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We study a variant of the Kac–Zwanzig model of a particle in a heat bath. The
heat bath consists of n particles which interact with a distinguished particle via
springs and have random initial data. As n Q . the trajectories of the distin-
guished particle weakly converge to the solution of a stochastic integro-differ-
ential equation—a generalized Langevin equation (GLE) with power-law
memory kernel and driven by 1/fa-noise. The limiting process exhibits fractio-
nal sub-diffusive behaviour. We further consider the approximation of non-
Markovian processes by higher-dimensional Markovian processes via the
introduction of auxiliary variables and use this method to approximate the
limiting GLE. In contrast, we show the inadequacy of a so-called fractional
Fokker–Planck equation in the present context. All results are supported by
direct numerical experiments.

KEY WORDS: Fractional diffusion; Hamiltonian systems; heat bath; stochastic
differential equations; Markovian approximation; weak convergence.

1. INTRODUCTION

Anomalous diffusion is a well-studied phenomenon applicable to a broad
variety of fields (e.g., particles moving through media with internal degrees
of freedom, such as actin networks (3)). A random process X(t) is said to
exhibit anomalous diffusion when the variance of its displacement after
time t has the asymptotic form

E |DX(t)|2 ’ tc, t Q .,

where E denotes averaging, or expectation, and c ] 1. The process is called
sub-diffusive when c < 1 and super-diffusive when c > 1; the case c=1
corresponds to regular diffusion.



Early work on anomalous diffusion dates back to the 1960s with the
Montroll–Weiss model of continuous-time random walk. (39) Random walks
serve as standard models for normal diffusion processes (e.g., a discrete
time random walk may weakly converge to Brownian motion (18)). Contin-
uous time random walk are characterized by two parameters: a character-
istic waiting time between jump events and a jump distance. Anomalous
diffusion arises when the characteristic waiting time diverges. (5) The diver-
gence of relaxation times is the key for the occurrence of anomalous diffu-
sion. Systems that exhibit anomalous diffusion are characterized by either a
diverging waiting time, or equivalently, by a strong non-Markovian
nature—the evolution of the system at time t depends on its past, and the
range of this ‘‘memory’’ is long compared with the characteristic timescale
of its motion. In contrast, normal diffusion occurs when the microscopic
timescale is small compared to the observation time.

Mechanical models of a particle immersed in a heat bath were intro-
duced by Ford, Kac, and Mazur (15, 14) and Zwanzig (54) as simple models to
study kinetics and irreversible statistical mechanics. The ‘‘heat bath’’ is a
collection of n particles which interact with a ‘‘distinguished’’ particle
through springs; the heat bath particles are assumed to have random initial
data distributed according to the laws of statistical mechanics. There exists
a huge amount of literature in this subject. Heat bath models have received
renewed interest in recent years in the context of variable reduction, (32, 33, 48)

coarse time stepping, (25, 48) and transition state models. (29)

In ref. 33 a variant of the Kac–Zwanzig model was considered. For a
certain regime of parameters, the trajectory of the distinguished particle
tends, as n Q . (the ‘‘thermodynamic limit’’), to a limiting process Q(t),
which satisfies a stochastic integro-differential equation (SIDE), known as
a generalized Langevin equation (GLE). The convergence is in a weak
sense (in distribution) in the space of continuous functions. (8) The param-
eters of the model, namely, the masses and spring constants, determine the
parameters of the limiting GLE, which are the driving noise and the
memory kernel.

In this paper we construct a Kac–Zwanzig model within the setting of
ref. 33, with the heat bath parameters chosen such that the limiting GLE
has a memory kernel that decays as a power-law (Section 2). The limiting
GLE for Q(t) has the form

Q̈(t)+k0 F
t

0
(t − s)−c Q̇(s) ds+VŒ(Q(t))=z(t), (1.1)

where z(t) is a stationary centered Gaussian process with auto-covariance
Ez(t) z(s)=b−1k0 |t − s|−c, with b being an inverse temperature. The
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process z(t) is a generalized random process which can be identified with
the derivative of fractional Brownian motion; (35) it is often referred to as a
1/fa-noise. The weak convergence of the trajectories of the distinguished
particle is proved in Section 3.

There are two simple, but instructive cases for which (1.1) can be
solved analytically: in the case of a free particle, V(Q)=0, and in the case
of a quadratic potential well, V(Q)=1

2 Q2; in both cases the equation is
linear and can be solved by standard methods (Section 4). In the case of a
free particle the distribution of Q(t) exhibits anomalous diffusion with
exponent c. Although anomalous diffusion is often associated with non-
Gaussian behaviour, here an initial Gaussian distribution on Q and Q̇
remains Gaussian for all times. In the case of a quadratic potential well the
Boltzmann equilibrium distribution is reached as t Q .. The rate of
equilibration is sub-exponential (i.e., slower than exponential) as expected
for a sub-diffusive system.

In order to make quantitative predictions about solutions of (1.1) it is
necessary to derive equations for the one- and multi-dimensional probabil-
ity density functions (PDFs). For Markovian systems driven by white noise
the equation that determines the one-dimensional PDF is the Fokker–
Planck equation (FPE). (17) There is, however, no simple differential equa-
tion for the one- and multi-dimensional PDFs for non-Markovian processes.
The derivation of such equations is at the heart of the Mori–Zwanzig
approach; (19, 42) see also ref. 28 and references therein for a review of non-
Markovian GLEs. An alternative is to approximate the non-Markovian
system by a higher-dimensional Markovian system through the introduc-
tion of auxiliary variables. This approach dates back to Mori (40) and has
been applied extensively by Kłosek–Dygas et al., (11, 12) and recently, in the
context of 1/fa-noise, by Landis et al. (34) In Section 5 we describe how to
approximate, in general, a Gaussian non-Markovian system by a higher-
dimensional Markovian SDE. We follow Ref. 34 to construct a particular
example where the memory kernel decays as a power-law. The whole
approach may seem circular: a high-dimensional system is proved to con-
verge to the solution of a non-Markovian SIDE, which is then approxi-
mated by a higher-dimensional SDE. As we show in this paper, a (deter-
ministic) system of very large size may thus be accurately approximated by
a (stochastic) system of, say, 6 variables.

In Section 6 we consider the fractional Fokker–Planck equation
(FFPE), which is a partial integro-differential equation often viewed as a
natural generalization of the FPE for strongly non-Markovian systems
which exhibit anomalous diffusion. (4–6, 37, 45, 52) For continuous-time random
walk, the FFPE governs the distribution of the process in a certain limit
where the jump distance tends to zero. (5) It is however unclear whether it
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has a much wider scope as does the FPE for Markovian system. We solve
the FFPE for the case of a free particle, and show that its solution differs
substantially from the solution found in Section 4. This simple example
shows that the FFPE does not describe systems governed by the GLE (1.1).

In Section 7 we present numerical experiments which test the conver-
gence of the trajectories to the solution of (1.1), and the Markovian
approximation considered in Section 5.

2. A KAC-ZWANZIG HEAT BATH MODEL

We introduce a mechanical model of a particle immersed in a heat
bath of n particles. The model is defined by the Hamiltonian:

H(Qn, Pn, q, p)=
1
2

P2
n+V(Qn)+

1
2

C
n

j=1

p2
j

mj
+

1
2

C
n

k=1
kj(qj − Qn)2, (2.1)

where (Qn, Pn) are the position and momentum of the distinguished par-
ticle, which has unit mass and resides in a potential field V(Qn); q=
(q1, q2,..., qn) and p=(p1, p2,..., pn) are the positions of momenta of the n
heat bath particles. The jth particle in the heat bath has mass mj, and
interacts with the distinguished particle through a linear spring with stiff-
ness constant kj. We also define wj=(kj/mj)1/2, which is the characteristic
frequency of the jth heat bath particle. All motions take place in one
dimension. The subscript n in Qn, Pn labels the size of the heat bath, which
will eventually be taken infinitely large as we consider the thermodynamic
limit.

Hamilton’s equations are

Q̇n=Pn

Ṗn=−VŒ(Qn)+ C
n

k=1
kj(qj − Qn)

q̇j=pj/mj

ṗj=−kj(qj − Qn),

(2.2)

supplemented with initial conditions Qn(0)=Q0, Pn(0)=P0, qj(0)=qj0,
and pj(0)=pj0. The initial data for the heat bath particles are assumed to
be randomly drawn from a Gibbsian distribution with inverse temperature b,
conditioned by the non-random initial data Q0, P0. For fixed Qn, Pn the
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Hamiltonian (2.1) is quadratic in q, p, hence the corresponding measure is
Gaussian. It is easily verified that

qj0=Q0+b−1/2k−1/2
j tj

pj0=b−1/2m1/2
j gj,

where tj, gj ’ N(0, 1) are mutually independent sequences of i.i.d. random
variables.

The system (2.2) describes a particle interacting with a collection of n
oscillators with spectrum wj. Conceptually, a heat bath is a mechanical
system characterized by a broad and dense spectrum. A natural way to
realize such a scenario, without being too restrictive, is to choose the
parameters kj, mj such that the corresponding frequencies wj are random,
uniformly distributed in the range 1/nc+[0, na], with 0 < a, c < 1. Specifically,

wj=n−c+nanj, nj i.i.d., n1 ’ U[0, 1].

Thus, as n Q ., the spectrum covers an increasingly large range of
frequencies in an increasingly dense manner. Note the use of a low-
frequency cutoff, wj \ 1/nc, which was not necessary in ref. 33. This is
because of the singularity in the auto-correlation of fractional Brownian
motion.

Having chosen the frequencies wj, it remains to choose either the
masses mj, or the spring constants kj. In this paper we take

kj=f2(wj) Dw, f2(w)=
2a0

p
C(1 − c) sin 1cp

2
2 1

w1 − c
, (2.3)

where Dw=na/n is the mean spectral density, C(z) is the Euler Gamma
function, (1) and c ¥ (0, 1) and a0 > 0 are parameters. The reason for these
choices will become apparent in the following.

The probability space is defined by the three mutually independent
sequences of random variables nj, tj, and gj; the first is related to the model
parameters—the spectrum of the heat bath—and the two other are related
to the initial data. Our results for the limiting behaviour of the system as
n Q . hold almost surely with respect to the choice of frequencies, which
we denote by n-almost-surely, or, n-a.s. Probabilities, expectations and
variances with respect to the n variables are denoted by En, Pn, and Varn.
Similarly, Ptg, Etg, and Vartg denote probabilities, expectations and
variances with respect to the initial data; when no confusion should arise,
we use the shorter notation P, E, and Var.
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As usual, the qj, pj variables in (2.2) can be integrated, giving rise to
an integro-differential equation for the trajectory Qn(t) of the distinguished
particle:

Q̈n(t)+F
t

0
on(t − s) Q̇n(s) ds+VŒ(Qn(t))=zn(t), (2.4)

where

on(t)= C
n

j=1
f2(wj) cos(wjt) Dw (2.5)

zn(t)=b−1/2 C
n

j=1
f(wj)[tj cos(wjt)+gj sin(wjt)](Dw)1/2. (2.6)

The function on(t) is the memory kernel, which encapsulates the depen-
dence of the force that the heat bath exerts on the distinguished particle at
time t on the history of its trajectory up to that time; it is random only
through the frequencies wj. The function zn(t) is a random forcing which
depends both on the frequencies and on the initial data. In the present
setting it is a stationary centered Gaussian process; its auto-covariance
satisfies the fluctuation-dissipation relation

Etgzn(t) zn(s)=b−1on(t − s),

irrespective of the choice of frequencies.
It will be shown below that zn(t) tends, as n Q ., to a generalized

(distribution valued) random process. This suggests that we should con-
sider an integrated version of (2.4):

Q̇n(t)+F
t

0
Kn(t − s) Q̇n(s) ds+F

t

0
VŒ(Qn(s)) ds=Q̇0+Zn(t), (2.7)

where Kn(t)=> t
0 on(s) ds and Zn(t)=> t

0 zn(s) ds, i.e.,

Kn(t)= C
n

j=1
w−1

j f2(wj) sin(wjt) Dw (2.8)

Zn(t)=b−1/2 C
n

j=1
w−1

j f(wj){tj sin(wjt)+gj[1 − cos(wjt)]}(Dw)1/2. (2.9)

The integrated forcing function, Zn(t), is a centered Gaussian process with
auto-covariance,

EtgZn(t) Zn(s)=b−1[Rn(t)+Rn(s) − Rn(t − s)],
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where

Rn(t)=F
t

0
Kn(s) ds= C

n

j=1
w−2

j f2(wj)[1 − cos(wjt)] Dw. (2.10)

Thus, Zn(t) has stationary (but not independent) increments,

Zn(t) − Zn(s) ’ N(0, b−1Rn(t − s)).

3. THE THERMODYNAMIC LIMIT

We now turn to analyze the ‘‘thermodynamic limit’’ of the above
model, that is, the asymptotic limit as n Q .. We derive a SIDE for the
limiting process Q(t). The basic method is the same as in refs. 32 and 33.
Some technical differences arise due to the singularity of on(t) as n Q .. As
a result, the second-order SIDE has to be interpreted in the sense of gen-
eralized functions, in contrast with the situation in refs. 32 and 33.

Consider first the kernel on(t), defined by (2.5). It can be viewed as a
Monte-Carlo approximation of the integral

F
na+1/nc

1/nc
f2(w) cos(wt) dw,

which, as n Q ., tends to the Fourier cosine transform of f2(w):

o(t)=F
.

0
f2(w) cos(wt) dw=

a0

|t|c
. (3.1)

It is precisely in order to obtain this asymptotic limit that f2(w) was
chosen as in (2.3).

Similarly, the kernel Kn(t), given by (2.8), can be viewed as a Monte-
Carlo approximation of

K(t)=F
t

0
o(s) ds=

a0

1 − c
|t|1 − c, (3.2)

whereas Rn(t) approximates

R(t)=F
t

0
K(s) ds=

a0

(1 − c)(2 − c)
|t|2 − c. (3.3)
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Finally, Zn(t) can be viewed as a Monte-Carlo approximation of the
stochastic integral:

Z(t)=b−1/2 F
.

0
w−1f(w) sin(wt) dB1(w)

+b−1/2 F
.

0
w−1f(w)[1 − cos(wt)] dB2(w),

where B1(w), B2(w) are independent standard Brownian motions. This
stochastic integral represents the (non-stationary) centered Gaussian
process whose auto-covariance is b−1[R(t)+R(s) − R(t − s)], a process
which we identify as

Z(t)=
2b−1/2a0

(1 − c)(2 − c)
BH(t), (3.4)

where BH(t) is fractional Brownian motion with Hurst parameter
H=1 − 1

2 c. (35) Unlike standard Brownian motion, the increments of frac-
tional Brownian motion are not independent; for Hurst parameter H > 1

2 ,
as is the case here, increments are positively correlated, meaning that if
BH(t) is increasing in a certain interval, it is likely to remain increasing in
the future. The derivative of fractional Brownian motion is often called a
‘‘1/fa-noise,’’ in reference to the power-law behaviour of its auto-covari-
ance. All these arguments are made rigorous in the remaining part of this
section.

We first prove that Kn, given by (2.8), converges to K, given by (3.2),
in L2[0, T]; the interval [0, T] is bounded, but arbitrary. Convergence
occurs for almost every set of frequencies (n-a.s.). Having proven the con-
vergence of Kn, the convergence of Rn and the (weak) convergence of Zn

are immediate consequences.
The kernel Kn(t) is of the form

Kn(t)= C
n

j=1
h(wj, t) Dw, (3.5)

where h(w, t)=w−1f2(w) sin(wt) satisfies

|h(w, t)| [ C min(wc − 1, wc − 2) — hg(w), (3.6)

and C > 0 is a constant that may depend on T, c, a, and c, but not on n;
throughout this section we use C as a generic notation for a finite positive
constant independent of n. We also define

mn(t)=Enh(w, t)=
1
na F

1/nc+na

1/nc
h(w, t) dw,
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and observe that (3.6) implies that

|mn(t)| [
C
na — mg

n . (3.7)

It follows that EnKn=namn converges uniformly to K; indeed,

|EnKn(t) − K(t)| [ :F 1/nc

0
h(w, t) dw :+: F.

1/nc+na
h(w, t) dw :

[ C :F 1/nc

0
wc − 1 dw :+C :F.

na
wc − 2 dw :

[ C[n−cc+n−a(1 − c)], (3.8)

which, for 0 < a, c < 1, converges to zero uniformly on [0, T].

Lemma 3.1. Let Kn(t) and K(t) be given by (2.8) and (3.2), respec-
tively. Then n-a.s. Kn Q K in L2[0, T]:

Pn( lim
n Q .

||Kn − K||L2[0, T]=0)=1.

Proof. The proof follows the lines of Lemma 3.1 in ref. 33. Since by
(3.8) EnKn(t) converges uniformly to K(t), it is sufficient to show that n-a.s.
Kn − EKn Q 0 in L2[0, T], i.e., that for any E > 0

Pn(||Kn − EnKn ||L2[0, T] > E i.o.)=0

(i.o.=infinitely often), which, by the Borel–Cantelli theorem (see, e.g.,
ref. 7), holds if there exists an integer b for which

sn — E ||Kn − EnKn ||2b
L2[0, T]=E 1F

T

0
|Kn(t) − EKn(t)|2 dt2

b

is summable. To evaluate sn we rewrite it as follows:

sn=F
T

0
· · · F

T

0
E{|Kn(t1) − EKn(t1)|2 · · · |Kn(tb) − EKn(tb)|2} dt1 · · · dtb.

For any p=1, 2,..., b,

Kn(tp) − EKn(tp)=Dw C
n

j=1
[h(wj, tp) − mn(tp)],
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hence

sn=(Dw)2b F
T

0
· · · F

T

0
C
n

j1=1
· · · C

n

j2b=1
Vj1,..., j2b

(t1,..., tb) dt1 · · · dtb, (3.9)

where

Vj1,..., j2b
(t1,..., tb)=E{[h(wj1

, t1) − mn(t1)][h(wj2
, t1) − mn(t1)]

· · · [h(wj2b − 1
, tb) − mn(tb)][h(wj2b

, tb) − mn(tb)]}, (3.10)

are the centered joint moments of degree 2b of h(wj, tp).
Since wj and wi are independent for j ] i, then many of these

moments vanish; every Vj1,..., j2b
(t1,..., tb) that contains an index j which

appears only once vanishes. We estimate sn by regrouping the 2b-tuple sum
(3.9) by the number k of distinct indices in the product (3.10); k assumes
values from 1 to b because each index must occur at least twice, otherwise
(3.10) is zero. The number of terms corresponding to a given k can be
bounded by Cnk, where C is a constant that depends on b, but neither on k
nor n (there are nk ways to ‘‘decode’’ a k-letter pattern with an n-letter
alphabet). Now, each of the Vj1,..., j2b

(t1,..., tb) which corresponds to a given
k is of the form

Vj1,..., j2b
(t1,..., tb)=D

k

r=1

1
na F

1/nc+na

1/nc
D
mk

s=1
[h(w, tr, s) − mn(tr, s)],

where m1, m2,..., mk \ 2 and m1+m2+...+mk=2b; the times tr, s belong to
the set (t1,..., tb). Using the bounds (3.6) and (3.7) on h(w, t) and mn(t),
Vj1,..., j2b

(t1,..., tb) can be bounded as follows:

|Vj1,..., j2b
(t1,..., tb)| [ D

k

r=1

1 1
na F

1/nc+na

1/nc
[hg(w)+mg

n ]mr dw2

[
1

nak D
k

r=1
C
mr

ar=0

1mr

ar

2 (mg
n )mr − ar F

na

1/nc
[hg(w)]ar dw

[
C
nak D

k

r=1
C
mr

ar=0

1mr

ar

2 (mg
n )mr − ar nc(1 − c) ar

[ C
n2c(1 − c) b

nak .
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Combining all together we have

sn [ C(Dw)2b C
b

k=1
nk n2c(1 − c) b

nak

[ C 1na

n
22b

nb n2c(1 − c) b

nab =Cnb[2c(1 − c) − (1 − a)].

If we choose c < 1
2 (1 − a)/(1 − c) < 1

2 (1 − a) then we can always take b large
enough so that sn is summable. L

Corollary 3.1.

1. n-a.s. Rn(t) converges to R(t) pointwise.

2. n-a.s. Rn(t), R(t) are uniformly (both in n and t) Hölder continu-
ous with exponent a=1

2 .

Proof. The first statement is an immediate consequence of the n-a.s.
L2-convergence of Kn Q K,

|Rn(t) − R(t)|=:F t

0
[Kn(s) − K(s)] ds : [ T1/2 ||Kn − K||L2[0.T] Q 0.

The second statement follows from Cauchy–Schwarz,

|Rn(t) − Rn(s)|=:F t

s
Kn(s) ds :

[ 1F
t

s
dsŒ 2

1/2 1F
t

s
K2

n(sŒ) dsŒ 2
1/2

[ |t − s|1/2 ||Kn ||L2[0, T],

and ||Kn ||L2[0, T] is uniformly bounded since Kn Q K. L

Theorem 3.2. n-a.s. the random processes Zn(t), given by (2.9),
converge weakly in C[0, T] to the fractional Brownian motion Z(t), given
by (3.4).

Proof. The proof relies on the following theorem (Gikhman and
Skorokhod, (18) p. 450): Let Zn be a collection of real-valued almost-surely
continuous stochastic processes on [0, T], such that
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1. The finite dimensional distributions of Zn weakly converge to
those of an almost-surely continuous process Z.

2. There exist positive constants b, g, M such that for all n

E |Zn(t+u) − Zn(t)|b [ M |u|g

(the tightness condition).

Then Zn S Z in C[0, T].
Kolmogorov’s condition (ref. 31, p. 22) applied to Gaussian processes

states that Z has a continuous version if its auto-covariance is Hölder con-
tinuous, as is the case since EnZ(t) Z(s)=b−1[R(t)+R(s) − R(t − s)]. To
show that the finite dimensional distributions of Zn converge weakly to
those of Z we need to show that for any collection of times 0 [ t1 <
t2 < ... < tk [ T, the joint probability density function of (Zn(t1),..., Zn(tk))
converges pointwise to the joint probability density function of
(Z(t1),..., Z(tk)). For Gaussian processes this task is greatly simplified as it
is sufficient to show the pointwise convergence of the auto-covariance,
which was established in Corollary 3.1.

It remains to show the tightness property. For integer b,

En |Zn(t+u) − Zn(t)|2b=(2n − 1)!! (En |Zn(t+u) − Zn(t)|2)b

=2bb−b(2n − 1)!! [Rn(u)]b.

Since the Rn are uniformly Hölder continuous with exponent a=1
2 and

Rn(0)=0, then |Rn(u)| [ C |u|1/2, and the tightness condition is satisfied by
taking b > 2. L

Comment. Tauberian theorems relate asymptotic properties of
functions to asymptotic properties of their integral transforms (e.g., ref. 23,
p. 91). Thus, the power-law decay of o(t), as t Q ., results only from the
power-law divergence of f2(w), as w Q 0 (in addition to the requirement
that the Fourier integral exists), and is insensitive to the precise structure
of f2(w) at finite w.

Having established the (n-a.s.) convergence of Kn Q K and Zn S Z, we
can now prove the weak convergence of Qn to a limiting process:

Theorem 3.3. Suppose that VŒ(Q) is globally Lipschitz continuous,
then n-a.s the random processes Qn(t), defined by (2.4), weakly converge in
C1[0, T] to the process Q(t) satisfying the SIDE:

Q̇(t)+F
t

0
K(t − s) Q̇(s) ds+F

t

0
VŒ(Q(s)) ds=P0+Z(t). (3.11)
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Proof. Since n-a.s. Kn Q K in L2[0, T] (in particular, in L1[0, T])
and Zn S Z in C[0, T], then the required result follows if the mapping
(K, Z) W Q defined by (3.11) is a continuous mapping from L1[0, T] ×
C[0, T] to C1[0, T] (weak convergence is preserved under continuous
mappings). This continuity is a well-known property of the Volterra equa-
tion (see refs. 21, 38, and Section 12 in ref. 25). L

Comment. Since the original system (2.4) is a second order IDE, we
rewrite (3.11) as

Q̈(t)+F
t

0
o(t − s) Q̇(s) ds+VŒ(Q(t))=z(t), (3.12)

where z(t)=Ż(t) is a generalized random process, namely, a Gaussian
noise with auto-covariance Ez(t) z(s)=b−1o(t − s).

4. SOLUTIONS OF THE GENERALIZED LANGEVIN EQUATION

In this section we study the generalized Langevin equation (3.12),
which, as just shown, governs the weak limit Q(t) of the trajectories Qn(t);
the weak limit is with respect to the initial data tj, gj, and is attained
almost surely with respect to the random frequencies nj. Throughout this
section, expectations and variances are with respect to the initial data, but
will be denoted for convenience by simply E and Var.

In two particular cases (3.12) can be solved analytically: for a free
particle, V(Q)=0, and for a particle in a quadratic potential, V(Q)=1

2 Q2.
In the first case the process diffuses anomalously from its initial position.
In the second case it approaches, as t Q ., a stationary distribution—the
equilibrium Boltzmann distribution. These two cases are solvable since
(3.12) is then linear, and can be solved by standard methods; see, e.g.,
ref. 44. Since z(t) is a Gaussian (generalized) process, Q(t) obtained by a
linear mapping of z(t) is also Gaussian. It follows that the statistics of the
trajectories Q(t) are fully determined by the mean EQ(t) and the auto-
covariance Cov(Q(t), Q(s)).

4.1. Free Particle

For a free particle, V(Q)=0, Q(t) solves the SIDE

Q̈(t)+F
t

0
o(t − s) Q̇(s) ds=z(t). (4.1)

Fractional Kinetics in Kac–Zwanzig Heat Bath Models 303



Equations of this type are commonly solved using the Laplace transform.
We denote the Laplace transform of a function Y(t) by

Ŷ(p)=F
.

0
Y(t) e−pt dt.

Introducing the functions H(t) and h(t)=Ḣ(t), which we define by their
transforms:

Ĥ(p)=p−1[p+ô(p)]−1, ĥ(p)=[p+ô(p)]−1,

the solution to (4.1) is

Q(t)=Q0+P0H(t)+F
t

0
H(t − s) z(s) ds

P(t)=P0h(t)+F
t

0
h(t − s) z(s) ds.

(4.2)

Since Ez(t)=0 it follows that

mQ(t)=EQ(t)=Q0+P0H(t)

mP(t)=EP(t)=P0h(t).
(4.3)

The variance of the displacement and the momentum is further found to be
given by

bsQQ(t)=2 F
t

0
H(s) ds − H2(t)

bsPP(t)=1 − h2(t).

(4.4)

If o(t)=a0 t−c then h(t) is expressible in terms of a special function

h(t)=E2 − c( − k0t2 − c),

where Ea(t) are the Mittag–Leffler functions (13) defined by the series
expansion,

Ea(t)= C
.

n=0

tn

C(an+1)
.

We also introduce the generalized Mittag–Leffler functions,

Ea, b(t)= C
.

n=0

tn

C(an+b)
,
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so that Ea(t)=Ea, 1(t). The Mittag–Leffler functions play an important role
in fractional differential calculus; they are a generalization of the exponen-
tial function, and reduce to it for a=1. The long-time behaviour of Ea, b(t)
is

Ea, b(t) ’ −
t−1

C(b − a)
t Q .. (4.5)

After some straightforward manipulations we find

bsQQ(t)=2t2 E2 − c, 3( − k0t2 − c) − [t E2 − c, 2( − k0t2 − c)]2

bsPP(t)=1 − [E2 − c( − k0t2 − c)]2.
(4.6)

The long-time asymptotic behaviour of the variances is obtained by substi-
tuting (4.5),

bsQQ(t) ’
2

k0C(1+c)
tc, bsPP(t) ’ 1 −

t2(c − 1)

[k0C(c − 1)]2 . (4.7)

Thus, the limiting behaviour of free particle is sub-diffusive with exponent c.
Graphs of bsQQ(t) and bsPP(t) for three values of c are shown in Fig. 1.
Normal diffusive behaviour is recovered as c Q 1. The particularly
remarkable property of sub-diffusion is the slow approach of sPP(t) toward
its equilibrium value b−1. This is in contrast with the exponential equili-
bration rate of the velocity variance in a diffusive regime.

4.2. Quadratic Potential Well

We next consider the case of a particle in a quadratic potential well,
V(Q)=1

2 Q2. The trajectory Q(t) satisfies the SIDE

Q̈(t)+F
t

0
o(t − s) Q̇(s) ds+Q(t)=z(t). (4.8)

Here again, the equation is linear hence Q(t) is a Gaussian process. Intro-
ducing the functions H1(t) and h1(t)=Ḣ1(t) defined by their Laplace
transform,

Ĥ1(p)=[p2+pô(p)+1]−1, ĥ1(p)=p[p2+pô(p)+1]−1.
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Fig. 1. sQQ(t) (top) and sPP(t) (bottom) for k0=C(1 − c), b=1, and c=1/3 (solid lines),
c=1/2 (dashed lines), and c=2/3 (dash-dotted lines). The dotted lines in the top graph show
the asymptotic solutions (4.7).
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The solution to (4.8) is

Q(t)=Q0+P0H1(t) − Q0 F
t

0
H1(s) ds+F

t

0
H1(t − s) z(s) ds

P(t)=P0h1(t) − Q0H1(t)+F
t

0
h1(t − s) z(s) ds,

(4.9)

so that

mQ(t)=Q0+P0H1(t) − Q0 F
t

0
H1(s) ds

mP(t)=P0h1(t) − Q0H1(t),

and the variance of Q(t) and P(t) is given by

bsQQ(t)=2 F
t

0
H1(s) ds − H2

1(t) −5F
t

0
H1(s) ds6

2

bsPP(t)=1 − h2
1(t) − H2

1(t).

(4.10)

Note the structural similarity between this case and the free particle
case. There is however a fundamental difference, which arises from the dif-
ferent asymptotic behaviours of Ĥ(p) and Ĥ1(p) as p Q 0. Small p asymp-
totic behaviour in the Laplace domain determines the large t asymptotic
behaviour in the time domain. Thus, trajectories diffuse away for the free
particle, and remain bounded for a confining potential (a potential V(Q) is
called confining if the Boltzmann factor e−bV(Q) is normalizable).

Figure 2 shows graphs of the functions h1(t), H1(t), and > t
0 H1(s) ds

for c=0.6; these curves were obtained by numerically inverting the Laplace
transform. (10) In Fig. 3 we show bsQQ(t) and bsPP(t), given by (4.10). Both
approach, as t Q ., to the equilibrium value 1. Note the very slow
algebraic decay of sQQ(t).

5. MARKOVIAN APPROXIMATION OF THE GENERALIZED

LANGEVIN EQUATION

The generalized Langevin equation (3.12) defines a non-Markovian
process. In the previous section we considered particular cases where the
equation is linear, and can therefore be solved by analytical methods.
Markovian systems can be analyzed through the differential equations that
determine the evolution on the one- and multi-dimensional PDFs—the
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Fig. 2. The functions h1(t) (solid line), H1(t) (dashed line), and > t
0 H1(s) ds (dash-dotted line)

for c=0.6.

Fig. 3. bsQQ(t) (solid line) and bsPP(t) (dashed line) for k0=C(1 − c) and c=0.6.
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Fokker–Planck equation for system driven by white noise. (17) It is not
known, in general, how to derive such differential equations for non-
Markovian system (a general formalism does exist, (19, 42) but does not
provide closed equations without further approximation). A classical
approach is to approximate the non-Markovian system by a Markovian
one, through the addition of auxiliary variables. This approach was already
proposed by Mori (40) in the context of the Mori–Zwanzig projection for-
malism; (41, 53) see also ref. 20. It was further developed and applied in a
series of papers by Kłosek–Dygas et al. (11, 12) Recently, a Markovian
approximation was used for 1/fa-noise; (34) it is this approximation which
we adopt in this section.

We rewrite the generalized Langevin equation as a first-order system:

Q̇(t)=P(t)

Ṗ(t)=−VŒ(Q(t)) − F
t

0
o(t − s) P(s) ds+z(t),

recalling that z(t) is a stationary centered Gaussian process with auto-
covariance

Ez(t) z(s)=b−1o(t − s).

The goal is to approximate the trajectories (Q(t), P(t)) by trajectories
(Q̃(t), P̃(t)) that solve a Markovian system with m auxiliary variables:

dQ̃(t)=P̃(t) dt Q̃(0)=Q0

dP̃(t)=−[VŒ(Q̃(t)) − gTu(t)] dt P̃(0)=P0

du(t)=−[P̃(t) g+Au(t)] dt+C dB(t) u(0) ’ N(0, S),

(5.1)

where u(t)=(u1(t),..., um(t))T, g is a constant m-vector, A, C, S are con-
stant m × m matrices, and B(t) is a vector of m independent standard
Brownian motions.

The equation for u(t) is linear, and its solution can be written expli-
citly; after multiplication by the row vector gT we obtain

gTu(t)=−F
t

0
õ(t − s) P̃(s) ds+z̃(t),

where

õ(t)=gTe−Atg

z̃(t)=gTe−Atu(0)+F
t

0
gTe−A(t − s)C dB(s).
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Since gTu(t) represents in (5.1) the interaction term between the heat bath
and the distinguished particle, the parameter A, C, S, g have to be chosen
such that z̃(t) is a stationary centered Gaussian process with auto-covari-
ance b−1õ(t), the latter being an approximation of b−1o(t).

By our choice of u(0), z̃(t) is a centered Gaussian process with auto-
covariance

Ez̃(t) z̃(s)=gTe−At 5S+F
t N s

0
eAyCCTeAT

y dy6 e−ATsg.

Comparing with the expression for õ(t) we need

S+F
s

0
eAyCCTeAT

y dy=b−1eAseATs,

which is satisfied if

S=b−1I, CCT=b−1(A+AT). (5.2)

Thus, A and g determine S and C.
The relation between the parameters A, g, and the kernel is best

viewed through the Laplace transform of õ(t),

ỗ(p)=F
.

0
e−ptgTe−Atg dt=gT(A+pI)−1 g. (5.3)

The right hand side is a rational function of p; the numerator is a polyno-
mial of degree m − 1 and the denominator is a polynomial of degree m.
Thus, the Markovian approximation consists of two steps: First one has to
approximate the Laplace transform of the memory kernel by a rational
function. Then, a matrix A and a vector g have to be constructed such to
yield the required ỗ(p) via (5.3). The first step invokes approximation
theory whereas the second step is made systematic within linear system
theory (see, e.g., Zadeh and Desoer (51)).

Exponential Approximation. The simplest case occurs when o(t)
can be approximated by a sum of exponentials:

õ(t)= C
m

k=1
D2

k e−akt,
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ak > 0, which corresponds in p-space to

ỗ(p)= C
m

k=1

D2
k

p+ak
.

This approximation is realized by taking A diagonal with elements
Aii=ai > 0, and g=(D1, D2,..., Dm)T.

Jacobi-Fractions. Another class of problems is when ô(p) has a
continued fraction representation in the form of a Jacobi fraction: (49)

ỗ(p)=
D2

1

p+a1+
D2

2

p+a2+
D2

3

p+a3+ z

, (5.4)

where the ak are positive. Approximating ô(p) by its mth convergent, this
approximation can be realized by taking A tridiagonal of the form

A=R
a1 − D2

D2 a2 − D3

D3 a3 − D4

z z z

Dm am

S
and g=(D1, 0,..., 0)T. Since A+AT is diagonal, so is C with Cii=`2ai.
Continued fraction approximations of this type are used by Kłosek–Dygas
et al. (11, 12) A GLE based on a continued fraction expansion was also con-
structed by Adelman and Doll for a particle interacting with an harmonic
chain. (2)

Comment. If A is diagonalizable, A=T − 1 LT, then (5.1) can be
brought into the equivalent form

dQ̃=P̃(t) dt Q̃(0)=q0

dP̃= − [VŒ(Q̃(t)) − gTTv(t)] dt P̃(0)=P0

dv(t)= − [P̃(t) T − 1g+Lv(t)] dt+T − 1C dB(t) v(0) ’ T − 1N(0, S),

where the equations for v1(t),..., vm(t) are now decoupled, i.e., an exponen-
tial approximation of the memory kernel can be constructed.

In this paper the memory kernel has Laplace transform ô(p)=
C(1 − c) pc − 1, 0 < c < 1. A Markovian approximation for the case c=1/2
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is constructed by Landis et al., (34) and the same construction can be applied
for arbitrary c . For c=1/2 we have the continued-fraction representation:

ỗ(p)=
C(1 − c)

1+
1

2
p − 1

+
1

2+
1

2
p − 1

+
1

2+ z

whose first four convergents are

ỗ1(p)=
2C(1 − c)

p+1

ỗ2(p)=
2C(1 − c) (2p+2)

p2+6p+1

ỗ3(p)=
2C(1 − c) (3p2+5p+3)

p3+15p2+15p+1

ỗ4(p)=
2C(1 − c) (4p3+28p2+28p+4)

p4+28p3+70p2+28p+1
.

A direct verification shows that this approximation is realized by the choice

A=R
1 2 2 2 · · · 2
2 5 6 6 · · · 6
2 6 9 10 · · · 10
x x x z

2 6 10 14 · · · 4m − 3

S g=`2C(1 − c) R
1
1
1
x

1

S . (5.5)

The matrix C is subsequently extracted from (5.2).
In Fig. 4 we compare the function 1/p1/2 with the mth convergent

ỗm(p) for m=2, 4, 8, 16. For the 16th convergent the graphs are indistin-
guishable over almost five decades.

The Markovian approximation (5.1) with A, g given by (5.5) can be
solved for the two problems considered in Section 4. One only has to
replace ô(p) by ỗ(p) and numerically invert the Laplace transform. Con-
sider the free particle: in Fig. 5 we compare sQQ(t) given by (4.7) with b=1
and c=1/2 (solid line) with the result of the Markovian approximation
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Fig. 4. Solid line: Log-log graph of the function 1/p1/2. Dashed lines: continued fraction
approximation with m=2, 4, 8, and 16 terms.

Fig. 5. Solid line: sQQ(t) for a free particle with c=1/2 and b=1. Dashed lines: sQQ(t) for
the Markovian approximation with m=2, 4, 8.
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with m=2, 4, 8 (dashed lines). The larger m the longer is the intermediate
asymptotic regime of anomalous diffusion. For m=8 the curves almost
coincide up to time t=120.

6. COMPARISON WITH THE FRACTIONAL FOKKER–PLANCK

EQUATION

For a particle satisfying a Markovian equation driven by random
noise, the phase space density w(Q, P, t) is governed by a Fokker–Planck
equation (FPE). (17) In the limit of high friction the FPE may be reduced
into a Smulochowsky equation for the marginal density W(Q, t):

“

“t
W(Q, t)=LW(Q, t),

where

Lg(Q)=KD
5−

“

“Q
VŒ(Q)+

“
2

“Q2
6 g(Q),

and KD is a diffusion constant. (We are assuming here unit temperature
and a dimensionless setting in which dimensional constants, such as the
Boltzmann constant, can be ignored.) The terminology used in the litera-
ture is non-uniform; the equation for w(Q, P, t) is sometimes called a
Klein–Kramers equation, whereas the equation for W(Q, t) is sometimes
called a Fokker–Planck equation.

Several authors addressed generalizations of the Fokker–Planck equa-
tion for non-Markovian systems that exhibit fractional diffusion. One such
generalization is the fractional Fokker–Planck equation (FFPE):

“

“t
W(Q, t)=0D1 − c

t LW(Q, t), (6.1)

where 0D1 − c
t is the Riemann–Liouville fractional derivative (43)

0D1 − c
t g(t)=

1
C(c)

“

“t
F

t

0

g(s)
(t − s)1 − c

ds.

The formal solution of (6.1) can be expressed in terms of the Mittag–
Leffler function:

W(Q, t)=Ec(Ltc) W(Q, 0).
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The attractive features of the FFPE are: (i) W(Q, t) remains non-
negative and normalized, as required by a probability density. (ii) In the
presence of a stationary potential, V(Q), the distribution tends as t Q . to
the Boltzmann distribution exp[ − V(Q)]. (iii) The relaxation rate is sub-
exponential; in fact, the solution operator of the FFPE is expressible in
terms of Mittag–Leffler functions. (iv) The FFPE tends to a normal
Fokker–Planck equation as c Q 1. (v) Finally, the FFPE can be shown to
be the correct governing equation in certain cases. For example, it is the
limiting master equation for continuous time random walk. (5) The literature
on the FFPE is too vast to be fully covered. We address to reader to refs. 4,
5, 37, and 45 for recent developments.

Comment. Several authors derived fractional diffusion equations
for solutions to linear SIDE. (26, 36, 44, 50) The drawback of these derivations is
that they are restricted to the problem at hand; in order to construct the
diffusion equation one has to know beforehand the evolution of the prob-
ability density. These fractional diffusion equations are not used as a pre-
dictive tool; they are merely a reformulation of a result that can be
obtained independently.

In the rest of this section we solve the FFPE (6.1) for a free particle
and compare the solution with the Gaussian distribution derived in Sec-
tion 4. A general method for solving the FFPE, based on an integral trans-
form that maps fractional diffusion into normal diffusion, was presented by
Barkai. (4) The case of a free particle can be solved by more direct methods;
we follow here ref. 5.

The FFPE for a free particle is

“

“t
W(Q, t)=0D1 − c

t
5KD

“
2

“Q2 W(Q, t)6 , (6.2)

where we take W(Q, 0)=d(Q). A solution for this problem was derived by
Schneider and Wyss, (45) expressible in terms of the Fox H function. (16)

From a computational point of view it is easier to solve (6.2) in p-space
and revert back to t-space using a numerical inversion of the Laplace
transform. Using the fact that fractional derivatives satisfy the transforma-
tion rule

0D1 − c
t g(t) W p1 − cĝ(p),

Eq. (6.2) reads in p-space

− d(Q)+pŴ(Q, p)=KD p1 − c
“

2

“Q2 Ŵ(Q, p),
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and W(Q, p) vanishes as |Q| Q .. This equation can be solved by standard
methods, yielding

Ŵ(Q, p)=
1

2 K1/2
D p1 − c/2 exp 1 −

pc/2

K1/2
D

|Q|2 .

In Fig. 6 we plot W(Q, t) for c=0.6 and t=0.5, 1, 2, 4, 8. Note the
sharp non-Gaussian shape of the solution, in contrast with the Gaussian
distribution of Q(t). In addition to the cusp at Q=0, the large-Q tail of the
distribution also exhibits non-Gaussian behaviour; as Q Q .

W(Q, t) ’ Q−1 1Q2

tc
21 − c/2

exp 5− c 1Q2

tc
21/(2 − c)6 ,

where c is a constant that depends on c and on KD. (5)

Thus, we conclude that the FFPE does not apply to the GLE (3.12).
As mentioned above, it is possible to derive diffusion equations for W(Q, t)
both for the free particle and for the quadratic potential, but these equa-
tions do not generalize for other cases.

Fig. 6. Solution of (6.2): W(Q, t) versus Q for t=0.5, 1, 2, 4, 8 and c=0.6.
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7. NUMERICAL RESULTS

In this section we present numerical results for the Hamiltonian system
(2.2) and provide some comparison with the Markovian approximation
(5.1) with A, g, C, S given by (5.5) and (5.2). To integrate (2.2) we used a
symplectic Euler scheme (ref. 24, p. 312), which is known to exhibit good
stability properties, and in particular, allows the use of relatively large time
steps. (25, 48) The results presented below are for heat baths consisting of
n=2000 particles; we used a=1/3 and c=1

2 (1 − a) in the selection of the
random frequencies. Ensemble averages were calculated by averaging over
collections of 104 realizations. Only small variations were found when the
number of particles was increased to n=5000 or when the size of the
ensemble was increased.

In Fig. 7 we show a sample path of Qn(t) for the case of a free particle,
V(Q)=0 and c=0.6.

In Fig. 8 we show the evolution of the variance of Qn(t) and Pn(t) for
a free particle with initial conditions Q0=P0=0. The thick line corre-
sponds to the statistics generated by 104 realizations. The dotted lines are

Fig. 7. Sample path of Qn(t) for a system of n=2000 oscillators and c=0.6.
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Fig. 8. The mean square displacement Qn(t) (top) and mean square momentum Pn(t)
(bottom) for a free particle in initial state Q0=P0=0 and c=0.6. The thick lines were
obtained by averaging over 3000 realizations. The dotted lines represent the asymptotic
predictions (4.6).
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the n Q . theoretical predictions sQQ(t) and sPP(t), given by (4.6). For
Var Qn(t) the two curves are almost indistinguishable up to t=6. The
agreement between Var Pn(t) and sPP(t) is less sharp; in particular,
Var Pn(t) oscillates around its asymptotic value 1, which we interpret as a
sampling error.

In Fig. 9 we show the evolution of the distribution of Qn(t) generated
by an ensemble of 104 realizations. The top figure shows snapshots of the
distribution, which, as t increases, approaches the Boltzmann distribution
(thick dashed line). The figure on the bottom show the evolution of
Var Qn(t) and Var Pn(t), which we compare to the n Q . predictions
sQQ(t) and sPP(t), given by (4.10). The agreement is again very good,
except for the persistent fluctuations in Var Pn(t).

In Fig. 10 we show the evolution of the distribution of Qn(t) for a
particle in a double-well potential, V(Q)=Q4/4 − Q2/2. Here too, the dis-
tribution approaches, as t Q ., the equilibrium Boltzmann distribution.

So far, the statistical analysis was generated by evolving ensembles. It
is also of interest to compare ensemble averages with long term time
averages generated by sample paths. Jakšić and Pillet studied the ergodicity
of GLEs, (30) but it is not known whether the finite n system is ergodic and if
it is, whether the sequence of invariant measures converges to the invariant
measure of the limiting equation (recall that our theorems are restricted to
bounded time intervals). In Fig. 11 we show the empirical distribution for a
particle in a single-well potential (open circles), and compare it with the
Boltzmann distribution (dashed line). In Fig. 12 we repeat the calculation
for a double-well potential. Our results indicate that the process is indeed
ergodic, however, the convergence of the empirical distribution requires
very long averaging intervals (cf. ref. 33). This is due, presumably, to the
very long correlation time associated with the algebraic decay of the
memory kernel.

Finally, we compare the Hamiltonian system (2.2) with the Markovian
approximation (5.1). In Fig. 13 we show the distribution of exit times,2 y,

2 The problem of exit times for non-Markovian process was studied extensively in the context
of activation rate theory. Kramers’ theory and its extension to systems with memory kernels
is reviewed by Hänggi et al. (28) The original work can be found in Grote and Hynes, (22)

Hänggi and Mujtabai, (27) and Carmeli and Nitzan; (9) numerical tests for an exponential
memory function were conducted by Straub et al. (46, 47).

from a potential well. We used the double-well potential V(Q)=Q4/4 −
Q2/2 and started the distinguished particle in the left well, assigning initial
conditions Q0=−1, P0=0. We ran 104 realizations, defining the exit time
as the first crossing time of the point Q=0. The solid lines represent the
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Fig. 9. Top: snapshots of the distribution of an ensemble of 104 trajectories for a particle in
a single-well potential V(Q)=Q2/2, initial data Q0=P0=0, and c=0.6. The solid lines show
the distribution at times t=0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 4, 8. The dashed line corresponds to the
Boltzmann distribution. Bottom: time evolution of Var Qn(t) (thick solid line) and Var Pn(t)
(thick dashed line). The dotted lines are the n Q . predictions (4.10).
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Fig. 10. Snapshots of the distribution of an ensemble of 104 trajectories for a particle in a
double-well potential V(Q)=Q4/4 − Q2/2, initial data Q0=P0=0, and c=0.6. The solid
lines show the distribution at times t=0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 4, 8. The dashed line corre-
sponds to the Boltzmann distribution.

distribution of y for the Hamiltonian system with n=2000 and c=1/2.
The symbols represent the distribution of y for the SDE (5.1) with m=4
(circles) and m=8 (crosses). The agreement is very good, and the differ-
ence between 4 and 8 auxiliary variables is very small, probably dominated
by sampling errors.

8. CONCLUDING REMARKS

We presented a simple particle-in-a-heat-bath model, which gives rise
to fractional kinetics. While anomalous diffusion strictly occurs only in the
limit of an infinitely large heat bath, thousands of heat bath particle suffice
to observe anomalous diffusion over tens of time units. Indeed, anomalous
diffusion should be viewed as intermediate asymptotics when the relaxation
time is larger than the observation time. The limiting process was found to
satisfy a SIDE driven by 1/fa-noise. Since the limiting driving noise was
Gaussian, the SIDE could be approximated by a Markovian SDE through
the addition of auxiliary variables. Our numerical results show that the
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Fig. 11. Open circles: empirical distribution of Qn for a particle in a single-well potential
V(Q)=Q2/2 and c=0.6; the distribution was calculated over a sample path of length
T=50000. Dashed line: the Boltzmann distribution.

Fig. 12. Same as Fig. 11 for a double-well potential V(Q)=Q4/4 − Q2/2.
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Fig. 13. Distribution of exit times from the potential-well V(Q)=Q4/4 − Q2/2 for initial
data Q0=−1, P0=0; the exit time is defined as the first passage time through the point
Q=0. The distributions are based on ensembles of 104 realizations. The solid line corresponds
to the Hamiltonian system (2.2) with n=2000 particles and c=1/2; the dashed line corre-
sponds to the Markovian approximation (5.1) with m=4 (circles) and m=8 (crosses). The
temperature is b−1=1 (top) and b−1=4 (bottom).
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trajectories induced by a heat bath of a large number of particles may be
well approximated by an SDE with, say, four extra variables. This work
generalizes some of the results in ref. 33 where an exponential memory was
eliminated by the addition of one extra variable.

We note that the method of Markovian approximation applies only
for the case where the driving noise is Gaussian and the memory term is
linear. The treatment of SIDEs driven by non-Gaussian noise is an open
problem. While the FFPE was found inadequate in the present problem is
may well be appropriate for other classes of non-Markovian systems with
diverging relaxation times.
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30. V. Jakšić and C.-A. Pillet, Ergodic properties of the non-Markovian Langevin equation,
Lett. Math. Phys. 41:49–57 (1997).

31. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus (Springer, New York,
1991).

32. R. Kupferman and A. Stuart, Fitting SDE models to nonlinear Kac–Zwanzig heat bath
models, submitted to Physica D (2003).

33. R. Kupferman, A. Stuart, J. Terry, and P. Tupper, Long term behaviour of large
mechanical systems with random initial data, Stoch. Dyn. 2:533–562 (2002).

34. S. Landis, B.-Z. Borovsky, and Z. Schuss, The influence of 1/fa phase noise on a second-
order delay lock loop: Model construction and analysis, preprint, (2003).

35. B. Mandelbrot and J. van Ness, Fractional Brownian motion, fractional Gaussian noise
and applications, SIAM Rev. 10:422 (1968).

Fractional Kinetics in Kac–Zwanzig Heat Bath Models 325



36. J. Masoliver and K. Wang, Free inertial processes driven by Gaussian noise: Probability
distributions, anomalous diffusion, and fractal behavior, Phys. Rev. E 51:2987–2995
(1995).

37. R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to
thermal equilibrium: A fractional Fokker–Planck equation approach, Phys. Rev. Lett.
82:3563–3567 (1999).

38. R. Miller, Nonlinear Volterra Integral Equations (W. A. Benjamin, Philippines, 1971).
39. E. Montroll and G. Weiss, Random walks on lattices. II, J. Math. Phys. 6:167–181 (1965).
40. H. Mori, A continued-fraction representation of the time-correlation function, Prog.

Theor. Phys. 34:399–416 (1965a).
41. H. Mori, Transport, collective motion, and Brownian motion, Prog. Theor. Phys.

33:423–450 (1965b).
42. H. Mori, H. Fujisaka, and H. Shigematsu, A new expansion of the master equation, Prog.

Theor. Phys. 51:109–122 (1974).
43. K. Oldham and J. Spanier, The Fractional Calculus (Academic Press, New York, 1974).
44. J. Porrà, K.-G. Wang, and J. Masoliver, Generalized Langevin equation: Anomalous dif-

fusion and probability distributions, Phys. Rev. E 53:5872–5881 (1996).
45. W. Schneider and W. Wyss, Fractional diffusion and wave equation, J. Math. Phys.

30:134–144 (1989).
46. J. Straub, M. Borkovec, and B. Berne, Shortcomings of current theories of non-Markovian

activated rate processes, J. Chem. Phys. 83:3172–3174 (1985).
47. J. Straub, M. Borkovec, and B. Berne, Non-Markovian activated rate processes: Com-

parison of current theories with numerical simulation data, J. Chem. Phys. 84:1788–1794
(1986).

48. A. Stuart and J. Warren, Analysis and experiments for a computational model of a heat
bath, J. Stat. Phys. 97:687–723 (1999).

49. H. Wall, Analytic Theory of Continued Fractions (D. Van Nostrand, New York, 1948).
50. K. Wang, Long-time-correlation effects and biased anomalous diffusion, Phys. Rev. A

45:833–837 (1992).
51. L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach

(McGraw–Hill, New York, 1963).
52. G. Zaslavsky, Chaos, fractional kinetics and anomalous transport, Physics Reports

371:461–580 (2002).
53. R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys. 9:215–220 (1973).
54. R. Zwanzig, Problems in nonlinear transport theory, in Systems far from Equilibrium,

L. Garrido, ed. (Springer, New York, 1980), pp. 198–225.

326 Kupferman


	1. INTRODUCTION
	A KAC-ZWANZIG HEAT BATH MODEL
	THE THERMODYNAMIC LIMIT
	SOLUTIONS OF THE GENERALIZED LANGEVIN EQUATION
	MARKOVIAN APPROXIMATION OF THE GENERALIZED LANGEVIN EQUATION
	COMPARISON WITH THE FRACTIONAL FOKKER-PLANCK EQUATION
	NUMERICAL RESULTS
	CONCLUDING REMARKS
	ACKNOWLEDGMENTS

