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We present a numerical scheme for viscoelastic flow based on a second-order cen-
tral differencing method recently introduced in the context of incompressible newto-
nian flow; the incompressibility constraint is treated with the projection method. The
resultis a simple and efficient scheme that is readily adaptable to a wide class of dif-
ferential constitutive equations and flow geometries. We implement the new method
on Couette—Taylor flow for a fluid governed by the Oldroyd-B constitutive equa-
tions. We simulate transient flow in a domain that includes at least eight wavelengths
during many hundreds of natural periods. For weak elasticity, a stationary instability
leading to Taylor vortices is observed. For a regime of parameters where both inertia
and elasticity are important, the instability is oscillatory. In both cases the early stage
growth rates are compared to linear stability calculations, showing good agreement.
The oscillatory instability is fourfold degenerate and gives rise to two bifurcating
branches: an axially traveling wave and a standing wave; only one of these solutions
is stable. In the early stages of the instability, there is generally a combination of
traveling and standing waves, depending on the initial conditions. As nonlinearities
become important, the flow spontaneously breaks into coexisting regions of upward-
and downward-going waves. Such flow can persist for long times, until the globally
stable traveling wave takes over and a limit cycle is reachegli99s Academic Press
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1. INTRODUCTION

Despite much progress in the prediction of fluid flow, viscoelastic flow is an example
a field in which the numerical techniques are still generally inadequate to describe fl
in regimes of technological importance; this inadequacy is particularly acute when
considers flows with large stress gradients and for time-dependent flows. The goal of
paper is to exhibit a numerical method applicable to time-dependent viscoelastic flow u
a wide range of flow conditions.

Viscoelastic fluids are polymeric materials in which the state-of-stress depends or
history of the deformation, in contrast to newtonian fluids in which the stress depe
only on the instantaneous rate of deformation. Viscoelastic fluids may exhibit behavior
differs significantly from that of newtonian fluids; some of the peculiar flow phenome
are the well-known “rod-climbing,” extrudate swell, and “tubeless siphon.”

In many cases, the understanding of viscoelastic rheology is poor. One reason i
approximate nature of the constitutive equations [1]; there is no systematic way of d
mining the range of validity of a model in describing a specific fluid. All models are
most reasonable approximations in a limited range of flow conditions. Even if the valic
of the constitutive equation is taken for granted, its mathematical complexity rarely allc
the derivation of analytical results, except for the simple cases of viscometric flows anc
small perturbations about such flows. It is in this context that direct numerical simulati
are called for, both to test constitutive models and as a tool to analyze and predict rheolo
phenomena.

Polymeric liquids are also known to exhibit flow instabilities that are not observed
low molecular weight liquids (for reviews see [2, 3]). Such instabilities are often t
limiting factor in fabrication processes, and their understanding is therefore of pract
importance. In this paper we study a particular system that exhibits interesting insta
ties: Couette—Taylor flow of a viscoelastic fluid confined between two concentric rotat
cylinders.

The rich sequence of instabilities of the Couette—Taylor flow in newtonian fluids is w
understood [4, 5]. The viscoelastic Couette—Taylor instability has also received much a
tion for the last three decades; the main results are summarized in Section 5. In brief,
basic flow regimes have been identified: an inertial regime, a purely elastic, or inertia-
regime, and an intermediate inertio-elastic regime. In the first case, the primary instalt
is stationary; the primary azimuthal flow is taken over by a steady-state structure of Ta
vortices. In the two remaining cases the instability is oscillatory, or overstable; the new 1
pattern emerges through a Hopf bifurcation.

All the above instabilities can be predicted by linear stability analysis [6—14]. Moreov
bifurcation theory can predict part of the bifurcation structure on the basis of gen
considerations, for example on the analysis of the symmetries of the equations of mc
[15, 14]. Thus, one can show that the Hopf bifurcation is fourfold degenerate, and asar
two branches of solution can emerge: axially traveling waves or standing waves. If |
branches are supercritical (as evidence shows), one and only one of them is stable. V
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of the bifurcating branches is stable cannot be resolved by bifurcation theory. It is partl
clarify this issue that numerical studies of time-dependent Couette—Taylor flow have t
pursued [16, 17].

Northeyet al.[16] used a finite-element method to solve the upper-convected Maxw
equation in the purely-elastic regime; i.e., the inertial terms were discarded. Beyonc
bifurcation point, the flow was found to attain an oscillatory limit cycle; a plot of th
amplitude of the limit cycle versus the bifurcation parameter confirmed that this bif
cation is supercritical. We note the limitations of these calculations: (i) the simulatic
were performed in a domain which contains only one wavelength. In other words,
wavelength was constrained by the geometry rather than selected dynamically. (ii)
initial condition consisted of the primary azimuthal flow, on top of which was superir
posed the “most dangerous mode,” as predicted by linear stability analysis. To spee
the simulations, the amplitude of this initial instability was taken to be large and then a
wed to relax down. This again may force a certain solution to be selected and may
allow the “naturally selected” solution to develop spontaneously. (iii) Limiting the si:
of the domain to a single wavelength has as consequence that the wavenumber st
tion between neighboring Fourier modes is large. Hence one needs to exceed signific
the instability threshold to observe mode interactions; such interactions are likely to
cur in any realistic system because the stability spectrum is typically very flat. Note
even though these simulations were performed on meshes of the order of 20 points
conclusion was thatcalculations with substantially finer discretizations are prohibitivel
expensivé.

Avgoustiet al.[17] used a pseudospectral method to simulate time-dependent flows |
in the purely elastic and in the inertio-elastic regimes. As in [16], the computational dorr
was a single wavelength; the most refined discretization was of 16 axial points and 33 r:
points. Their findings are that in the purely elastic regime it is the standing wave st
tion which is selected, whereas the traveling wave solution is selected in the interme
inertio-elastic regime. When the initial condition was taken to be the unstable oscillat
mode (e.g., a standing wave state in the inertio-elastic regime), the oscillations were f
to grow exponentially, causing the calculation to eventually breakdown; all attempts fa
to produce a stable limit cycle solution. Although these calculation were performed ¢
supercomputer, the ultimate conclusion was thhg‘increased computational workload
resulting from a small time step size and an anticipated long transient make these calc
tions impractical with the available computational resourtes.

The above examples demonstrate well how indispensable it is to develop computat
methods capable of simulating such flows under realistic conditions.

In recent years, Tadmor and co-workers introduced a sequence of new schemes, \
can be viewed as higher order sequels of the Lax—Friedrichs (LxF) scheme. The new me
retains the relatively simple form of central-difference schemes, but does not suffer fron
poor resolution of the first-order LxF scheme. Nessyahu and Tadmor originally constru
a second-order scheme for systems of conservation laws in one spatial dimension [18].
work was then extended to higher orders [19] and to several spatial dimensions [20].

The two-dimensional Euler equations in their vorticity formulation were treated alo
these lines by Levy and Tadmor, both in second- and third-order versions [21, 22]. Ame
based on the more practical velocity formulation was developed by Kupferman and Tad
(KT) [23]; the pressure was calculated with the projection method [24, 25]. This new sch
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was tested on the classical doubly-periodic shear layer and on longitudinal flow in a cha
Its performance was compared to that of upwind schemes and was found to give compe
accuracy and resolution. The new scheme was further found to be immune to the form
of spurious vortical structures [26] that may result from under-resolution. The KT sche
was further extended to cope with other coordinate systems, and a systematic treatm
boundary conditions was derived [27].

In this work we apply the central scheme approach to viscoelastic flow. The methodol
which was developed for newtonian flow is found to be naturally generalizable to m
complicated equations, and in particular easily allows the inclusion of constitutive relatic
With fairly modest computational effort, we are able to simulate flows which include r
less than eight natural wavelengths, starting with slightly perturbed azimuthal flow
evolving for many hundreds of natural periods. In most of our calculations we use
512x 32 grid.

We now discuss the choice of constitutive equations. Our scheme is designed for
erential models; this restricts our choice of equations. We consider here the Oldroy
constitutive equation, which provides a reasonable description of dilute solutions of f
ible high-molecular-weight polymers. This equation can be derived from a molect
model where the polymers are modeled by simple Hookean springs, and it has
the newtonian fluid and the Maxwell fluid as limiting cases. In particular, it predic
no shear thinning and zero second normal stress difference. The main limitation of
Oldroyd-B equation is its prediction of unbounded extensional viscosity as the extensi
strain rate exceeds some value; this drawback should not be relevant for the flows st
here. Having chosen a specific constitutive equation, we re-emphasize that the nu
cal scheme presented here readily generalizes to a wide class of differential constit
equations.

The main new result of this paper is the prediction of the “natural” evolution of the s
ondary flow following the oscillatory instability. In the early stages, modes are indepenc
(this is the linear regime), and there will generally exist a combination of traveling &
standing waves, depending on the initial conditions. When nonlinearities enter into
the flow decomposes into separate regions of upward- and downward-going waves.
state does not reach a limit cycle, but nonetheless can persist for a long transitory
Eventually, the globally stable state of a periodic axially traveling wave takes over, ar
stable limit cycle is reached.

The structure of this paper is as follows: In Section 2 we introduce the equation:
motion. In Section 3 we describe the Couette—Taylor problem, and reformulate the equa
of motion in the appropriate conservative form in axisymmetric cylindrical coordinates.
Section 4 we present the numerical scheme. We briefly review the projection method,
then describe the scheme both for interior and boundary cells. In Section 5 we reviev
main results of earlier work on linear and non-linear stability of Couette—Taylor flow. \
then describe an alternative method to calculate the linear stability spectrum that ha
advantage of being simple and easily adapted for other constitutive models. We per
stability calculations that are afterwards compared to the simulation results. In addit
we investigate the structure of the stability spectrum and find new results that gener
earlier results by Avgousti and Beris [14]. In Section 6 we present the simulation resi
investigating both the stationary and the oscillatory instabilities. A discussion finally follo
in Section 7.
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2. THE EQUATIONS OF MOTION
The equations governing the flow of a fluid are

au

E:—(U~V)U—Vp+v-r, 1)
whereu(x, t) is the velocity field, the scalar field(x, t) is the pressure, and the tensol
T(X, 1) is the state-of-stress in the fluid. Throughout this paper we assume the densi
the fluid to be one. Polymeric solutions and melts are usually incompressible in which
u(x, t) satisfies the incompressibility constraint

V.u=0. 2)

To obtain a closed set of equations it is necessary to specify the relation between the
of-stress and the history of the flow. Such a relation is known as a constitutive equatiol
a newtonian fluid the state-of-stress depends only on the instantaneous local rate-of-<
the extra stress is proportional to the rate-of-strain tensor,

T = vg[(VU) + (Vu)'] = 2usD, )

wherevs is the shear viscosity. This constitutive equation predicts, in particular, that

stress responds instantaneously to any deformation and has no memory; the stress va
as soon as the driving motion has ceased. This is not the case with a complex fluid suc
polymer solution or a polymer melt. Polymers can store elastic energy and thus contri
to the state-of-stress in the fluid even after the shearing motion has ceased. The “men
of the fluid, or its elasticity, is usually characterized by a relaxation spectrum, which refle
the relaxation rates of the energy storing modes.

In the case of a dilute solution of flexible high-molecular-weight polymers the rheolc
is reasonably well described by the Oldroyd-B constitutive equation. In this equation
state-of-stress is separated into two components: One contribution is due to the newt
solvent and is given by Eqg. (3). The second contribution is due to the polymers and sati
the upper-convected Maxwell equation,

837: =—U-V)u+(Vu)' -7 4+71.(Vu) — %r+2upo, (4)
wherev, denotes the contribution of the polymers to the shear viscosity. The Oldroyc
equation is a two mode model; one relaxation rate is due to the solvent and is infini
fast; the polymers are described by a single relaxation mode with relaxation. tifrrés
relaxation time has to be interpreted as a mean relaxation time of a realistic polymer.
It is in general difficult to establish how accurately a constitutive equation descril
any particular fluid. Quantitative comparison can be carried only in very simple flows
which well defined measurements can be compared with the exact solution of the equat
Viscometric flows are a special class of fluid motions that possess a very simple deform:
history; they are all kinematically equivalent to simple shear between parallel plates, ex
for a time-dependent rigid rotation. In a shearing flow with shearyratehere the velocity
is in the x-direction and its gradient is in the-direction, one typically defines the three
following viscometric functions: the viscosity, the first normal stress coefficient, and 1
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second normal stress coefficient. For the Oldroyd-B equation these are given respective

Y
V=-—=1Vs+ Vp,
TXX _ .L.yy
w=""T" 2, )
14
and
Yy — 722
VUy=——— =0.
14

In particular the Oldroyd-B equation predicts that the shear viscosity does not depen
the shear rate (no shear thinning).

3. THE COUETTE-TAYLOR PROBLEM

A circular Couette cell consists of two concentrically rotating cylinders between wh
the fluid is confined. We consider a viscoelastic fluid described by the Oldroyd-B constitu
equation in such a geometry. We restrict ourselves here to axisymmetric flow; the velc
field and the stress components do not depend on the azimuthal coordinate. Experir
indicate that flow is indeed axisymmetric for ranges of parameters close enough tc
primary instability threshold.

The geometry suggests the natural choice of cylindrical coordinateg;=€t, 6, z)
denote the radial, azimuthal, and axial coordinates, respectively. The corresponding
ponents of the velocity field and the stress tensor are denoted=bfu, v, w) andr =
[z, 7, 2'%), (¢, 199, 19%), (¢?", 7%, 1%?)]. The stresstensor is always symmetric; there
fore it only has six independent components.

We now write the equations of motion in cylindrical coordinates. The central sche
described in the next section is based on the dual nature of the equations, which c:
formulated both in advective form (1), (4) and in (partially) conservative form; the advect
operatodf/at 4+ (u- V) f can be replaced by the conservative operafgot + V - (uf)
for any scalar functiorf. The equivalence of the two representation is guaranteed by
incompressibility condition (2).

It is a matter of straightforward algebra to write Eq. (1) in cylindrical coordinates asst
ing azimuthal symmetry in the appropriate conservative form,

au_lar u2+uau+r” n il u+v8u+r”
ot ror Sor oz |7 oz
v2  ap u 1,
+[T‘a—r“’sr—z " }
v 10 av a dv
=2y |—u e re I e 6z 6
ot = T ar [ v+vsar+t ]—l—az[ wv+vsaz+r} (6)
vu v
+|:_ USr_2+ Tr0:|9
ow 190 ow 'z 2 Jw 27 ap
= —u - _ - —,
ot  ror { W Vs T }Jra { WAV T Tz



28 RAZ KUPFERMAN

where the newtonian viscosity has been included explicitly, whilew represents only the
polymer contribution to the state-of-stress. The incompressibility condition in cylindric
coordinates reads

}i(ru)+—=0. (7

The equations for the six independent components of the stress tensor are

at’" 19 au au 1 vp dU
= = rT—ut" _ rr 12 L o2 T | T 2 pi’
ot “rorlumlt g [MH[az +arf} e
ot'? 10 a au av au av
= Z " r[—u ro I ro o .0z oorz e o
at rar[ T]+az[ wt]—i_[azr +82T +8rt +8rr

1 1 ov v
7ur9_ rr _7I‘9 — =,
+r[r vt'"] T +A[8r r}

at'* 19 d au dw 1 ou  Jdw
=~ r 7'? [ PR 4 “Hozz g o | =z TP —1,
TR T er[azT +arf] n ,\[aerar}
ﬂ=}gr[—ur99]+ [ wt?”] + |2 8 92+28—vrr0 +g[ur69—vrr9] (8)
ot rar 9z ar r
1 200
2
)» + kr
9% 07 9 07 W 5 W gy IV W
o= a1 ]+{az Tt Tt Tt
1 Vp 0V
0z rz 0z ~p
—_ u J— —_
—i—r [ur vt'?] 3T S 37"
at*%* 19 ow ow 1 vp dw
— - ur? a2 o Ry 2 2N, Rt 2 B 24 2_P_.
st —rar U z[ wsz{azTJrarf] PR

We next specify the boundary conditions. IR and Ry, denote the radii of the inner
and outer cylinders, respectively. The no-slip conditions imply that the velocity of the fli
at the walls equals the velocity of the cylinders, namely

U(Rin) = U(Rou) = w(Rin) = w(Row) =0,

9
v(Rin) = QinRin,  v(Row) = QoutRout- ©)
In the axial direction we will use periodic boundary conditions for convenience. This chc
has reasonably little effect on the flow as long as the height of the cylinders is large comp
to the wavelength of the flow pattern.

The number of independent parameters can be reduced by the introduction of dir
sionless variables. For that one has to pick suitable length and time scales. We will me:
length in units of the intercylindrical gafR.u: — Rin, and time in units of the inner cylinder
rotation period, 1Qi,. The velocity is then expressed in units@f, (Rout — Rin), the stress
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in units of Q2 (Royt— Rin)?, and the viscosity in units &&in (Rout — Rin)?. In these units the
boundary conditions for the azimuthal velocity are

v(ry) =1L, v(rR) = orlR, (10)
where

rL:— rR:— (11)

denote the cylindrical radiiy = Rin/Rout, andw = Qqut/ Qin. Thus the model includes a
total of five independent parametensw, vs, vp, anda.

For all values of the parameters the model defined by Egs. (6), (7), and (8) and sul
to the boundary conditions (10) has a viscometric solution,

Up = wo =0,
B (12)
vo(r) = Ar + T
where the coefficientd andB are given by
2 2
w—1 (1-w)n
A= , B=——F7—, (13)
1-n? 1—n21-n?
and
‘[(gr = _L,(T)Z = gZ:‘[éZZO
2Bv
o' () =—=75" (14)
8B\
§(r) = = e,

4. THE NUMERICAL SCHEME

In axisymmetric flow the velocity field and the stress tensor depend only on the ra
coordinatey, and the axial coordinate, The computational grid consists of rectangula
cells of sizeAr x Az; attimet" these cell<; ; are centered dt; =r +iAr, z; = jAZ),
withi =0,...,M —-1andj=0,...,N—1.

A numerical scheme is a recipe which specifies how to calculate discrete datatittime
given data at time". We assume as initial data theint valueof the three velocity compo-
nents and the six stress components atcéwmtersof the computational cell€; ;; they
are denoted byul;, v, w';) and [z}, (")}, N, @D, @], @],
respectively. For compactness we define a nine-component vectorfiéldt), which
contains the components of the velocity field and the stress tensor; the initial conditic
thus defined by the specificationxbﬂi . The pressure gradient is also assumed to be giv
at the centers of tr;el%alﬁi,j, burt1 alt/ghe former mid-time"=Y/2; its r - andz-components

are denoted by, p’; ”“ andV.p;
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4.1. The Projection Method

The solution represented by the vecif(x, t) has to be evolved in time from? to t"+1.
The flow equations are given by Egs. (6) and (8), subject to the elliptic incompressib
constraint imposed by Eq. (7). This constraint determines the prepgxre), which can
be viewed as a Lagrange multiplier.

We follow the projection method [24]. To illustrate the basic idea, consider the followi
second-order temporal discretization of the equations of motion for the velocity field,

un+1 —_u"

= [-u-Vu+ vsV2U + V- M2 v 2] (15)

where the updated flow field has to satisfy the incompressibility condition
V.u™l=o. (16)

Ignoring momentarily the evolution of the stress tensor, Egs. (15) and (16) form toge
a set of equations for the unknown'* andV p"+%/2, The problem is how to evolve the
velocity field in time, while satisfying the elliptic constraint all along the time evolution.

If Vp™+1/2is replaced in Eq. (15) by the value at the former mid-pdWip"~1/2, then
one gets, instead of the actual updated field, a provisional field,

U* = u" + At[—(u - V)u+ vsVau + V - 7]"2 — AtV pt Y2, (17)

The key to the projection method is the fact that, to second-order accutadiffers from
u"*! by the gradient of a scalar function that equals approximate{’ p"+1/2— v p"-1/2),
The Hodge decomposition theorem states that any vectoufezld be uniquely decomposed
into a divergence-free field, which is tangential to the domain boundaries and an irrotatic
or gradient, field; the space of divergence-free vector fields and the space of vector f
that are gradients of scalar fields are orthogonal and complementary. In other words, ¢
the provisional fields*, its decomposition into the updated flow fieléf* and the residual
gradient is well-posed and unique.

Let IP denote the operator that projects a vector field onto the space of divergence
vector fields. Then Egs. (15) and (16) can be replaced by the equivalent set of equatic

u™?! = pu* (18)
and

1
Vpn+1/2 — Vpn—1/2 4 E(H _ ]P’)U*, (19)

wherel is the identity operator.

4.2. Interior Cells
4.2.1 Piecewise-Linear Reconstruction

The initial data at timé" provides only partial information about the state of the syster
it includes only values at discrete grid points. The first step in many numerical schem
an approximate reconstruction of the fields to recover point values throughout the don
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A particular choice of reconstruction is by a piecewise-polynomial function; for secol
order accuracy we need a piecewise-linear approximant, which takes the form

P, 2) = P =)+ Pz —2), 1,2€ Gy, (20)

where the discrete fields; j andy'j j approximate the- andz-derivatives ofy"(r, z) atthe
centers of the cell§; ;. In general the recipe for constructing such numerical derivatives
quires nonlinear limiters in order to prevent the formation of nonlinear oscillations [28-2
As reported in [23], our scheme proves to be robust against the formation and the pi
gation of such oscillations. We can therefore approximgte and+ j by simple central
differences,

¥i ;=DM W\ = DXy, (21)

whereD? and D? denote the - andz-central difference operators.

4.2.2 Calculation ofyp1 5 1/,

As explained above, the projection method allows us to consider the evolution of
velocity field by substituting for the pressure field its value at the former time step.
actual velocity field can be recovered from the provisional field at the end of the proced
Thus we can now describe the part of the scheme which performs the time integratior

The equations of motion, (6) and (8), have been formulated in conservative form; t
can be written as a system of equations of the general form

W _ 138 9
=0 = r g P+ -G, + S, 1), (22)

where (X, t) again denotes the vect@u, 7). The vector functiong (), r) andG(, r)
are ther - andz-components of the corresponding fluxes, and the vector fun8tignr)
is a source which includes all those terms that do not fit into conservation form.

Given the initial data);';, we evolve it to timet™! and calculate its cell averages,
1/7?:11/2’1-“/2, over thestaggered-grictells, Ci11/2 j+1/2. Note that averages in cylindrical
coordinates have to be weighted proportionally to the radius. These cell averages c:

represented as integrals over the control 88%4 /2 j+1/2 x [t", t"1],

“h+1 _ n+1
Yit1/2 412 _]l rdrdz«y" " (r, 2)
Cita2.j+172

g+l

0
=][ rdrdz¢“(r,z)+/ dt][ rdrdz—w.
Cit12.j+1/2 tn Civ1/2.j+172 ot

The computational grid and the control box are sketched in Fig. 1. The nottiea
(1/9) [, is for normalized integrals, scaled by their area, length, etc. For example, the
ume of the annulus whose cross section is the staggered-git) ¢l j11/2iSri112Ar Az.
The first term in Eq. (23) is just an average over the piecewise-linear approxim
¥"(r, 2), over the bottom of the control box shown in Fig. 1. It is a sum over contributio
arising from the four intersecting cellS; j, Ci11 j, Ci j+1, andCi 4 j+1. A straightforward

(23)
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7

r

FIG. 1. The computational grid: At timg&" the data is given at the centers of the grid c@lg, (iAr, jAZ).
At time t™* a staggered grid with cell§; +1/2.j+1/2 IS Used.

computation gives

n 4, 4,0 Ar? 4+, 4,0 Ar2++/
dx v =,u,uz¢i,j+8_ D sy — 5 DRyTRETHE
Cit12j+1/2 lit1/2
Ar? AZ?
+ a0 ETRYA)
- Wil — S Dy . (24)
24 T g ~zir 7

We have introduced the discrete operat@sy; = (v;,1 —1; )/Ar and pfp; =
%(1/)”1,_ + ;) which denote forward differences and forward averages i tgec-
tion, respectively. The meaning of the related operalyrs«;, D, D;, uf, andu; is
self-evident.

In the second term of equation (28y>/dt is replaced by the equation of motion (22);
i.e., the divergence of the flux and the source are integrated over the control box. Itis ir
integration over the fluxeB(¢, r) andG(), r) that the virtues of the conservation form
enter. For example, the integrfit dr over(1/r)(d/dr)rF is simple to perform and equals
the flux difference betweemn,, andr;. This flux difference is then integrated over the twc
interfaces of the control box (Fig. 2),

thia 1 a
/ dt][ rdrdz——rF((r, z,t),r)
tn Civi2.j+172 ror

1 thi1
- L opr / dt ][ dz FFp(r. 2, 1), 1), (25)
th Jjr1/2

lit+1/2

whereJ; 1, refers to the segment of lengttw centered at;1/».

FIG. 2. lllustration of the integration over the flux: The integral over the control@og@/z,-ﬁ/z x [t 1]
reduces to the flux difference integrated over the sides normal to the flux (shaded areas).
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So far, the procedure is exact. Approximations are required in order to intggFte
over the interfaces of the control box. For second-order accuracy, the integralaarebe
approximated by the second-order trapezoidal rule. The integral over time is approxim
by the mid-point rule. For that, we need an estimate of the fields atfimi€ at the centers
of the cellsC; j; ¢"+1/2 can be obtained by a first-order explicit predictor step.

The integration over the flug follows the same lines. There remains the source ter
S(#p, r) for which the spatial integration can be approximated by a second-order avera
over the four corners,

][ rdrdzS@(r, z, t),r) ~ . ! w g [rS(ri, zj, ), rl. (26)
Cita2.j+172

i+1/2
The time integration is again approximated by the mid-point rule.

Thus the calculation of the celI—averagégjll/z’ i+1/2 consists of a predictor step for
which one can use a simple forward Euler scheme. For example, the predicted value «
radial velocity component is

2
At (v]) u;ooul
1/2 12 5 s
uri :u{jj+7{—u{jju;’j lJu'J+|r—.l VRl 4 vs %_%
I I i
92un. 92un. (TN — (@M.
+vs( s T 82‘;) + @+ — . =Lb(@7)

The predictor step is followed by a corrector,

2 2
il r N I
¢|+1/2 j+1/2 = :“r Hy 1/’| jt+ 8 41/2 D u; "/’i,j - TDr Mz ¢i,]
Ar? AZ?
- gl — ——DF )’
24 T z 8
At
+ {I’ F( n+l/2’ I)}
l’i+1/2
+ {I’ G( n+l/2’ n)}
l’i+1/2
t 1/2
,ur . {I’ S( n+ / ,I’i)}. (28)
lit1/2

Once we have obtained the cell averagféﬁ/z j+1/2 (recalling, however, thatthe velocity
field is just provisional), we need to recover back the point vaj&[lgﬂ’%/zjﬂ/z at the centers
of the staggered-grid cell§; 11/ j112. If the field " 1(r, 2) is approximated to leading
order by a piecewise-linear function,

YD) = Y e T @MY 2 e = i)
+ @D 2i1122 = Zj4a2), (29)

for (r, 2) € Cit1/2,j+1/2, then its cell averages are given by

2
N+l +1 Ar +1
Vi1 412 = 1/’in+1/2,j+1/2 + _ " )i/+1/2,j+1/2~ (30)
12,902
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It is sufficient, within second-order accuracy, to repltzlc;@é;”“)i’H/ZHl/2 by

(J”H){H/ZJH/Z, where the latter is evaluated by central differencing. Thus the po
values are recovered from the cell averages by
n+1 Th+l Ar? 0 Th+1
Yitii+12 = Yit2j+12 — 1 Drbiiayz j+ay2- (31)

A slightly different procedure is adopted for the temporal integration of the parabc
terms, i.e., the newtonian viscosity, in the equations for the velocity field. Stability c
siderations favor the use of the implicit Crank—Nicholson scheme, rather than the exy
predictor—corrector scheme. See [23, 27] for more details.

This concludes the calculation of the provisional fiefd, , ; , 1, and the updated stress
tensorr{{ 15 i 1/2-

4.2.3 Hodge Projection

Inthe previous section we calculated the nondivergence-free provisionalfiditie last
step in the scheme accounts for incompressibility by extracting €roits divergence-free
part. The remainder (irrotational) part is needed to update the pressure gradient.

In the continuum limit, the updated flow field** needs to satisfy the incompressibility
condition

P n+1

190
~—(ru™h 4

=0. 32
ror 0z (32)

Because the central differencing approach is based on cell averaging, it is more approj
to impose the incompressibility condition in its integral form. Integrating (32) over the ¢
Ci,; we get

_ 1 - 1
ArD; /J dZ f1/2UiY1/2 412 + AZD; /I dzfiiaowiiip =0  (33)
] i

which is again approximated with the second-order trapezoidal rule. Thus the discrete
of the incompressibility condition is
- - 1 R 1
D iz (fiv/2Uiiis jaj2) + Dz it (Niva2wiyya j1a/2) = 0. (34)
We now perform a discrete Hodge decomposition. We decompose the provisional
Uiy 1/2 j11/2 into the sum of the updated flow fiel«ﬁll/zﬁl/2 and the gradient of a yet
unknown scalar grid functiog; ,
1
U1 j412 = Uiz 412 + D nd ¢
1
Ui*+l/2,j+1/2 = ”le/2,j+1/2 (35)
1
W12 12 = Witz 12 + D7 i

Up to the specification of boundary conditions (which are discussed in the next secti
the substitution of the decomposition (35) into the discrete incompressibility condition (
dictates the scalar potentigl ;. It is the solution of the Poisson equation,

wi iy D7 (rig12Df i) + D D, g (figajoiy éij) = pijs (36)
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where

pii = Dr g (Na2Uiia ji1/2) + Dy iy (iaowihy o j1a)2)- (37)

The calculation o&; ; allows the flow field to be updated from Eq. (35), and the pressL
gradient is updated by

n+1/2 n—1/2 1
Vi P2 112 = M 1y ViR o+ At D/ 1z ¢,
) (39
n+1/2 n-1/2
Vabii1)2 412 = M?_M;Vzpi,j + ED;M?_@,]-

This concludes the calculation of one time step.

The evolution of the flow field from timé" to timet™*! induces a spatial shift from the
cellsC; ; to the staggered-grid celSi;1/2 j+1/2. If repeated, this procedure would lead tc
a continual drift of the computational domain. In order to prevent this from happening,
scheme alternates, back and forth, between the two grids. Thus after a time step that
from the gridC; j to the gridCi;1/2 j+1/2, the next time step reverts back to the origina
grid. The calculations involved in the alternating steps are identical, up to a systen
interchange between forward and backward operators @fg<> D;), and between the
coordinates of the cell centers;, z;) < (fit1/2, Zj+1/2)-

4.3. Boundary Cells
4.3.1 Grid Structure

The numerical scheme remains to be adapted for boundary cells; as we are using pe
boundary conditions that concern is only for the radial boundary ¢6Jl$) and(M — 1, j).
The alternation between two grids requires special attention; if, for example, the r
boundary cells are entirely inside the physical domain at the end aitthéme step (i.e.,
the right boundaries of the cells coincide with the right wall), then the right boundary ¢
will be intersected by the wall at the end of the subsequent time step.

We first need to specify the structure of the computational grid and, notably, its loca
with respect to the domain boundaries. We adopt the following convention: In the ini
state, the left edge of the systam=r) intersectshe left boundary cells (i.etg=r),
while the right edge of the systeh=rRr) coincideswith the edge of the right boundary
cells(i.e.fy_1=rgr— %Ar). That is, the right boundary cells lie entirely inside the systen
whereas only half of the left boundary cells do so. This situation is reversed in the succee
time step. This structure is illustrated in Fig. 3. This structure determines in particular
grid spacing: for the radial axig\r = (rgr —r.)/(M — %); for the axial axisAz=h/N,
whereh denotes the height of the cylinders.

As in the preceding section, we will describe the procedure only for time steps wt
start with the gridC; ; and end with the staggered gfitl;1/2 j+1/2.

4.3.2 Piecewise-Linear Reconstruction

The piecewise-linear approximaut (r, z) assumes the same form (20) inside the boun
ary cells. The only modification is in the calculation of thderivatives, which have to use
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L I

FIG. 3. Sketch of the computational grid and the physical domain. The data are given at the centers ¢
solid grid cells at the beginning of the odd time steps. The left boundary cells are intersected by the left
whereas the right boundary cells are entirely inside the domain. The situation is reversed at the beginning
even time steps where the data are given at the centers of the dotted grid cells.

second-order one-sided expressions,

1
Yo, = — o (3W5, — 41 + 93 ) )

, 1
Yior, = op (3¥Nos, — 4h2. — ¥his )

4.3.3 Calculation ofyh'{15 1/

As described in Section 3.1.2, the calculation of the updated ﬂélﬁj/z_j+1/2 consists
of three steps: (i) a predictor to estima&é}rl/ 2 (i) a corrector to calculate cell averages
1/;-"111/2“1/2; and (iii) an interpolation which recovers the point valqﬁs;*ll/ijﬂ/z.

The predictonbi”’]*l/2 has to be calculated at the centers of the c€|ls. The right
boundary cellgi = M — 1) lie entirely inside the system and, therefore, can follow exact
the same treatment (27) as interior cells, with the derivative operators replaced by one-
stencils. The centers of the left boundary cells lie, on the other hand, on the left wall.
values of the velocity components are determined at these points by the boundary condi
hence we saty™/* =u(r,).

The treatment of the stress components at the left boundary cells is substantially diffe
The characteristics of the stress are advected by the velocity field; since the normal vel
vanishes at the walls, characteristics do not enter into the system, and one is not allow
impose boundary conditions on the stress tensor. In principle one has to derive the dis
evolution equations appropriate for these half-cells. A simple alternative is to evaluate
stress at the wall with a second-order extrapolation based on values of the stress i
interior.

In the corrector step this picture repeats itself, except for an exchange of role betv
left and right. This time the left boundary cells can be treated as interior cells, wt

Uy 1. =U(R), andq-i”;ll/zjﬂ/2 is evaluated at the right wall by a suitable extrapolation.
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4.3.4 Hodge Projection

The Hodge projection (35) decomposes the provisional fiélthto a divergence-free
field u™* and an irrotational field. In the continuum case, only the normal component of
divergence-free part can be specifietf;(r_ ) = u™1(rg) = 0. In the discrete formulation
it is possible within second-order accuracy to impose constraints also on the tange
componeni™tL.

The vector fieldsu* andu"*?! are specified at the centers of the staggered-grid ce
Cit1/2,j+1/2, Whereas the scalar fielt ; is given at the centers of the original cels;.

At the left boundaryi = 0) the gradient of) can be calculated using the same differencin
stencil as in the interior cells. Because the flow field is not specified at the boundary
will require that theextrapolatedvalue ofu"*! vanish ar =r, i.e.,

tus (15u2/+2?_ - 10ug/+2{ + 3ug/+2{) =0. (40)

On the right side(i =M — 1) the flow field is calculated at the boundary. The fac
that bothui”jfll/z,jﬂ/2 and wi”jll/zﬁl/z vanish at those points determines the form of th
incompressibility condition with respect to the boundary c€llg,

1 o 1 o 1 _ ., 1 _ .,
_EMZ_MZ Dréij + ED; D, ur éij = — M Yiczine t EDZ Wi_1/2,j+1/2:
(41)

Equations (40) and (41) complete the specification of the boundary conditiogs;for

We note that the Poisson equation defined by Egs. (36), (40), and (41) has a
dimensional null space which corresponds to two additive constants, one for each of
decoupled stencils (“checkerboard” pattern). These two degrees of freedom do not ¢
the values of the updated fields and therefore can be set arbitrarily.

4.4. Time Step Selection

The equations of motion (1) and (4) form a hyperbolic system of nine equations, if
momentarily ignore the newtonian viscosity, which makes the systems weakly parab
we will discuss below the inclusion of the newtonian viscosity into the time step.

The maximum time step for hyperbolic systems is limited by the Courant—Friedricl
Levy (CFL) condition, which is a bound on the maximum distance that information c
traverse during a single time step. In our central scheme itis essential that the characte
emanating from the discontinuities between the piecewise-linear elements remain insic
staggered-grid cell, i.e., that the characteristics do not propagate by a distance longe
half a cell.

In order to convert this requirement into a constraint for the time step, we need to calct
the speeds of the nine characteristics separately for tiedz-directions. Despite the high
dimensionality of the system, the eigenvalues turn out to be easy to calculate;rin th
direction the characteristics speeil$), are

A = —u, —ut 2007 vp/h), (42)
each triply degenerate. Similarly, in thelirection

Ai(z) = —w, —w = /2(t?2 4+ vp/A). (43)
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Hence, the time step limitation is given by

max [|ui j| + 1/2(z" + vp/A)| At < CAr, (44)
i.j

max |[|wi j| + v/2(t?2+ vp/M)| At < CAZ, (45)
1]

whereC is a constant less than one-half.

The parabolic terms in the flow equations are treated with the implicit Crank—Nichol:
scheme, which is unconditionally stable. Therefore those terms do notimpose an addit
time step limitation for the scheme to be stable. One needs, however, to be careful
pointed out by Minion [32], the combination of parabolic and hyperbolic operators c
potentially build up a numerical instability even if each part of the scheme is stable wl
acting alone. Although this problem can be easily fixed [32] we found no instance in wk
this fix was necessary.

5. STABILITY

5.1. Linear Stability Analysis: Background

For sufficiently low Taylor numbers (the Taylor number quantities a ratio of inertial
viscous forces), the flow of a newtonian fluid in a Couette cell is described by the azimu
Couette solution (12). As the Taylor number exceeds a critical value a bifurcation occ
where the Couette solution becomes unstable, and a new steady-state of superim
toroidal vortices is reached; these are the well-known Taylor vortices [4]. The threshol
this instability can be found by means of a linear stability analysis: A small perturbat
about the primary flow can be decomposed into normal modes, and the amplification rat
these modes are eigenvalues of the linearized equations. This method has become a
paradigm in the analysis of dynamical instabilities.

Inthe pastthree decades numerous studies have considered the problem of the visco
Couette—Taylor instability (for reviews see [2, 3]). Most have focused on the modifying eff
that elasticity has on the instability threshold. Early work was restricted to the station
transition. It was found that the critical Taylor number could be raised or lowered, depent
on the values of two dimensionless groups;d? andW,(R;,/d®), whereW , are the first
and second normal stress coefficients dnd the gap width. The critical Taylor number
was found to decrease the larggr and W, are. The actual value of the second norme
stress coefficient in experimentally used fluids in controversial, but it is generally belie
to be small and negative; therefore it acts as a stabilizing agent. The most general trea
of the stationary transition [9, 10] was performed for the case of a general “simple flL
[33].

Walters and co-workers [6-8] studied stability for the Oldroyd-B equation. They fou
that for strong enough elasticity the unstable stationary mode is overtaken by a new uns
mode, which is oscillatory, or overstable. The Couette solution loses stability at the ol
of a Hopf bifurcation, at which the marginally stable amplification rate is imaginary. As t
elasticity is further increased the critical Taylor number falls off rapidly.

Inrecent work Larson, Muller, and Shaqfeh [12, 13, 34] performed experiments follov
by stability analyses in the counter limiting regime, in which the inertial forces are negligi
and the dynamics are dominated by elasticity; this is the inertia-less, or zero Taylor nur
limit. They found a critical Deborah numbeDé) above which Couette flow is unstable.
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(The Deborah number is the ratio of a characteristic shear rate and the elastic relax
rate.) This instability was found to be always oscillatory, with a period of the order of
elastic relaxation time.

Larsonet al. [34] also considered the effect of the second normal stress difference
these purely elastic modes. For that they modified the Oldroyd-B equation by addir
“second-order term.” Also in this case the effect of small negative values of second nol
stress difference is to stabilize the flow. It was further conjectured that this would exp
why the purely elastic instability is never observed with high polymer density solutions
which the second normal stress may be significant.

The major shortcoming of all the aforementioned analyses is their approximate na
all are based on simplifying assumptions that apply to limiting regimes of parameters. ¢
approximations are often useful for identifying the essential groupings of parameters
affect the flow properties, thus providing more insight. Only a full stability analysis c¢
however, resolve the complete structure of the stability spectrum and, in particular,
crossover from the inertial to the elastic regime. Such approximation-free stability anal
was presented by Avgousti and Beris [14] for the Oldroyd-B constitutive equation. Tl
used a pseudospectral method to discretize the radial dependence of the eigenmod
obtained a generalized complex eigenvalue problem from which all the eigensolution:
readily obtained. Thus they could map the structure of the stability spectrum in the comg
Q plane, where is the amplification rate of the perturbation.

For zero elasticity all the eigenvalues are real and belong either to a discrete or a contir
spectrum. For finite elasticity they found an additional continuum spectrum lying vertice
in the complex plane; its real part is equal-td/2De. Discrete complex modes seem tc
detach from this continuum as the elasticity is increased. The exchange of stability, whe
the stationary bifurcation is overtaken by a Hopf bifurcation, occurs as two pairs of comy
eigenvalues cross the imaginary axis for a lower Taylor number than is needed to desta
the least stable real modes. For even larger values of elasticity two other pairs of eigenv
detach from the continuous spectrum and overtake the previous pairs. This is the exct
of stability between the inertio-elastic modes of Begtrdl. [8] and the purely elastic modes
of Larsonet al. [12]; thus Avgousti and Beris demonstrated that these two modes belon
different families of eigenfunctions [14].

Avgousti and Beris further analyzed the effect of symmetries on the nature of the
furcations; group theoretical considerations allow one to characterize the range of pos
dynamical behaviors at a bifurcation based only on general symmetry properties and n
the detailed physics of the problem [35, 15]. In particular, there is a theory of Hopf bifur
tion with symmetry which gives model-independent information about periodic solutio
In the present problem both the equations of motion and the primary Couette solutior
symmetric with respect to azimuthal rotations, axial reflectiprs —z, and both axial
and temporal translations. The secondary flow breaks some of these symmetries; the
and temporal continuous translational invariances are replaced by invariances under
discrete translations; i.e., the new state has lower symmetry.

Because of the symmetries present in the problem the bifurcation is degenerate; fc
Hopf bifurcation there are four eigenvalues that become simultaneously unstable a
bifurcation point. This happens because for every solution of the linearized perturbe
equation of the form

8, (r, z,t) = (8u, 8v, dw, 87", 877, 8778, %, 577, s17H)e k%™ (46)



40 RAZ KUPFERMAN

there corresponds a second distinct solution,
8¢, (r,z,t) = (du, 8v, —8w, 8™, 877, 677, 67%, —577% 8170, (47)

resulting from the-reflection symmetry of the equations of motion. The complex conjugat
of both solutions complete a four-dimensional eigenspace of symmetry-related solutic

The resulting secondary flow can exhibit two different patterns, each corresponding
maximalisotropy subgroup [15]. If only one of the two eigensolutiégs, (8 ) is present,
the solution describes a wave of tilted vortices traveling upward (downward). This solu
is invariant under the spatio-temporal translatipr> t 4+ Im(Q2)At, z — z+ kAz). This
solution is known as raveling orrotating, wavelf, on the other hand, boty, andsv,
have the same amplitude, the solution describes an asi@hding wavewhich remains
invariant under a spatial translation of half a wavelength followed by a temporal transla
of half a period, and a reflection about thexis. An examination of the standing wave
solutions showed that these form a cellular structure that propagates in the radial direc
Vortices are formed in the vicinity of the inner cylinder and move outward until the
eventually fade away near the outer cylinder. The intercylindrical gap can be filled w
several vortices, the number of those increasing with the gap to radius aspect ratio [1:

Bifurcation theory further establishes that in the event that both traveling and stanc
wave solutions bifurcate supercritically, one and only one of these two has a stable |
cycle. However, the nature of the bifurcation and the stability properties of the bifurcat
branches cannot be predicted solely on the basis of linear stability. For that one nee
resort to a nonlinear analysis.

5.2. Beyond Linear Stability

In order to determine the stability of any bifurcating solution a nonlinear stability analy
is required. Typically, one reduces the partial differential equation into a set of ordin
differential equations through a Liapunov—Schmidt reduction and expands the equatio
powers of the bifurcation parameters. The result of such a procedure is a nonlinear equ
for the amplitude of the secondary flow. Although this method has been successfully apj
to a wide variety of problems, it often involves tedious calculation, in particular when 1
bifurcation is degenerate.

Rather than performing such a nonlinear analysis, Avgousti and Beris [14] solved
nonlinear system of partial differential equation, treating time as a third dimension,
looking for solutions that have the required symmetries and periodicities. They used, to
end, a spectral method, exploiting the fact that near the bifurcation point accurate re
require a relatively small number of modes. Thus they were able to calculate limit cy
solutions both for the traveling and for the standing waves. By examining the depend
of the amplitude of the solution on the bifurcation parameter they established that |
branches were indeed supercritical.

With the objective of determining which of the two patterns is the stable one, Avgol
et al [17] developed two algorithms for time-dependent simulations, one for the iner
elastic regime and one for the purely elastic regime. Both schemes are based on a
dospectral discretization along the radial axis. Rather than initializing the flow with so
random noise on top of the primary flow, they used the output of the linear stability cal
lations to disturb the primary flow by a combination of least stable eigenfunctions, forc
thus either a traveling wave or a standing wave.
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Their results are as follows: In the intermediate inertio-elastic regime, initially traveli
waves reach a stable limit cycle. Initially standing waves, on the other hand, grow e
nentially in amplitude, causing the calculation to break down. Computational limitatic
did not allow them to determine if any alternative limit cycle is eventually reached. It w
only conjectured that a traveling wave would have been recovered. In the purely el:
regime the reverse was found: standing waves are stable, whereas, initially, traveling v
grow in amplitude until a numerical instability is encountered. We remind the reader tha
these results were obtained in a computational domain that embodies a single wavele
the wavelength is hence constrained by the geometry. In addition, mode interaction
suppressed, whereas they may be important in any realistic flow.

In Section 6 we will attempt to resolve some of the questions left open in these ea
studies. In particular we will examine what is the “natural” evolution of the instability whe
the initial disturbance is random. Also we will check the long-time behavior of an init
perturbation that is symmetric under the isotropy subgroup of the standing wave solu
All our calculations include at least eight natural wavelengths and, therefore, allow fi
dynamical selection of the wavelength.

5.3. Linear Stability: A Finite Differences Eigenvalue Solver

Given the set of parameters, w, vs, vp, @and, the primary Couette flow is given by
Eq. (12). To calculate its stability spectrum we add to it a small disturbance, whicl
decomposed into its Fourier modes,

u(r, z, t) = su(r) sinkz é*
v(r, z,t) = vo(r) + Sv(r) sinkz e
w(r, z,t) = Sw(r) coskz é*
p(r, z,t) = 8p(r) sinkz e
' (r, z,t) = 87" (r) sinkz &*
', z,t) = 7§ (r) + 87" (r) sinkz €
T'2(r, 2, t) = 87"%(r) coskz &
99(r, z,t) = 7§ (r) + 87%(r) sinkz é*
92(r, z, t) = §1%%(r) coskz &%
T24(r, z,t) = 81%4(r) sinkz €%,

(48)

wherek is the axial wavenumber arelis the amplification rate. Substituting this expansio
into the equations of motion and linearizing such to keep only terms that are first-orde
the perturbation, we get the set of equations,

d v d1d d

1d 1 d/1d
+k(=—rst" —kst?— =857 ) — — | Z—rst"%+kst??),
rdr r dr \r dr
dild d (49)
1 Vo Vo
Qv = —r—K)sv—2(—+—)5
v vs(drrdrr )U (dr+r>u

1d 1
+ (——r 8t —ksr?? + —Sr”’) ,
rdr r
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The boundary conditions for the perturbation are
d
Su=—d8du=%86v=0 forr =r_,rg. (51)

dr

Note that the Fourier decomposition (48) includes only modes in which, for exafuogke,
an antisymmetric function af. For each solution of the form (48) its symmetric counterpa
exists, obtained by the transformation, kin— coskx and cokx — —sinkx.

Equations (49) and (50), together with the boundary conditions, form a generalized ei
value problem fof2 (k). One can define a perturbation vecbor= (8u, v, §t'", §t'?, 5177,
8199, —5192, %% and rewrite the equations as

A Sx = QB 68X, (52)

whereA andB are operators.

This eigenvalue problem can be solved by discretizing the perturbation véctand
expressing the differential operatadsandB as second-order finite differences; in this
representatioh andB are square matrices. The discrete specti@mis then solved with
a standard eigenvalue solver.

5.4. Results

We first tested the eigenvalue solver and, notably, checked that it is second-order acci
In Table 1 we list the eigenvalue of the least stable mode for fixed parameters an
increasing number of discretization poinis, The results denoted by = co were obtained
by Richardson extrapolation, based on the assumption of second-order convergence
estimate was then used to evaluate the error as a functibn ©he order of convergence
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TABLE 1
Evaluation of the Convergence Rate of the Linear Stability Solver
N =00 N =40 rate N =48 rate N =56 rate N =64
[€) .00740 —.00348 1.98 —.00018 2.00 .00183 2.03 .00315
(b) .00409 —.00170 1.82 —.00006 2.00 .00104 1.89 .00172

Note The amplification rate of the least stable mode is calculated for increasing number of discretization pc
The parameters ame=0.883 w =0, v,/(vs + vp) =0.9, and (a) =0.3, v = (v, + v5) =0.07428 k=1.125;
(b)yA=1.2,v=0.1299 k= 1.430.

between each pair of data could thus be estimated. The table confirms that the procec

second-order convergent.
The results of the linear stability calculation are presented in Figs. 4-8. In Fig. 4 we

the critical Taylor number defined by

2

1 g
Ta= — 53
21— n? (53)

(v=vs + vp is the total viscosity) as a function ef= Av,, a parameter that measures thq
elasticity. Unlike the Deborah numberjs an intrinsic property of the fluid and depends
neither on the cell geometry nor on the flow driving parameters [14]. The fixed parame
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FIG. 4. The critical Taylor number versus the elasticity= Av, for n=0.883 w =0, andv,/v=0.9. The
graph shows the neutral curves for two branches of eigenmodes. The weak elasticity mode is stationary, w
the strong elasticity mode is overstable. A transition between the two modes occurs at a value of elasticity
0.07.
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FIG.5. The critical wavenumbek, versus the elasticity for the parameters of Fig. 4.

are n = Rout/ Rn = 0.883 w = Qout/ Qin =0, and a viscosity ratioy,/v =0.9; the same
values of parameters are used in the numerical simulations reported below.

In agreement with Bearet al. [8], a stationary bifurcation is found for small values of
elasticity, with the critical Taylor number decreasing with increasing elasticity. Above
value of elasticity around 0.07 an overstable mode takes over. The neutral stability cun
the overstable mode decays as a function of the elasticity more rapidly than the static
transition curve. The intersection of the two neutral stability curves is an exchange
stability point, not a bifurcation point; the two modes are distinct solutions of the perturbat
equations.

In Fig. 5 we plot the dependence of the critical wave numfesn the elasticity. For
small values of elasticity the critical wavenumber is close to the newtonianlcaser ;
i.e., the Taylor vortices have an approximately square cross section. The critical waver
ber increases with the elasticity and reaches a maximum in the vicinity of the exche
of stability point. At this point, where the least stable mode becomes the overstable
ke jumps discontinuously frork, = 1.230 tok. = 1.525. The behavior ok for the over-
stable mode is nonmonotonic. These results are in agreement with earlier work (e.g., F
in [8]).

Figure 6 shows the oscillation frequency,(fy), of the marginally overstable mode. At
the exchange of stability point the frequency is finite and equals approximately 0.25.
critical frequency increases with the elasticity until it eventually saturates. For even hic
values of elasticity it starts to slowly decrease. The critical frequency falls to zero for a ve
of elasticity slightly below the exchange of stability point; at this point the pair of compl
modes bifurcate from a pair of real modes. It is interesting to note that the overstable n
takes over almost as it formed.
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FIG. 6. The critical oscillation frequency of the marginally overstable mode versus the elasticity. The p:
meters are the same as in Fig. 4.

We next analyze the structure of the eigenvalue distribution in the cortipf@ane. In
general, the spectrum is divided into continuous parts and discrete parts. The distin
between the two is manifested as the number of discretization points is raised. Dis
modes keep their identity under refinement, whereas continuum modes do not and
density increases.

Figures 7 and 8 show the stability spectrum of two marginally stable solutions, one a
threshold of a stationary bifurcation (Fig. 7) and one at the threshold of a Hopf bifurca
(Fig. 8). In the first case the least stable eigenvalu® is0, whereas in the second cas¢
a pair of complex eigenvalues crosses the imaginary axis. The calculations were rep
with 48, 56, and 64 discretization points; the resulting eigenvalues are marked by diffe
symbols for each discretization.

Despite the different nature of the bifurcation, the two spectra exhibit very similar pr
erties. There seem to be a small number of discrete modes, which are relatively less ¢
than continuum modes; hence, these are the modes that affect the stability properties
continua show interesting geometrical features: one continuum of complex eigenvalue:
on a circle; the center of this circle is an accumulation point of eigenvalues; it is locatec
the real axis and equals

1 1

YT R o

(54)
wheret is the so-called retardation time. The radius of the circle is of oifggr In [14]
the upper-convected Maxwell equation was considered; in that case, where the polyr
viscosity equals the total viscosity, the radius of this circle is infinite. This explains why
structure found in [14] was a straight line rather than a circle.
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Figures 7a and 8a may give the incorrect impression that there are two elliptic struct
rather than one circle. An extrapolation of the eigenvalues for increasing refinement st
that the two ellipses converge to the same circle. The reason why not all the eigenvalue
be calculated with the same level of accuracy can be understood as follows. Our metho
culates 8 — 6 modes for arN point discretization. This implies that there will necessaril:
exist modes in which the number of nodes excelddand therefore badly underresolved
This s the case for the modes forming the spurious additional ellipse. The least stable m
however, always have arelatively simple structure, and their calculation is therefore accu

Another characteristic structure is shown in detail in Figs. 7b and 8b. In both cases t
exists a highly degenerate eigenvafie- —1/1; the degeneracy is infinite in the continuumm
limit. The eigenvalue2 = —1/2 is the locus of a cross-like structure, which consists ¢
four perpendicular rays that form a%4&ngle with respect to the axes. Each ray is terminat
at an accumulation point. Thus the stability spectrum is characterized by two special |
both are real and related to the relaxation and the retardation rates. The former is the ¢
of a cross-like structure, and the latter is the center of a circular continuum.

6. NUMERICAL RESULTS

We now describe the results of the numerical simulations. The scheme was impleme
on a Sun Ultra-1 workstation. Most of the calculations were performed for cylinders
h =16 gap units high, discretized on a 8512 mesh. Each time step takes about 3.5
this figure can probably be reduced by a factor of two by optimizing the code. As in the lir
stability analysis, all the simulations reported here are for the fixed parametsd883
w =0, andv,/v =0.9. For initial conditions we took the primary Couette solution, on to
of which we superimposed a small random perturbation.

To testthe convergence rate of the scheme we performed the standard analysis, com
solutions obtained with finer and finer grids. Thgnorm of the difference of a particular
solution with that obtained on a grid twice as fine is our error estimate. By calculating
errors for two levels of refinement and using Richardson extrapolation the convergence
can be estimated. The result of this analysis for the three flow components is present
Table 2. These numbers confirm that the scheme is second-order; the measured c
gence rate is even higher than two because the asymptotic regime has not yet been re

6.1. The Stationary Transition

We first report on simulation results near the onset of the stationary bifurcation fc
weakly elastic fluid withh =0.3. Linear stability predicts for these parameters a critic:
viscosityv. = 0.0744 and a critical wavenumblky=1.125r.

TABLE 2
L,-Error and Extrapolated Convergence Rates Estimated from the
Comparison of 16 x 64,32 x 128, and 64x 256 Grids

M =16 N =64 rate M=32 N=128
[lum.n — Uzmon]l2 0.0060 2.48 0.0011
“vM.N — U2M.2N ”2 0.0504 2.51 0.0069
lwmn — wam,anl2 0.0074 2.42 0.0014

Note The parameters ahe=4, v =0.07, » = 0.6, and the total running timetis= 20.
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FIG.9. Thelogarithm of the amplitude of the Fourier mad& = 57 /4) versus time, where the radial velocity
is measured in the middle of the gap. The parameters&r@.073 and. = 0.3. The amplification rate during the
early stages of the growitt ~ 10-100 is Q2 = 0.0398. The linear stability analysis predicts an amplification rat
of 0.0359.

To calculate the amplification rate in the linear regime, we recorded the time evolu
of the axial Fourier modes afin the middle of the gap. In Fi@® a semi-logarithmic plot of
the amplitude of th& = 57 /4 mode versus time shows the existence of a long intermedi
time intervalt ~ 10-100, during which the growth is exponential; the amplification rate
this mode is calculated by a linear fit. As the perturbation evolves, modes start to inte
Eventually a wavelength is selected, and all the modes with wavenumbers that are
multiples of the principal wavenumber decay.

In Table 3 we compare between the amplification rates predicted by the numerical s
lations and the linear stability analysis. For both procedures the calculations were rep
for different discretizations, and the results were extrapolateld ttN — co. The table
reconfirms the convergence of the results. Mbe 32 discretization points in the radial
axis, the discrepancy in the amplification rate is about 5%Maet 64 it is about 1%.

The flow eventually reaches a new steady state of Taylor vortices very similar to the
newtonian fluids. Because of the periodicity of the domain, the wavelength of the asymp
pattern must be an integer fraction of the cylinder height. In Figs. 10 and 11 we plot c
level images of the velocity and stress components in the steady-state. The numb
vortical cells is nine, which corresponds to a wavenumbede-efl. 1257 ; this happens to
also be the fastest growing mode.

6.2. The Oscillatory Transition

We next study the onset of the oscillatory instability. In Table 4 we list amplification ra
ofthek = 37 /2 mode measured in simulations foe 1.2, with M = 32 radial discretization
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FIG.10. Colorlevelimages of the velocity componenigleft), v (middle), andw (right) for the steady-state
Taylor vortices. The blue (red) tones represent high (low) values of the fields. The parametess@8and
v=0.073.

FIG.11. Colorlevelimages of the stress tensor componetfitsz'®, t'%, 7%, 792, andz?? (from left to right),
for the same parameters as Fig. 10.
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FIG. 13. Time sequence dfi(r, ) in the linear regime. The leftmost image is at titne 400; sequential
frames are separated by a time inteal= 0.5. This sequence extends over one half of a period. In the middle
this interval, when the amplitude of the secondary flow is small, one can see the vortex moving towards the
cylinder while a new vortex forms near the inner cylinder.
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TABLE 3
The Amplification Rate €(k = 7r) for Different Values of Viscosity

Simulation Linear stability
v 16x 128 32x 256 64x 512 Extrapolation 48 56 Extrapolation
0.070 0.1309 0.1258 0.1247 0.1243 0.1179 0.1191 0.1224
0.071 0.0986 0.0934 0.0922 0.0918 0.0852 0.0870 0.0920
0.072 0.0657 0.0602 0.0591 0.0587 0.0519 0.0537 0.0586
0.073 0.0320 0.0264 0.0253 0.0249 0.0179 0.0198 0.0250

Note The simulation results are compared to the linear stability results; in both cases the calculation is rep
for discretizations of increasing refinement, and the result is extrapolated to the limit of an infinitely refined m
The elastic relaxation time is= 0.3, and the parameters correspond to the vicinity of a stationary bifurcatic
point.

points. The discrepancy with the extrapolated linear stability results is larger than in
stationary case and attains 20%. This is not surprising as the structure of the eigenmo
more complicated than in the stationary case and, therefore, requires a finer discretiz
for a comparable accuracy.

As explained in Section 5, the main issue in the context of the oscillatory instability is
prediction of its evolution, from early stages to, possibly, a stable limit cycle. Earlier wc
suggests that in the inertio-elastic regime the only stable limit cycle is an axially travel
wave, but so far no conclusive evidence was found. To clarify this point we performe
sequence of long runs far=1.2. The results are shown in Figs. 12-16.

Useful insight is gained by considering the time evolution of the maximal radial veloci
Umax(t) = max Ju(x, t)| (Fig. 12). The viscosity here is=0.126, whereas the critical
viscosity as predicted by linear stabilityis= 0.1299. In the early stagés~ 0—700), Umax
oscillates bounded by an exponentially growing envelope. The ratio between the ma;
and the minima is large. At abotit- 700 the exponential growth is taken over by an eve
faster increase which eventually saturates. A new state emerges in whicbscillates
with a very gradual growth of its envelope. This time the ratio between the maxima
the minima is close to one. This state persists betwee&00-2800, i.e., during about 200
natural periods. At about~ 2800 a new transition takes place; this timgy decreases in
amplitude towards a fixed value. This new state remains stable indefinitely. Thus, Fig

TABLE 4
The Amplification Rate Q(k = 3=/2) for Different Values of the Viscosity

Simulation Linear stability
v 32x 256 48 56 Extrapolation
0.122 0.0607 0.0725 0.0734 0.0759
0.124 0.0474 0.0544 0.0553 0.0578
0.126 0.0336 0.0357 0.0366 0.0391

Note The simulation results are compared to the linear stability results. The elastic
relaxation time is. = 1.2, and the parameters correspond to the vicinity of the Hopf
bifurcation point.
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FIG.12. The maximum value of the radial velocity maju|) as function of time. The upper-left graph shows
the entire time interval; the three other graphs show in more detail the transitions between the different
regimes.

indicates the existence of three sequential states: an oscillating exponential growth, a
transitory state, and a stable limit cycle.

To elucidate the nature of these three regimes, we analyzed the evolution of the flow
and the stress tensor as function of time. Below we show sequential snapshots of the |
velocity, u(x), separated by fixed time intervals.

We first consider the early stages of the perturbation. The fact that the secondary
oscillates with a very high peak-to-peak amplitude ratio is an indication of a stand
wave, as confirmed in Fig. 13, in which we show the evolutioni@f) betweent =400
andt =405. The vortices have fixed positions (and therefore are referred to as stan
waves) and oscillate between positive and negative signs. As described in earlier v
these oscillations are also associated with vortex motion from the inner cylinder outwe

The early stages of the instability are a linear regime, in which the modes are practic
independent. Therefore we expect all unstable modes to grow exponentially; in partic
degenerate modes grow at equal rates. A standing wave is expected in the event tha
exists a nearly equal amount of upward- and downward-going waves. In the absence ¢
preferred direction, this is the likely configuration.

As can be concluded from the time evolutionupf,, the standing wave grows in am-
plitude until it becomes unstable and is replaced by a new state, which, although not t
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FIG. 14. Time sequence of color level imagesutf, z) in the transient regime. The time sequence runs from left to right, starting 8800 with intervals ofAt

of the cell three to four vortices are moving upwards, whereas in the lower part of the cell four to five vortices are moving downwards.
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FIG. 15. The three velocity components,(left), v (center), andw (right) for the stable limit cycle. This
structure of inclined vortices moves downward.
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FIG. 16. The imaginary part of the Fourier modegk) in the middle of the gap, for (=, (b)k=1.25x,
(c) k=157, and (d)k=1.75n.

a limit cycle, persists for a long time. The flow pattern associated with this long transi
is shown in Fig. 14. The flow decomposes into two distinct regions, exhibiting upwa
and downward-going waves, respectively. There exist two special points: one from wi
the counterpropagating vortices emanate and another into which they merge and annit
This transient state persists for hundreds of periods.

These findings confirm the prediction of Avgoustial. [17] that the stable bifurcating
branch in the inertio-elastic regime is the traveling wave. What we have found here is
the presence of both upward- and downward-going waves forces a relatively fast bre:
of the secondary flow into two subdomains of oppositely traveling waves. The poss
occurrence of such a scenario was already anticipated by Larson [3].

The only stable limit cycle is that of a periodic stack of inclined vortices that travel eitt
up or down. This state is eventually reached. The traveling direction in the asympt
state depends on asymmetries present in the initial conditions. The color level image
the three velocity components is shown in Fig. 15. In this case the vortices are trave
downwards.

Finally, we show in Fig. 16 the time evolution of Fourier mode#), measured in
the middle of the gap, for four different wavenumbkrd he four graphs exhibit a similar
behavior: The early states are well fitted to exponential growth with a complex amplifica
rate. The effect of nonlinearities is to suppress the growth. The closer the wavenumber
the fastest growing mode, the larger is its maximal amplitude. The linear regime is follov
by a long transient state during which the modes interact through the nonlinear coup
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Finally, as the flow reaches a limit cycle a single wavelength is selected and all the c
modes decline exponentially.

7. DISCUSSION

We introduced a numerical scheme for viscoelastic flow, which is simple, efficient,
readily adaptable for various (differential) constitutive equations. We implemented it for
viscoelastic Couette—Taylor problem, and we were able to perform calculations that ex
by far previous efforts both in terms of the size of the computational domain and in term
time intervals. These two factors were crucial for the determination of the natural evolu
of the oscillatory instability occurring in the so-called inertio-elastic flow regime.

We found that in the early stages of the instability, linearity results in an exponen
growth of all unstable modes; in the absence of axially preferred direction the resul
a standing wave, where the vortices are fixed in space and their amplitude oscillates
prediction of Avgoustiet al. [17] that the traveling wave solution is the stable one we
confirmed. Since our initial conditions include in general comparable amount of upwze
and downward-going waves, the secondary flow breaks into two regions, one on top ©
other, where in each region a wave of inclined vortices propagates in a different direc
This state can persist for a long transitory time until initial asymmetries cause the selec
of either upward- or downward-going wave, and the secondary flow reaches a limit ¢
of a fully periodic traveling wave.

While infinite or periodic systems are valuable for the sake of theoretical consideratit
real Couette cells are of course finite and closed. It is unclear how the instability evo
in the case of a closed system in which no-slip conditions apply also at the upper
lower boundaries. The fact that counterpropagating waves were found to coexist sug
a possible solution where vortices are created near one of the cylindrical ends, prop:
along the axis, and annihilate at the other end. This conjecture will be investigated.

In this paper we have restricted, for convenience, the calculations to an axially peri
computational domain. Thus the implicit parts of the scheme (in connection with the n
tonian viscosity and the projection) could be solved using the fast Fourier transform.
extension to a closed domain is in principle not more complicated, except for the r
of an efficient method of solving the implicit linear equations; multigrid methods are t
natural candidates. To make the scheme adequate for widespread technological us
necessary to develop an appropriate methodology for treating more complicated geom
and boundary conditions.

We have focused here on flow within the inertial and the inertio-elastic flow regimes,
disregarded the other limiting case in which the inertial terms are negligible. In orde
include purely elastic flow it is necessary to modify the scheme following the example
Beriset al. [17]. Such extension is beyond the scope of this paper.

An immediate extension of this present work is to investigate the effect of fluid rheolc
on the various types of instabilities. In particular, one would like to better understand the
fects of shear thinning and second normal stress difference, both absent from the Oldrc
equation. Work along these lines is proceeding apace.
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