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Abstract

It is well known that plane Couette flow for an Oldroyd-B fluid is linearly stable, yet, most numerical methods predict spurious instabilities
at sufficiently high Weissenberg number. In this paper we examine the reasons which cause this qualitative discrepancy. We identify a family
of distribution-valued eigenfunctions, which have been overlooked by previous analyses. These singular eigenfunctions span a family of non-
modal stress perturbations which are divergence-free, and therefore do not couple back into the velocity field. Although these perturbations
decay eventually, they exhibit transient amplification during which their “passive" transport by shearing streamlines generates large cross-
stream gradients. This filamentation process produces numerical under-resolution, accompanied with a growth of truncation errors. We believe
that the unphysical behavior has to be addressed by fine-scale modelling, such as artificial stress diffusivity, or other non-local couplings.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction divided into two main groups: (i) numerical solutions of the
boundary value problem defined by the linearized system
The linear stability of Couette flow for viscoelastic fluids (e.g.[2,3]) and (ii) stability analysis of numerical methods
is a classical problem whose study originated with the pi- for time-dependent flows, with the objective of understand-
oneering work of Gorodtsov and Leonov (GL) back in the ing how spurious solutions emerge in computations. {(8-g.
19604[1]; this problem has been further elaborated and gen- 11]). A more recent benchmark study which compares the
eralized to various situations, such as Poiseuille and multi- performance of various schemes in this context may be found
layered flows, and applied to different constitutive laws; see in [12,13] Itis important to emphasize that the emergence of
[2—-7]. The aforementioned work is based on spectral analy- spurious instabilities is a purely linear phenomenon, but it is
sis. For Couette flow, the eigenvalues of the linearized per- precisely this “simplicity” which makes it intriguing.
turbation equation are always on the left half of the complex  For concreteness, we will refer from now on to Couette
plane, i.e., the corresponding eigenmodes decay in time. Forflow of an Oldroyd-B fluid, although most of our analysis ap-
infinite-dimensional non-normal operators, spectral analysis plies to a larger range of fluids. The linear partial differential
does not guarantee stability. Renaf@y proved rigorously, equation that governs the evolution of small perturbations has
however, that Couette flow for an upper-convected Maxwell two important characteristics: its spectrum has both discrete
(UCM) fluid is indeed linearly stable. and continuous components, the latter corresponding to sin-
Although Couette flow is believed to be linearly stable un- gular eigenfunctions, and it is highly non-normal, which in
der quite general conditions, numerical simulations often fail particular implies that small errors may significantly modify
to predict stable behavior at sufficiently high Weissenberg its spectrum. It is common to attribute the emergence of un-
number. This discrepancy between analysis and computa-stable modes to the failure of numerical methods to properly
tions has attracted much attention. Numerical studies can beapproximate the singular eigenfunctions. While this is (tau-
tologically) correct, it yet does not explain tieechanism
E-mail addressraz@math.huji.ac.il (R. Kupferman). that leads to instabilities. The goal of this paper is to clarify
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why numerical computations predict the wrong behavior, and cross-stream gradients. Thus, when the stress field oscillates
propose ways to eliminate spurious instabilities. in the cross-stream direction on the scale of a single computa-
In the first part of this paper we revisit the linear stability tional cell, there is no damping mechanism, and one is left “at
analysis for Couette flow for an Oldroyd-B fluid. While the the mercy" of truncation errors, whose nature depends on the
spectrum itself has been known for long, controversies havescheme chosen. We claim that it is the inability of numerical
remained regarding the precise nature of the singular eigen-schemes to cope with such sub-grid variations which causes
functions[3,4]. This question is fully elucidated by deriving the emergence of spurious modes.
analytical expressions for the singular eigenmodes; in partic- A fundamental question now arises: constitutive laws such
ular, we find a family of distribution-valued eigenfunctions as Oldroyd-B, UCM and other do not account for a non-local
for the stress, consisting of delta functions and their deriva- self-interaction of the stress field, and as a result, the stress
tives, which are divergence-free, and therefore do not per-in two neighboring stream lines evolves independently (in
turb the velocity field. As a consequence, these perturbationsLagrangian coordinates the stress satisfies an ordinary differ-
areexact solutions of the full nonlinear systdrurthermore, ential equation). In reality, the stress field experiences a small
these singular eigenmodes form a basis for the constructionamount of diffusivity due to the random motion of the poly-
of a large class of classical (non-modal) solutions, which are mers center of mass; the dimensionless diffusivity coefficient
all decoupled from the velocity field. Such solutions are ca- is of the order of 10° [15], which makes it negligible on the
pable to sustain arbitrarily large stress gradients, which is scales imposed by numerical computations. Stress diffusion
indicative of the local nature of the constitutive laws. would precisely attenuate large cross-stream gradients, butin
We proceed with a numerical analysis in which we com- order to affect numerical computations the diffusivity coef-
pare two finite-difference schemes. The first scheme, which ficient should be about four orders of magnitude lafgét.
uses naive central differencing, exhibits the standard sce-Is one allowed to introduce an artificially large diffusivity
nario, where the straight lines of continuous spectra break without significantly modifying the results?
into oval-shaped structures, and unstable modes emerge at The idea that sub-grid scales may be generated by advec-
a Weissenberg number around 10. In comparison, we con-tion and the use of stress diffusion to dampen those out are not
struct a scheme that uses staggered vector and tensor fieldsew, and go back to the theoretical study of El-Kareh and Leal
[14]. This scheme is found to predict the correct spectrum [15] (where itis even speculated that the coupled momentum-
with unprecedented accuracy. A closer examination revealsstress equations may be ill-posed without some amount of dif-
that this unexpected success is due the ability of the schemdusivity), and the numerical study of Sureshkumar and Beris
to represent approximations (in the sense of distributions) of [16]. The use of artificial diffusion is now quite standard in
delta functions and their derivatives. If the problem is how- the computation of turbulent viscoelastic flows, where the
ever changed, say, into Poiseuille flow, where the nature of deformation of flow lines is extreme (see d13(]). As usual,
the singularities is different, then the staggered scheme seemshe concern is that the addition of diffusion will result in se-
to offer no benefits over the central-difference scheme. vere inaccuracy. It should be noted, however, that streamwise
We then analyze the non-normal aspects of the perturba-diffusion is built-in in any stable advection scheme. Yet, if
tion equation, through the calculation of its pseudo-spectrum. the diffusivity coefficients scale with the square of the mesh
Roughly speaking, the pseudo-spectrum provides a measureize, second-order convergence can be guaranteed, at least in
for how sensitive is the spectrum to a perturbation of the regions where the solution is sufficiently smooth. The “high-
equations (for example, due to truncation errors). In addi- resolution" nature of the computation has to be established
tion, one may infer from the structure of the pseudo-spectrum eventually via numerical convergence tests based on meshre-
estimates on the magnitude of the transient growth. As ex- finement. Our opinion is that the same considerations should
pected, the higher the Weissenberg number is, the smallerapply for cross-stream oscillations. One cannot just “ignore”
are the perturbations that may drive the system unstable, andsub-grid oscillations; they should either be damped, in order
the larger is the magnitude of the transient growth. Yet, this to maintain smoothness on the scale of a single cell, and if this
still does not explain what causes instabilities. Moreover, in introduces too large errors, sub-grid modelling is necessary.
many cases, unstable modes become dominant long after th&ince the physics do account for some diffusivity, although
transient growth has been attenudte?]. An examination of on afiner scale, the introduction of artificial diffusivity seems
the most amplified solution, which can be determined from a to be a natural solution. In either case, validation via mesh
singular value decomposition, reveals that the long time be- refinement is necessary.
havior is dominated by solutions that belong to the family of
divergence-free stress fields described above. Although these
solutions decay in time, they develop in the transient a highly 2. Spectral analysis of Couette flow
oscillatory profile, which for high enough Weissenberg num-
ber (i.e., long transient), quickly leads to cross-stream under-2.1. Summary of known results
resolution. Large gradients that are aligned with the stream
are usually damped out by the advection scheme, which has We consider an Oldroyd-B fluid in a two-dimensional
a dissipative component. This is not the case, however, withchannelx € R, y € [-1/2, 1/2]. In a creeping flow regime
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(inertial terms are negligible), the governing equations are lution of the stress, and an anisotropic Stokes-like problem
1 ) may be obtained via the so-called EEME formulatjo8]).
—Vp+17 Q=P V-0+Vu=0, V-u=0, Since the syster(2.2) does not depend explicitly on the

0 coordinatex, it is natural to Fourier expand the perturbation
9 VYo — (Vu)o —o(Va) =2 LI —0), (2.1) P P

ot along this coordinate. Spectral analysis consists of looking
. . . for solutions of the form

whereu = (u, v) is the velocity,e the conformation ten- _ .

sor, with components®/, p the pressures the Newtonian — su(x, y, 1) = du(y) &+, 8p(x, v, 1) = 8p(y) €kt

to total viscosity ratio, and the polymeric relaxation time, iox-tor
which in our dimensionless setting coincides with the Weis- So(x. y.1) =da(y) € ’
senberg number. The velocity gradient tensor has entrieswhich substituted int¢2.2)yield
(Vu);j = du;/dx;. The shear-flow boundary conditions are

u = (+1/2,0) aty = +1/2. —Vop+1Y1—-B)V-86+BV2u=0, V-éu=0,
Normalized Couette flow corresponds to the stationary 1 . -
solution: (a) + n + Iky) do =[(Véu)X + X(Véu)']
142325 +[(VU)Sa + 80(VU)]. (2.4)
u=(0)=U and o= =3X.
( A 1) Here derivation with respect toshould be interpreted as a
multiplication by k.
Adopting the standard practice, we write the solutio(2td) For every axial wavenumbég the linear systeni2.4) is
as a sum of the steady solution and a perturbation, a one-dimensional boundary value problemsjtectrumis
the set ofw for which the system has a non-trivial solution
u(x, y, 1) = U+ du(x, y, 1), plx, y, 1) = dp(x, y, 1), so. It is possible, following1], to reduce(2.4)into a scalar
o(x, v, 1) = T 4 8a(x, v, £). fourth-order equation for the stream function. The drawback
of this reduction is that the structure of the problem is thus
Linearizing(2.1)with respect to the functions, §p andéa, changed. As was emphasized above, the dynamical variables
we obtain the perturbed system: are the components of the conformation tensor and not the

velocity, nor the stream function. In particular, the boundary

1 2
—Vép+27(L-p)V-80+pV7u=0 V-5u=0, value problen{2.4)may have non-trivial solutiorfer which

d a T the perturbed velocity vanisheSuch eigenfunctions would
o T3 Ty, )i = (Vo + E(Véu)'] be trivial solutions of the fourth-order scalar equation, but are
T not trivial solutions of(2.4). As will be seen in Sectiof.2,
+[(VU)3o + 50(VU) '], (2.2) this delicacy has been the source of a certain confusion in the
which governs the evolution of small perturbations about past.

The spectrum for a UCM fluid, i.e., for the system
(2.1)with 8 = 0, was fully characterized by Gorodtsov and
Leonov[1]. It consists of two discrete eigenvalues — the
creteGL eigenvalues- which can be computed analytically,
and a continuous strip of eigenvalues= —1/1 — ikyo,
yo € [-1/2, 1/2] —the continuous, agingularGL eigenval-
ues The real part of the two discrete eigenvalues approaches
the value—1/2) for A > 1; in the opposite limith « 1,
a’they tend towards the continuous GL strip of eigenvalues.
The spectrum for an Oldroyd-B fluid contains an additional
continuous stripp = —1/8x — ikyo, yo € [-1/2, 1/2] —the

plane Couette flow. The boundary conditions are imposed
by the no-slip conditionsu = (0, 0) aty = +1/2.

The structure of the problem merits some comment: the
dynamical variables are the three components of the con-
formation tensow—the systen(2.1) prescribes the rate of
change ob given its current state. The velocity and the pres-
sure are “slaved" to the conformation tensor via the elliptic
Stokes equations, which can also be interpreted in terms of
constrained optimization problem: the velocdityninimizes
the Frobenius norm:

1271~ B)o — 3B(Vu + VuT)|F, (2.3) continuous, orsingular “viscous” eigenvalues and a fi-
nite number of discrete eigenvalues — thscrete “viscous"

subject to the incompressibility constraiVit- # = 0. Thus, eigenvalues- the number of which tends to infinity in the

the perturbation in the velociu depends linearly (but non-  singular limitg — 0; see Wilson et a[6] for details.

locally) on the perturbation in the conformation tengor, While the spectrum of this system is well-established,

which implies tha{(2.2) can be recast in the general form  there have been some controversies regarding the nature of
3 the eigenfunctions. The eigenfunctions associated with the
—80 = Ado, discrete eigenvalues are known to be smooth and spatially
o extended. In contrast, the eigenfunctions associated with the
whereAis a linear integro—differential operator. (Fora UCM singular spectra are known to be singular. Sureshkumar and
fluid the momentum equation acts as a constraint on the evo-Beris[3] suggested that the singular eigenfunctions were in
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fact not functions, but generalized functions, or distributions. ~ The occurrence of distribution-valued eigenfunctions is
This possibility was ruled out by Grahd#i, who, fora UCM by itself not disturbing. Consider the much simpler problem
fluid, obtained analytical expressions for eigenfunctions that of a Schidinger equation for a free particle on the line:

are continuously differentiable, i.e., their non-analyticity only 5

reflects in the second derivative. The analysis belowwill show ;, % _ 7 V24,

that distribution-valued eigenfunctions do exmsadditionto ot 2m

those discovered by Graham. The spectrum of this equation covers the entire real line,

For linear finite-dimensional systems, that is, systems of 5pq the eigenfunction that corresponds to the eigenvalue
the formou /o = Au, whereAis a matrix, and for infinite- -, _ 5125, is d+_ While this eigenfunction is infinitely
dimensional systems whereis a normal operator (it COM- gigerentiable, it does not belong to the spd¢R) in which

mutes with its _adj(_)int), the solution is stable if and only if the the problem is defined, and as such is not “better” than a delta
spectrum o lies in the left half of the complex plane. This  gistrinution. In fact, the correct interpretation of these eigen-

condition does not guarantee stability for opera@rhat  fnctions is as distributions it (see von Neumanj20] for
are non-normal. The implications of non-normality may be 5 giscussion of these and related issues). Nevertheless, these

much more dramatic than just the fact that “transient growth gjstributions are building blocks for generating functions that
may occur”; we will return to this point in Sectich It is do reside withinZ 2(R).2

however important to emphasize that the stabili_ty o.f Coue.tte The generalized eigenfunctioif2.5) have the property
flow cannot be deduced solely from an examination of its 44 their divergence (interpreted in the sense of distributions)
spectrum. A rigorous stability proof for a UCM fluid, based | 5nishes identically. Thus, the corresponding velocity pertur-
on Sobolev norm estimates, is given in Renalily bationsu is zero. Since the only non-linearity {8.1)is due

. . . to quadratic terms that involve multiplication of the velocity
2.2. The singular GL eigenfunctions and the conformation tensor, it follows that any tensor-valued

. , ) distribution of the form
As mentioned above, the nature of the singular GL eigen-

functions has been debated3y]. In[4] continuously differ- o(x,y, ) =% + Z Ak yo 8016 (¥) e (/W) +ik(x=yor)

entiable eigenfunctions that correspond to the strip of eigen- k.o

valuesw = —1/A — ikyo, y € [—1/2, 1/2], were constructed ) ) ) ) ]

for a UCM fluid. In fact, two linearly independent eigen- With 3a,,(y) given by (2.5), is a solution (in the sense of
functions exist for every eigenvalue along this strip. For an distributions) ofthe full nonlinear systen(2.1), with u =
Oldroyd-B fluid, the degeneracy is removed, and a single U- This family of solutions, parameterized by the sets of
family of “Graham-type" eigenfunctions exists for this range Coefficientsay y, is by itself unphysical, but it constitutes a

of eigenvalues. building block for a large class of solutions.
A central result in the present work is the discovery of  Indeed, replacey,,, by a three-time differentiable func-

corresponding to the eigenvalues= —1/x — ikyo. These form of athree-time diﬁerehtiablefuqctim(x, yo).. Integrate
eigenfunctions are generalized functions, or distributions, Over bothk andyo, to obtain, after simple manipulations, a

given by family of classicalsolution of the form
(Y s -3 ¥
80 yo(y) = Pn0) 0,0 25 oyp)=Z+e'/t ( ) )¢(x —yt.y).  (2.6)
° ik 8, () k2 8y0(y) Py —O

Heres,, is the Dirac distribution concentrated at the point 1he functiong is known in the literature as aAiry stress
yo. defined by its action on test functiors,(, ¢) = ¢(yo); functhn itis f!rst eva!uated at the point  yz, y),and only
its j-th (weak) derivative,ég{,) is defined by &%),qb) _ then differentiated with respect koandy. Eq.(2.6) can also

(=1) ¢)(y0). A straightforward substitution shows that be written in the alternative form:

(2.5)does indeed solvg.4), in a distributional sense, with

w = —1/A —ikyg. To verify that, one needs to multiply —

(2_4) by atest function € C80([_1/2’ 1/2]), integrate over for which the saméx can be used for all cornpfb’tis called the space of
ye [_1/2’ 1/2]’ formally integrate by parts such to transfer distributions of ordek and it is denoted by " (X). Thus, éo, defined

S : . by (2.5) belongs to the space of second-rank tensor-valued distributions of
all derivatives onto the smooth functignand verify that the order two in -1/2, 1/2], since itinvolves at most a second derivative of the

resulting expression is valid for any test functfon. delta distribution. See Gel'fand and Shilf9] for a classical reference on
generalized functions.
2 A Hilbert space, for exampl&2(R), together with a subspace which

1 We remind the rea_derthatadistributioin a space(is a linear form on carries a finer topology, such as the set of test functiori, iis called a
the space of test functionig® (X), such that for every compact subget- X rigged Hilbert spaceThis construction allows to link between distributions
there exist constants c, such that(u, ¢)| < ¢ 3", < SUR 13.4|, for all and square-integrable aspects of functional analysis to formalize spectral

¢ € Cg°(K). This space is denoted th(X). The subset of distributions analysis.
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_ _¢ y ¢x ) 2¢x _(bxx
_ t/\ Yy y y
SG(X’ . t) - © |:( ¢xy _¢xx) i <_¢xx 0 )

2 _¢xx0
()

where the partial derivatives @f are evaluated at the point
(x —t, y).

The existence of solutions of the foi2.7)can be derived
directly, without reference to spectral analysis. Ifet V -
3o (a vector proportional to the perturbation in the polymeric
forces), then its componentg,( fy) satisfy the system of
equations

2.7)

9 1 9 825u
— 4y — = 1+ 223 —
(8t+k+y3x)fx fy+ @+ )8x2
828 9258
pp o 2o (2.8)
oxdy dy2
9 1 9 925v 25v  3%v
— 4y — ) AH=Q+222 2) i
<8t+k+y8x> f=Q+2955 + 250 T 52
(2.8b)

Sincef = 0 (no forcing) implies: = v = 0, it follows from
(2.8)that the space of divergence-free perturbatiianis in-
variant under the linearized dynami&?2). Everyso (x, y, t)
in this invariant subspace can be represented as

2P 2P
__2()(:9 Y, t) _(x’ Y, t)
ay xdy
So(x,y, 1) = 52 2

Pd
— 1) ——= .1
axay(x 1) —oz .0

Substituting into(2.2), we deduce thada(x, y, t) is of the
form (2.7).

173

First, it follows from(2.8) that

5 1 9
iz ryI)vV.f=o0,
<8t+k+y8x) 4

which means that the space of perturbations for wRichv -
3o = 0 is invariant under the linearized dynamics. It will be
shown that the singular viscous eigenfunctions all lie within
this invariant subspace.

The singular viscous spectrum lies on the segnaert
—1/Bx1 + ikyo, yo € [-1/2, 1/2]. From the property - V -
so = 0, itfollows thatV2sp = 0, hencép(y)is alinear com-
bination of é” and e*'. Substituting into the momentum
equation fosv, we get

SV —k?8v = —pfy + 1€V + e,

whereu = (1 — B)/(BA), andc1, c2 are integration constants.
Substituting this equation int¢2.8b) with w = —1/81 +
ikyo, we find

(v — y0)(8v" — k2 8v) + 2ur 80 + 2ikur? sv
= (—p +ik(y — yo))(c1€” + c267),
where the constants > have been redefined. It can be di-

rectly verified that functions of the form

Su(y) = (—ﬁ% Fik(y - yo)) (e +eet) (29

are solutions of this inhomogeneous equation (with re-
defined again), so that the general solution is obtained by
adding to(2.9) a linear combination of the two independent
solutions of the homogeneous equation:

(v — yo)(8v" — k% 8v) + 21 8v/ + 2ikpur?sv = 0,

which are

Toconclude, Couette flow ofan Oldroyd-Bfluid allows for 5,y — e X ez 1Fi(a, b, 2k(y — yo))

a class of divergence-free perturbations which do not perturb

the velocity field. The initial perturbation, which is deter-
mined by the functiom(x, y) is advected with the flow, and
decays as a result of the stress relaxation at a rateThe

interesting feature is that there is no restriction on the shape
of the perturbation, which can sustain arbitrarily large spa-

+caU(a, b, 2k(y — yo))l,

where the functiongF1 andU are the confluent hypergeo-
metric functiond21], anda = ui(1 —ii), b = 2ur. While
1F1(a, b, 7) is analytic in its three arguments, the function
U(a, b, z) has an algebraic singularity at= 0 of the form

tial gradients (as long as it is divergence-free). This reflects Ula, b, 7) ~ 220

the fact that the only non-local interaction in the Oldroyd-

B model is via the velocity field, thus the model reduces to
a local equation (ODES) in cases where the stress does no

couple back into the velocity field.

2.3. The singular viscous eigenfunctions

The four integration constantg—c,4 should be deter-
mined, up to a proportionality factor, by the boundary condi-
{ions,sv(il/Z) = §v'(+1/2) = 0. A priori there is no reason
why this linear system should have a non-trivial solution for
everyyo. The existence of a solution stems from the singu-
lar nature of the equations, and consequently, the analysis
extends as for the singular GL modes to the space of gener-

The structure of the singular viscous eigenfunctions can alized functions.

be deduced from the analysis in Wilson et[él; there are
however certain points worth of further elaboration.

A simple example that illustrates how do non-trivial
distribution-valued solutions emerge is the following
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second-order equation fe(z) with homogeneous boundary
conditions:
1Y +3y =0 y-1)=y1)= (2.10)
Away from the singularity at = 0, this equation has two in-
dependent solutions,= ¢, andy = /2, however the latter

is not summable at the origin, and is therefore not a valid dis-
tribution. Yet, the functionr—3/2 can beregularizedgiving

rise totwo independent distributions which satisfg.10)
These two distributions, denoted bf/z and:~%?, are de-
fined by their action on test functioks

L o(r) — $(0)
13/2

- B(t) — ¢(0)
- 3/2 $) = / N

(see Gel'fand and Shild19]). It can directly be verified that
any distribution proportional to

(7Y% ¢) = dr,

3/2 3/2

yO)y=t,"" 417" -1

is a solution 0f(2.10)

Similarly, the singular functiol/(a, b, 2k(y — yo)) gives
rise to two independent (regularized) distributions

(v — y0)?*LU(a, b, 2k(y — yo))(y — yo) ¥ .

With now five constants of integration, non-trivial
distribution-valued solution&v(y) can be found, which sat-
isfy the four boundary conditions. By the nature of the reg-
ularization, the leading-order term #v(y) scales like the
[2ur — 1] = |1/8 — 2]-th derivative of the delta distribu-
tion atyg.

3. Analysis of finite-difference approximations

Although Couette flow for an Oldroyd-B fluid is stable,

Fluid Mech. 127 (2005) 169-190
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Fig. 1. Discrete geometry for the central difference scheme.

3.1. A central-difference scheme

We start by describing a standard central-difference
scheme. The velocity field is discretized on a staggered
(Marker-and-Cell) mesfR2]: velocity variables are defined
at cell edges, with only the normal component defined at
each edge. This staggered discretization is used for all vector
fields, such as the pressure gradient and the divergence of the
conformation tensor. The conformation tensor and the pres-
sure are defined at cell centers. The geometry of the system
is depicted irFig. 1

Let n be the number of computational cells across the
channel,and\x = Ay = 1/n be the mesh size. Pressure and
conformation tensor variables, which are cell-centered are
denoted by, ; ando; ;, respectively; e Z, j =1,2,...,n
The discrete velocity variables, which are edge-centered, are
denoted byu;+1/2 ;, andv; j+1/2, the indexing being self-
explanatory.

Given a configuration of the conformation tensor, we first
calculate its divergence, which is a vector field (i.e., has a
“velocity-like" representation):

most numerical schemes predict the emergence of spurious

unstable modes at sufficiently high Weissenberg number. In
this section we compare the spectral properties of two finite-
difference approximations for time dependent flows. The first

scheme is based on standard finite-differences, and exhibitgvhere Dx o Dy and DO

the known splitting of the continuous spectrum into oval
structures, which, for high enough Weissenberg numbers pro-

o™ o™ = Dtg** +pOg™Y
3 P x 05 T My Dyoi,
x Y Jit1/2,j
9™ 9o
(o+%7)  —wptelenie G
X Y /i j+1/2

are the standard forward-,
backward-, and central dlfference operators along Hraly
directions; /,Lx , are forward- and backward-averaging oper-

trude into the right half plane. The second scheme uses aators along thex andy directions, for exampleya; ; =
staggered setting for the conformation tensor, and is foundto%(a,-,j + a,41,;). One-sided stencils are used when neces-

predict the correct spectrum with very high accuracy. It will

sary at the boundary. This discretization is consistent to

be shown that this success is somewhat “accidental”, and thesecond-order. Note that the derivatives of the diagonal
staggered setting does not appear to perform better in generalerms,dc** /dx anddc?” /dy, use narrow stencils, benefiting

situations.

from the staggered grid. In contrast, the derivatives of the
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off-diagonal termsgo™*?/dx and do*>/dy, must be approx-

Lir?ﬁi[reéjn?gsmder stencils, the natural choice being central Eoiy’)} = — D, (it1/2,) Mjal_yij) — Dj (vi,j41/2 M;FU,%
Having computed the divergence of the conformation ten- 2 (O yy {0V 1 1
sor at all interior edges, we proceed to compute the velocity T4 P i T 2o dy g - X(Ui,j -1

field, by solving the linear system of equations: (3.3)

+.. . —(DtD— + D), ‘
Dy pij = (Dy Dy + Dy Duivay2 The stationary solution of the continuous systems,=

do™* n o™ X, uiy12,j = yj» vij+1/2 = 0 solves the discrete system
® ox 9y Jiv1y2 .’ (3.3) as well. Linearizing the discrete system, Fourier ex-
"/ panding along the-coordinate, we obtain, for every wave

Dy pi.j — (DY D + DYDY )vijr1)2 numberk, a 3:-dimensional linear eigenvalue problem which
Y g can be solved by standard methods (thén®glependent vari-
=u < + > ) ables are the perturbed stress componéusits, with i fixed
ox 0y Jijrae andj=1,2,...,n).

Dy uit1/2,j + Dyuiji1/2 =0, (3.2)
3.2. Staggered discretization of tensor fields

where as beforeu = (1 — 8)/(81). The boundary con-
ditions are imposed by the use of ghost cells and anti- We next describe a different discretization, which uses a
reflective conditions for the tangential components of the staggered discretization for tensor fields as well, keeping di-
velocity. agonal elements at cell centers and transferring off-diagonal

With the velocity at hand, we turn to calculate its gradi- element to cell corners. Such a staggering has been pro-
ent, which has to be evaluated at cell centers. Once againposed by Gerritsm§l4]. The motivation for this arrange-
diagonal and off-diagonal elements behave differently: the ment of tensor field is to obtain maximally compact sten-
diagonal elements exploit the staggering and result in narrowcils, since wide stencils often cause the appearance of spu-

stencils, rious “checkerboard" modes. In the above central difference
scheme, the gradient of vector fields and the divergence of

ou v tensor fields use (in part) central differences, and the com-
(5){ ; = D uit1/2,j, <5>l ; = Dy v j1/2, position of these two operators yields a wide-stencil discrete

Laplacian, which does not preserve the negative-definiteness

o _ _ . of the Laplacian. This can be remedied by resorting to a stag-
which is well-defined at all points. For the off-diagonal ele- gered discretization.

ments, we are forced to resort again to wide-stencil central  The discrete geometry of the “staggered scheme" is shown

differences: in Fig. 2 The velocity field uses the same Marker-and-
Cell discretization, except for a vertical shift of half a cell,
<@> — 1 D%; 11/ (3_”) — 1~ D% , so that the boundaries intersect the first and last compu-
ox ), Py e /), e Bytit12.j: tational cells. The discrete velocity variables are now de-
noted byu;1/2 j, with j=0,1,...,n, andv; j;1/2, with
j=0,1,...,n—1; the pressure variables, which are cell-

Our choice of discrete operators satisfies the rela¥iém =
V - Vu, so that the discrete velocity satisfies a finite-
dimensional constrained optimization equation approximat-

centered, are denoted by;;, j=12,...,n—1. The
main change affects the discretization of the conformation

ing (2.3). _

The evolution of the conformation tensor is then dictated . Wi-irzn [Vindie
by substituting the above expressions into the constitutive i-12a-12 G
equation: Uyt —— @ Pt Gt
d 6!—:/2.”7_:/2( ll

_ - + - + Vine
g0 = ~ Dk (wivayaj w 0if) = Dy (Vija2 iy o7 -2

v,

x ou xy ou 1 o i |l 32
+2075(o-) +205( o) — (o= 1), ) o
ox ij dy i,j A Ui —— @Y%

G | Vi

Xy _ — (.. Y (. . + Xy i~1/2,172
Eo-i’j o _Dx (MH_J'/Z’] oy Ui;j) D)’ (Ul’H'l/Z Hy Oy Uotpo | !

o [ OV yy [ Ou 1 5 ) )
4+ — + o | — — —0;7, Fig. 2. Discrete geometry for the staggered scheme.
ij ij iJ
0x/; /i *
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tensor: its diagonal elements remain cell-centered, and are
denoted by, 07, j=1,2,...,n — 1. The off-diagonal =™ — D (i1 +o

’ i+1/2,j+1/2 = i+1.j+1/2 Iy 071172 j41/2)
elements are now deflned at ceII corners and are denoted bydf /2 ! Yo

X

0it1/2 412 J = 0.1, ..., n— 1. In this new setting there — Dy (vit1/2.j+1 M;gﬁl/z‘jﬂ/z)
are 3 — 2degrees offreedom per computatlonal column: the

2(n — 1) variables;, ”/ and then varlablesalH/2 12 T 2 <8v>
As above, the first step is the calculationVof o, which J 0x /) i11/2 j+1/2
now benefits from a compact stencil in all its elements: u 1
—yy Xy
1 + 010172, 111/ <8_y> T %
do**  §oY R D+ y i+1/2,j+1/2
dx " 3y Jiy12,) = OO Oy gy d - + Yy - + Yy
1 ) ’ g0 = ~Dx wiva2j i oiy) = Dy (vijrasz ty 07 5)
1=12,...,n—1,
9™ 9o _ DF D yy +2g?‘¥<@> + 20 ”’ (81)) — E(a.y)f —1). (3.5)
o T oy e 02172, 14172 T Dy ol EACIY /)i, r
j=12,...,n-1 (3.4) As above, the corresponding spectrum can be computed by

standard methods.

With V . ¢ at hand, the velocity field is computed by solv-

ing the elliptic systen(3.2). This time, no ghost cells nor  3.3. Numerical results

reflections are needed, as. 120 = —1/2, u;—1/2,, = 1/2,

and by the incompressibility condition; j,1/2 = 0 for j = In this subsection we present calculations of the stability

0,n—1. spectrum using the two numerical schemes. Throughout this
We then turn to calculate the velocity gradient, whose di- paper we use a viscosity ratio 6= 0.2. The number of grid

agonal elements are defined at cell centers and its off-diagonajpoints along the vertical mesh is= 196 unless otherwise

elements at cell corners. Again, we benefit from fully com- specified.

pact stencils:

3.3.1. Central difference scheme
<3_u>  Dwirs <3_u>  D¥un A typical spectrum is shown iffig. 3for A = 1,k = 1.
ox ) RS By ) iia e YY) The eigenvalues are measured in units of;in these units
the continuous GL strip has real parl, whereas the contin-
<@> = D vi j1+1/2, (8_”> = D[ vi j11/2. uous viscous strip has real pafil/g = —5. The computed
/i v 0x /172 j11/2 o spectrum s very different than the analytical one: the GL strip
has an oval shape, similar to that reported in the literature.
Problems start now that we need to substitute the velocity The second strip is also split, and connects to the GL strip by
gradient into the third equation i{2.4). The staggered dis-  a horizontal strip of eigenvalues. At higher values.dfnd
cretization of tensor fields was designed to optimally fit the k), the splitting of the GL strip is even more pronounced,
differential operators. It is however unclear how to define the
product of two tensors when their diagonal and off-diagonal Central—difference %=1 k=1 B=0.2 n=196
elements are defined at different points (it is also unclear 0.6 - - - - -
how to define positive-definiteness in this setting). Specifi-
cally, the calculation of2.4)requiress?” at cell corners, and
o™, du/dy, anddv/dx at cell centers. The natural solution is
to resort to second-order averaging: whenever a cell-centered
variable is needed at a cell’'s corner it is obtained by averag-
ing over the four nearest cell centers; the same applies when 2
a corner variable is needed at a cell's center. Second-order £ _,,|
extrapolations are used at boundary cells. For notational sim-

04

plicity, we denote the cell-to-corner and corner-to-cell inter- _04l
polated fields by overlines.
The resulting scheme is -0.6}
d u -D( o) = Dj ( = 5 4 5 2 1 0
—0; = u v; B b = - - -
a % = z+1/2/,ux i, j+1/2 /L) He

ou ou 1
+207; <—) +2 xy( ) — =(077 = 1), Fig. 3. Central-difference scheme: stability spectrumifes 1 andk = 1.
ox/; ;i ay/i; A
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fand ever_1tually, some of the gomputed eigenvalues protrude Staggered A=20 k=10 p=0.2 n=196
into the right half plane, implying that the computed Couette —r T T ‘v T T T T
flow is linearly unstable. For = 196 points, the loss of sta- 100 -
bility occurs already at ~ 10. In agreement with previous
work, the convergence of the spectrum to the analytical one, 5 7
asn — oo, is very slow. [ ]
3
3.3.2. Staggered scheme rg 0 .y
In Figs. 4 and Bve present stability spectra obtained with = : 3
the staggered scheme; the difference with the finite-difference f
scheme is strikingrig. 4 shows the spectrum far= 1 and -S0r : e
k = 1. The computed spectrum agrees perfectly with the an-
alytical prediction. There are two vertical strips of singular 100 |
eigenvalues with real partBe \w = —1 andfie Aw = —5, o
respectively, two discrete GL eigenvalues, which coincide -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2
with the predicted values within six significant digits, and Re hw
a small number of discrete viscous eigenvalues. To the best Staggered 1=20 k=10 (=02 n=196
of our knowledge, this is the first reported calculation that 100l
produces a spectrum in which the continuous strips of eigen-
values remain straight lines within 7—8 significant digits.
50 |
Staggered A=1 k=1 p=0.2 n=196
‘ ‘ - - - 3
~< oL
05} §
0.4}
0.3+ 50l
02t
o1t
3 ok -100 +
-0.1} -1 -1 09 -08 -07 -06 -05 -04
-0.21 Re Ao
-0.3}
Fig. 5. Staggered scheme: stability spectrumifes 20 andk = 10. The
—04} figure on the bottom shows a magnification of the GL spectrum.
-0.5¢
-6 5 4 =3 2 1 0
Re Aw
Staggered A=1 k=1 B=0.2 n=196 . Staggered  n=196 [=0.2
v ¥ i ¥ J T T ’ " ) " ) ) 4‘} ?.:1
05] -0.55} e el
- ol - - - A=100
04} -0.6+
0.3}
-0.65 f\\\
02}
01} = 07 .
3 o)
< ot @ -0.75 R
= x
=-01} g 08 ]
~0:2} -0.85 -
-0.3} —
-0.9 4
-0.4}
-0.5} -0.95 |
" " " n L s " = | ' ' s L L L L
-1.01 -1.005 -1 -0.995 -0.99 -0.985 -0.98 -0.975 -0.97 0 10 20 30 40 50 60 70 80
Re Ao k
Fig. 4. Staggered scheme: stability spectrumifer 1 andk = 1. The figure Fig. 6. Staggered scheme: the real part of the least stable eigenvalue as

on the bottom shows a magnification of the GL spectrum.

function of the wavenumbdsfor several values of the Weissenberg number.
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The stability spectrum fox = 20 andk = 10 is shown in

Fig. 5. The GL part of the spectrum retains its perfect struc-

ture, with the continuous part lying on the liffie Ao = —1

within 7—8 significant digits. The viscous part of the spec-

trum, however, distorts, becoming however even more stable.
In Fig. 6we plot the real part of the least stable eigenvalue

(the discrete GL mode) for different valueofin agreement

Fluid Mech. 127 (2005) 169-190

with the analytical predictionje Aw is an increasing function
of A but remains strictly below-1/2. Thus, the staggered
scheme seems immune to spurious linear instabilities at all
ranges of parameters.

Much insight is gained by examining the computed eigen-
functions. InFig. 7we plot eigenfunctions corresponding to
discrete GL and viscous eigenvalues. The eigenfunctions are

Staggered A=1 k=1 p=0.2 Am=-0.97739+0.30411i n=128
05 T T T T T T T T T
0
%
©
& -05F .
_1 1 1 1 1 1 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x 107
1 T T T T T T T T T
0
;
<) L i
o -
o
2 .
_3 1 1 1 1 1 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x107°
5 T T T T T T T T T
b
]
2 4
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Yy
Staggered A=1 k=1 [=0.2 A®m=-4.3932-82157e-15i n=128

T T T T

T T T T

0.1

vy

Re

-0.1

-0.2
0.

Fig. 7. Staggered scheme:

eigenfunctions corresponding to a discrete GL eigenvalue (top) and a discrete viscous eigenvalue (bottom).
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extended and smooth, which explains why they can be well point, i.e., is a discrete approximation to a delta-function.
approximated at relatively coarse resolution. Likewise, the functionss*’ and §o** differ from zero at
More interesting is the structure of the eigenvectors cor- two and three points, respectively, and thus approximate
responding to the singular eigenvalues, showfiin 8 The first and second derivatives of a delta function. The stag-
top portion of this figure shows the three components of gered discretization correctly captures the structure of the
the eigenvectobo for a singular GL mode. The function continuous GL modes, which explains why the eigenval-
30?7 differs from zero (within negligible errors) at a single ues can be predicted with such high accuracy. Note that as

Staggered A=1 k=1 p=0.2 Aw=-1+0.10156i n=128
0.5 T T T T T T T T T

Re o
]
T
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o

-0.5 -0.4 -0.3 -0.2 =01 0.1 0.2 0.3 0.4 0.5
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1k 4
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o] 0
]
o 1} .
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1 I 1 1 1
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Staggered A=1 k=1 p=02 Aiw=-5.0001+0.097533i n=128
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Fig. 8. Staggered scheme: eigenfunctions corresponding to a singular GL eigenvalue (top) and a singular viscous eigenvalue (bottom).
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n — oo, the computed eigenvectors do not converge to a supported at a single point, i.e., the structure of the singular-
smooth function. The support of these eigenvectors shrinksity is different.
asn grows, so that convergence takes place in the space of The computed spectrum far= 1 andk = 1 is depicted
distributions. in Fig. 9. The computation uses the staggered scheme, yet the
The lower portion ofFig. 8shows the three components of accuracy of the spectrum is comparable to that obtained with
the eigenvectodo for a singular viscous mode. The discrete a non-staggered scheme, and the usual splitting of the singu-
eigenfunctions are dominated by the distributional nature of lar spectrum occurs. An eigenfunction associated with one
the eigenfunctions, i.e., they behave like high-order deriva- of the singular eigenvalues is shownhiyg. 1Q it is less lo-
tives of the delta distribution, as predicted in Sectod calized than for Couette flow, and the singularity seems to be
One may wonder why calculations that are based on “ve- dominated by a regularized power-law divergence. Moreover,
locity formulations" show a splitting of the continuous spec- there is no decoupling between the conformation tensor and
tra, although the singular pure-stress eigenmodes are beinghe velocity field. Thus, we conclude that the success of the
filtered out. While the Graham-type eigenfunctions are con- staggered scheme for Couette flow is in some sense “acciden-
tinuously differentiable, their third and fourth derivatives, tal", and due to the very special nature of the eigenfunctions.
which are presentin the equations, exhibit delta-singularities,
and therefore challenge computational schemes in a way that
is similar to the pure stress modes. 4. Non-normality, pseudo-spectra and transients

3.4. Stability spectrum for Poiseuille flow Spectral calculations have been a standard tool in the study
of differential equations for a long time. As commented in
One may wonder at this point whether the use of stag- a review by Trefethe{23], spectral computations are useful
gered tensor fields is essential for an accurate approximatiorfor three basic reasons: (i) a physical reason —the eigenvalues
of the conformation tensor. The question is whether the accu-provide information about the behavior of the system, (ii) an
rate reproduction of the stability spectrum for Couette flow is algorithmic reason —transformation into a basis of eigenfunc-
“accidental", or, whether it is due to some exceptional prop- tions may speed up computations, and (iii) a psychological
erty of the staggered scheme. As a simple test, we briefly reason — the spectrum provides a simplified picture of the
consider the closely related problem of Poiseuille flow for an system as a set of points in the complex plane.
Oldroyd-B fluid. There, the steady velocity profile is given There is a growing awareness, however, that spectral anal-

by ysis may in certain cases lead to erroneous conclusions. This
may happen in problems in which the linear operator is non-
U(y) = 4(y — %)2’ normal. A normal operator is one that has a complete set of

orthogonal eigenfunctions, or equivalently, commutes with

and the Singu|ar Spectrum ana|ogous to the Singu|ar GL Specjts adjOint. In contrast, the eigenfunctions of a non-n(_)rmgl
trum lies on the segmeni + A~ + ikU(y) = 0. The main operator are not orthogonal and may not span the entire lin-
difference between Couette and Poiseuille flow is that the €ar space. Even if the eigenfunctions do form a complete set,

GL-like singular eigenfunctions for Poiseuille flow are not the change into eigenfunction coordinates may involve ex-
treme distortions of the space, which from a computational

Staggered =1 kel B=0.2 n=196 point of view are ill-conditioned. Generally, the spectral prop-

erties of non-normal operators do not necessarily determine
01l | the stability of the system: the spectrum of a non-normal op-
y __-' '-: | erator can even be empty, and examples can be constructed
‘ g 3 § . where the spectrum lies entirely on the left half plane, but yet,
-0.3} 1 the system is linearly unstable (e.g, the Zabczyk example in
—04} 1 [23]).

g e The study of non-normal matrices and operators goes back
& tothe beginning of the 20th century. There has been arenewed
06 activity in this field in the last 15 years, where the stability
-07 analysis of many physical systems has been re-examined with

S new computational tools dedicated to the study of non-normal
operators. A classical example where a discrepancy exists be-
=03 tween predictions based on spectral analysis and experiments
-1

- s : - is Poiseuille (Newtonian) flow in a pipe: spectral analysis pre-

= N = Re Ao a8 e e dicts stable behavior for arbitrarily large Reynolds number,

whereas transition to turbulence typically occurs in the lab-

Fig. 9. Poiseuille flow with the staggered scheme: the right-most part of the Oratory at a Reynolds number in the vicinity of 2000. This
spectrum fon. = 1 andk = 1. discrepancy has been analyzed2d] with emphasis on the
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role played by non-normality on the amplification of small who considered the transition from linear to nonlinear evo-
perturbations toward a nonlinear regime (see Orszag and Patution of perturbations.

tera[25] for a thorough investigation of the mechanism that One of the main tools in the study of non-normal operators
leads to turbulence). The role of non-normality in a viscoelas- is the resolvent. The resolvent of an operaiidgs a mapping

tic context was shortly discussed by Atalik and Keunif2$ 2+ (zI — A)~twithz e C. Itis defined fozin the resolvent

Staggered A=1 k=1 p=0.2 Aw=-1.0068-0.71823i n=196
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Fig. 10. Poiseuille flow with the staggered scheme: real part of an eigenfunction from the continuous GL strip. The six curves show, from top teebottom, t
real part ofe™*, 0¥, 6, p, u, andv. The parameters ave= 1 andk = 1.
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set, which is the complement of its spectrutfA). Thee- belongs to the spectrum of a perturbationfgfwhere the
pseudo-spectrum of the operafors defined as norm of the perturbation is smaller tharSince computations
always involve perturbations of operators (due to truncation
and roundoff errors), the pseudo-spectrum represents a range
of behaviors that one could expect in an actual computation.
In Fig. 11we plot pseudo-spectral contour lines foe 1
i.e., itis a subset of the resolvent set for which the resolvent andx = {1, 10, 100}. The contours are labeled in logarithmic
operator has sufficiently large norm. Here and below, norms units. These computations were performed with the Eigtool
correspond to the Euclidean vector norm and its subordinateMatlab Toolbox[27]. Roughly speaking, the contour lines
matrix norm. Equivalently, it can be defined as the closure of to the right of the singular GL spectrum are vertical. For

A(A) = {z: A —z1)7 b > %}

the set A = 1, even perturbations with norm as largecas 10~ do
not suffice to turn the system linearly unstable. ket 10
Ae(A)={z:3B,|B|| <¢z € A(A+ B)}. perturbation with norm as small as 10can lead to in-

stability, whereas fon. = 100 unstable behavior may oc-
The latter definition has a more intuitive interpretation. The cur due to perturbations with norm 16°. This gives an-
numberz € C belongs to the:-pseudo-spectrum oA if it other perspective on why instabilities occur at large enough
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0.5¢ b b 4 5t '5,6/\ E 3, 1
0.4f 4
3 3 ' ] -+
< | A i 3} ~ T 4
c 0.3 , & E ) L | & I @
0.2} , a2t ' ' ,
0.1 1t 1
L [ . NIRRT _ ¢
-1.5 -0.5 0 05 -15 -1 -05 0 0.5
Re Lo Re iw
Staggered A=100 k=1 D=0 n=196
60 — — : —
50 ﬁ-ﬁ - _u_: - -n——;_s___H ]
= 7 7
5 L
40+ g <
4%,
2 30t | J
= )i &
s0f | (> .
:3> 1
10} Q.g> J
0 /,g-"\\ ‘ L L
-15 -1 -0.5 0 0.5
Re Am

Fig. 11. Contour lines of the pseudo-spectrafes 1 and (a). = 1, (b)» = 10, and (ch = 100, The contours are labeled using & psrale. The computation
uses the staggered discretization with- 196 points, and the Eigtool Matlab Toolbox for the evaluation of the pseudo-spectra.
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Weissenberg number, without yet revealing the destabilizing the norm of the evolution operator exceeds at some interme-
diate time a bound inversely proportionaktdl he proofisin

mechanism.
Pseudo-spectral calculations provide also information fact very simplg28]. Letz € A<(A) have positive real part.
about the magnitude of transient growth. If for some 0 Then, from the Laplace transform identity:

and constant:
o0
(zf —A) L= / e 4 dr,
0

ae(A) = | n)‘a();)EHeA > C,
€Ae
it follows that

then
C 1 A * R A o A
supjet| = . —suple | z/ e 1T e di > f e d
~0 € Ne€Z =0 0 0
B 1
=l — A > =

The real numbet(A) is called thee-pseudo-spectral ab-

scissa, and corresponds to the real part of the least-stable el-

ement of the pseudo-spectrum. Thus, if¢qeseudo-spectra  where the last inequality follows from the definition of the
e-pseudo-spectrum. Since this inequality holds for ary

protrude significantly into the positive reals for smalthen
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graph correspond to computations with= 64 points (solid lines); = 128 points (dashed lines), and= 256 points (dash-dotted lines).

Fig. 12. The scaled-pseudo-spectral abscissg(A)/e vs. logge for k = 1 and (a)r = 1, (b) A = 10, (c)2 = 20, and (d)» = 100. The three lines in each
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Ac(A) ande > 0, it follows that

A
suplle || > sup@.

>0 e>0

(4.1)

Inequality(4.1)states that the maximum valuec A) /¢,
taken over all values o, is a lower bound on the maximum
transient amplification. That is, there exists a timend a

vectoru (the initial conditions), such that

ae(A)

ull > sup——|lul|.
e>0

”e—IoA

FromFig. 1, for example, we deduce the existence of an
initial perturbation, which, foi. = 20, is amplified, at some
intermediate time by a factor of a least 140. Roe 100,
the transient amplification may exceed a factor of several
thousands.

Adirect verification of the extent of transient amplification
can be computed by exponentiating numerically the differ-
ence operator and calculating the norm of the resulting evo-
lution operator. The results are showrHig. 13 Again, three
levels of refinement are used to assess the accuracy of the re-
sults. Here too, the results seem to converge well fer 20.

As expected, the maximal transient amplification exceeds the

In Fig. 12we plot the value o (A)/e versus logy e for lower bound deduced froiffig. 12 The duration of the tran-
k = 1 and various values of Each graph shows three curves sient period of growth is also monotonically increasing with
corresponding to different level of refinement. The graphs for the Weissenberg number.
A < 20 seemto have converged, whereas the computation for  The initial condition that leads to maximum transient am-
A = 100 has not yet reached a converging regime, even for plification can be approximated directly from the (discrete)

n = 256 points. operator & via an SVD, witht chosen such to maximize
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the curves inFig. 13 Thus, we identified the most ampli-
fied perturbation fok = 1 and)\ = 20; snapshots of its time
evolution are depicted ifrig. 14 Although the maximum
amplification occurs at time= 90, we observe that while

the perturbation decays, it generates spatial oscillations of

increasing frequency. At time= 200, the perturbation is
still larger in norm than the initial perturbation, while os-
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deformation of the stress perturbation and for the transient
growth. The advection by a shearing field is responsible, on
the other hand, for the generation of high-frequency cross
stream waves.

Thus, as time evolves, “energy" is transfered to high-
frequency modes, resulting in cross-stream under-resolution
and large truncation errors. Once this happens, the behavior

cillations have a wavelength of several mesh spacings. Forof the system is difficult to predict, and notably, small pertur-

slightly longer times this computation, which uses- 256

bations may be amplified. Of course, as long as the linearized

points, can no longer resolve these cross-stream oscillationssystem is considered, the linear instability is imprinted in the

Note that the velocity componeats significantly smaller
in absolute value than the stress components. In fact, the solu
tion shown inFig. 14exhibits a stress field with small diver-
gence, which suggests that it might be related to the family of
divergence-free stress fields identified in Sec2dh Set for
example an Airy stress functiaf(x, y) = sin(rx) cosfry) in
(2.7). This corresponds to an initial perturbation

sin(Tx) cosfry) — cosfrx)sin(ry)
— cosfrx) sin(ry) sin(rx) cosgry)

so(x, y,0) = 72 (
which for long timer > A is dominated by

10
sa(x, y, 1) ~ w2r2e /> sin[r(x — yt)] cosfry) (0 O) .

(4.2)

Note how, for fixedk, the spatial frequency increases linearly
in time, while the duration of the transient growth scales with
the Weissenberg number. Thus, we conclude that the mos
amplified perturbation is associated with non-modal solu-
tions of the form(2.7).

The interplay between transient amplification and the
formation of large cross-stream gradients can also be see
through the integral formulation of the constitutive equation:

o(x, 1) = e "*F(x,t,0)a(x, 0)F ' (x, 7, 0)

1 t
+ / e V2 F(x, 1, 5)F (x, 1, 5)ds,
0

whereF (x, t, s) is the relative deformation gradient between
time sandt at the Lagrangian coordinate The steady solu-
tiona(x, t) = X is a solution of this integral equation, with

) |

Foro(x, 1) = X + o (x, t) with do(x, O) divergence-freeF
remains unchanged, adad(x, r) is explicitly given by

So(x, 1) =e/* (; ;-) so(x, 0) <:: ;?) )

1t

F(x,t,s) = (0 1

This expression clarifies how divergence-free stress fields

evolve. The deformation gradierk, is responsible for the

spectrum. The added contribution of the above analysis is the
revelation of a mechanism that may cause truncation errors
to dominate the numerical solution.

5. Addition of stress diffusivity

The fact that the Oldroyd-B and UCM equations can sus-
tain solutions that are singular is bothersome. By itself, it
does not invalidate the model, as long as we have not shown
that unphysical singular solutions may evolve from physi-
cally significant initial data. Yet, one wonders if the highly
non-normal nature of the problem, which makes it so sensi-
tive to perturbations is not an indication of model deficiency.
Thoughts along those lines were expressed by El-Kareh and
Leal[15], which analyzed the existence of solutions for con-
stitutive models of finitely extensible polymers. Their obser-
vation was that all standard methods of proof fail because
it is not possible to guarantee the regularity of the stress
across streamlines, as there is no interaction between dis-
Eoint streamlines. QuotinfL5]: “While no proof is provided
here that solutions in some Sobolev space fail to exist without
the modifications to the model suggested here, it is certainly
true that none of the currently available methods to prove ex-

"stence can be applied successfully. Our point of view is that

this is an indication of problems with the model rather than
any inadequacy of available mathematical theory.”

El-Kareh and Leal showed that existence could be proved
(up to a certain a priori assumption) if stress diffusion was
added to the constitutive model. That is, a tebW2¢ is
added to the right hand side of the constitutive law. The ad-
dition of stress diffusion has a physical justification, result-
ing from the Brownian motion of the center of mass of the
molecules. In bead-and-springs models from which macro-
scopic dynamics may be derived (up to the need for closure
assumptions in nonlinear models), there is a stochastic force
which prevents the springs to collapse to zero length. The
same source of randomness should also cause center of mass
diffusion, but this component is usually omitted by a “lo-
cal homogeneity assumption”. An estimate for the magni-
tude of the diffusivity coefficient is given ifi5], D ~ 10~°.

The question is whether such a small parameter has any
noticeable effect on the behavior of the system over larger
scales.

The addition of stress diffusivity in computations has
been considered already by Keillg], but only along the
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stream-wise direction. The addition of isotropic diffusivity the singular spectrum has disappeared, and instead there is a
has been studied by Sureshkumar and B@®$, which re- nearly vertical finite array of discrete eigenvalues. Moreover,
ported that the addition of small amount of (artificial) diffu- the right-most part of the graph is nearly identical in all four
sivity has little effect on the regular, spatially extended eigen- figures, implying that the sensitivity to the method of com-
modes, while completely changing the nature of the singular putation and to the resolution has been significantly reduced
spectra,; in fact, the singular spectra are destroyed and discretevith the addition of stress diffusivity. This is not surprising,
spectra emerge instead. Stress diffusion is commonly used inas solutions are now much smoother, and therefore truncation
turbulent viscoelastic simulations, without which gradients errors remain relatively small.
grow unbounded due to the fast mixing of stream lines. In Fig. 16 shows the spectra obtained with the staggered
[17], forexample, itis argued that stress diffusion is necessaryscheme fork = 1, A =1 and a diffusivity coefficient of
in order to correctly predict the tail of the energy spectrumin D = 10-8 with n = 64, n = 128, andn = 256 points. For
turbulent flows. n = 64 the results seem identical to the diffusionless spec-
Fig. 15 shows the stability spectrum fdr=1, A =1, trum, which means that the diffusion length is not resolved.
and a stress diffusivity coefficied® = 10~4. The graphs on  As the number of points increases the structure changes, but
the top correspond to the staggered scheme with 128 evenfom = 256ithas notyet converged to the true spectrum.
andn = 256 points, whereas the graphs on the bottom cor- Yes, there is a noticeable tendency of stabilization as the spa-
respond to similar calculations using the central-difference tial resolution approaches the characteristic stress diffusion
scheme. The first observation, is that in agreement [&#h length.

Staggered A=1 D=0.0001 k=1 p=0.2 n=128 Staggered A=1 D=0.0001 k=1 p=0.2 n=256
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Fig. 15. Stability spectrum fat = 1, » = 1, and a stress diffusivity constant bf= 10~%. The upper row shows results obtained with the staggered scheme
with n = 128 (left) andn = 256 (right) point. The lower row shows the corresponding results obtained with the central-difference scheme.
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Fig. 16. Stability spectra fat = 1, » = 1, and a stress diffusivity constant bf= 10~8. The results were obtained with the staggered schememwitl64,
n = 128, andh = 256 points.

6. Conclusions Oldroyd-B model. Numerical problems arise due to under-
resolution.

The main result in this paper is the identification of a The fact that the Oldroyd-B model is capable to sustain
family of non-modal stress perturbations of Couette flow, stress perturbations with arbitrarily large spatial gradients,
which are divergence free, and therefore do not couple backwhich do not excite the velocity field is bothersome. This
into the velocity field. These perturbations are exact solu- can happen because the stress field interacts with itself only
tions of the nonlinear system. In particular, there exist initial through the induced velocity field, and the latter is unaffected
perturbations in this class, which for high Weissenberg num- by divergence-free stress components. It has been argued in
ber, exhibit large transient growth accompanied with the for- the past that stress diffusion becomes important at sufficiently
mation of cross-stream oscillations whose frequency grows small scales, which are however under the resolution attained
linearly in time. While these perturbations have an asymp- in numerical simulations. El-Kareh and Ld&b] have even
totic temporal profile that scales likée~*/*, and therefore raised the possibility that Oldroyd-like models may be ill-
eventually decay, the oscillations may, at large enough Weis- posed without the presence of non-local stress interactions,
senberg number, reach sub-grid scales before decaying. Wealthough this speculation has never been confirmed.
believe this under-resolution effect to be at the heart of the  Our opinionis thatin any case, a numerical method should
spurious instabilities observed generically in numerical cal- not ignore the presence of a mechanism that creates sub-grid
culations. We emphasize that those oscillatory solutions areoscillations. Those oscillations destroy the smoothness which
not numerical artifacts—they are bona fide solutions of the is implicitly assumed on the scale of a single computational
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