of φi,j allows the flow field to be updated from (33), and the
pressure gradient is updated by

Grp
n+ 1

2

i+ 1
2 ,j+

1
2

= µ+
r µ

+
z Grp

n− 1
2

i,j + 1
∆tD

+
r µ

+
z φi,j ,

Gzp
n+ 1

2

i+ 1
2 ,j+

1
2

= µ+
r µ

+
z Gzp

n− 1
2

i,j + 1
∆tD

+
z µ

+
r φi,j .

(36)

This concludes the calculation of the time step.
The evolution of the flow field from time tn to time tn+1 induces a spatial shift

from the cells Ci,j to the staggered cells Ci+ 1
2 ,j+

1
2
. For successive steps, the method

consists of alternations, every second step, between the two grids. Thus, the next step
shifts back to the original grid. The calculations involved in the alternating steps are
identical, up to a systematic interchange between forward and backward operators
(e.g., D+

r ↔ D−r ), and between the cell centers (ri, zj) and (ri+ 1
2
, zj+ 1

2
).

3.2. Boundary cells. The numerical scheme presented in the previous section
remains to be adapted for the radial boundary cells (0, j) and (M − 1, j). The al-
ternation between the two grids requires special attention and, in particular, implies
different treatments for odd and even time steps. As in the preceding section, we will
describe the procedure only for time steps which start with the grid Ci,j and end with
the staggered grid Ci+ 1

2 ,j+
1
2
.

We adopt the following convention: in the initial state, the left edge of the system
(r = rL) intersects the left boundary cells (i.e., r0 = rL), while the right edge of the
system (r = rR) coincides with the edge of the right boundary cells (i.e., rM−1 =
rR − 1

2∆r). That is, the right boundary cells lie entirely inside the system, whereas
only half of the left boundary cells do so. This situation is reversed in the succeeding
time steps (see Fig. 3). This sets the grid spacing ∆r = (rR − rL)/(M − 1

2 ).

3.2.1. Piecewise-linear reconstruction. The piecewise-linear approximation
un(r, z) assumes the same form (12) inside the boundary cells. The only modifica-
tion is to the r-derivatives, which have to be calculated using second-order one-sided
expressions:

u′0,. = − 1

2h

(
3un0,. − 4un1,. + un2,.

)
,

u′M−1,. =
1

2h

(
3unM−1,. − 4unM−2,. − unM−3,.

)
.

(37)

3.2.2. Calculation of the provisional field. As described in section 3.1.2, the
calculation of the provisional field consists of three steps: (i) a predictor to estimate

u
n+ 1

2
i,j ; (ii) a corrector to calculate the cell averages of the provisional field ū∗

i+ 1
2 ,j+

1
2

;

and (iii) an interpolation which recovers point values of the provisional field u∗i+ 1
2 ,j+

1
2
.

The predictor field u
n+ 1

2
i,j is calculated at the centers of the cells Ci,j . The right

boundary cells (i = M − 1) lie entirely inside the system and can follow exactly the
same treatment as the interior cells (25), with the derivative operators replaced by
one-sided stencils. The centers of the left boundary cells (i = 0) are on the boundaries,

and fields’ values at those points are determined by the boundary conditions u
n+ 1

2
0,. =

u(rL). This situation is reversed in the corrector step, where the provisional field is
calculated at the centers of the cells Ci+ 1

2 ,j+
1
2
. Then left boundary cells are treated

as interior cells while u∗M−1,. = u(rR).
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Fig. 3. The computational grid and the physical domain. The solid (dotted) grid corresponds
to the initial state for odd (even) time steps.

3.2.3. Hodge projection. The Hodge projection decomposes the provisional
field u∗ into a divergence-free field un+1 and an irrotational field (33). In the contin-
uum case only the normal component of the divergence-free part can be specified as
un+1(rL) = un+1(rR) = 0. In the discrete formulation it is possible within second-
order accuracy also to impose constraints also on the tangential component wn+1.

The flow fields u∗ and un+1 are given at the centers of the staggered cells Ci+ 1
2 ,j+

1
2
,

while the scalar field φi,j is given at the centers of the original cells Ci,j . At the left
boundary (i = 0) the gradient of φ can be calculated using the same differencing stencil
as in the interior cells. As the flow field itself is not calculated at the boundary, we
will require that the extrapolated value of un+1 vanishes at r = rL, i.e.,

1

8
µ+
z

(
15un+1

1
2 ,.
− 10un+1

3
2 ,.

+ 3un+1
5
2 ,.

)
= 0.(38)

On the right side (i = M − 1) the flow field is calculated at the boundary. The
fact that both un+1

i+ 1
2 ,j+

1
2

and wn+1
i+ 1

2 ,j+
1
2

vanish at those points determines the form of

the incompressibility condition with respect to the boundary cells Ci,j :

− 1

∆r
µ+
z µ
−
z D
−
r φi,j +

1

2
D+
z D
−
z µ
−
r φi,j = − 1

∆r
µ−z u

∗
i− 1

2 ,j+
1
2

+
1

2
D−z w

∗
i− 1

2 ,j+
1
2
.(39)

(38) and (39) complete the specification of the boundary conditions for φi,j .
We note that the Poisson equation defined by (34), (38), and (39) has a two-

dimensional null space which corresponds to two additive constants, one for each of
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Table 1
L2-error and extrapolated convergence rates estimated from the comparison of 16×64, 32×128,

and 64 × 256 grids. The parameters are η = 0.883, H = 6, ω = 0, ν = 0.04, and the total time is
t = 10.

M = 16, N = 64 Rate M = 32, N = 128
‖uM,N − u2M,2N‖2 2.50 · 10−3 1.98 6.45 · 10−4

‖`M,N − `2M,2N‖2 0.23 1.95 6.10 · 10−2

‖wM,N − w2M,2N‖2 2.40 · 10−3 1.93 6.20 · 10−4

two decoupled stencils (“checkerboard” pattern). These two degrees of freedom do
not affect the values of the updated fields and therefore can be set arbitrarily.

4. Numerical results. We implemented the above central scheme. The im-
plicit diffusion and Laplace equations were solved using the fast Fourier transform for
the periodic z-axis. The time step was limited through the CFL stability condition,
max (|u|/∆r, |w|/∆z) ∆t < C where C is a constant. The CFL condition is a bound
on the maximum distance along which information can propagate during a single time
step. In our staggered central scheme it is essential that the characteristics emanating
from the discontinuities between the piecewise-linear elements remain within the stag-
gered cell, i.e., that the characteristics are not allowed to propagate by more than half
a cell. This imposes the condition C < 1

2 . On the other hand, the constant C should
be taken as large as possible in order to reduce the undesired numerical viscosity of the
scheme. All our computations were carried out with C = 0.45. In cases where both
|u| and |w| are everywhere small (i.e., when the flow is almost azimuthal), the time
step has to be limited by the viscous terms. In view of the implicit Crank–Nicholson
scheme used for the latter, this is more a matter of accuracy than stability. The code
was implemented on a Sun Sparc Ultra-1 workstation. About 25% of the computing
time was spent on the linear solvers required by the implicit diffusion scheme and by
the projection. For a 32×1024 grid, each time step takes about 5 seconds. A typical
run up to t = 40 takes less than two hours.

The parameters were chosen following the experimental study of [1]. The gap
ratio η = Rin/Rout was taken to be 0.883. The aspect ratio between the height of
the cylinders and the gap width was taken to be H = 32, close to the experimental
value of 30. Such an aspect ratio is a reasonable approximation of infinite cylinders.
The parameter space was then explored by varying the two remaining parameters, ω
and ν. The initial condition was the azimuthal Couette flow (10), added to a small
random perturbation to allow the instability to develop. In most calculations we used
M = 32 points in the radial direction and N = 1024 points in the axial direction.

To estimate the convergence rate we compared the solution with a solution ob-
tained using twice as many grid points in each axis. The two calculations were then
interpolated to a common grid using a third-order interpolation scheme. The L2-norm
of the difference was taken as an error estimate. Such error estimates are shown in Ta-
ble 1 for a regime of parameters in which the initial Couette solution is unstable. The
convergence rate was evaluated by Richardson extrapolation. The numbers indicate
that the scheme is second-order accurate as claimed.

We first focus on flows where the outer cylinder does not rotate: ω = 0 (and
Rout = 0). For large enough values of the viscosity ν (or low enough values of Rin),
the initial perturbation decays and the solution tends back to the azimuthal Couette
flow. Below a critical value of ν ≈ 0.0617 the Couette solution is unstable and the
perturbation grows until a new stationary state is eventually reached. This state is the
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Fig. 4. Color-level image of the flow components, u (left), ` (center), and w (right). The axes
are the radial and the axial coordinates, and include a part of the cylindrical section. The parameters
are ω = 0 and ν = 0.03.

well-known Taylor vortices, a cellular structure of superimposed azimuthal vortices.
A color-scale image of the three velocity components for the stationary Taylor vortices
is shown in Fig. 4. An arrow representation of the (u,w) vector field is shown in Fig.
5. The axial segment corresponds to one wavelength which equals approximately two
gap units.

For even lower values of ν . 0.04 Taylor vortices are unstable and the resulting
long-time behavior is no longer stationary. A transition to a new state of wavy vortices
is observed in experiments. Such flow is not axisymmetric and therefore cannot be
resolved by the present calculation.

The primary quantitative test of our results is a comparison of the instability
growth rate with the prediction of linear stability theory. The linear stability calcu-
lation refers to the early evolution of a small perturbation about the steady Couette
flow of the form

δu(r, z, t) = δu(r) eikz eσt,(40)

where k is the axial wave number and σ is the amplification rate. The dispersion
relation σ(k) is a solution of the following eigenvalue problem [4]:(

∂

∂r

1

r

∂

∂r
r − k2 − σ

ν

)(
∂

∂r

1

r

∂

∂r
r − k2

)
δu =

2k2

ν

(
A+

B

r2

)
δv,

(
∂

∂r

1

r

∂

∂r
r − k2 − σ

ν

)
δv =

2A

ν
δu,

(41)

where δu, δv, and δu′ vanish at the boundaries.
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Fig. 5. The (u,w) vector field: one wavelength showing a pair of counterrotating vortices.

A perturbation mode k is unstable if σ(k) > 0. For low enough values of Rin, all
modes are stable. Above the transition point, there exists a continuum of unstable
modes, which is reduced to a discrete spectrum in a finite periodic system.

To obtain a quantitative comparison between the simulation results and the linear
stability equation, we recorded the time evolution of a specific axial Fourier mode k
of the flow field at a fixed radial location (i.e., we fixed the radial index i and Fourier-
transformed ui,j with respect to the axial index j). Except for the early stages, t . 1,
all such Fourier modes grow nearly exponentially before saturating. Nonlinear effects
become noticeable only close to saturation. This procedure allowed us to compute
the amplification rate associated with a wave number k.

In parallel, we discretized and solved the eigenvalue equation (41). Both proce-
dures give amplification rates which depend on the grid sizes used in their calculations.
We then performed successive grid refinements along with a Richardson extrapola-
tion to estimate the amplification rates in the limit of an infinitely fine grid. A
comparison between the two calculations is shown in Table 2. These results refer to
the wavenumber k = π. The extrapolated values of the amplification rates σ are in
excellent agreement to almost four significant digits.
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Table 2
Amplification rates associated with the axial Fourier mode k = π as a function of the viscosity

ν. The fixed parameters are η = 0.883, H = 6, and ω = 0. The set of results on the left refers to our
numerical simulations using 32× 128 and 64× 256 grids; the third column is the extrapolated value.
The set of results on the right refers to the linear stability calculation using 32 and 48 discretization
points; the third column gives again the extrapolated value.

Simulation Linear stability
ν 32×128 64×256 extrapolation 32 48 extrapolation
0.050 0.3134 0.3154 0.3161 0.3054 0.3113 0.3160
0.055 0.1795 0.1813 0.1819 0.1716 0.1773 0.1818
0.058 0.0998 0.1015 0.1021 0.0916 0.0974 0.1020

Fig. 6. The neutral stability curve on the Rin–Rout plane. The circles are the simulation
results and the solid line is the linear stability calculation.

We next considered the more general case where both cylinders rotate. The
instability threshold, or the neutral stability curve, can be drawn on the Rin–Rout
plane. This curve is plotted in Fig. 6. The dots are the simulation results and the
solid line is the linear stability calculation. The agreement is again good.

The instability threshold and the amplification rate of the perturbation both re-
flect properties of the flow in the linear regime where the velocity is almost azimuthal.
The numerical scheme was also tested in a nonlinear regime by measuring the torque
that the fluid exerts on one of the cylinders. The torque applied on the inner cylinder
is given by

τ = 2πνr2
in

∫
dz

(
2
`

r2
− 1

r

∂`

∂r

)
.(42)
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Fig. 7. The torque exerted on the inner cylinder versus time. The parameters are η = 0.883,
H = 32, ω = 0, ν = 0.05 (left), and ν = 0.015 (right).

We recorded the torque as a function of time. Results are shown in Fig. 7. Fig. 7a
corresponds to the regime of steady Taylor cells. The torque monotonically increases
from its Couette flow value toward its new steady value. Fig. 7b refers to a lower value
of viscosity for which there is no steady flow. In this regime the torque overshoots
and oscillates before decaying to a constant value. We remind the reader that our
simulations are unable to properly describe this regime. Nonetheless oscillations in
the torque evolution seem to coincide with the breakdown of the Taylor cells.

The torque is easily calculated for the azimuthal Couette flow and is given by

τ = 4πνH
(1− ω)η2

(1− η)2(1− η2)
.(43)

The torque is proportional to the viscosity of the fluid (the Couette cell was origi-
nally designed as an apparatus for measuring viscosity). This motivates the following
definition of an effective viscosity:

νeff ≡ (1− η)2(1− η2)

4πH(1− ω)η2
τ.(44)

In Fig. 8 we plot the effective viscosity νeff versus the actual viscosity ν. The solid
line is the Couette flow solution. For viscosity smaller than the instability threshold
ν ≈ 0.0617, the effective viscosity is larger than the actual one. The effective viscosity
increases as the viscosity is further reduced and reaches a maximum for ν ≈ 0.044.

5. Conclusions. We presented a numerical study of the axisymmetric Couette–
Taylor problem, using a scheme based on the KT scheme [14]. The new scheme is
a second-order central scheme combined with the projection method. While almost
as accurate as modern upwind schemes, the new scheme proved to be more robust
against the formation of spurious vortical structures, and above all it is very simple.
In particular, it is Riemann-solver-free and does not require any of the flux limiter
methodology.

The simplicity of the KT scheme makes it easy to generalize and adapt for tack-
ling new problems. This is demonstrated in this paper where we apply the method
on a cylindrical geometry. The crucial step in the adaptation to a new coordinate
system is to formulate the equations of motion in the appropriate conservative form;
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Fig. 8. The effective viscosity versus the actual viscosity for η = 0.883, H = 32, and ω = 0.
The straight line is the functional dependence for Couette flow.

the coordinate system imposes the representation of the divergence operator and thus
the form of the corresponding fluxes. Once the equations have been written in con-
servative form, the derivation of the three steps—the piecewise-linear reconstruction,
the calculation of the provisional field, and the Hodge projection—is just a matter of
simple and straightforward algebra.

The treatment of boundary conditions fits naturally into this framework. The
alternation between two computational grids implies that each perimeter cell is al-
ternately entirely inside the system or intersected by the interface. In the first case,
perimeter cells follow the same treatment as interior cells except for the use of one-
sided stencils to calculate derivatives. In the second case, the center of the perimeter
cells is at the interface and the boundary conditions are imposed directly.

In the Taylor cell regime, the early stages of the instability were compared to the
predictions of linear stability theory. The agreement was excellent, and when properly
extrapolated the results agree to the fourth significant digit. Nonlinear properties were
also tested by performing torque measurements.

This study shows that the new central scheme makes possible the computation
of flow problems with significantly less effort than with a comparable upwind scheme.
Simplicity and adaptivity are the virtues that make this approach potentially adequate
for solving more complex problems such as the flow of non-Newtonian fluids. A study
of such systems is in progress [13].
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