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We present a numerical scheme for viscoelastic flow based on a second-order cen-
tral differencing method recently introduced in the context of incompressible newto-
nian flow; the incompressibility constraint is treated with the projection method. The
result is a simple and efficient scheme that is readily adaptable to a wide class of dif-
ferential constitutive equations and flow geometries. We implement the new method
on Couette–Taylor flow for a fluid governed by the Oldroyd-B constitutive equa-
tions. We simulate transient flow in a domain that includes at least eight wavelengths
during many hundreds of natural periods. For weak elasticity, a stationary instability
leading to Taylor vortices is observed. For a regime of parameters where both inertia
and elasticity are important, the instability is oscillatory. In both cases the early stage
growth rates are compared to linear stability calculations, showing good agreement.
The oscillatory instability is fourfold degenerate and gives rise to two bifurcating
branches: an axially traveling wave and a standing wave; only one of these solutions
is stable. In the early stages of the instability, there is generally a combination of
traveling and standing waves, depending on the initial conditions. As nonlinearities
become important, the flow spontaneously breaks into coexisting regions of upward-
and downward-going waves. Such flow can persist for long times, until the globally
stable traveling wave takes over and a limit cycle is reached.c© 1998 Academic Press
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1. INTRODUCTION

Despite much progress in the prediction of fluid flow, viscoelastic flow is an example of
a field in which the numerical techniques are still generally inadequate to describe flows
in regimes of technological importance; this inadequacy is particularly acute when one
considers flows with large stress gradients and for time-dependent flows. The goal of this
paper is to exhibit a numerical method applicable to time-dependent viscoelastic flow under
a wide range of flow conditions.

Viscoelastic fluids are polymeric materials in which the state-of-stress depends on the
history of the deformation, in contrast to newtonian fluids in which the stress depends
only on the instantaneous rate of deformation. Viscoelastic fluids may exhibit behavior that
differs significantly from that of newtonian fluids; some of the peculiar flow phenomena
are the well-known “rod-climbing,” extrudate swell, and “tubeless siphon.”

In many cases, the understanding of viscoelastic rheology is poor. One reason is the
approximate nature of the constitutive equations [1]; there is no systematic way of deter-
mining the range of validity of a model in describing a specific fluid. All models are at
most reasonable approximations in a limited range of flow conditions. Even if the validity
of the constitutive equation is taken for granted, its mathematical complexity rarely allows
the derivation of analytical results, except for the simple cases of viscometric flows and for
small perturbations about such flows. It is in this context that direct numerical simulations
are called for, both to test constitutive models and as a tool to analyze and predict rheological
phenomena.

Polymeric liquids are also known to exhibit flow instabilities that are not observed in
low molecular weight liquids (for reviews see [2, 3]). Such instabilities are often the
limiting factor in fabrication processes, and their understanding is therefore of practical
importance. In this paper we study a particular system that exhibits interesting instabili-
ties: Couette–Taylor flow of a viscoelastic fluid confined between two concentric rotating
cylinders.

The rich sequence of instabilities of the Couette–Taylor flow in newtonian fluids is well
understood [4, 5]. The viscoelastic Couette–Taylor instability has also received much atten-
tion for the last three decades; the main results are summarized in Section 5. In brief, three
basic flow regimes have been identified: an inertial regime, a purely elastic, or inertia-less
regime, and an intermediate inertio-elastic regime. In the first case, the primary instability
is stationary; the primary azimuthal flow is taken over by a steady-state structure of Taylor
vortices. In the two remaining cases the instability is oscillatory, or overstable; the new flow
pattern emerges through a Hopf bifurcation.

All the above instabilities can be predicted by linear stability analysis [6–14]. Moreover,
bifurcation theory can predict part of the bifurcation structure on the basis of general
considerations, for example on the analysis of the symmetries of the equations of motion
[15, 14]. Thus, one can show that the Hopf bifurcation is fourfold degenerate, and as a result
two branches of solution can emerge: axially traveling waves or standing waves. If both
branches are supercritical (as evidence shows), one and only one of them is stable. Which
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of the bifurcating branches is stable cannot be resolved by bifurcation theory. It is partly to
clarify this issue that numerical studies of time-dependent Couette–Taylor flow have been
pursued [16, 17].

Northeyet al. [16] used a finite-element method to solve the upper-convected Maxwell
equation in the purely-elastic regime; i.e., the inertial terms were discarded. Beyond the
bifurcation point, the flow was found to attain an oscillatory limit cycle; a plot of the
amplitude of the limit cycle versus the bifurcation parameter confirmed that this bifur-
cation is supercritical. We note the limitations of these calculations: (i) the simulations
were performed in a domain which contains only one wavelength. In other words, the
wavelength was constrained by the geometry rather than selected dynamically. (ii) The
initial condition consisted of the primary azimuthal flow, on top of which was superim-
posed the “most dangerous mode,” as predicted by linear stability analysis. To speed up
the simulations, the amplitude of this initial instability was taken to be large and then allo-
wed to relax down. This again may force a certain solution to be selected and may not
allow the “naturally selected” solution to develop spontaneously. (iii) Limiting the size
of the domain to a single wavelength has as consequence that the wavenumber separa-
tion between neighboring Fourier modes is large. Hence one needs to exceed significantly
the instability threshold to observe mode interactions; such interactions are likely to oc-
cur in any realistic system because the stability spectrum is typically very flat. Note that
even though these simulations were performed on meshes of the order of 20 points, the
conclusion was that “calculations with substantially finer discretizations are prohibitively
expensive.”

Avgoustiet al.[17] used a pseudospectral method to simulate time-dependent flows both
in the purely elastic and in the inertio-elastic regimes. As in [16], the computational domain
was a single wavelength; the most refined discretization was of 16 axial points and 33 radial
points. Their findings are that in the purely elastic regime it is the standing wave solu-
tion which is selected, whereas the traveling wave solution is selected in the intermediate
inertio-elastic regime. When the initial condition was taken to be the unstable oscillatory
mode (e.g., a standing wave state in the inertio-elastic regime), the oscillations were found
to grow exponentially, causing the calculation to eventually breakdown; all attempts failed
to produce a stable limit cycle solution. Although these calculation were performed on a
supercomputer, the ultimate conclusion was that “the increased computational workload
resulting from a small time step size and an anticipated long transient make these calcula-
tions impractical with the available computational resources.”

The above examples demonstrate well how indispensable it is to develop computational
methods capable of simulating such flows under realistic conditions.

In recent years, Tadmor and co-workers introduced a sequence of new schemes, which
can be viewed as higher order sequels of the Lax–Friedrichs (LxF) scheme. The new method
retains the relatively simple form of central-difference schemes, but does not suffer from the
poor resolution of the first-order LxF scheme. Nessyahu and Tadmor originally constructed
a second-order scheme for systems of conservation laws in one spatial dimension [18]. This
work was then extended to higher orders [19] and to several spatial dimensions [20].

The two-dimensional Euler equations in their vorticity formulation were treated along
these lines by Levy and Tadmor, both in second- and third-order versions [21, 22]. A method
based on the more practical velocity formulation was developed by Kupferman and Tadmor
(KT) [23]; the pressure was calculated with the projection method [24, 25]. This new scheme
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was tested on the classical doubly-periodic shear layer and on longitudinal flow in a channel.
Its performance was compared to that of upwind schemes and was found to give comparable
accuracy and resolution. The new scheme was further found to be immune to the formation
of spurious vortical structures [26] that may result from under-resolution. The KT scheme
was further extended to cope with other coordinate systems, and a systematic treatment of
boundary conditions was derived [27].

In this work we apply the central scheme approach to viscoelastic flow. The methodology
which was developed for newtonian flow is found to be naturally generalizable to more
complicated equations, and in particular easily allows the inclusion of constitutive relations.
With fairly modest computational effort, we are able to simulate flows which include not
less than eight natural wavelengths, starting with slightly perturbed azimuthal flow and
evolving for many hundreds of natural periods. In most of our calculations we used a
512× 32 grid.

We now discuss the choice of constitutive equations. Our scheme is designed for diff-
erential models; this restricts our choice of equations. We consider here the Oldroyd-B
constitutive equation, which provides a reasonable description of dilute solutions of flex-
ible high-molecular-weight polymers. This equation can be derived from a molecular
model where the polymers are modeled by simple Hookean springs, and it has both
the newtonian fluid and the Maxwell fluid as limiting cases. In particular, it predicts
no shear thinning and zero second normal stress difference. The main limitation of the
Oldroyd-B equation is its prediction of unbounded extensional viscosity as the extensional
strain rate exceeds some value; this drawback should not be relevant for the flows studied
here. Having chosen a specific constitutive equation, we re-emphasize that the numeri-
cal scheme presented here readily generalizes to a wide class of differential constitutive
equations.

The main new result of this paper is the prediction of the “natural” evolution of the sec-
ondary flow following the oscillatory instability. In the early stages, modes are independent
(this is the linear regime), and there will generally exist a combination of traveling and
standing waves, depending on the initial conditions. When nonlinearities enter into play,
the flow decomposes into separate regions of upward- and downward-going waves. This
state does not reach a limit cycle, but nonetheless can persist for a long transitory time.
Eventually, the globally stable state of a periodic axially traveling wave takes over, and a
stable limit cycle is reached.

The structure of this paper is as follows: In Section 2 we introduce the equations of
motion. In Section 3 we describe the Couette–Taylor problem, and reformulate the equations
of motion in the appropriate conservative form in axisymmetric cylindrical coordinates. In
Section 4 we present the numerical scheme. We briefly review the projection method, and
then describe the scheme both for interior and boundary cells. In Section 5 we review the
main results of earlier work on linear and non-linear stability of Couette–Taylor flow. We
then describe an alternative method to calculate the linear stability spectrum that has the
advantage of being simple and easily adapted for other constitutive models. We perform
stability calculations that are afterwards compared to the simulation results. In addition,
we investigate the structure of the stability spectrum and find new results that generalize
earlier results by Avgousti and Beris [14]. In Section 6 we present the simulation results,
investigating both the stationary and the oscillatory instabilities. A discussion finally follows
in Section 7.
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2. THE EQUATIONS OF MOTION

The equations governing the flow of a fluid are

∂u
∂t
= −(u ·∇)u−∇p+∇ · τ , (1)

whereu(x, t) is the velocity field, the scalar fieldp(x, t) is the pressure, and the tensor
τ (x, t) is the state-of-stress in the fluid. Throughout this paper we assume the density of
the fluid to be one. Polymeric solutions and melts are usually incompressible in which case
u(x, t) satisfies the incompressibility constraint

∇ · u = 0. (2)

To obtain a closed set of equations it is necessary to specify the relation between the state-
of-stress and the history of the flow. Such a relation is known as a constitutive equation. In
a newtonian fluid the state-of-stress depends only on the instantaneous local rate-of-strain;
the extra stress is proportional to the rate-of-strain tensor,

τ = νs[(∇u)+ (∇u)†] ≡ 2νsD, (3)

whereνs is the shear viscosity. This constitutive equation predicts, in particular, that the
stress responds instantaneously to any deformation and has no memory; the stress vanishes
as soon as the driving motion has ceased. This is not the case with a complex fluid such as a
polymer solution or a polymer melt. Polymers can store elastic energy and thus contribute
to the state-of-stress in the fluid even after the shearing motion has ceased. The “memory”
of the fluid, or its elasticity, is usually characterized by a relaxation spectrum, which reflects
the relaxation rates of the energy storing modes.

In the case of a dilute solution of flexible high-molecular-weight polymers the rheology
is reasonably well described by the Oldroyd-B constitutive equation. In this equation the
state-of-stress is separated into two components: One contribution is due to the newtonian
solvent and is given by Eq. (3). The second contribution is due to the polymers and satisfies
the upper-convected Maxwell equation,

∂τ

∂t
= −(u ·∇)u+ (∇u)† · τ + τ · (∇u)− 1

λ
τ + 2νpD, (4)

whereνp denotes the contribution of the polymers to the shear viscosity. The Oldroyd-B
equation is a two mode model; one relaxation rate is due to the solvent and is infinitely
fast; the polymers are described by a single relaxation mode with relaxation timeλ. This
relaxation time has to be interpreted as a mean relaxation time of a realistic polymer.

It is in general difficult to establish how accurately a constitutive equation describes
any particular fluid. Quantitative comparison can be carried only in very simple flows in
which well defined measurements can be compared with the exact solution of the equations.
Viscometric flows are a special class of fluid motions that possess a very simple deformation
history; they are all kinematically equivalent to simple shear between parallel plates, except
for a time-dependent rigid rotation. In a shearing flow with shear rateγ , where the velocity
is in thex-direction and its gradient is in they-direction, one typically defines the three
following viscometric functions: the viscosity, the first normal stress coefficient, and the
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second normal stress coefficient. For the Oldroyd-B equation these are given respectively by

ν ≡ τ xy

γ
= νs + νp,

91 ≡ τ xx − τ yy

γ 2
= 2λνp, (5)

and

92 ≡ τ yy− τ zz

γ 2
= 0.

In particular the Oldroyd-B equation predicts that the shear viscosity does not depend on
the shear rate (no shear thinning).

3. THE COUETTE–TAYLOR PROBLEM

A circular Couette cell consists of two concentrically rotating cylinders between which
the fluid is confined. We consider a viscoelastic fluid described by the Oldroyd-B constitutive
equation in such a geometry. We restrict ourselves here to axisymmetric flow; the velocity
field and the stress components do not depend on the azimuthal coordinate. Experiments
indicate that flow is indeed axisymmetric for ranges of parameters close enough to the
primary instability threshold.

The geometry suggests the natural choice of cylindrical coordinates; letx= (r, θ, z)
denote the radial, azimuthal, and axial coordinates, respectively. The corresponding com-
ponents of the velocity field and the stress tensor are denoted byu= (u, v, w) andτ =
[(τ rr ,τ r θ ,τ rz), (τ θr ,τ θθ ,τ θz), (τ zr,τ zθ ,τ zz)]. The stress tensor is always symmetric; there-
fore it only has six independent components.

We now write the equations of motion in cylindrical coordinates. The central scheme
described in the next section is based on the dual nature of the equations, which can be
formulated both in advective form (1), (4) and in (partially) conservative form; the advective
operator∂ f/∂t + (u ·∇) f can be replaced by the conservative operator∂ f/∂t +∇· (u f )
for any scalar functionf . The equivalence of the two representation is guaranteed by the
incompressibility condition (2).

It is a matter of straightforward algebra to write Eq. (1) in cylindrical coordinates assum-
ing azimuthal symmetry in the appropriate conservative form,

∂u

∂t
= 1

r

∂

∂r
r

[
−u2+ νs

∂u

∂r
+ τ rr

]
+ ∂

∂z

[
−wu+ νs

∂u

∂z
+ τ rz

]

+
[
v2

r
− ∂p

∂r
− νs

u

r 2
− 1

r
τ θθ
]
,

∂v

∂t
= 1

r

∂

∂r
r

[
−uv + νs

∂v

∂r
+ τ r θ

]
+ ∂

∂z

[
−wv + νs

∂v

∂z
+ τ θz

]
+
[
−vu

r
− νs

v

r 2
+ 1

r
τ r θ

]
,

∂w

∂t
= 1

r

∂

∂r
r

[
−uw + νs

∂w

∂r
+ τ rz

]
+ ∂

∂z

[
−w2+ νs

∂w

∂z
+ τ zz

]
+
[
−∂p

∂z

]
,

(6)
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where the newtonian viscosity has been included explicitly, whileτ now represents only the
polymer contribution to the state-of-stress. The incompressibility condition in cylindrical
coordinates reads

1

r

∂

∂r
(ru)+ ∂w

∂z
= 0. (7)

The equations for the six independent components of the stress tensor are

∂τ rr

∂t
= 1

r

∂

∂r
r [−uτ rr ] + ∂

∂z
[−wτ rr ] +

[
2
∂u

∂z
τ rz + 2

∂u

∂r
τ rr

]
− 1

λ
τ rr + 2

νp

λ

∂u

∂r
,

∂τ r θ

∂t
= 1

r

∂

∂r
r [−uτ r θ ] + ∂

∂z
[−wτ r θ ] +

[
∂u

∂z
τ θz+ ∂v

∂z
τ rz + ∂u

∂r
τ r θ + ∂v

∂r
τ rr

]

+ 1

r
[uτ r θ − vτ rr ] − 1

λ
τ r θ + νp

λ

[
∂v

∂r
− v

r

]
,

∂τ rz

∂t
= 1

r

∂

∂r
r [−uτ rz] + ∂

∂z
[−wτ rz] +

[
∂u

∂z
τ zz+ ∂w

∂r
τ rr

]
− 1

λ
τ rz + νp

λ

[
∂u

∂z
+ ∂w
∂r

]
,

∂τ θθ

∂t
= 1

r

∂

∂r
r [−uτ θθ ] + ∂

∂z
[−wτθθ ] +

[
2
∂v

∂z
τ θz+ 2

∂v

∂r
τ r θ

]
+ 2

r
[uτ θθ − vτ r θ ] (8)

− 1

λ
τ θθ + 2

νp

λ

u

r
,

∂τ θz

∂t
= 1

r

∂

∂r
r [−uτ θz] + ∂

∂z
[−wτθz] +

[
∂v

∂z
τ zz+ ∂w

∂z
τ θz+ ∂v

∂r
τ rz + ∂w

∂r
τ r θ

]

+ 1

r
[uτ θz− vτ rz] − 1

λ
τ θz+ νp

λ

∂v

∂z
,

∂τ zz

∂t
= 1

r

∂

∂r
r [−uτ zz] + ∂

∂z
[−wτ zz] +

[
2
∂w

∂z
τ zz+ 2

∂w

∂r
τ rz

]
− 1

λ
τ zz+ 2

νp

λ

∂w

∂z
.

We next specify the boundary conditions. LetRin andRout denote the radii of the inner
and outer cylinders, respectively. The no-slip conditions imply that the velocity of the fluid
at the walls equals the velocity of the cylinders, namely

u(Rin) = u(Rout) = w(Rin) = w(Rout) = 0,

v(Rin) = Äin Rin, v(Rout) = ÄoutRout.
(9)

In the axial direction we will use periodic boundary conditions for convenience. This choice
has reasonably little effect on the flow as long as the height of the cylinders is large compared
to the wavelength of the flow pattern.

The number of independent parameters can be reduced by the introduction of dimen-
sionless variables. For that one has to pick suitable length and time scales. We will measure
length in units of the intercylindrical gap,Rout− Rin, and time in units of the inner cylinder
rotation period, 1/Äin. The velocity is then expressed in units ofÄin(Rout− Rin), the stress
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in units ofÄ2
in(Rout− Rin)

2, and the viscosity in units ofÄin(Rout− Rin)
2. In these units the

boundary conditions for the azimuthal velocity are

v(r L) = r L , v(r R) = ωr R, (10)

where

r L = η

1− η , r R = 1

1− η (11)

denote the cylindrical radii,η≡ Rin/Rout, andω≡Äout/Äin. Thus the model includes a
total of five independent parameters:η, ω, νs, νp, andλ.

For all values of the parameters the model defined by Eqs. (6), (7), and (8) and subject
to the boundary conditions (10) has a viscometric solution,

u0 = w0 = 0,

v0(r ) = Ar + B

r
,

(12)

where the coefficientsA andB are given by

A = ω − η2

1− η2
, B = (1− ω)η2

(1− η)2(1− η2)
, (13)

and

τ rr
0 = τ rz

0 = τ θz
0 = τ zz

0 = 0

τ r θ
0 (r ) = −

2Bνp

r 2
(14)

τ θθ0 (r ) =
8B2λνp

r 4
.

4. THE NUMERICAL SCHEME

In axisymmetric flow the velocity field and the stress tensor depend only on the radial
coordinate,r , and the axial coordinate,z. The computational grid consists of rectangular
cells of size1r ×1z; at timetn these cellsCi, j are centered at(ri = r L + i1r, zj = j1z),
with i = 0, . . . ,M − 1 and j = 0, . . . , N− 1.

A numerical scheme is a recipe which specifies how to calculate discrete data at timetn+1

given data at timetn. We assume as initial data thepoint valuesof the three velocity compo-
nents and the six stress components at thecentersof the computational cellsCi, j ; they
are denoted by(un

i, j , v
n
i, j , w

n
i, j ) and [(τ rr )ni, j , (τ

r θ )ni, j , (τ
rz)ni, j , (τ

θθ )ni, j , (τ
θz)ni, j , (τ

zz)ni, j ],
respectively. For compactness we define a nine-component vector field,ψ(x, t), which
contains the components of the velocity field and the stress tensor; the initial condition is
thus defined by the specification ofψn

i, j . The pressure gradient is also assumed to be given
at the centers of the cellsCi, j , but at the former mid-timetn−1/2; its r - andz-components
are denoted by∇r pn−1/2

i, j and∇z pn−1/2
i, j .
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4.1. The Projection Method

The solution represented by the vectorψ(x, t) has to be evolved in time fromtn to tn+1.
The flow equations are given by Eqs. (6) and (8), subject to the elliptic incompressibility
constraint imposed by Eq. (7). This constraint determines the pressurep(x, t), which can
be viewed as a Lagrange multiplier.

We follow the projection method [24]. To illustrate the basic idea, consider the following
second-order temporal discretization of the equations of motion for the velocity field,

un+1− un

1t
= [−(u ·∇)u+ νs∇2u+∇ · τ ]n+1/2−∇pn+1/2, (15)

where the updated flow field has to satisfy the incompressibility condition

∇ · un+1 = 0. (16)

Ignoring momentarily the evolution of the stress tensor, Eqs. (15) and (16) form together
a set of equations for the unknownsun+1 and∇pn+1/2. The problem is how to evolve the
velocity field in time, while satisfying the elliptic constraint all along the time evolution.

If ∇pn+1/2 is replaced in Eq. (15) by the value at the former mid-point,∇pn−1/2, then
one gets, instead of the actual updated field, a provisional field,

u∗ = un +1t [−(u ·∇)u+ νs∇2u+∇ · τ ]n+1/2−1t∇pn−1/2. (17)

The key to the projection method is the fact that, to second-order accuracy,u∗ differs from
un+1 by the gradient of a scalar function that equals approximately1t (∇pn+1/2−∇pn−1/2).
The Hodge decomposition theorem states that any vector fielducan be uniquely decomposed
into a divergence-free field, which is tangential to the domain boundaries and an irrotational,
or gradient, field; the space of divergence-free vector fields and the space of vector fields
that are gradients of scalar fields are orthogonal and complementary. In other words, given
the provisional fieldu∗, its decomposition into the updated flow fieldun+1 and the residual
gradient is well-posed and unique.

Let P denote the operator that projects a vector field onto the space of divergence-free
vector fields. Then Eqs. (15) and (16) can be replaced by the equivalent set of equations,

un+1 = Pu∗ (18)

and

∇pn+1/2 =∇pn−1/2+ 1

1t
(I− P)u∗, (19)

whereI is the identity operator.

4.2. Interior Cells

4.2.1. Piecewise-Linear Reconstruction

The initial data at timetn provides only partial information about the state of the system;
it includes only values at discrete grid points. The first step in many numerical schemes is
an approximate reconstruction of the fields to recover point values throughout the domain.
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A particular choice of reconstruction is by a piecewise-polynomial function; for second-
order accuracy we need a piecewise-linear approximant, which takes the form

ψn(r, z) = ψn
i, j +ψ′i, j (r − ri )+ψ)i, j (z− zj ), r, z ∈ Ci, j , (20)

where the discrete fieldsψ′i, j andψ)i, j approximate ther - andz-derivatives ofψn(r, z) at the
centers of the cellsCi, j . In general the recipe for constructing such numerical derivatives re-
quires nonlinear limiters in order to prevent the formation of nonlinear oscillations [28–31].
As reported in [23], our scheme proves to be robust against the formation and the propa-
gation of such oscillations. We can therefore approximateψ′i, j andψ)i, j by simple central
differences,

ψ′i, j = D0
rψ

n
i, j , ψ)i, j = D0

zψ
n
i, j , (21)

whereD0
r andD0

z denote ther - andz-central difference operators.

4.2.2. Calculation ofψn+1
i+1/2, j+1/2

As explained above, the projection method allows us to consider the evolution of the
velocity field by substituting for the pressure field its value at the former time step. The
actual velocity field can be recovered from the provisional field at the end of the procedure.
Thus we can now describe the part of the scheme which performs the time integration.

The equations of motion, (6) and (8), have been formulated in conservative form; they
can be written as a system of equations of the general form

∂ψ

∂t
= 1

r

∂

∂r
r F(ψ, r )+ ∂

∂z
G(ψ, r )+ S(ψ, r ), (22)

whereψ(x, t) again denotes the vector(u, τ ). The vector functionsF(ψ, r ) andG(ψ, r )
are ther - andz-components of the corresponding fluxes, and the vector functionS(ψ, r )
is a source which includes all those terms that do not fit into conservation form.

Given the initial dataψn
i, j , we evolve it to timetn+1 and calculate its cell averages,

ψ̄
n+1
i+1/2, j+1/2, over thestaggered-gridcells,Ci+1/2, j+1/2. Note that averages in cylindrical

coordinates have to be weighted proportionally to the radius. These cell averages can be
represented as integrals over the control box,Ci+1/2, j+1/2× [tn, tn+1],

ψ̄
n+1
i+1/2, j+1/2 = −

∫∫
Ci+1/2, j+1/2

r dr dzψn+1(r, z)

= −
∫∫
Ci+1/2, j+1/2

r dr dzψn(r, z)+
∫ tn+1

tn

dt−
∫∫
Ci+1/2, j+1/2

r dr dz
∂ψ

∂t
. (23)

The computational grid and the control box are sketched in Fig. 1. The notation−∫
Ä
=

(1/Ä)
∫
Ä

is for normalized integrals, scaled by their area, length, etc. For example, the vol-
ume of the annulus whose cross section is the staggered-grid cellCi+1/2, j+1/2 isri+1/21r1z.

The first term in Eq. (23) is just an average over the piecewise-linear approximant,
ψn(r, z), over the bottom of the control box shown in Fig. 1. It is a sum over contributions
arising from the four intersecting cells,Ci, j ,Ci+1, j ,Ci, j+1, andCi+1, j+1. A straightforward
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FIG. 1. The computational grid: At timetn the data is given at the centers of the grid cellsCi, j , (i1r, j1z).
At time tn+1 a staggered grid with cellsCi+1/2, j+1/2 is used.

computation gives

−
∫∫
Ci+1/2, j+1/2

dx ψn = µ+r µ+z ψn
i, j +

1r 2

8ri+1/2
D+r µ

+
z ψ

n
i, j −

1r 2

8
D+r µ

+
z ψ
′
i, j

− 1r 2

24ri+1/2
µ+r µ

+
z ψ
′
i, j −

1z2

8
D+z µ

+
r ψ)i, j . (24)

We have introduced the discrete operatorsD+r ψi,.≡ (ψi+1,.−ψi,.)/1r and µ+r ψi,.≡
1
2(ψi+1,. + ψi,.) which denote forward differences and forward averages in ther direc-
tion, respectively. The meaning of the related operatorsD−r , µ

−
r , D+z , D−z , µ

+
z , andµ−z is

self-evident.
In the second term of equation (23)∂ψ/∂t is replaced by the equation of motion (22);

i.e., the divergence of the flux and the source are integrated over the control box. It is in the
integration over the fluxesF(ψ, r ) andG(ψ, r ) that the virtues of the conservation form
enter. For example, the integral

∫
r dr over(1/r )(∂/∂r )r F is simple to perform and equals

the flux difference betweenri+1 andri . This flux difference is then integrated over the two
interfaces of the control box (Fig. 2),∫ tn+1

tn

dt−
∫∫
Ci+1/2, j+1/2

r dr dz
1

r

∂

∂r
r F(ψ(r, z, t), r )

= 1

ri+1/2
D+r

∫ tn+1

tn

dt−
∫∫

Jj+1/2

dz ri F(ψ(ri , z, t), ri ), (25)

whereJj+1/2 refers to the segment of length1z centered atzj+1/2.

FIG. 2. Illustration of the integration over the flux: The integral over the control boxCi+1/2, j+1/2 × [tn, tn+1]
reduces to the flux difference integrated over the sides normal to the flux (shaded areas).
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So far, the procedure is exact. Approximations are required in order to integrate(r F)
over the interfaces of the control box. For second-order accuracy, the integral overz can be
approximated by the second-order trapezoidal rule. The integral over time is approximated
by the mid-point rule. For that, we need an estimate of the fields at timetn+1/2 at the centers
of the cellsCi, j ;ψn+1/2

i, j can be obtained by a first-order explicit predictor step.
The integration over the fluxG follows the same lines. There remains the source term

S(ψ, r ) for which the spatial integration can be approximated by a second-order averaging
over the four corners,

−
∫∫
Ci+1/2, j+1/2

r dr dzS(ψ(r, z, t), r ) ' 1

ri+1/2
µ+r µ

+
z [r S(ψ(ri , zj , t), ri )]. (26)

The time integration is again approximated by the mid-point rule.
Thus the calculation of the cell-averages̄ψ

n+1
i+1/2, j+1/2 consists of a predictor step for

which one can use a simple forward Euler scheme. For example, the predicted value of the
radial velocity component is

un+1/2
i, j = un

i, j +
1t

2

{
−un

i, j u
′
i, j − wn

i, j u)i, j +
(
vn

i, j

)2

ri
−∇r pn−1/2

i, j + νs

(
u′i, j
r i
− un

i, j

r 2
i

)

+ νs

(
∂2un

i, j

∂r 2
+ ∂

2un
i, j

∂z2

)
+ (τ rr )′i, j + (τ rz))i, j +

(τ rr )ni, j − (τ θθ )ni, j
r i

}
. (27)

The predictor step is followed by a corrector,

ψ̄
n+1
i+1/2, j+1/2 = µ+r µ+z ψn

i, j +
1r 2

8ri+1/2
D+r µ

+
z ψ

n
i, j −

1r 2

8
D+r µ

+
z ψ
′
i, j

− 1r 2

24ri+1/2
µ+r µ

+
z ψ
′
i, j −

1z2

8
D+z µ

+
r ψ)i, j

+ 1t

r i+1/2
D+r µ

+
z

{
ri F
(
ψ

n+1/2
i, j , ri

)}
+ 1t

r i+1/2
D+z µ

+
r

{
ri G
(
ψ

n+1/2
i, j , ri

)}
+ 1t

r i+1/2
µ+r µ

+
z

{
ri S
(
ψ

n+1/2
i, j , ri

)}
. (28)

Once we have obtained the cell averagesψ̄
n+1
i+1/2, j+1/2 (recalling, however, that the velocity

field is just provisional), we need to recover back the point valuesψn+1
i+1/2, j+1/2 at the centers

of the staggered-grid cellsCi+1/2, j+1/2. If the fieldψn+1(r, z) is approximated to leading
order by a piecewise-linear function,

ψn+1(r, z) = ψn+1
i+1/2, j+1/2+ (ψn+1)′i+1/2, j+1/2(r − ri+1/2)

+ (ψn+1))i+1/2, j+1/2(z− zj+1/2), (29)

for (r, z) ∈ Ci+1/2, j+1/2, then its cell averages are given by

ψ̄
n+1
i+1/2, j+1/2 = ψn+1

i+1/2, j+1/2+
1r 2

12ri+1/2
(ψn+1)′i+1/2, j+1/2. (30)
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It is sufficient, within second-order accuracy, to replace(ψn+1)′i+1/2, j+1/2 by

(ψ̄
n+1
)′i+1/2, j+1/2, where the latter is evaluated by central differencing. Thus the point

values are recovered from the cell averages by

ψn+1
i+1/2, j+1/2 = ψ̄n+1

i+1/2, j+1/2−
1r 2

12ri+1/2
D0

r ψ̄
n+1
i+1/2, j+1/2. (31)

A slightly different procedure is adopted for the temporal integration of the parabolic
terms, i.e., the newtonian viscosity, in the equations for the velocity field. Stability con-
siderations favor the use of the implicit Crank–Nicholson scheme, rather than the explicit
predictor–corrector scheme. See [23, 27] for more details.

This concludes the calculation of the provisional fieldu∗i+1/2, j+1/2, and the updated stress

tensorτ n+1
i+1/2, j+1/2.

4.2.3. Hodge Projection

In the previous section we calculated the nondivergence-free provisional fieldu∗. The last
step in the scheme accounts for incompressibility by extracting fromu∗ its divergence-free
part. The remainder (irrotational) part is needed to update the pressure gradient.

In the continuum limit, the updated flow fieldun+1 needs to satisfy the incompressibility
condition

1

r

∂

∂r
(run+1)+ ∂w

n+1

∂z
= 0. (32)

Because the central differencing approach is based on cell averaging, it is more appropriate
to impose the incompressibility condition in its integral form. Integrating (32) over the cell
Ci, j we get

1r D−r

∫
Jj

dz ri+1/2un+1
i+1/2, j+1/2+1zD−z

∫
Ii

dz ri+1/2w
n+1
i+1/2, j+1/2 = 0 (33)

which is again approximated with the second-order trapezoidal rule. Thus the discrete form
of the incompressibility condition is

D−r µ
−
z

(
ri+1/2un+1

i+1/2, j+1/2

)+ D−z µ
−
r

(
ri+1/2w

n+1
i+1/2, j+1/2

) = 0. (34)

We now perform a discrete Hodge decomposition. We decompose the provisional field
u∗i+1/2, j+1/2 into the sum of the updated flow fieldun+1

i+1/2, j+1/2 and the gradient of a yet
unknown scalar grid functionφi, j ,

u∗i+1/2, j+1/2 = un+1
i+1/2, j+1/2+ D+r µ

+
z φi, j

v∗i+1/2, j+1/2 = vn+1
i+1/2, j+1/2

w∗i+1/2, j+1/2 = wn+1
i+1/2, j+1/2+ D+z µ

+
r φi, j .

(35)

Up to the specification of boundary conditions (which are discussed in the next section),
the substitution of the decomposition (35) into the discrete incompressibility condition (34)
dictates the scalar potentialφi, j . It is the solution of the Poisson equation,

µ+z µ
−
z D−r (ri+1/2D+r φi, j )+ D+z D−z µ

−
r (ri+1/2µ

+
r φi, j ) = ρi, j , (36)
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where

ρi, j = D−r µ
−
z (ri+1/2u∗i+1/2, j+1/2)+ D−z µ

−
r (ri+1/2w

∗
i+1/2, j+1/2). (37)

The calculation ofφi, j allows the flow field to be updated from Eq. (35), and the pressure
gradient is updated by

∇r pn+1/2
i+1/2, j+1/2 = µ+r µ+z ∇r pn−1/2

i, j + 1

1t
D+r µ

+
z φi, j

∇z pn+1/2
i+1/2, j+1/2 = µ+r µ+z ∇z pn−1/2

i, j + 1

1t
D+z µ

+
r φi, j .

(38)

This concludes the calculation of one time step.
The evolution of the flow field from timetn to time tn+1 induces a spatial shift from the

cellsCi, j to the staggered-grid cellsCi+1/2, j+1/2. If repeated, this procedure would lead to
a continual drift of the computational domain. In order to prevent this from happening, the
scheme alternates, back and forth, between the two grids. Thus after a time step that shifts
from the gridCi, j to the gridCi+1/2, j+1/2, the next time step reverts back to the original
grid. The calculations involved in the alternating steps are identical, up to a systematic
interchange between forward and backward operators (e.g.,D+r ↔ D−r ), and between the
coordinates of the cell centers,(ri , zj )↔ (ri+1/2, zj+1/2).

4.3. Boundary Cells

4.3.1. Grid Structure

The numerical scheme remains to be adapted for boundary cells; as we are using periodic
boundary conditions that concern is only for the radial boundary cells,(0, j ) and(M−1, j ).
The alternation between two grids requires special attention; if, for example, the right
boundary cells are entirely inside the physical domain at the end of thenth time step (i.e.,
the right boundaries of the cells coincide with the right wall), then the right boundary cells
will be intersected by the wall at the end of the subsequent time step.

We first need to specify the structure of the computational grid and, notably, its location
with respect to the domain boundaries. We adopt the following convention: In the initial
state, the left edge of the system(r = r L) intersectsthe left boundary cells (i.e.,r0= r L ),
while the right edge of the system(r = r R) coincideswith the edge of the right boundary
cells (i.e.,r M−1= r R− 1

21r ). That is, the right boundary cells lie entirely inside the system,
whereas only half of the left boundary cells do so. This situation is reversed in the succeeding
time step. This structure is illustrated in Fig. 3. This structure determines in particular the
grid spacing: for the radial axis,1r = (r R − r L)/(M − 1

2); for the axial axis,1z= h/N,
whereh denotes the height of the cylinders.

As in the preceding section, we will describe the procedure only for time steps which
start with the gridCi, j and end with the staggered gridCi+1/2, j+1/2.

4.3.2. Piecewise-Linear Reconstruction

The piecewise-linear approximantψn(r, z) assumes the same form (20) inside the bound-
ary cells. The only modification is in the calculation of ther -derivatives, which have to use
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FIG. 3. Sketch of the computational grid and the physical domain. The data are given at the centers of the
solid grid cells at the beginning of the odd time steps. The left boundary cells are intersected by the left wall,
whereas the right boundary cells are entirely inside the domain. The situation is reversed at the beginning of the
even time steps where the data are given at the centers of the dotted grid cells.

second-order one-sided expressions,

ψ′0,. = −
1

2h

(
3ψn

0,. − 4ψn
1,. +ψn

2,.

)
ψ′M−1,. =

1

2h

(
3ψn

M−1,. − 4ψn
M−2,. −ψn

M−3,.

)
.

(39)

4.3.3. Calculation ofψn+1
i+1/2, j+1/2

As described in Section 3.1.2, the calculation of the updated field,ψn+1
i+1/2, j+1/2 consists

of three steps: (i) a predictor to estimateψn+1/2
i, j ; (ii) a corrector to calculate cell averages

ψ̄
n+1
i+1/2, j+1/2; and (iii) an interpolation which recovers the point valuesψn+1

i+1/2, j+1/2.
The predictorψn+1/2

i, j has to be calculated at the centers of the cellsCi, j . The right
boundary cells(i =M − 1) lie entirely inside the system and, therefore, can follow exactly
the same treatment (27) as interior cells, with the derivative operators replaced by one-sided
stencils. The centers of the left boundary cells lie, on the other hand, on the left wall. The
values of the velocity components are determined at these points by the boundary conditions,
hence we setun+1/2

0,. = u(r L).
The treatment of the stress components at the left boundary cells is substantially different.

The characteristics of the stress are advected by the velocity field; since the normal velocity
vanishes at the walls, characteristics do not enter into the system, and one is not allowed to
impose boundary conditions on the stress tensor. In principle one has to derive the discrete
evolution equations appropriate for these half-cells. A simple alternative is to evaluate the
stress at the wall with a second-order extrapolation based on values of the stress in the
interior.

In the corrector step this picture repeats itself, except for an exchange of role between
left and right. This time the left boundary cells can be treated as interior cells, while
u∗M−1,.= u(r R), andτ n+1

i+1/2, j+1/2 is evaluated at the right wall by a suitable extrapolation.
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4.3.4. Hodge Projection

The Hodge projection (35) decomposes the provisional fieldu∗ into a divergence-free
fieldun+1 and an irrotational field. In the continuum case, only the normal component of the
divergence-free part can be specified,un+1(r L)= un+1(r R)= 0. In the discrete formulation
it is possible within second-order accuracy to impose constraints also on the tangential
componentwn+1.

The vector fieldsu∗ and un+1 are specified at the centers of the staggered-grid cells
Ci+1/2, j+1/2, whereas the scalar fieldφi, j is given at the centers of the original cellsCi, j .
At the left boundary(i = 0) the gradient ofφ can be calculated using the same differencing
stencil as in the interior cells. Because the flow field is not specified at the boundary, we
will require that theextrapolatedvalue ofun+1 vanish atr = r L , i.e.,

1
8µ
+
z

(
15un+1

1/2,. − 10un+1
3/2,. + 3un+1

5/2,.

) = 0. (40)

On the right side(i =M − 1) the flow field is calculated at the boundary. The fact
that bothun+1

i+1/2, j+1/2 andwn+1
i+1/2, j+1/2 vanish at those points determines the form of the

incompressibility condition with respect to the boundary cellsCi, j ,

− 1

1r
µ+z µ

−
z D−r φi, j + 1

2
D+z D−z µ

−
r φi, j = − 1

1r
µ−z u∗i−1/2, j+1/2+

1

2
D−z w

∗
i−1/2, j+1/2.

(41)

Equations (40) and (41) complete the specification of the boundary conditions forφi, j .
We note that the Poisson equation defined by Eqs. (36), (40), and (41) has a two-

dimensional null space which corresponds to two additive constants, one for each of two
decoupled stencils (“checkerboard” pattern). These two degrees of freedom do not affect
the values of the updated fields and therefore can be set arbitrarily.

4.4. Time Step Selection

The equations of motion (1) and (4) form a hyperbolic system of nine equations, if we
momentarily ignore the newtonian viscosity, which makes the systems weakly parabolic;
we will discuss below the inclusion of the newtonian viscosity into the time step.

The maximum time step for hyperbolic systems is limited by the Courant–Friedrichs–
Levy (CFL) condition, which is a bound on the maximum distance that information can
traverse during a single time step. In our central scheme it is essential that the characteristics
emanating from the discontinuities between the piecewise-linear elements remain inside the
staggered-grid cell, i.e., that the characteristics do not propagate by a distance longer than
half a cell.

In order to convert this requirement into a constraint for the time step, we need to calculate
the speeds of the nine characteristics separately for ther - andz-directions. Despite the high
dimensionality of the system, the eigenvalues turn out to be easy to calculate; in ther -
direction the characteristics speeds,λ

(r )
i , are

λ
(r )
i = −u,−u±√2(τ rr + νp/λ), (42)

each triply degenerate. Similarly, in thez-direction

λ
(z)
i = −w,−w ±

√
2(τ zz+ νp/λ). (43)
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Hence, the time step limitation is given by

max
i, j

[|ui, j | +
√

2(τ rr + νp/λ)
]
1t < C1r, (44)

max
i, j

[|wi, j | +
√

2(τ zz+ νp/λ)
]
1t < C1z, (45)

whereC is a constant less than one-half.
The parabolic terms in the flow equations are treated with the implicit Crank–Nicholson

scheme, which is unconditionally stable. Therefore those terms do not impose an additional
time step limitation for the scheme to be stable. One needs, however, to be careful. As
pointed out by Minion [32], the combination of parabolic and hyperbolic operators can
potentially build up a numerical instability even if each part of the scheme is stable when
acting alone. Although this problem can be easily fixed [32] we found no instance in which
this fix was necessary.

5. STABILITY

5.1. Linear Stability Analysis: Background

For sufficiently low Taylor numbers (the Taylor number quantities a ratio of inertial to
viscous forces), the flow of a newtonian fluid in a Couette cell is described by the azimuthal
Couette solution (12). As the Taylor number exceeds a critical value a bifurcation occurs,
where the Couette solution becomes unstable, and a new steady-state of superimposed
toroidal vortices is reached; these are the well-known Taylor vortices [4]. The threshold of
this instability can be found by means of a linear stability analysis: A small perturbation
about the primary flow can be decomposed into normal modes, and the amplification rates of
these modes are eigenvalues of the linearized equations. This method has become a central
paradigm in the analysis of dynamical instabilities.

In the past three decades numerous studies have considered the problem of the viscoelastic
Couette–Taylor instability (for reviews see [2, 3]). Most have focused on the modifying effect
that elasticity has on the instability threshold. Early work was restricted to the stationary
transition. It was found that the critical Taylor number could be raised or lowered, depending
on the values of two dimensionless groups:91/d2 and92(Rin/d3), where91,2 are the first
and second normal stress coefficients andd is the gap width. The critical Taylor number
was found to decrease the larger91 and92 are. The actual value of the second normal
stress coefficient in experimentally used fluids in controversial, but it is generally believed
to be small and negative; therefore it acts as a stabilizing agent. The most general treatment
of the stationary transition [9, 10] was performed for the case of a general “simple fluid”
[33].

Walters and co-workers [6–8] studied stability for the Oldroyd-B equation. They found
that for strong enough elasticity the unstable stationary mode is overtaken by a new unstable
mode, which is oscillatory, or overstable. The Couette solution loses stability at the onset
of a Hopf bifurcation, at which the marginally stable amplification rate is imaginary. As the
elasticity is further increased the critical Taylor number falls off rapidly.

In recent work Larson, Muller, and Shaqfeh [12, 13, 34] performed experiments followed
by stability analyses in the counter limiting regime, in which the inertial forces are negligible
and the dynamics are dominated by elasticity; this is the inertia-less, or zero Taylor number
limit. They found a critical Deborah number (De) above which Couette flow is unstable.
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(The Deborah number is the ratio of a characteristic shear rate and the elastic relaxation
rate.) This instability was found to be always oscillatory, with a period of the order of the
elastic relaxation time.

Larsonet al. [34] also considered the effect of the second normal stress difference on
these purely elastic modes. For that they modified the Oldroyd-B equation by adding a
“second-order term.” Also in this case the effect of small negative values of second normal
stress difference is to stabilize the flow. It was further conjectured that this would explain
why the purely elastic instability is never observed with high polymer density solutions, in
which the second normal stress may be significant.

The major shortcoming of all the aforementioned analyses is their approximate nature;
all are based on simplifying assumptions that apply to limiting regimes of parameters. Such
approximations are often useful for identifying the essential groupings of parameters that
affect the flow properties, thus providing more insight. Only a full stability analysis can,
however, resolve the complete structure of the stability spectrum and, in particular, the
crossover from the inertial to the elastic regime. Such approximation-free stability analysis
was presented by Avgousti and Beris [14] for the Oldroyd-B constitutive equation. They
used a pseudospectral method to discretize the radial dependence of the eigenmodes and
obtained a generalized complex eigenvalue problem from which all the eigensolutions are
readily obtained. Thus they could map the structure of the stability spectrum in the complex-
Ä plane, whereÄ is the amplification rate of the perturbation.

For zero elasticity all the eigenvalues are real and belong either to a discrete or a continuous
spectrum. For finite elasticity they found an additional continuum spectrum lying vertically
in the complex plane; its real part is equal to−1/2De. Discrete complex modes seem to
detach from this continuum as the elasticity is increased. The exchange of stability, whereby
the stationary bifurcation is overtaken by a Hopf bifurcation, occurs as two pairs of complex
eigenvalues cross the imaginary axis for a lower Taylor number than is needed to destabilize
the least stable real modes. For even larger values of elasticity two other pairs of eigenvalues
detach from the continuous spectrum and overtake the previous pairs. This is the exchange
of stability between the inertio-elastic modes of Beardet al. [8] and the purely elastic modes
of Larsonet al. [12]; thus Avgousti and Beris demonstrated that these two modes belong to
different families of eigenfunctions [14].

Avgousti and Beris further analyzed the effect of symmetries on the nature of the bi-
furcations; group theoretical considerations allow one to characterize the range of possible
dynamical behaviors at a bifurcation based only on general symmetry properties and not on
the detailed physics of the problem [35, 15]. In particular, there is a theory of Hopf bifurca-
tion with symmetry which gives model-independent information about periodic solutions.
In the present problem both the equations of motion and the primary Couette solution are
symmetric with respect to azimuthal rotations, axial reflectionsz→−z, and both axial
and temporal translations. The secondary flow breaks some of these symmetries; the axial
and temporal continuous translational invariances are replaced by invariances under only
discrete translations; i.e., the new state has lower symmetry.

Because of the symmetries present in the problem the bifurcation is degenerate; for the
Hopf bifurcation there are four eigenvalues that become simultaneously unstable at the
bifurcation point. This happens because for every solution of the linearized perturbation
equation of the form

δψ↑(r, z, t) = (δu, δv, δw, δτ rr , δτ r θ , δτ rzδ, τ θθ , δτ θz, δτ zz)e−ikzeÄt (46)
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there corresponds a second distinct solution,

δψ↓(r, z, t) = (δu, δv,−δw, δτ rr , δτ r θ ,−δτ rz, δτ θθ ,−δτ θz, δτ zz)e−ikzeÄt , (47)

resulting from thez-reflection symmetry of the equations of motion. The complex conjugates
of both solutions complete a four-dimensional eigenspace of symmetry-related solutions.

The resulting secondary flow can exhibit two different patterns, each corresponding to a
maximal isotropy subgroup [15]. If only one of the two eigensolutions,δψ↑(δψ↓) is present,
the solution describes a wave of tilted vortices traveling upward (downward). This solution
is invariant under the spatio-temporal translation(t → t + Im(Ä)1t, z→ z+ k1z). This
solution is known as atraveling, or rotating, wave. If, on the other hand, bothδψ↑ andδψ↓
have the same amplitude, the solution describes an axiallystanding wave, which remains
invariant under a spatial translation of half a wavelength followed by a temporal translation
of half a period, and a reflection about thez-axis. An examination of the standing wave
solutions showed that these form a cellular structure that propagates in the radial direction.
Vortices are formed in the vicinity of the inner cylinder and move outward until they
eventually fade away near the outer cylinder. The intercylindrical gap can be filled with
several vortices, the number of those increasing with the gap to radius aspect ratio [13].

Bifurcation theory further establishes that in the event that both traveling and standing
wave solutions bifurcate supercritically, one and only one of these two has a stable limit
cycle. However, the nature of the bifurcation and the stability properties of the bifurcating
branches cannot be predicted solely on the basis of linear stability. For that one needs to
resort to a nonlinear analysis.

5.2. Beyond Linear Stability

In order to determine the stability of any bifurcating solution a nonlinear stability analysis
is required. Typically, one reduces the partial differential equation into a set of ordinary
differential equations through a Liapunov–Schmidt reduction and expands the equations in
powers of the bifurcation parameters. The result of such a procedure is a nonlinear equation
for the amplitude of the secondary flow. Although this method has been successfully applied
to a wide variety of problems, it often involves tedious calculation, in particular when the
bifurcation is degenerate.

Rather than performing such a nonlinear analysis, Avgousti and Beris [14] solved the
nonlinear system of partial differential equation, treating time as a third dimension, and
looking for solutions that have the required symmetries and periodicities. They used, to this
end, a spectral method, exploiting the fact that near the bifurcation point accurate results
require a relatively small number of modes. Thus they were able to calculate limit cycle
solutions both for the traveling and for the standing waves. By examining the dependence
of the amplitude of the solution on the bifurcation parameter they established that both
branches were indeed supercritical.

With the objective of determining which of the two patterns is the stable one, Avgousti
et al. [17] developed two algorithms for time-dependent simulations, one for the inertio-
elastic regime and one for the purely elastic regime. Both schemes are based on a pseu-
dospectral discretization along the radial axis. Rather than initializing the flow with some
random noise on top of the primary flow, they used the output of the linear stability calcu-
lations to disturb the primary flow by a combination of least stable eigenfunctions, forcing
thus either a traveling wave or a standing wave.
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Their results are as follows: In the intermediate inertio-elastic regime, initially traveling
waves reach a stable limit cycle. Initially standing waves, on the other hand, grow expo-
nentially in amplitude, causing the calculation to break down. Computational limitations
did not allow them to determine if any alternative limit cycle is eventually reached. It was
only conjectured that a traveling wave would have been recovered. In the purely elastic
regime the reverse was found: standing waves are stable, whereas, initially, traveling waves
grow in amplitude until a numerical instability is encountered. We remind the reader that all
these results were obtained in a computational domain that embodies a single wavelength;
the wavelength is hence constrained by the geometry. In addition, mode interactions are
suppressed, whereas they may be important in any realistic flow.

In Section 6 we will attempt to resolve some of the questions left open in these earlier
studies. In particular we will examine what is the “natural” evolution of the instability when
the initial disturbance is random. Also we will check the long-time behavior of an initial
perturbation that is symmetric under the isotropy subgroup of the standing wave solution.
All our calculations include at least eight natural wavelengths and, therefore, allow for a
dynamical selection of the wavelength.

5.3. Linear Stability: A Finite Differences Eigenvalue Solver

Given the set of parameters,η, ω, νs, νp, andλ, the primary Couette flow is given by
Eq. (12). To calculate its stability spectrum we add to it a small disturbance, which is
decomposed into its Fourier modes,

u(r, z, t) = δu(r ) sinkz eÄt

v(r, z, t) = v0(r )+ δv(r ) sinkz eÄt

w(r, z, t) = δw(r ) coskz eÄt

p(r, z, t) = δp(r ) sinkz eÄt

τ rr (r, z, t) = δτ rr (r ) sinkz eÄt

τ r θ (r, z, t) = τ r θ
0 (r )+ δτ r θ (r ) sinkz eÄt

τ rz(r, z, t) = δτ rz(r ) coskz eÄt

τ θθ (r, z, t) = τ θθ0 (r )+ δτ θθ (r ) sinkz eÄt

τ θz(r, z, t) = δτ θz(r ) coskz eÄt

τ zz(r, z, t) = δτ zz(r ) sinkz eÄt ,

(48)

wherek is the axial wavenumber andÄ is the amplification rate. Substituting this expansion
into the equations of motion and linearizing such to keep only terms that are first-order in
the perturbation, we get the set of equations,
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and (
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The boundary conditions for the perturbation are

δu = d

dr
δu = δv = 0 for r = r L , r R. (51)

Note that the Fourier decomposition (48) includes only modes in which, for example,δu is
an antisymmetric function ofz. For each solution of the form (48) its symmetric counterpart
exists, obtained by the transformation, sinkx→ coskx and coskx→−sinkx.

Equations (49) and (50), together with the boundary conditions, form a generalized eigen-
value problem forÄ(k). One can define a perturbation vector,δx= (δu, δv, δτ rr , δτ r θ , δτ rz,

δτ θθ ,−δτ θz, δτ zz) and rewrite the equations as

A δx = ÄB δx, (52)

whereA andB are operators.
This eigenvalue problem can be solved by discretizing the perturbation vector,δx, and

expressing the differential operatorsA andB as second-order finite differences; in this
representationA andB are square matrices. The discrete spectrum,Äi , is then solved with
a standard eigenvalue solver.

5.4. Results

We first tested the eigenvalue solver and, notably, checked that it is second-order accurate.
In Table 1 we list the eigenvalue of the least stable mode for fixed parameters and an
increasing number of discretization points,N. The results denoted byN=∞were obtained
by Richardson extrapolation, based on the assumption of second-order convergence; this
estimate was then used to evaluate the error as a function ofN. The order of convergence
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TABLE 1

Evaluation of the Convergence Rate of the Linear Stability Solver

N=∞ N= 40 rate N= 48 rate N= 56 rate N= 64

(a) .00740 −.00348 1.98 −.00018 2.00 .00183 2.03 .00315
(b) .00409 −.00170 1.82 −.00006 2.00 .00104 1.89 .00172

Note. The amplification rate of the least stable mode is calculated for increasing number of discretization points.
The parameters areη= 0.883, ω= 0, νp/(νs + νp)= 0.9, and (a)λ= 0.3, ν= (νp + νs)= 0.07428, k= 1.125;
(b) λ= 1.2, ν= 0.1299, k= 1.430.

between each pair of data could thus be estimated. The table confirms that the procedure is
second-order convergent.

The results of the linear stability calculation are presented in Figs. 4–8. In Fig. 4 we plot
the critical Taylor number defined by

Ta= 1

ν2

η2

1− η2
(53)

(ν= νs + νp is the total viscosity) as a function ofε= λνp, a parameter that measures the
elasticity. Unlike the Deborah number,ε is an intrinsic property of the fluid and depends
neither on the cell geometry nor on the flow driving parameters [14]. The fixed parameters

FIG. 4. The critical Taylor number versus the elasticity,ε= λνp, for η= 0.883, ω= 0, andνp/ν= 0.9. The
graph shows the neutral curves for two branches of eigenmodes. The weak elasticity mode is stationary, whereas
the strong elasticity mode is overstable. A transition between the two modes occurs at a value of elasticity near
0.07.
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FIG. 5. The critical wavenumberkc versus the elasticity for the parameters of Fig. 4.

are η= Rout/Rin= 0.883, ω=Äout/Äin= 0, and a viscosity ratio,νp/ν= 0.9; the same
values of parameters are used in the numerical simulations reported below.

In agreement with Beardet al. [8], a stationary bifurcation is found for small values of
elasticity, with the critical Taylor number decreasing with increasing elasticity. Above a
value of elasticity around 0.07 an overstable mode takes over. The neutral stability curve of
the overstable mode decays as a function of the elasticity more rapidly than the stationary
transition curve. The intersection of the two neutral stability curves is an exchange of
stability point, not a bifurcation point; the two modes are distinct solutions of the perturbation
equations.

In Fig. 5 we plot the dependence of the critical wave numberkc on the elasticity. For
small values of elasticity the critical wavenumber is close to the newtonian case,kc ≈ π ;
i.e., the Taylor vortices have an approximately square cross section. The critical wavenum-
ber increases with the elasticity and reaches a maximum in the vicinity of the exchange
of stability point. At this point, where the least stable mode becomes the overstable one,
kc jumps discontinuously fromkc= 1.230 tokc= 1.525. The behavior ofkc for the over-
stable mode is nonmonotonic. These results are in agreement with earlier work (e.g., Fig. 9
in [8]).

Figure 6 shows the oscillation frequency, Im(Äc), of the marginally overstable mode. At
the exchange of stability point the frequency is finite and equals approximately 0.25. The
critical frequency increases with the elasticity until it eventually saturates. For even higher
values of elasticity it starts to slowly decrease. The critical frequency falls to zero for a value
of elasticity slightly below the exchange of stability point; at this point the pair of complex
modes bifurcate from a pair of real modes. It is interesting to note that the overstable mode
takes over almost as it formed.
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FIG. 6. The critical oscillation frequency of the marginally overstable mode versus the elasticity. The para-
meters are the same as in Fig. 4.

We next analyze the structure of the eigenvalue distribution in the complexÄ plane. In
general, the spectrum is divided into continuous parts and discrete parts. The distinction
between the two is manifested as the number of discretization points is raised. Discrete
modes keep their identity under refinement, whereas continuum modes do not and their
density increases.

Figures 7 and 8 show the stability spectrum of two marginally stable solutions, one at the
threshold of a stationary bifurcation (Fig. 7) and one at the threshold of a Hopf bifurcation
(Fig. 8). In the first case the least stable eigenvalue isÄ= 0, whereas in the second case
a pair of complex eigenvalues crosses the imaginary axis. The calculations were repeated
with 48, 56, and 64 discretization points; the resulting eigenvalues are marked by different
symbols for each discretization.

Despite the different nature of the bifurcation, the two spectra exhibit very similar prop-
erties. There seem to be a small number of discrete modes, which are relatively less stable
than continuum modes; hence, these are the modes that affect the stability properties. The
continua show interesting geometrical features: one continuum of complex eigenvalues lies
on a circle; the center of this circle is an accumulation point of eigenvalues; it is located on
the real axis and equals

R0 = − 1

λ(1− νp/ν)
= − 1

λret
, (54)

whereλret is the so-called retardation time. The radius of the circle is of order|R0|. In [14]
the upper-convected Maxwell equation was considered; in that case, where the polymeric
viscosity equals the total viscosity, the radius of this circle is infinite. This explains why the
structure found in [14] was a straight line rather than a circle.
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FIG. 7. The distribution of eigenvalues in the complexÄ plane forλ= 0.3 andk= 1.125. The three types of
symbols represent calculations performed using 48 (open dots), 56 (crosses), and 64 (stars) discretization points.
The parameters correspond to the threshold of a stationary bifurcation, as a real eigenvalue crosses the imaginary
axis. Figure (a) shows the principal structure; Fig. (b) shows in more detail the cross-like structure discussed in
the text.
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FIG. 8. Same as Fig. 7 forλ= 1.2 andk= 1.430.
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Figures 7a and 8a may give the incorrect impression that there are two elliptic structures
rather than one circle. An extrapolation of the eigenvalues for increasing refinement shows
that the two ellipses converge to the same circle. The reason why not all the eigenvalues can
be calculated with the same level of accuracy can be understood as follows. Our method cal-
culates 8N− 6 modes for anN point discretization. This implies that there will necessarily
exist modes in which the number of nodes exceedsN, and therefore badly underresolved.
This is the case for the modes forming the spurious additional ellipse. The least stable modes,
however, always have a relatively simple structure, and their calculation is therefore accurate.

Another characteristic structure is shown in detail in Figs. 7b and 8b. In both cases there
exists a highly degenerate eigenvalueÄ=−1/λ; the degeneracy is infinite in the continuum
limit. The eigenvalueÄ=−1/λ is the locus of a cross-like structure, which consists of
four perpendicular rays that form a 45◦ angle with respect to the axes. Each ray is terminated
at an accumulation point. Thus the stability spectrum is characterized by two special loci;
both are real and related to the relaxation and the retardation rates. The former is the center
of a cross-like structure, and the latter is the center of a circular continuum.

6. NUMERICAL RESULTS

We now describe the results of the numerical simulations. The scheme was implemented
on a Sun Ultra-1 workstation. Most of the calculations were performed for cylinders of
h= 16 gap units high, discretized on a 32× 512 mesh. Each time step takes about 3.5 s;
this figure can probably be reduced by a factor of two by optimizing the code. As in the linear
stability analysis, all the simulations reported here are for the fixed parametersη= 0.883,
ω= 0, andνp/ν= 0.9. For initial conditions we took the primary Couette solution, on top
of which we superimposed a small random perturbation.

To test the convergence rate of the scheme we performed the standard analysis, comparing
solutions obtained with finer and finer grids. TheL2 norm of the difference of a particular
solution with that obtained on a grid twice as fine is our error estimate. By calculating the
errors for two levels of refinement and using Richardson extrapolation the convergence rate
can be estimated. The result of this analysis for the three flow components is presented in
Table 2. These numbers confirm that the scheme is second-order; the measured conver-
gence rate is even higher than two because the asymptotic regime has not yet been reached.

6.1. The Stationary Transition

We first report on simulation results near the onset of the stationary bifurcation for a
weakly elastic fluid withλ= 0.3. Linear stability predicts for these parameters a critical
viscosityνc= 0.0744 and a critical wavenumberkc= 1.125π .

TABLE 2

L2-Error and Extrapolated Convergence Rates Estimated from the

Comparison of 16× 64, 32× 128, and 64× 256 Grids

M = 16, N= 64 rate M = 32, N= 128

‖uM,N − u2M,2N‖2 0.0060 2.48 0.0011
‖vM,N − v2M,2N‖2 0.0504 2.51 0.0069
‖wM,N − w2M,2N‖2 0.0074 2.42 0.0014

Note. The parameters areh= 4, ν= 0.07, λ= 0.6, and the total running time ist = 20.
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FIG. 9. The logarithm of the amplitude of the Fourier modeu(k= 5π/4) versus time, where the radial velocity
is measured in the middle of the gap. The parameters areν= 0.073 andλ= 0.3. The amplification rate during the
early stages of the growth(t ∼ 10–100) isÄ= 0.0398. The linear stability analysis predicts an amplification rate
of 0.0359.

To calculate the amplification rate in the linear regime, we recorded the time evolution
of the axial Fourier modes ofu in the middle of the gap. In Fig. 9 a semi-logarithmic plot of
the amplitude of thek= 5π/4 mode versus time shows the existence of a long intermediate
time interval,t ∼ 10–100, during which the growth is exponential; the amplification rate of
this mode is calculated by a linear fit. As the perturbation evolves, modes start to interact.
Eventually a wavelength is selected, and all the modes with wavenumbers that are not
multiples of the principal wavenumber decay.

In Table 3 we compare between the amplification rates predicted by the numerical simu-
lations and the linear stability analysis. For both procedures the calculations were repeated
for different discretizations, and the results were extrapolated toM, N→∞. The table
reconfirms the convergence of the results. ForM = 32 discretization points in the radial
axis, the discrepancy in the amplification rate is about 5%; forM = 64 it is about 1%.

The flow eventually reaches a new steady state of Taylor vortices very similar to that of
newtonian fluids. Because of the periodicity of the domain, the wavelength of the asymptotic
pattern must be an integer fraction of the cylinder height. In Figs. 10 and 11 we plot color
level images of the velocity and stress components in the steady-state. The number of
vortical cells is nine, which corresponds to a wavenumber ofk= 1.125π ; this happens to
also be the fastest growing mode.

6.2. The Oscillatory Transition

We next study the onset of the oscillatory instability. In Table 4 we list amplification rates
of thek= 3π/2 mode measured in simulations forλ= 1.2, withM = 32 radial discretization
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FIG. 10. Color level images of the velocity components,u (left), v (middle), andw (right) for the steady-state
Taylor vortices. The blue (red) tones represent high (low) values of the fields. The parameters areλ= 0.3 and
ν= 0.073.

FIG. 11. Color level images of the stress tensor components,τ rr , τ r θ , τ rz, τ θθ , τ θz, andτ zz (from left to right),
for the same parameters as Fig. 10.
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FIG. 13. Time sequence ofu(r, z) in the linear regime. The leftmost image is at timet = 400; sequential
frames are separated by a time interval1t = 0.5. This sequence extends over one half of a period. In the middle of
this interval, when the amplitude of the secondary flow is small, one can see the vortex moving towards the outer
cylinder while a new vortex forms near the inner cylinder.
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TABLE 3

The Amplification Rate Ω(k =π) for Different Values of Viscosity

Simulation Linear stability

ν 16× 128 32× 256 64× 512 Extrapolation 48 56 Extrapolation

0.070 0.1309 0.1258 0.1247 0.1243 0.1179 0.1191 0.1224
0.071 0.0986 0.0934 0.0922 0.0918 0.0852 0.0870 0.0920
0.072 0.0657 0.0602 0.0591 0.0587 0.0519 0.0537 0.0586
0.073 0.0320 0.0264 0.0253 0.0249 0.0179 0.0198 0.0250

Note. The simulation results are compared to the linear stability results; in both cases the calculation is repeated
for discretizations of increasing refinement, and the result is extrapolated to the limit of an infinitely refined mesh.
The elastic relaxation time isλ= 0.3, and the parameters correspond to the vicinity of a stationary bifurcation
point.

points. The discrepancy with the extrapolated linear stability results is larger than in the
stationary case and attains 20%. This is not surprising as the structure of the eigenmodes is
more complicated than in the stationary case and, therefore, requires a finer discretization
for a comparable accuracy.

As explained in Section 5, the main issue in the context of the oscillatory instability is the
prediction of its evolution, from early stages to, possibly, a stable limit cycle. Earlier work
suggests that in the inertio-elastic regime the only stable limit cycle is an axially traveling
wave, but so far no conclusive evidence was found. To clarify this point we performed a
sequence of long runs forλ= 1.2. The results are shown in Figs. 12–16.

Useful insight is gained by considering the time evolution of the maximal radial velocity,
umax(t)≡ maxx |u(x, t)| (Fig. 12). The viscosity here isν= 0.126, whereas the critical
viscosity as predicted by linear stability isνc= 0.1299. In the early stages(t ∼ 0−700), umax

oscillates bounded by an exponentially growing envelope. The ratio between the maxima
and the minima is large. At aboutt ∼ 700 the exponential growth is taken over by an even
faster increase which eventually saturates. A new state emerges in whichumax oscillates
with a very gradual growth of its envelope. This time the ratio between the maxima and
the minima is close to one. This state persists betweent ∼ 800–2800, i.e., during about 200
natural periods. At aboutt ∼ 2800 a new transition takes place; this timeumax decreases in
amplitude towards a fixed value. This new state remains stable indefinitely. Thus, Fig. 12

TABLE 4

The Amplification Rate Ω(k = 3π/2) for Different Values of the Viscosity

Simulation Linear stability

ν 32× 256 48 56 Extrapolation

0.122 0.0607 0.0725 0.0734 0.0759
0.124 0.0474 0.0544 0.0553 0.0578
0.126 0.0336 0.0357 0.0366 0.0391

Note. The simulation results are compared to the linear stability results. The elastic
relaxation time isλ= 1.2, and the parameters correspond to the vicinity of the Hopf
bifurcation point.
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FIG. 12. The maximum value of the radial velocity maxx(|u|) as function of time. The upper-left graph shows
the entire time interval; the three other graphs show in more detail the transitions between the different flow
regimes.

indicates the existence of three sequential states: an oscillating exponential growth, a long
transitory state, and a stable limit cycle.

To elucidate the nature of these three regimes, we analyzed the evolution of the flow field
and the stress tensor as function of time. Below we show sequential snapshots of the radial
velocity,u(x), separated by fixed time intervals.

We first consider the early stages of the perturbation. The fact that the secondary flow
oscillates with a very high peak-to-peak amplitude ratio is an indication of a standing
wave, as confirmed in Fig. 13, in which we show the evolution ofu(x) betweent = 400
and t = 405. The vortices have fixed positions (and therefore are referred to as standing
waves) and oscillate between positive and negative signs. As described in earlier work,
these oscillations are also associated with vortex motion from the inner cylinder outwards.

The early stages of the instability are a linear regime, in which the modes are practically
independent. Therefore we expect all unstable modes to grow exponentially; in particular,
degenerate modes grow at equal rates. A standing wave is expected in the event that there
exists a nearly equal amount of upward- and downward-going waves. In the absence of any
preferred direction, this is the likely configuration.

As can be concluded from the time evolution ofumax, the standing wave grows in am-
plitude until it becomes unstable and is replaced by a new state, which, although not being
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FIG. 15. The three velocity components,u (left), v (center), andw (right) for the stable limit cycle. This
structure of inclined vortices moves downward.
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FIG. 16. The imaginary part of the Fourier modesu(k) in the middle of the gap, for (a)k=π , (b) k= 1.25π ,
(c) k= 1.5π , and (d)k= 1.75π .

a limit cycle, persists for a long time. The flow pattern associated with this long transient
is shown in Fig. 14. The flow decomposes into two distinct regions, exhibiting upward-
and downward-going waves, respectively. There exist two special points: one from which
the counterpropagating vortices emanate and another into which they merge and annihilate.
This transient state persists for hundreds of periods.

These findings confirm the prediction of Avgoustiet al. [17] that the stable bifurcating
branch in the inertio-elastic regime is the traveling wave. What we have found here is that
the presence of both upward- and downward-going waves forces a relatively fast breakup
of the secondary flow into two subdomains of oppositely traveling waves. The possible
occurrence of such a scenario was already anticipated by Larson [3].

The only stable limit cycle is that of a periodic stack of inclined vortices that travel either
up or down. This state is eventually reached. The traveling direction in the asymptotic
state depends on asymmetries present in the initial conditions. The color level images of
the three velocity components is shown in Fig. 15. In this case the vortices are traveling
downwards.

Finally, we show in Fig. 16 the time evolution of Fourier modes,u(k), measured in
the middle of the gap, for four different wavenumbersk. The four graphs exhibit a similar
behavior: The early states are well fitted to exponential growth with a complex amplification
rate. The effect of nonlinearities is to suppress the growth. The closer the wavenumber is to
the fastest growing mode, the larger is its maximal amplitude. The linear regime is followed
by a long transient state during which the modes interact through the nonlinear coupling.
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Finally, as the flow reaches a limit cycle a single wavelength is selected and all the other
modes decline exponentially.

7. DISCUSSION

We introduced a numerical scheme for viscoelastic flow, which is simple, efficient, and
readily adaptable for various (differential) constitutive equations. We implemented it for the
viscoelastic Couette–Taylor problem, and we were able to perform calculations that exceed
by far previous efforts both in terms of the size of the computational domain and in terms of
time intervals. These two factors were crucial for the determination of the natural evolution
of the oscillatory instability occurring in the so-called inertio-elastic flow regime.

We found that in the early stages of the instability, linearity results in an exponential
growth of all unstable modes; in the absence of axially preferred direction the results is
a standing wave, where the vortices are fixed in space and their amplitude oscillates. The
prediction of Avgoustiet al. [17] that the traveling wave solution is the stable one was
confirmed. Since our initial conditions include in general comparable amount of upward-
and downward-going waves, the secondary flow breaks into two regions, one on top of the
other, where in each region a wave of inclined vortices propagates in a different direction.
This state can persist for a long transitory time until initial asymmetries cause the selection
of either upward- or downward-going wave, and the secondary flow reaches a limit cycle
of a fully periodic traveling wave.

While infinite or periodic systems are valuable for the sake of theoretical considerations,
real Couette cells are of course finite and closed. It is unclear how the instability evolves
in the case of a closed system in which no-slip conditions apply also at the upper and
lower boundaries. The fact that counterpropagating waves were found to coexist suggests
a possible solution where vortices are created near one of the cylindrical ends, propagate
along the axis, and annihilate at the other end. This conjecture will be investigated.

In this paper we have restricted, for convenience, the calculations to an axially periodic
computational domain. Thus the implicit parts of the scheme (in connection with the new-
tonian viscosity and the projection) could be solved using the fast Fourier transform. The
extension to a closed domain is in principle not more complicated, except for the need
of an efficient method of solving the implicit linear equations; multigrid methods are the
natural candidates. To make the scheme adequate for widespread technological use, it is
necessary to develop an appropriate methodology for treating more complicated geometries
and boundary conditions.

We have focused here on flow within the inertial and the inertio-elastic flow regimes, and
disregarded the other limiting case in which the inertial terms are negligible. In order to
include purely elastic flow it is necessary to modify the scheme following the example of
Beriset al. [17]. Such extension is beyond the scope of this paper.

An immediate extension of this present work is to investigate the effect of fluid rheology
on the various types of instabilities. In particular, one would like to better understand the ef-
fects of shear thinning and second normal stress difference, both absent from the Oldroyd-B
equation. Work along these lines is proceeding apace.
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