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Abstract

It is well known that plane Couette flow for an Oldroyd-B fluid is linearly stable, yet, most numerical methods predict spurious instabilities
at sufficiently high Weissenberg number. In this paper we examine the reasons which cause this qualitative discrepancy. We identify a family
of distribution-valued eigenfunctions, which have been overlooked by previous analyses. These singular eigenfunctions span a family of non-
modal stress perturbations which are divergence-free, and therefore do not couple back into the velocity field. Although these perturbations
decay eventually, they exhibit transient amplification during which their “passive" transport by shearing streamlines generates large cross-
stream gradients. This filamentation process produces numerical under-resolution, accompanied with a growth of truncation errors. We believe
t uplings.
©

K

1

i
o
1
e
l
[
s
t
p
i
d
h
(

d
t
n
t

the
tem
ds
nd-
.
the

ound
e of
it is

ette
ap-
tial

s has
crete

sin-
in

ify
f un-
erly

tau-

rify

0
d

hat the unphysical behavior has to be addressed by fine-scale modelling, such as artificial stress diffusivity, or other non-local co
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. Introduction

The linear stability of Couette flow for viscoelastic fluids
s a classical problem whose study originated with the pi-
neering work of Gorodtsov and Leonov (GL) back in the
960s[1]; this problem has been further elaborated and gen-
ralized to various situations, such as Poiseuille and multi-

ayered flows, and applied to different constitutive laws; see
2–7]. The aforementioned work is based on spectral analy-
is. For Couette flow, the eigenvalues of the linearized per-
urbation equation are always on the left half of the complex
lane, i.e., the corresponding eigenmodes decay in time. For

nfinite-dimensional non-normal operators, spectral analysis
oes not guarantee stability. Renardy[8] proved rigorously,
owever, that Couette flow for an upper-convected Maxwell
UCM) fluid is indeed linearly stable.

Although Couette flow is believed to be linearly stable un-
er quite general conditions, numerical simulations often fail

o predict stable behavior at sufficiently high Weissenberg
umber. This discrepancy between analysis and computa-

ions has attracted much attention. Numerical studies can be

E-mail address:raz@math.huji.ac.il (R. Kupferman).

divided into two main groups: (i) numerical solutions of
boundary value problem defined by the linearized sys
(e.g. [2,3]) and (ii) stability analysis of numerical metho
for time-dependent flows, with the objective of understa
ing how spurious solutions emerge in computations. (e.g[9–
11]). A more recent benchmark study which compares
performance of various schemes in this context may be f
in [12,13]. It is important to emphasize that the emergenc
spurious instabilities is a purely linear phenomenon, but
precisely this “simplicity" which makes it intriguing.

For concreteness, we will refer from now on to Cou
flow of an Oldroyd-B fluid, although most of our analysis
plies to a larger range of fluids. The linear partial differen
equation that governs the evolution of small perturbation
two important characteristics: its spectrum has both dis
and continuous components, the latter corresponding to
gular eigenfunctions, and it is highly non-normal, which
particular implies that small errors may significantly mod
its spectrum. It is common to attribute the emergence o
stable modes to the failure of numerical methods to prop
approximate the singular eigenfunctions. While this is (
tologically) correct, it yet does not explain themechanism
that leads to instabilities. The goal of this paper is to cla
377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2005.03.002
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why numerical computations predict the wrong behavior, and
propose ways to eliminate spurious instabilities.

In the first part of this paper we revisit the linear stability
analysis for Couette flow for an Oldroyd-B fluid. While the
spectrum itself has been known for long, controversies have
remained regarding the precise nature of the singular eigen-
functions[3,4]. This question is fully elucidated by deriving
analytical expressions for the singular eigenmodes; in partic-
ular, we find a family of distribution-valued eigenfunctions
for the stress, consisting of delta functions and their deriva-
tives, which are divergence-free, and therefore do not per-
turb the velocity field. As a consequence, these perturbations
areexact solutions of the full nonlinear system. Furthermore,
these singular eigenmodes form a basis for the construction
of a large class of classical (non-modal) solutions, which are
all decoupled from the velocity field. Such solutions are ca-
pable to sustain arbitrarily large stress gradients, which is
indicative of the local nature of the constitutive laws.

We proceed with a numerical analysis in which we com-
pare two finite-difference schemes. The first scheme, which
uses naive central differencing, exhibits the standard sce-
nario, where the straight lines of continuous spectra break
into oval-shaped structures, and unstable modes emerge at
a Weissenberg number around 10. In comparison, we con-
struct a scheme that uses staggered vector and tensor fields
[14]. This scheme is found to predict the correct spectrum
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cross-stream gradients. Thus, when the stress field oscillates
in the cross-stream direction on the scale of a single computa-
tional cell, there is no damping mechanism, and one is left “at
the mercy" of truncation errors, whose nature depends on the
scheme chosen. We claim that it is the inability of numerical
schemes to cope with such sub-grid variations which causes
the emergence of spurious modes.

A fundamental question now arises: constitutive laws such
as Oldroyd-B, UCM and other do not account for a non-local
self-interaction of the stress field, and as a result, the stress
in two neighboring stream lines evolves independently (in
Lagrangian coordinates the stress satisfies an ordinary differ-
ential equation). In reality, the stress field experiences a small
amount of diffusivity due to the random motion of the poly-
mers center of mass; the dimensionless diffusivity coefficient
is of the order of 10−9 [15], which makes it negligible on the
scales imposed by numerical computations. Stress diffusion
would precisely attenuate large cross-stream gradients, but in
order to affect numerical computations the diffusivity coef-
ficient should be about four orders of magnitude larger[16].
Is one allowed to introduce an artificially large diffusivity
without significantly modifying the results?

The idea that sub-grid scales may be generated by advec-
tion and the use of stress diffusion to dampen those out are not
new, and go back to the theoretical study of El-Kareh and Leal
[15] (where it is even speculated that the coupled momentum-
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nal
c e
ith unprecedented accuracy. A closer examination re
hat this unexpected success is due the ability of the sc
o represent approximations (in the sense of distribution
elta functions and their derivatives. If the problem is h
ver changed, say, into Poiseuille flow, where the natu
he singularities is different, then the staggered scheme s
o offer no benefits over the central-difference scheme.

We then analyze the non-normal aspects of the pert
ion equation, through the calculation of its pseudo-spect
oughly speaking, the pseudo-spectrum provides a me

or how sensitive is the spectrum to a perturbation of
quations (for example, due to truncation errors). In a

ion, one may infer from the structure of the pseudo-spec
stimates on the magnitude of the transient growth. As
ected, the higher the Weissenberg number is, the sm
re the perturbations that may drive the system unstable

he larger is the magnitude of the transient growth. Yet,
till does not explain what causes instabilities. Moreove
any cases, unstable modes become dominant long af

ransient growth has been attenuated[12]. An examination o
he most amplified solution, which can be determined fro
ingular value decomposition, reveals that the long time
avior is dominated by solutions that belong to the famil
ivergence-free stress fields described above. Although
olutions decay in time, they develop in the transient a hi
scillatory profile, which for high enough Weissenberg n
er (i.e., long transient), quickly leads to cross-stream un
esolution. Large gradients that are aligned with the str
re usually damped out by the advection scheme, whic
dissipative component. This is not the case, however,
tress equations may be ill-posed without some amount o
usivity), and the numerical study of Sureshkumar and B
16]. The use of artificial diffusion is now quite standard
he computation of turbulent viscoelastic flows, where
eformation of flow lines is extreme (see e.g.[17]). As usual

he concern is that the addition of diffusion will result in
ere inaccuracy. It should be noted, however, that stream
iffusion is built-in in any stable advection scheme. Ye

he diffusivity coefficients scale with the square of the m
ize, second-order convergence can be guaranteed, at l
egions where the solution is sufficiently smooth. The “h
esolution" nature of the computation has to be establi
ventually via numerical convergence tests based on me
nement. Our opinion is that the same considerations sh
pply for cross-stream oscillations. One cannot just “ign
ub-grid oscillations; they should either be damped, in o
o maintain smoothness on the scale of a single cell, and
ntroduces too large errors, sub-grid modelling is neces
ince the physics do account for some diffusivity, altho
n a finer scale, the introduction of artificial diffusivity see

o be a natural solution. In either case, validation via m
efinement is necessary.

. Spectral analysis of Couette flow

.1. Summary of known results

We consider an Oldroyd-B fluid in a two-dimensio
hannel,x ∈ R, y ∈ [−1/2,1/2]. In a creeping flow regim
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(inertial terms are negligible), the governing equations are

−∇p+ λ−1(1 − β) ∇ · σ + β∇2u = 0, ∇ · u = 0,

∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T = λ−1(I − σ), (2.1)

whereu = (u, v) is the velocity,σ the conformation ten-
sor, with componentsσij, p the pressure,β the Newtonian
to total viscosity ratio, andλ the polymeric relaxation time,
which in our dimensionless setting coincides with the Weis-
senberg number. The velocity gradient tensor has entries
(∇u)ij = ∂ui/∂xj. The shear-flow boundary conditions are
u = (±1/2,0) aty = ±1/2.

Normalized Couette flow corresponds to the stationary
solution:

u = (y,0) ≡ U and σ =
(

1 + 2λ2 λ

λ 1

)
≡ �.

Adopting the standard practice, we write the solution to(2.1)
as a sum of the steady solution and a perturbation,

u(x, y, t) = U + δu(x, y, t), p(x, y, t) = δp(x, y, t),

σ(x, y, t) = � + δσ(x, y, t).

Linearizing(2.1)with respect to the functionsδu, δp andδσ,
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lution of the stress, and an anisotropic Stokes-like problem
may be obtained via the so-called EEME formulation[18]).

Since the system(2.2) does not depend explicitly on the
coordinatex, it is natural to Fourier expand the perturbation
along this coordinate. Spectral analysis consists of looking
for solutions of the form

δu(x, y, t) = δu(y) eikx+ωt, δp(x, y, t) = δp(y) eikx+ωt,

δσ(x, y, t) = δσ(y) eikx+ωt,

which substituted into(2.2)yield

−∇δp+ λ−1(1 − β) ∇ · δσ + β∇2δu = 0, ∇ · δu=0,(
ω + 1

λ
+ iky

)
δσ = [(∇δu)� + �(∇δu)T]

+ [(∇U)δσ + δσ(∇U)T]. (2.4)

Here derivation with respect tox should be interpreted as a
multiplication by ik.

For every axial wavenumberk, the linear system(2.4) is
a one-dimensional boundary value problem. Itsspectrumis
the set ofω for which the system has a non-trivial solution
δσ. It is possible, following[1], to reduce(2.4) into a scalar
fourth-order equation for the stream function. The drawback
of this reduction is that the structure of the problem is thus
changed. As was emphasized above, the dynamical variables
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e obtain the perturbed system:

∇δp+ λ−1(1 − β) ∇ · δσ + β∇2δu = 0, ∇ · δu=0,

∂

∂t
+ 1

λ
+ y ∂

∂x

)
δσ = [(∇δu)� + �(∇δu)T]

+ [(∇U)δσ + δσ(∇U)T], (2.2)

hich governs the evolution of small perturbations ab
lane Couette flow. The boundary conditions are imp
y the no-slip conditions:δu = (0,0) aty = ±1/2.

The structure of the problem merits some comment
ynamical variables are the three components of the

ormation tensorσ—the system(2.1) prescribes the rate
hange ofσ given its current state. The velocity and the p
ure are “slaved" to the conformation tensor via the ell
tokes equations, which can also be interpreted in term
onstrained optimization problem: the velocityu minimizes
he Frobenius norm:

λ−1(1 − β) σ − 1
2β(∇u + ∇uT)‖F , (2.3)

ubject to the incompressibility constraint∇ · u = 0. Thus
he perturbation in the velocityδu depends linearly (but no
ocally) on the perturbation in the conformation tensor,δσ,
hich implies that(2.2)can be recast in the general form

∂

∂t
δσ = Aδσ,

hereA is a linear integro–differential operator. (For a UC
uid the momentum equation acts as a constraint on the
re the components of the conformation tensor and no
elocity, nor the stream function. In particular, the bound
alue problem(2.4)may have non-trivial solutionsfor which
he perturbed velocity vanishes. Such eigenfunctions wou
e trivial solutions of the fourth-order scalar equation, bu
ot trivial solutions of(2.4). As will be seen in Section2.2,

his delicacy has been the source of a certain confusion
ast.

The spectrum for a UCM fluid, i.e., for the syst
2.1)with β = 0, was fully characterized by Gorodtsov a
eonov[1]. It consists of two discrete eigenvalues – thedis-
reteGL eigenvalues– which can be computed analytica
nd a continuous strip of eigenvalues,ω = −1/λ− iky0,
0 ∈ [−1/2,1/2] – the continuous, orsingularGL eigenval-
es. The real part of the two discrete eigenvalues approa

he value−1/2λ for λ 
 1; in the opposite limit,λ � 1,
hey tend towards the continuous GL strip of eigenval
he spectrum for an Oldroyd-B fluid contains an additio
ontinuous stripω = −1/βλ− iky0, y0 ∈ [−1/2,1/2] – the
ontinuous, orsingular “viscous" eigenvalues– and a fi-
ite number of discrete eigenvalues – thediscrete “viscous
igenvalues– the number of which tends to infinity in t
ingular limitβ → 0; see Wilson et al.[6] for details.

While the spectrum of this system is well-establish
here have been some controversies regarding the nat
he eigenfunctions. The eigenfunctions associated wit
iscrete eigenvalues are known to be smooth and spa
xtended. In contrast, the eigenfunctions associated wi
ingular spectra are known to be singular. Sureshkuma
eris [3] suggested that the singular eigenfunctions we
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fact not functions, but generalized functions, or distributions.
This possibility was ruled out by Graham[4], who, for a UCM
fluid, obtained analytical expressions for eigenfunctions that
are continuously differentiable, i.e., their non-analyticity only
reflects in the second derivative. The analysis below will show
that distribution-valued eigenfunctions do existin additionto
those discovered by Graham.

For linear finite-dimensional systems, that is, systems of
the form∂u/∂t = Au, whereA is a matrix, and for infinite-
dimensional systems whereA is a normal operator (it com-
mutes with its adjoint), the solution is stable if and only if the
spectrum ofA lies in the left half of the complex plane. This
condition does not guarantee stability for operatorsA that
are non-normal. The implications of non-normality may be
much more dramatic than just the fact that “transient growth
may occur"; we will return to this point in Section4. It is
however important to emphasize that the stability of Couette
flow cannot be deduced solely from an examination of its
spectrum. A rigorous stability proof for a UCM fluid, based
on Sobolev norm estimates, is given in Renardy[8].

2.2. The singular GL eigenfunctions

As mentioned above, the nature of the singular GL eigen-
functions has been debated in[3,4]. In [4] continuously differ-
entiable eigenfunctions that correspond to the strip of eigen-
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The occurrence of distribution-valued eigenfunctions is
by itself not disturbing. Consider the much simpler problem
of a Schr̈odinger equation for a free particle on the line:

i�
∂ψ

∂t
= − �

2

2m
∇2ψ.

The spectrum of this equation covers the entire real line,
and the eigenfunction that corresponds to the eigenvalue
ω = −i�k2/2m is eikx. While this eigenfunction is infinitely
differentiable, it does not belong to the spaceL2(R) in which
the problem is defined, and as such is not “better" than a delta
distribution. In fact, the correct interpretation of these eigen-
functions is as distributions inR (see von Neumann[20] for
a discussion of these and related issues). Nevertheless, these
distributions are building blocks for generating functions that
do reside withinL2(R).2

The generalized eigenfunctions(2.5) have the property
that their divergence (interpreted in the sense of distributions)
vanishes identically. Thus, the corresponding velocity pertur-
bationδu is zero. Since the only non-linearity in(2.1) is due
to quadratic terms that involve multiplication of the velocity
and the conformation tensor, it follows that any tensor-valued
distribution of the form

σ(x, y, t) = � +
∑

ak,y0 δσy0(y) e−(t/λ)+ik(x−y0t),
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aluesω = −1/λ− iky0,y ∈ [−1/2,1/2], were constructe
or a UCM fluid. In fact, two linearly independent eige
unctions exist for every eigenvalue along this strip. Fo
ldroyd-B fluid, the degeneracy is removed, and a si

amily of “Graham-type" eigenfunctions exists for this ra
f eigenvalues.

A central result in the present work is the discovery
new family of eigenfunctions,δσy0(y), y0 ∈ [−1/2,1/2],

orresponding to the eigenvaluesω = −1/λ− iky0. These
igenfunctions are generalized functions, or distributi
iven by

σy0(y) =
(−δ′′y0

(y) ik δ′y0
(y)

ik δ′y0
(y) k2 δy0(y)

)
. (2.5)

ereδy0 is the Dirac distribution concentrated at the po
0, defined by its action on test function: (δy0, φ) = φ(y0);

ts j-th (weak) derivative,δ(j)y0 is defined by (δ(j)y0 , φ) =
−1)j φ(j)(y0). A straightforward substitution shows th
2.5) does indeed solve(2.4), in a distributional sense, wi
= −1/λ− iky0. To verify that, one needs to multip

2.4)by a test functionφ ∈ C∞
0 ([−1/2,1/2]), integrate ove

∈ [−1/2,1/2], formally integrate by parts such to trans
ll derivatives onto the smooth functionφ, and verify that th
esulting expression is valid for any test function.1

1 We remind the reader that a distributionu in a spaceX is a linear form on
he space of test functionsC∞

0 (X), such that for every compact subsetK ⊂ X

here exist constantsk, c, such that|(u, φ)| ≤ c∑|α|≤k supK |∂αφ|, for all

∈ C∞
0 (K). This space is denoted byD

′
(X). The subset of distribution
k,y0

ith δσy0(y) given by (2.5), is a solution (in the sense
istributions) ofthe full nonlinear system(2.1), with u =
. This family of solutions, parameterized by the set

oefficientsak,y0 is by itself unphysical, but it constitutes
uilding block for a large class of solutions.

Indeed, replaceak,y0 by a three-time differentiable fun
ion, φ̂k(y0), where for everyy0, φ̂k(y0) is the Fourier trans
orm of a three-time differentiable functionφ(x, y0). Integrate
ver bothk andy0, to obtain, after simple manipulations
amily of classicalsolution of the form

(x, y, t) = � + e−t/λ
(

−∂2
yy ∂2

xy

∂2
xy −∂2

xx

)
φ(x− yt, y). (2.6)

he functionφ is known in the literature as anAiry stress
unction; it is first evaluated at the point (x− yt, y),and only
hen differentiated with respect tox andy. Eq.(2.6)can also
e written in the alternative form:

or which the samek can be used for all compactK is called the space

istributions of orderk and it is denoted byD
′k

(X). Thus,δσy0 defined
y (2.5) belongs to the space of second-rank tensor-valued distributio
rder two in [−1/2,1/2], since it involves at most a second derivative of
elta distribution. See Gel’fand and Shilov[19] for a classical reference o
eneralized functions.
2 A Hilbert space, for exampleL2(R), together with a subspace wh
arries a finer topology, such as the set of test functions inR, is called a
igged Hilbert space. This construction allows to link between distributio
nd square-integrable aspects of functional analysis to formalize sp
nalysis.
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δσ(x, y, t) = e−t/λ
[(

−φyy φxy

φxy −φxx

)
+ t

(
2φxy −φxx
−φxx 0

)

+ t2
(

−φxx 0

0 0

)]
, (2.7)

where the partial derivatives ofφ are evaluated at the point
(x− yt, y).

The existence of solutions of the form(2.7)can be derived
directly, without reference to spectral analysis. Letf = ∇ ·
δσ (a vector proportional to the perturbation in the polymeric
forces), then its components (fx, fy) satisfy the system of
equations

(
∂

∂t
+ 1

λ
+ y ∂

∂x

)
fx = fy + (1 + 2λ2)

∂2δu

∂x2

+ 2λ
∂2δu

∂x∂y
+ ∂2δu

∂y2
(2.8a)

(
∂

∂t
+ 1

λ
+ y ∂

∂x

)
fy = (1 + 2λ2)

∂2δv

∂x2
+ 2λ

∂2δv

∂x∂y
+ ∂2δv

∂y2
.

(2.8b)

Sincef = 0 (no forcing) impliesu = v = 0, it follows from
(
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First, it follows from(2.8) that

(
∂

∂t
+ 1

λ
+ y ∂

∂x

)
∇ · f = 0,

which means that the space of perturbations for which∇ · ∇ ·
δσ = 0 is invariant under the linearized dynamics. It will be
shown that the singular viscous eigenfunctions all lie within
this invariant subspace.

The singular viscous spectrum lies on the segmentω =
−1/βλ+ iky0, y0 ∈ [−1/2,1/2]. From the property∇ · ∇ ·
δσ = 0, it follows that∇2δp = 0, henceδp(y) is a linear com-
bination of eky and e−ky. Substituting into the momentum
equation forδv, we get

δv′′ − k2 δv = −µfy + c1 eky + c2 e−ky,

whereµ = (1 − β)/(βλ), andc1, c2 are integration constants.
Substituting this equation into(2.8b) with ω = −1/βλ+
iky0, we find

(y − y0)(δv′′ − k2 δv) + 2µλ δv′ + 2ikµλ2 δv

= (−µ+ ik(y − y0))(c1 eky + c2 e−ky),

where the constantsc1,2 have been redefined. It can be di-
rectly verified that functions of the form

δ

a
d d by
a ent
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2.8)that the space of divergence-free perturbationsδσ is in-
ariant under the linearized dynamics(2.2). Everyδσ(x, y, t)
n this invariant subspace can be represented as

σ(x, y, t) =




−∂
2Φ

∂y2
(x, y, t)

∂2Φ

∂x∂y
(x, y, t)

∂2Φ

∂x∂y
(x, y, t) −∂

2Φ

∂x2
(x, y, t)


 .

ubstituting into(2.2), we deduce thatδσ(x, y, t) is of the
orm (2.7).

To conclude, Couette flow of an Oldroyd-B fluid allows
class of divergence-free perturbations which do not pe

he velocity field. The initial perturbation, which is det
ined by the functionφ(x, y) is advected with the flow, an
ecays as a result of the stress relaxation at a rate 1/λ. The

nteresting feature is that there is no restriction on the s
f the perturbation, which can sustain arbitrarily large

ial gradients (as long as it is divergence-free). This refl
he fact that the only non-local interaction in the Oldro

model is via the velocity field, thus the model reduce
local equation (ODEs) in cases where the stress doe

ouple back into the velocity field.

.3. The singular viscous eigenfunctions

The structure of the singular viscous eigenfunctions
e deduced from the analysis in Wilson et al.[6]; there are
owever certain points worth of further elaboration.
v(y) =
(

− 1

βλ
+ ik(y − y0)

)
(c1 eky + c2 e−ky) (2.9)

re solutions of this inhomogeneous equation (withc1,2 re-
efined again), so that the general solution is obtaine
dding to(2.9)a linear combination of the two independ
olutions of the homogeneous equation:

y − y0)(δv′′ − k2 δv) + 2µλ δv′ + 2ikµλ2 δv = 0,

hich are

v(y) = e−ky[c3 1F1(a, b,2k(y − y0))

+ c4U(a, b,2k(y − y0))],

here the functions1F1 andU are the confluent hyperge
etric functions[21], anda = µλ(1 − iλ), b = 2µλ. While
F1(a, b, z) is analytic in its three arguments, the funct
(a, b, z) has an algebraic singularity atz = 0 of the form
(a, b, z) ∼ z1−b.
The four integration constantsc1–c4 should be dete

ined, up to a proportionality factor, by the boundary co
ions,δv(±1/2) = δv′(±1/2) = 0. A priori there is no reaso
hy this linear system should have a non-trivial solution
veryy0. The existence of a solution stems from the sin

ar nature of the equations, and consequently, the ana
xtends as for the singular GL modes to the space of g
lized functions.

A simple example that illustrates how do non-triv
istribution-valued solutions emerge is the follow
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second-order equation fory(t) with homogeneous boundary
conditions:

t y′′ + 5
2y

′ = 0, y(−1) = y(1) = 0. (2.10)

Away from the singularity att = 0, this equation has two in-
dependent solutions,y = c, andy = t−3/2, however the latter
is not summable at the origin, and is therefore not a valid dis-
tribution. Yet, the functiont−3/2 can beregularizedgiving
rise to two independent distributions which satisfy(2.10).
These two distributions, denoted byt−3/2

+ andt−3/2
− , are de-

fined by their action on test functionsφ,

(t−3/2
+ , φ) =

∫ 1

0

φ(t) − φ(0)

t3/2
dt,

(t−3/2
− , φ) =

∫ 0

−1

φ(t) − φ(0)

t3/2
dt

(see Gel’fand and Shilov[19]). It can directly be verified that
any distribution proportional to

y(t) = t
−3/2
+ + t−3/2

− − 1

is a solution of(2.10).
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Fig. 1. Discrete geometry for the central difference scheme.

3.1. A central-difference scheme

We start by describing a standard central-difference
scheme. The velocity field is discretized on a staggered
(Marker-and-Cell) mesh[22]: velocity variables are defined
at cell edges, with only the normal component defined at
each edge. This staggered discretization is used for all vector
fields, such as the pressure gradient and the divergence of the
conformation tensor. The conformation tensor and the pres-
sure are defined at cell centers. The geometry of the system
is depicted inFig. 1.

Let n be the number of computational cells across the
channel, and%x = %y = 1/n be the mesh size. Pressure and
conformation tensor variables, which are cell-centered are
denoted bypi,j andσi,j, respectively,i ∈ Z, j = 1,2, . . . , n.
The discrete velocity variables, which are edge-centered, are
denoted byui±1/2,j, andvi,j±1/2, the indexing being self-
explanatory.

Given a configuration of the conformation tensor, we first
calculate its divergence, which is a vector field (i.e., has a
“velocity-like" representation):(
∂σxx

∂x
+ ∂σxy

∂y

)
i+1/2,j

= D+
x σ

xx
i,j + µ+

x D
0
yσ
xy
i,j,

(
∂σxy + ∂σyy

)
= µ+D0σ

xy +D+σyy, (3.1)

w -,
b
d er-
a

ces-
s t to
s onal
t ng
f f the
Similarly, the singular functionU(a, b,2k(y − y0)) gives
ise to two independent (regularized) distributions

y − y0)2µλ−1U(a, b,2k(y − y0))(y − y0)1−2µλ
± .

ith now five constants of integration, non-triv
istribution-valued solutionsδv(y) can be found, which sa

sfy the four boundary conditions. By the nature of the
larization, the leading-order term inδv(y) scales like th
2µλ− 1� = �1/β − 2�-th derivative of the delta distribu
ion aty0.

. Analysis of finite-difference approximations

Although Couette flow for an Oldroyd-B fluid is stab
ost numerical schemes predict the emergence of spu
nstable modes at sufficiently high Weissenberg numb

his section we compare the spectral properties of two fi
ifference approximations for time dependent flows. The
cheme is based on standard finite-differences, and ex
he known splitting of the continuous spectrum into o
tructures, which, for high enough Weissenberg numbers
rude into the right half plane. The second scheme us
taggered setting for the conformation tensor, and is fou
redict the correct spectrum with very high accuracy. It
e shown that this success is somewhat “accidental", an
taggered setting does not appear to perform better in ge
ituations.
l

∂x ∂y i,j+1/2
y x i,j y i,j

here D+
x,y, D

−
x,y, and D0

x,y are the standard forward
ackward-, and central-difference operators along thexandy
irections;µ±

x,y are forward- and backward-averaging op
tors along thex and y directions, for example,µ+

x ai,j =
1
2(ai,j + ai+1,j). One-sided stencils are used when ne
ary at the boundary. This discretization is consisten
econd-order. Note that the derivatives of the diag
erms,∂σxx/∂x and∂σyy/∂y, use narrow stencils, benefiti
rom the staggered grid. In contrast, the derivatives o
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off-diagonal terms,∂σxy/∂x and∂σxy/∂y, must be approx-
imated by wider stencils, the natural choice being central
differences.

Having computed the divergence of the conformation ten-
sor at all interior edges, we proceed to compute the velocity
field, by solving the linear system of equations:

D+
x pi,j − (D+

x D
−
x +D+

x D
−
x )ui+1/2,j

= µ

(
∂σxx

∂x
+ ∂σxy

∂y

)
i+1/2,j

,

D+
y pi,j − (D+

x D
−
x +D+

x D
−
x )vi,j+1/2

= µ

(
∂σxy

∂x
+ ∂σyy

∂y

)
i,j+1/2

,

D−
x ui+1/2,j +D−

y ui,j+1/2 = 0, (3.2)

where as before,µ = (1 − β)/(βλ). The boundary con-
ditions are imposed by the use of ghost cells and anti-
reflective conditions for the tangential components of the
velocity.

With the velocity at hand, we turn to calculate its gradi-
ent, which has to be evaluated at cell centers. Once again,
diagonal and off-diagonal elements behave differently: the
diagonal elements exploit the staggering and result in narrow
s

(

w le-
m ntral
d

(

O
∇ ite-
d mat-
i

ted
b utive
e

d

dt
σ
yy
i,j = −D−

x (ui+1/2,j µ
+
x σ

yy
i,j) −D−

y (vi,j+1/2µ
+
y σ

yy
i,j)

+ 2σxyi,j

(
∂v

∂x

)
i,j

+ 2σyyi,j

(
∂v

∂y

)
i,j

− 1

λ
(σyyi,j − 1).

(3.3)

The stationary solution of the continuous systems,σi,j =
�, ui+1/2,j = yj, vi,j+1/2 = 0 solves the discrete system
(3.3) as well. Linearizing the discrete system, Fourier ex-
panding along thex-coordinate, we obtain, for every wave
numberk, a 3n-dimensional linear eigenvalue problem which
can be solved by standard methods (the 3n independent vari-
ables are the perturbed stress componentsδσi,j, with i fixed
andj = 1,2, . . . , n).

3.2. Staggered discretization of tensor fields

We next describe a different discretization, which uses a
staggered discretization for tensor fields as well, keeping di-
agonal elements at cell centers and transferring off-diagonal
element to cell corners. Such a staggering has been pro-
posed by Gerritsma[14]. The motivation for this arrange-
ment of tensor field is to obtain maximally compact sten-
cils, since wide stencils often cause the appearance of spu-
rious “checkerboard" modes. In the above central difference
scheme, the gradient of vector fields and the divergence of
tensor fields use (in part) central differences, and the com-
position of these two operators yields a wide-stencil discrete
Laplacian, which does not preserve the negative-definiteness
of the Laplacian. This can be remedied by resorting to a stag-
gered discretization.

The discrete geometry of the “staggered scheme" is shown
in Fig. 2. The velocity field uses the same Marker-and-
Cell discretization, except for a vertical shift of half a cell,
so that the boundaries intersect the first and last compu-
tational cells. The discrete velocity variables are now de-
noted byui+1/2,j, with j = 0,1, . . . , n, andvi,j+1/2, with
j = 0,1, . . . , n− 1; the pressure variables, which are cell-
centered, are denoted bypi,j, j = 1,2, . . . , n− 1. The
main change affects the discretization of the conformation

Fig. 2. Discrete geometry for the staggered scheme.
tencils,

∂u

∂x

)
i,j

= D−
x ui+1/2,j,

(
∂v

∂y

)
i,j

= D−
y vi,j+1/2,

hich is well-defined at all points. For the off-diagonal e
ents, we are forced to resort again to wide-stencil ce
ifferences:

∂v

∂x

)
i,j

= µ−
y D

0
xvi,j+1/2,

(
∂u

∂y

)
i,j

= µ−
x D

0
yui+1/2,j.

ur choice of discrete operators satisfies the relation∇2u =
· ∇u, so that the discrete velocity satisfies a fin

imensional constrained optimization equation approxi
ng (2.3).

The evolution of the conformation tensor is then dicta
y substituting the above expressions into the constit
quation:

d

dt
σxxi,j = −D−

x (ui+1/2,j µ
+
x σ

xx
i,j ) −D−

y (vi,j+1/2µ
+
y σ

xx
i,j )

+ 2σxxi,j

(
∂u

∂x

)
i,j

+ 2σxyi,j

(
∂u

∂y

)
i,j

− 1

λ
(σxxi,j − 1),

d

dt
σ
xy
i,j = −D−

x (ui+1/2,j µ
+
x σ

xy
i,j) −D−

y (vi,j+1/2µ
+
y σ

xy
i,j)

+ σxxi,j
(
∂v

∂x

)
i,j

+ σyyi,j
(
∂u

∂y

)
i,j

− 1

λ
σ
xy
i,j,
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tensor: its diagonal elements remain cell-centered, and are
denoted byσxxi,j , σ

yy
i,j, j = 1,2, . . . , n− 1. The off-diagonal

elements are now defined at cell corners and are denoted by
σ
xy

i+1/2,j+1/2, j = 0,1, . . . , n− 1. In this new setting there
are 3n− 2 degrees of freedom per computational column: the
2(n− 1) variablesσxxi,j , σ

yy
i,j, and then variablesσxyi+1/2,j+1/2.

As above, the first step is the calculation of∇ · σ, which
now benefits from a compact stencil in all its elements:

(
∂σxx

∂x
+ ∂σxy

∂y

)
i+1/2,j

= D+
x σ

xx
i,j +D+

y σ
xy

i+1/2,j−1/2,

i = 1,2, . . . , n− 1,(
∂σxy

∂x
+ ∂σyy

∂y

)
i,j+1/2

= D+
x σ

xy

i−1/2,j+1/2 +D+
y σ

yy
i,j,

j = 1,2, . . . , n− 1. (3.4)

With ∇ · σ at hand, the velocity field is computed by solv-
ing the elliptic system(3.2). This time, no ghost cells nor
reflections are needed, asui−1/2,0 = −1/2, ui−1/2,n = 1/2,
and by the incompressibility condition,vi,j+1/2 = 0 for j =
0, n− 1.

We then turn to calculate the velocity gradient, whose di-
agonal elements are defined at cell centers and its off-diagonal
elements at cell corners. Again, we benefit from fully com-
p

(
(

P ocity
g s-
c the
d the
p onal
e lear
h cifi-
c d
σ is
t tered
v rag-
i when
a order
e l sim-
p ter-
p

d

dt
σ
xy

i+1/2,j+1/2 = −D−
x (ūi+1,j+1/2µ

+
x σ

xy

i+1/2,j+1/2)

−D−
y (v̄i+1/2,j+1µ

+
y σ

xy

i+1/2,j+1/2)

+ σ̄xxi+1/2,j+1/2

(
∂v

∂x

)
i+1/2,j+1/2

+ σ̄
yy

i+1/2,j+1/2

(
∂u

∂y

)
i+1/2,j+1/2

− 1

λ
σ
xy
i,j,

d

dt
σ
yy
i,j = −D−

x (ui+1/2,j µ
+
x σ

yy
i,j) −D−

y (vi,j+1/2µ
+
y σ

yy
i,j)

+ 2σxyi,j

(
∂v

∂x

)
i,j

+ 2σyyi,j

(
∂v

∂y

)
i,j

− 1

λ
(σyyi,j − 1). (3.5)

As above, the corresponding spectrum can be computed by
standard methods.

3.3. Numerical results

In this subsection we present calculations of the stability
spectrum using the two numerical schemes. Throughout this
paper we use a viscosity ratio ofβ = 0.2. The number of grid
points along the vertical mesh isn = 196 unless otherwise
specified.

3.3.1. Central difference scheme
A typical spectrum is shown inFig. 3 for λ = 1, k = 1.

The eigenvalues are measured in units of 1/λ; in these units
the continuous GL strip has real part−1, whereas the contin-
uous viscous strip has real part−1/β = −5. The computed
spectrum is very different than the analytical one: the GL strip
has an oval shape, similar to that reported in the literature.
The second strip is also split, and connects to the GL strip by
a horizontal strip of eigenvalues. At higher values ofλ (and
k), the splitting of the GL strip is even more pronounced,

Fig. 3. Central-difference scheme: stability spectrum forλ = 1 andk = 1.
act stencils:

∂u

∂x

)
i,j

= D−
x ui+1/2,j,

(
∂u

∂y

)
i+1/2,j+1/2

= D+
y ui+1/2,j,

∂v

∂y

)
i,j

= D−
y vi,j+1/2,

(
∂v

∂x

)
i+1/2,j+1/2

= D+
x vi,j+1/2.

roblems start now that we need to substitute the vel
radient into the third equation in(2.4). The staggered di
retization of tensor fields was designed to optimally fit
ifferential operators. It is however unclear how to define
roduct of two tensors when their diagonal and off-diag
lements are defined at different points (it is also unc
ow to define positive-definiteness in this setting). Spe
ally, the calculation of(2.4)requiresσyy at cell corners, an
xy, ∂u/∂y, and∂v/∂x at cell centers. The natural solution

o resort to second-order averaging: whenever a cell-cen
ariable is needed at a cell’s corner it is obtained by ave
ng over the four nearest cell centers; the same applies

corner variable is needed at a cell’s center. Second-
xtrapolations are used at boundary cells. For notationa
licity, we denote the cell-to-corner and corner-to-cell in
olated fields by overlines.

The resulting scheme is

d

dt
σxxi,j = −D−

x (ui+1/2,j µ
+
x σ

xx
i,j ) −D−

y (vi,j+1/2µ
+
y σ

xx
i,j )

+ 2σxxi,j

(
∂u

∂x

)
i,j

+ 2σxyi,j

(
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)
i,j

− 1

λ
(σxxi,j − 1),
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and eventually, some of the computed eigenvalues protrude
into the right half plane, implying that the computed Couette
flow is linearly unstable. Forn = 196 points, the loss of sta-
bility occurs already atλ ≈ 10. In agreement with previous
work, the convergence of the spectrum to the analytical one,
asn → ∞, is very slow.

3.3.2. Staggered scheme
In Figs. 4 and 5we present stability spectra obtained with

the staggered scheme; the difference with the finite-difference
scheme is striking.Fig. 4shows the spectrum forλ = 1 and
k = 1. The computed spectrum agrees perfectly with the an-
alytical prediction. There are two vertical strips of singular
eigenvalues with real parts�e λω = −1 and�e λω = −5,
respectively, two discrete GL eigenvalues, which coincide
with the predicted values within six significant digits, and
a small number of discrete viscous eigenvalues. To the best
of our knowledge, this is the first reported calculation that
produces a spectrum in which the continuous strips of eigen-
values remain straight lines within 7–8 significant digits.

Fig. 4. Staggered scheme: stability spectrum forλ = 1 andk = 1. The figure
on the bottom shows a magnification of the GL spectrum.

Fig. 5. Staggered scheme: stability spectrum forλ = 20 andk = 10. The
figure on the bottom shows a magnification of the GL spectrum.

Fig. 6. Staggered scheme: the real part of the least stable eigenvalue as
function of the wavenumberk for several values of the Weissenberg number.
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The stability spectrum forλ = 20 andk = 10 is shown in
Fig. 5. The GL part of the spectrum retains its perfect struc-
ture, with the continuous part lying on the line�e λω = −1
within 7–8 significant digits. The viscous part of the spec-
trum, however, distorts, becoming however even more stable.

In Fig. 6we plot the real part of the least stable eigenvalue
(the discrete GL mode) for different value ofλ. In agreement

with the analytical prediction,�e λω is an increasing function
of λ but remains strictly below−1/2. Thus, the staggered
scheme seems immune to spurious linear instabilities at all
ranges of parameters.

Much insight is gained by examining the computed eigen-
functions. InFig. 7we plot eigenfunctions corresponding to
discrete GL and viscous eigenvalues. The eigenfunctions are
Fig. 7. Staggered scheme: eigenfunctions corresponding to a dis
crete GL eigenvalue (top) and a discrete viscous eigenvalue (bottom).
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extended and smooth, which explains why they can be well
approximated at relatively coarse resolution.

More interesting is the structure of the eigenvectors cor-
responding to the singular eigenvalues, shown inFig. 8. The
top portion of this figure shows the three components of
the eigenvectorδσ for a singular GL mode. The function
δσyy differs from zero (within negligible errors) at a single

point, i.e., is a discrete approximation to a delta-function.
Likewise, the functionsδσxy and δσxx differ from zero at
two and three points, respectively, and thus approximate
first and second derivatives of a delta function. The stag-
gered discretization correctly captures the structure of the
continuous GL modes, which explains why the eigenval-
ues can be predicted with such high accuracy. Note that as
Fig. 8. Staggered scheme: eigenfunctions corresponding to a sin
gular GL eigenvalue (top) and a singular viscous eigenvalue (bottom).
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n → ∞, the computed eigenvectors do not converge to a
smooth function. The support of these eigenvectors shrinks
asn grows, so that convergence takes place in the space of
distributions.

The lower portion ofFig. 8shows the three components of
the eigenvectorδσ for a singular viscous mode. The discrete
eigenfunctions are dominated by the distributional nature of
the eigenfunctions, i.e., they behave like high-order deriva-
tives of the delta distribution, as predicted in Section2.3.

One may wonder why calculations that are based on “ve-
locity formulations" show a splitting of the continuous spec-
tra, although the singular pure-stress eigenmodes are being
filtered out. While the Graham-type eigenfunctions are con-
tinuously differentiable, their third and fourth derivatives,
which are present in the equations, exhibit delta-singularities,
and therefore challenge computational schemes in a way that
is similar to the pure stress modes.

3.4. Stability spectrum for Poiseuille flow

One may wonder at this point whether the use of stag-
gered tensor fields is essential for an accurate approximation
of the conformation tensor. The question is whether the accu-
rate reproduction of the stability spectrum for Couette flow is
“accidental", or, whether it is due to some exceptional prop-
erty of the staggered scheme. As a simple test, we briefly
consider the closely related problem of Poiseuille flow for an
Oldroyd-B fluid. There, the steady velocity profile is given
by

U(y) = 4(y − 1
2)2,

and the singular spectrum analogous to the singular GL spec-
trum lies on the segmentω + λ−1 + ikU(y) = 0. The main
difference between Couette and Poiseuille flow is that the
GL-like singular eigenfunctions for Poiseuille flow are not

Fig. 9. Poiseuille flow with the staggered scheme: the right-most part of the
spectrum forλ = 1 andk = 1.

supported at a single point, i.e., the structure of the singular-
ity is different.

The computed spectrum forλ = 1 andk = 1 is depicted
in Fig. 9. The computation uses the staggered scheme, yet the
accuracy of the spectrum is comparable to that obtained with
a non-staggered scheme, and the usual splitting of the singu-
lar spectrum occurs. An eigenfunction associated with one
of the singular eigenvalues is shown inFig. 10; it is less lo-
calized than for Couette flow, and the singularity seems to be
dominated by a regularized power-law divergence. Moreover,
there is no decoupling between the conformation tensor and
the velocity field. Thus, we conclude that the success of the
staggered scheme for Couette flow is in some sense “acciden-
tal", and due to the very special nature of the eigenfunctions.

4. Non-normality, pseudo-spectra and transients

Spectral calculations have been a standard tool in the study
of differential equations for a long time. As commented in
a review by Trefethen[23], spectral computations are useful
for three basic reasons: (i) a physical reason – the eigenvalues
provide information about the behavior of the system, (ii) an
algorithmic reason – transformation into a basis of eigenfunc-
tions may speed up computations, and (iii) a psychological
reason – the spectrum provides a simplified picture of the
s
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There is a growing awareness, however, that spectral

sis may in certain cases lead to erroneous conclusions
ay happen in problems in which the linear operator is
ormal. A normal operator is one that has a complete s
rthogonal eigenfunctions, or equivalently, commutes

ts adjoint. In contrast, the eigenfunctions of a non-nor
perator are not orthogonal and may not span the entir
ar space. Even if the eigenfunctions do form a complet

he change into eigenfunction coordinates may involve
reme distortions of the space, which from a computati
oint of view are ill-conditioned. Generally, the spectral pr
rties of non-normal operators do not necessarily deter

he stability of the system: the spectrum of a non-norma
rator can even be empty, and examples can be const
here the spectrum lies entirely on the left half plane, but

he system is linearly unstable (e.g, the Zabczyk examp
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The study of non-normal matrices and operators goes
o the beginning of the 20th century. There has been a ren
ctivity in this field in the last 15 years, where the stab
nalysis of many physical systems has been re-examine
ew computational tools dedicated to the study of non-no
perators. A classical example where a discrepancy exis

ween predictions based on spectral analysis and experi
s Poiseuille (Newtonian) flow in a pipe: spectral analysis
icts stable behavior for arbitrarily large Reynolds num
hereas transition to turbulence typically occurs in the
ratory at a Reynolds number in the vicinity of 2000. T
iscrepancy has been analyzed in[24] with emphasis on th
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role played by non-normality on the amplification of small
perturbations toward a nonlinear regime (see Orszag and Pa-
tera[25] for a thorough investigation of the mechanism that
leads to turbulence). The role of non-normality in a viscoelas-
tic context was shortly discussed by Atalik and Keunings[26]

who considered the transition from linear to nonlinear evo-
lution of perturbations.

One of the main tools in the study of non-normal operators
is the resolvent. The resolvent of an operatorA is a mapping
z �→ (zI − A)−1 with z ∈ C. It is defined forzin the resolvent

F
r

ig. 10. Poiseuille flow with the staggered scheme: real part of an eigenfun
eal part ofσxx, σyy, σxy, p, u, andv. The parameters areλ = 1 andk = 1.
ction from the continuous GL strip. The six curves show, from top to bottom, the
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set, which is the complement of its spectrumΛ(A). Theε-
pseudo-spectrum of the operatorA is defined as

Λε(A) =
{
z : ‖(A− zI)−1‖ ≥ 1

ε

}
,

i.e., it is a subset of the resolvent set for which the resolvent
operator has sufficiently large norm. Here and below, norms
correspond to the Euclidean vector norm and its subordinate
matrix norm. Equivalently, it can be defined as the closure of
the set

Λε(A) = {z : ∃B, ‖B‖ ≤ ε, z ∈ Λ(A+ B)}.

The latter definition has a more intuitive interpretation. The
numberz ∈ C belongs to theε-pseudo-spectrum ofA if it

belongs to the spectrum of a perturbation ofA, where the
norm of the perturbation is smaller thanε. Since computations
always involve perturbations of operators (due to truncation
and roundoff errors), the pseudo-spectrum represents a range
of behaviors that one could expect in an actual computation.

In Fig. 11we plot pseudo-spectral contour lines fork = 1
andλ = {1,10,100}. The contours are labeled in logarithmic
units. These computations were performed with the Eigtool
Matlab Toolbox[27]. Roughly speaking, the contour lines
to the right of the singular GL spectrum are vertical. For
λ = 1, even perturbations with norm as large asε = 10−1 do
not suffice to turn the system linearly unstable. Forλ = 10
perturbation with norm as small as 10−5 can lead to in-
stability, whereas forλ = 100 unstable behavior may oc-
cur due to perturbations with norm 10−7.5. This gives an-
other perspective on why instabilities occur at large enough

F
u

ig. 11. Contour lines of the pseudo-spectra fork = 1 and (a)λ = 1, (b)λ = 10, an
ses the staggered discretization withn = 196 points, and the Eigtool Matlab To
d (c)λ = 100, The contours are labeled using a log10 scale. The computation
olbox for the evaluation of the pseudo-spectra.
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Weissenberg number, without yet revealing the destabilizing
mechanism.

Pseudo-spectral calculations provide also information
about the magnitude of transient growth. If for someε > 0
and constantC:

αε(A) ≡ max
λ∈Λε(A)

�e λ > C,

then

sup
t>0

‖etA‖ > C

ε
.

The real numberαε(A) is called theε-pseudo-spectral ab-
scissa, and corresponds to the real part of the least-stable el-
ement of the pseudo-spectrum. Thus, if theε-pseudo-spectra
protrude significantly into the positive reals for smallε, then

the norm of the evolution operator exceeds at some interme-
diate time a bound inversely proportional toε. The proof is in
fact very simple[28]. Let z ∈ Λε(A) have positive real part.
Then, from the Laplace transform identity:

(zI − A)−1 =
∫ ∞

0
e−tzetA dt,

it follows that

1

�e z sup
t>0

‖e−tA‖ ≥
∫ ∞

0
e−t�e z‖etA‖ dt ≥

∥∥∥∥
∫ ∞

0
e−tz etA dt

∥∥∥∥
= ‖(zI − A)−1‖ ≥ 1

ε
,

where the last inequality follows from the definition of the
ε-pseudo-spectrum. Since this inequality holds for anyz ∈

F
g

ig. 12. The scaledε-pseudo-spectral abscissaαε(A)/ε vs. log10 ε for k = 1 and (
raph correspond to computations withn = 64 points (solid lines),n = 128 points
a)λ = 1, (b)λ = 10, (c)λ = 20, and (d)λ = 100. The three lines in each
(dashed lines), andn = 256 points (dash-dotted lines).
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Λε(A) andε > 0, it follows that

sup
t>0

‖e−tA‖ ≥ sup
ε>0

αε(A)

ε
. (4.1)

Inequality(4.1)states that the maximum value ofαε(A)/ε,
taken over all values ofε, is a lower bound on the maximum
transient amplification. That is, there exists a timet0 and a
vectoru (the initial conditions), such that

‖e−t0Au‖ ≥ sup
ε>0

αε(A)

ε
‖u‖.

In Fig. 12we plot the value ofαε(A)/ε versus log10 ε for
k = 1 and various values ofλ. Each graph shows three curves
corresponding to different level of refinement. The graphs for
λ ≤ 20 seem to have converged, whereas the computation for
λ = 100 has not yet reached a converging regime, even for
n = 256 points.

FromFig. 12c, for example, we deduce the existence of an
initial perturbation, which, forλ = 20, is amplified, at some
intermediate time by a factor of a least 140. Forλ = 100,
the transient amplification may exceed a factor of several
thousands.

A direct verification of the extent of transient amplification
can be computed by exponentiating numerically the differ-
ence operator and calculating the norm of the resulting evo-
lution operator. The results are shown inFig. 13. Again, three
levels of refinement are used to assess the accuracy of the re-
sults. Here too, the results seem to converge well forλ ≤ 20.
As expected, the maximal transient amplification exceeds the
lower bound deduced fromFig. 12. The duration of the tran-
sient period of growth is also monotonically increasing with
the Weissenberg number.

The initial condition that leads to maximum transient am-
plification can be approximated directly from the (discrete)
operator eAt via an SVD, witht chosen such to maximize

F
g

ig. 13. The norm of the evolution operator eAt as function of time fork = 1 and
raph correspond to computations withn = 64 points (solid lines),n = 128 points
(a)λ = 1, (b)λ = 10, (c)λ = 20, and (d)λ = 100. The three lines in each
(dashed lines), andn = 256 points (dash-dotted lines).
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Fig. 14. Time evolution of the most amplified initial perturbation fork = 1 andλ = 20. Each graph shows the real part of the fieldsσxx, σyy, σxy, andu. The
fives graphs correspond to snapshots at timet = 0,40,90,120,200.
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the curves inFig. 13. Thus, we identified the most ampli-
fied perturbation fork = 1 andλ = 20; snapshots of its time
evolution are depicted inFig. 14. Although the maximum
amplification occurs at timet = 90, we observe that while
the perturbation decays, it generates spatial oscillations of
increasing frequency. At timet = 200, the perturbation is
still larger in norm than the initial perturbation, while os-
cillations have a wavelength of several mesh spacings. For
slightly longer times this computation, which usesn = 256
points, can no longer resolve these cross-stream oscillations.

Note that the velocity componentu is significantly smaller
in absolute value than the stress components. In fact, the solu-
tion shown inFig. 14exhibits a stress field with small diver-
gence, which suggests that it might be related to the family of
divergence-free stress fields identified in Section2.2. Set for
example an Airy stress functionφ(x, y) = sin(πx) cos(πy) in
(2.7). This corresponds to an initial perturbation

δσ(x, y,0) = π2

(
sin(πx) cos(πy) − cos(πx) sin(πy)

− cos(πx) sin(πy) sin(πx) cos(πy)

)
,

which for long timet > λ is dominated by

δσ(x, y, t) ∼ π2t2e−t/λ sin[π(x− yt)] cos(πy)

(
1 0

0 0

)
.
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deformation of the stress perturbation and for the transient
growth. The advection by a shearing field is responsible, on
the other hand, for the generation of high-frequency cross
stream waves.

Thus, as time evolves, “energy" is transfered to high-
frequency modes, resulting in cross-stream under-resolution
and large truncation errors. Once this happens, the behavior
of the system is difficult to predict, and notably, small pertur-
bations may be amplified. Of course, as long as the linearized
system is considered, the linear instability is imprinted in the
spectrum. The added contribution of the above analysis is the
revelation of a mechanism that may cause truncation errors
to dominate the numerical solution.

5. Addition of stress diffusivity

The fact that the Oldroyd-B and UCM equations can sus-
tain solutions that are singular is bothersome. By itself, it
does not invalidate the model, as long as we have not shown
that unphysical singular solutions may evolve from physi-
cally significant initial data. Yet, one wonders if the highly
non-normal nature of the problem, which makes it so sensi-
tive to perturbations is not an indication of model deficiency.
Thoughts along those lines were expressed by El-Kareh and
Leal [15], which analyzed the existence of solutions for con-
s ser-
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ote how, for fixedx, the spatial frequency increases linea
n time, while the duration of the transient growth scales
he Weissenberg number. Thus, we conclude that the
mplified perturbation is associated with non-modal s

ions of the form(2.7).
The interplay between transient amplification and

ormation of large cross-stream gradients can also be
hrough the integral formulation of the constitutive equat

(x, t) = e−t/λF (x, t,0)σ(x,0)FT(x, t,0)

+ 1

λ

∫ t

0
e−(t−s)/λF (x, t, s)FT(x, t, s) ds,

hereF (x, t, s) is the relative deformation gradient betwe
imesandt at the Lagrangian coordinatex. The steady solu
ion σ(x, t) = � is a solution of this integral equation, wit

(x, t, s) =
(

1 t

0 1

)
.

or σ(x, t) = � + δσ(x, t) with δσ(x,0) divergence-free,F
emains unchanged, andδσ(x, t) is explicitly given by

σ(x, t) = e−t/λ
(

1 t

0 1

)
δσ(x,0)

(
1 0

t 1

)
.

his expression clarifies how divergence-free stress fi
volve. The deformation gradient,F , is responsible for th
titutive models of finitely extensible polymers. Their ob
ation was that all standard methods of proof fail bec
t is not possible to guarantee the regularity of the s
cross streamlines, as there is no interaction betwee

oint streamlines. Quoting[15]: “While no proof is provided
ere that solutions in some Sobolev space fail to exist wit

he modifications to the model suggested here, it is cert
rue that none of the currently available methods to prov
stence can be applied successfully. Our point of view is
his is an indication of problems with the model rather t
ny inadequacy of available mathematical theory.”

El-Kareh and Leal showed that existence could be pr
up to a certain a priori assumption) if stress diffusion
dded to the constitutive model. That is, a termD∇2σ is
dded to the right hand side of the constitutive law. The
ition of stress diffusion has a physical justification, res

ng from the Brownian motion of the center of mass of
olecules. In bead-and-springs models from which ma

copic dynamics may be derived (up to the need for clo
ssumptions in nonlinear models), there is a stochastic
hich prevents the springs to collapse to zero length.
ame source of randomness should also cause center o
iffusion, but this component is usually omitted by a “
al homogeneity assumption”. An estimate for the ma
ude of the diffusivity coefficient is given in[15],D ∼ 10−9.
he question is whether such a small parameter has
oticeable effect on the behavior of the system over la
cales.

The addition of stress diffusivity in computations h
een considered already by Keiller[9], but only along th



R. Kupferman / J. Non-Newtonian Fluid Mech. 127 (2005) 169–190 187

stream-wise direction. The addition of isotropic diffusivity
has been studied by Sureshkumar and Beris[16], which re-
ported that the addition of small amount of (artificial) diffu-
sivity has little effect on the regular, spatially extended eigen-
modes, while completely changing the nature of the singular
spectra; in fact, the singular spectra are destroyed and discrete
spectra emerge instead. Stress diffusion is commonly used in
turbulent viscoelastic simulations, without which gradients
grow unbounded due to the fast mixing of stream lines. In
[17], for example, it is argued that stress diffusion is necessary
in order to correctly predict the tail of the energy spectrum in
turbulent flows.

Fig. 15 shows the stability spectrum fork = 1, λ = 1,
and a stress diffusivity coefficientD = 10−4. The graphs on
the top correspond to the staggered scheme withn = 128
andn = 256 points, whereas the graphs on the bottom cor-
respond to similar calculations using the central-difference
scheme. The first observation, is that in agreement with[16]

the singular spectrum has disappeared, and instead there is a
nearly vertical finite array of discrete eigenvalues. Moreover,
the right-most part of the graph is nearly identical in all four
figures, implying that the sensitivity to the method of com-
putation and to the resolution has been significantly reduced
with the addition of stress diffusivity. This is not surprising,
as solutions are now much smoother, and therefore truncation
errors remain relatively small.

Fig. 16 shows the spectra obtained with the staggered
scheme fork = 1, λ = 1 and a diffusivity coefficient of
D = 10−6 with n = 64, n = 128, andn = 256 points. For
n = 64 the results seem identical to the diffusionless spec-
trum, which means that the diffusion length is not resolved.
As the number of points increases the structure changes, but
even forn = 256 it has not yet converged to the true spectrum.
Yes, there is a noticeable tendency of stabilization as the spa-
tial resolution approaches the characteristic stress diffusion
length.

F
w

ig. 15. Stability spectrum fork = 1, λ = 1, and a stress diffusivity constant ofD
ith n = 128 (left) andn = 256 (right) point. The lower row shows the corresp
= 10−4. The upper row shows results obtained with the staggered scheme
onding results obtained with the central-difference scheme.
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Fig. 16. Stability spectra fork = 1, λ = 1, and a stress diffusivity constant ofD = 10−6. The results were obtained with the staggered scheme withn = 64,
n = 128, andn = 256 points.

6. Conclusions

The main result in this paper is the identification of a
family of non-modal stress perturbations of Couette flow,
which are divergence free, and therefore do not couple back
into the velocity field. These perturbations are exact solu-
tions of the nonlinear system. In particular, there exist initial
perturbations in this class, which for high Weissenberg num-
ber, exhibit large transient growth accompanied with the for-
mation of cross-stream oscillations whose frequency grows
linearly in time. While these perturbations have an asymp-
totic temporal profile that scales liket2e−t/λ, and therefore
eventually decay, the oscillations may, at large enough Weis-
senberg number, reach sub-grid scales before decaying. We
believe this under-resolution effect to be at the heart of the
spurious instabilities observed generically in numerical cal-
culations. We emphasize that those oscillatory solutions are
not numerical artifacts—they are bona fide solutions of the

Oldroyd-B model. Numerical problems arise due to under-
resolution.

The fact that the Oldroyd-B model is capable to sustain
stress perturbations with arbitrarily large spatial gradients,
which do not excite the velocity field is bothersome. This
can happen because the stress field interacts with itself only
through the induced velocity field, and the latter is unaffected
by divergence-free stress components. It has been argued in
the past that stress diffusion becomes important at sufficiently
small scales, which are however under the resolution attained
in numerical simulations. El-Kareh and Leal[15] have even
raised the possibility that Oldroyd-like models may be ill-
posed without the presence of non-local stress interactions,
although this speculation has never been confirmed.

Our opinion is that in any case, a numerical method should
not ignore the presence of a mechanism that creates sub-grid
oscillations. Those oscillations destroy the smoothness which
is implicitly assumed on the scale of a single computational
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cell. Thus, truncation errors become dominant, and the re-
sponse of the numerical method may become unpredictable.
Note that it is not uncommon to have situations where sharp
sub-grid variations occur, e.g., shock waves. Then, the nu-
merical scheme has to be properly designed to account for
the expected behavior of the sub-grid patterns. Shock waves
are a classical example where naive discretization may lead
to catastrophic breakdown.

A natural remedy in our case is to introduce stress diffusiv-
ity, with a diffusivity constant that depends on the mesh size,
to damp out oscillations below the scale of the mesh. Such
solution has been proposed in the past as a stabilizer, but
has usually been avoided by the computational community.
Indeed, computational rheologists have seen over the years
numerous methods with good stability properties but poor ac-
curacy, and the reluctance from corrections that smooth out
sharp variations is understandable. An exception is turbulent
flows, where sub-grid modelling is common practice even
for Newtonian flows. Yet, we repeat, sub-grid oscillations
cannot just be ignored. If local smoothing introduces large
error, which means that those oscillations are dynamically
important, then one has to resort to sub-grid modelling to ac-
count for the effects that sub-grid structures have on the large
scale dynamics. We cannot determine at this point what is
the correct approach. We believe that damping with a mesh-
dependent coefficient may eliminate spurious patterns, and
n elief
h

that
r able
t nce-
f any
o the
s di-
c play
a the
s sport
b there
t m,
t emes
s ine
w om
a ther
s

A

for
i nan
F ead-
i the
o s in
t sions
w ohn
N the

Department of Mathematics at the Lawrence Berkeley Na-
tional Laboratory. This research was funded in part by the
Director, Office of Science, Computational and Technology
Research, U.S. Department of Energy under Contract No.
DE-AC03-76SF00098.

References

[1] V. Gorodsov, A. Leonov, On a linear instability of a plane parallel
Couette flow of viscoelastic fluids, PPM 31 (1966) 289–299.

[2] M. Renardy, Y. Renardy, Linear stability of plane Couette flow of an
upper convected Maxwell fluid, J. Non-Newton. Fluid Mech. 22 (1986)
23–33.

[3] R. Sureshkumar, A. Beris, Linear stability analysis of viscoelastic
Poiseuille flow using an Arnoldi-based orthogonalization algorithm,
J. Non-Newton. Fluid Mech. 56 (1995) 151–182.

[4] M. Graham, Effect of axial flow on viscoelastic Taylor–Couette insta-
bility, J. Fluid Mech. 360 (1998) 341–374.

[5] R. Sureshkumar, M. Smith, R. Armstrong, R. Brown, Linear sta-
bility and dynamics of viscoelastic flows using time dependent nu-
merical simulations, J. Non-Newton. Fluid Mech. 82 (1999) 57–
104.

[6] H. Wilson, M. Renardy, Y. Renardy, Structure of the spectrum in zero
Reynolds number shear flow of the UCM and Oldroyd-B liquids, J.
Non-Newton. Fluid Mech. 80 (1999) 251–268.

[7] M. Renardy, Location of the continuous spectrum in complex flows of
the UCM fluid, J. Non-Newton. Fluid Mech. 94 (2000) 75–85.

[8] M. Renardy, A rigorous stability proof for plane Couette flow of an
ech.

on-

[ l sta-
ned
m. 5

[ wn,
rned
. 59

[ rder
r vis-
onal

[ is of
on-

[ elas-
gen,

[ s for
ton.

[ the
me-
995)

[ tur-
187

[ fi-
and

47–
evertheless converge with mesh refinement, but this b
as to be substantiated by numerical tests.

We conclude this section by raising a number of issues
emain open: (i) To what extent are our results generaliz
o more general situations? The invariance of diverge
ree stress fields is a special feature of Couette flow; in
ther situation there is a non-trivial interaction between
tress and the velocity field. Yet, preliminary results in
ate that divergence-free components in the stress field
n important role also in Poiseuille flow. It seems as if
ame combination of transient growth and passive tran
y shearing stream lines dominates numerical errors

oo. (ii) In view of the new insight gained into the proble
he somewhat unexplained success of the DEVSSG sch
hould be re-examined. It is of particular interest to determ
hether their immunity to spurious instabilities results fr
n implicit insertion of cross-stream diffusion, or some o
ort of regularization.

cknowledgments

I am grateful to Frank Baaijens and Martien Hulsen
ntroducing me to this problem. Martien Hulsen and Raa
attal have contributed continual advice and a critical r

ng of the manuscript. Michael Renardy’s comments on
riginal manuscript have led to significant improvement

he paper. I have benefited from many stimulating discus
ith G.I. Barenblatt, Alexandre Chorin, Ole Hald and J
eu. This research was carried out while I was visiting
upper convected Maxwell fluid at zero Reynolds number, Eur. J. M
B 11 (1992) 511–516.

[9] R. Keiller, Numerical instability of time-dependent flows, J. N
Newton. Fluid Mech. 43 (1992) 229–246.

10] R. Brown, M. Szady, P. Northey, R. Armstrong, On the numerica
bility of mixed finite-element methods for viscoelastic flows gover
by differential constitutive equations, Theor. Comput. Fluid Dyna
(1993) 77–106.

11] M. Szady, T. Salamon, A. Liu, D. Bornside, R. Armstrong, R. Bro
A new mixed finite element method for viscoelastic flows gove
by differential constitutive equations, J. Non-Newton. Fluid Mech
(1995) 215–243.

12] A. Bogaerds, G. Peters, F. Baaijens, Temporal stability of low-o
continuous and discontinuous mixed finite element techniques fo
coelastic fluid mechanics, in: Proceedings of the XIIIth Internati
Congress on Rheology, Cambridge, UK, 2000.

13] A. Grillet, A. Bogaerds, G. Peters, F. Baaijens, Stability analys
constitutive equations for polymer melts in viscometric flows, J. N
Newton. Fluid Mech. 103 (2002) 221–250.

14] M. Gerritsma, Time dependent numerical simulations of a visco
tic fluid on a staggered grid, PhD Thesis, University of Groni
1996.

15] A. El-Kareh, L. Leal, Existence of solutions for all Deborah number
a non-Newtonian model midified to include diffusion, J. Non-New
Fluid Mech. 33 (1989) 257–287.

16] R. Sureshkumar, A. Beris, Effect of artificial stress diffusivity on
stability of numerical calculations and the flow dynamics of ti
dependent viscoelastic flows, J. Non-Newton. Fluid Mech. 60 (1
53–80.

17] T. Vaithianathan, L. Collins, Numerical approach to simulating
bulent flow of a viscoelastic polymer solution, J. Comput. Phys.
(2003) 1–21.

18] R. King, M. Apelian, R. Armstrong, R. Brown, Numerically stable
nite element techniques for viscoelastic calculations in smooth
singular geometries, J. Non-Newton. Fluid Mech. 29 (1988) 1
216.



190 R. Kupferman / J. Non-Newtonian Fluid Mech. 127 (2005) 169–190

[19] I. Gel’fand, G. Shilov, Generalized Functions, Academic Press, New
York, 1964.

[20] J. von Neumann, Mathematical Foundations of Quantum Mechanics,
Princeton University Press, Princeton, NJ, 1955.

[21] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, Dover, New York,
1971.

[22] F. Harlow, J. Welch, Numerical calculation of time-dependent viscous
incompressible flow of fluid with a free surface, Phys. Fluids 8 (1965)
2182.

[23] L. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39 (1997)
383–406.

[24] A. Trefethen, N. Trefethen, P. Schmid, Spectra and pseudospectra for
pipe Poiseuille flow, Comput. Meth. Appl. Mech. Eng. 175 (1999)
413–420.

[25] S. Orszag, A. Patera, Secondary instability of wall-bounded shear
flows, J. Fluid Mech. 128 (1983) 347–385.

[26] K. Atalik, R. Keunings, Non-linear temporal stability analysis of vis-
coelastic channel flows using a fully spectral method, J. Non-Newton.
Fluid Mech. 102 (2002) 299–319.

[27] T. Write, Eigtool, a graphical tool for nonsymmetric eigenproblems.
http://web.comlab.ox.ac.uk/projects/pseudospectra/eigtool/.

[28] M. Embree, L. Trefethen, Generalizing eigenvalue theorems to pseu-
dospectra theorems, SIAM J. Sci. Comput. 23 583–590.

http://web.comlab.ox.ac.uk/projects/pseudospectra/eigtool/

	On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation
	Introduction
	Spectral analysis of Couette flow
	Summary of known results
	The singular GL eigenfunctions
	The singular viscous eigenfunctions

	Analysis of finite-difference approximations
	A central-difference scheme
	Staggered discretization of tensor fields
	Numerical results
	Central difference scheme
	Staggered scheme

	Stability spectrum for Poiseuille flow

	Non-normality, pseudo-spectra and transients
	Addition of stress diffusivity
	Conclusions
	Acknowledgments
	References


