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Abstract. We present a numerical scheme for incompressible viscous flow, formulated as an
equation for the stream function. The pure stream function formulation obviates the difficulty
associated with vorticity boundary conditions. The resulting biharmonic equation is discretized
with a compact scheme and solved with an algebraic multigrid solver. The advection of vorticity is
implemented with a high-resolution central scheme that remains stable and accurate in the presence
of large gradients. The accuracy and robustness of the method are demonstrated for high Reynolds
number flows in a lid-driven cavity.
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1. Introduction. The vorticity formulation of the Navier–Stokes equations is a
classical starting point for approximation methods, due to the distinguished role of
vorticity in high Reynolds number flows. The difficulty with a vorticity formulation is
the lack of natural boundary conditions; the no-slip boundary conditions do not have
a simple counterpart in terms of vorticity. In the context of computational methods,
the problem of vorticity boundary conditions has a long history, dating back to the
30’s [22]; it has received much attention within the context of vortex methods [6], and
there exists a substantial amount of recent work (see, e.g., Goodrich and Soh [11],
Auteri and Quartapelle [3], Anderson and Reider [2], and E and Liu [8, 7]).

Recently, Ben-Artzi, Fishelov, and Trachtenberg have developed a method of
vorticity/stream function dynamics [4]. This method uses explicitly the space of
functions in which the dynamics take place. Specifically, the stream function dynamics
take place in the Sobolev space H2

0 , whereas the vorticity field resides in the image
of H2

0 under the action of the Laplace operator. At the end of every time step a
provisional solution is projected back onto the right functional space, in analogy with
the projection onto the space of divergence-free velocity fields in the primitive-variable
formalism [5]. As a result, no reference to vorticity boundary conditions is needed, and
instead, natural boundary conditions are imposed (as an integral part of the dynamics
space) on the stream function. The scheme we present in this paper belongs to this
category. Like the scheme in [4], it evolves the stream function within the above-
mentioned functional space, but rather than using a “predictor-corrector” approach,
it does it via implicit time stepping. In both cases, the computational complexity is
dominated by the solution of a linear system of biharmonic type.

The advection of vorticity has been implemented using the Kurganov–Tadmor
(KT) scheme [16], which was developed in the context of hyperbolic conservation laws;
this scheme has been shown to remain accurate and robust in the presence of large
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gradients; at the same time, it shares the relative simplicity of the central differencing
framework. In addition, the KT scheme has a well-behaved semidiscrete limit, and as
a result, time stepping is not tied to the spatial discretization (except for the standard
stability requirements). The independence of the spatial and temporal discretizations
adds a degree of modularity that may greatly simplify subsequent adaptations and
improvements.

The biharmonic viscous term is discretized by means of a compact stencil (see
[1]), which simplifies the treatment of boundary conditions. The fourth-order elliptic
equation is then solved with an algebraic multigrid (AMG) solver [13]. This technique
can be adapted with little modification to more complicated systems and geometries.

In section 2 we present the flow equations in vorticity-stream function formula-
tion and describe the difficulty associated with boundary conditions. In section 3 we
investigate a linear model equation, uxxt − uxxxx = 0, inspired by the stream func-
tion formulation of the Navier–Stokes equations. This system is simple enough to be
completely tractable but is still rich enough to capture the issue of boundary condi-
tions. We prove the convergence of an implicit scheme that uses a compact stencil.
The convergence is with respect to the H2 norm, which is the appropriate norm for
a variable analogous to the stream function. In section 4 we extend the scheme of
section 3 to the Navier–Stokes equations in a two-dimensional bounded domain. In
section 5 we present numerical results for a classical benchmark problem: flow in a
two-dimensional lid-driven cavity. The method is found to be accurate and robust
up to a regime of high Reynolds numbers, in which the flow becomes highly unstable
and generates convoluted vorticity patterns. The scheme seems to be able to resolve
vorticity patterns almost down to the scale of a single mesh size.

2. The vorticity-stream function formulation. We consider incompressible
viscous flow in a two-dimensional domain. The motion of the fluid is governed by the
Navier–Stokes equations,

∂u

∂t
+ (u ·∇)u = −∇p + ν∆u,

∇ · u = 0,
(2.1)

where u = u(x, t) = (u(x, t), v(x, t)) is the Eulerian velocity field, p = p(x, t) is the
pressure, and ν is the kinematic viscosity. In a bounded domain Ω enclosed by rigid
walls, the impermeability of the walls and the no-slip condition imply

u(x, t) = U(x, t), x ∈ ∂Ω, t > 0,(2.2)

where U is the velocity of the wall.
In terms of the vorticity field ω = (∇×u)z = ∂xv− ∂yu, the flow equations read

∂ω

∂t
+ (u ·∇)ω = ν∆ω,(2.3)

where u is obtained from ω through the div-curl relations

∇ · u = 0,

(∇× u) · ẑ = ω.
(2.4)

The divergence condition implies that the flow field is derivable from a scalar stream
function, ψ(x, t),

u = ∇⊥ψ =

(
−∂ψ

∂y
,
∂ψ

∂x

)
,(2.5)
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which, substituted into the curl condition, yields the Poisson equation

(∇× u) · ẑ = ∆ψ = ω.(2.6)

Finally, the boundary conditions (2.2) translate into boundary conditions for the
stream function

∇⊥ψ = U, x ∈ ∂Ω.(2.7)

The set of equations (2.3), (2.5), and (2.6), together with the boundary conditions,
(2.7), is known as the vorticity-stream function formulation of the Navier–Stokes
equations.

The classical difficulty with the vorticity-stream function formulation is the im-
proper partition of boundary conditions. The presence of a dissipative term in (2.3)
requires the specification of boundary conditions for the vorticity, but these are not
prescribed explicitly. Vorticity boundary conditions are extremely important from a
physical point of view as they represent the mechanism of vorticity generation at the
boundary. On the other hand, the Poisson equation (2.6) is overdetermined by both
Neumann and Dirichlet boundary conditions (2.7).

This difficulty is immediately removed if the vorticity equation (2.3) is interpreted
instead as an equation for the stream function

∂

∂t
∆ψ +

[
(∇⊥ψ) ·∇

]
∆ψ = ν∆2ψ.(2.8)

This equation contains a biharmonic operator so that the boundary conditions (2.7)
are the natural ones with no over- or underdetermination.

3. A linear model equation. The issue of vorticity boundary conditions can
be illustrated by considering a simple model equation inspired by (2.8): a fourth-order
linear equation for a one-dimensional scalar field u(x, t),




uxxt = uxxxx, x ∈ (0, 1),

u(0, t) = u(1, t) = 0,

ux(0, t) = ux(1, t) = 0,

u(x, 0) = u0(x),

(3.1)

where subscripts denote differentiation. Here u plays a role analogous to the stream
function, and uxx is the analogue of vorticity. We consider homogeneous boundary
conditions; inhomogeneous ones are readily reduced to the homogeneous case by a
standard change of variables [12].

Equation (3.1) is solvable by standard techniques, and its solution can be repre-
sented as a Fourier sine-series

u(x, t) =

∞∑
q=1

aq sin(πqx) e−π2q2t +

∫ t

0

b1(s)

∞∑
q=1

sin(πqx) e−π2q2(t−s) ds

+

∫ t

0

b2(s)

∞∑
q=1

(−1)q sin(πqx) e−π2q2(t−s) ds,

(3.2)

where

aq =

∫ 1

0

u0(x) sin(πqx) dx
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and b1(t),b2(t) are functions to be determined. The sine-series (3.2) automatically
satisfies the Dirichlet boundary conditions u(0, t) = u(1, t) = 0. The role of the func-
tions b1(t),b2(t) is to enforce the Neumann boundary conditions; they are determined
implicitly by the conditions ux(0, t) = ux(1, t) = 0. Note that

lim
s→t

∞∑
q=1

sin(πqx) e−π2q2(t−s) = δ(x),

lim
s→t

∞∑
q=1

(−1)q sin(πqx) e−π2q2(t−s) = δ(1 − x),

which means that b1(t),b2(t) can be regarded as the strength of point sources that are
concentrated on the left and right boundary, respectively; they play a role analogous
to vortex sheets in fluid mechanics.

The solution (3.2) can also be expanded in eigenfunctions,

u(x, t) =
∑
q

αqϕq(x)eΩqt,

where the index q runs over a discrete set of wavenumbers, and Ωq = −π2q2 is the
corresponding amplification rate. The eigenfunctions, ϕq, divide into two families:

ϕ(1)
q (x) = [1 − cos(πqx)] ,(3.3)

where q = 2, 4, . . . , and

ϕ(2)
q (x) = (2/πq) sin(πqx) − cos(πqx) − 2x + 1,(3.4)

where the wavenumbers q are solutions of the transcendental equation

tan
πq

2
=

πq

2
.

Such wavenumbers are typical to a system with mixed boundary conditions [12]. The

eigensolutions ϕ
(1)
q correspond to the case where the boundary terms are identically

zero: b1(t) = b2(t) ≡ 0 (no generation of “vortex sheets”).

A natural approach in approximating (3.1) is to view it as an implicit equation for
ut(x, t); this is analogous to the choice of stream function variables in fluid mechanics.
For simplicity, it is sufficient to consider schemes that are first-order in time; the
generalization to higher-order is straightforward. For example, a backward-Euler
scheme reads

un+1
xx − un

xx

k
= un+1

xxxx,

where k = tn+1 − tn is the time step interval.

We discretize the unit segment using a regular mesh of N +1 points, with the first
and last points coinciding with the left and right boundaries, x0 = 0, xN = 1; the mesh
spacing is h = 1/N . The standard discretizations of second and fourth derivatives
involve stencils of three and five points, respectively, which implies that boundary
conditions need to be prescribed at two points near each boundary. Alternatively, it
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is possible to use a compact 3-point stencil by introducing an auxiliary field v that
approximates ux. Following [1], we propose the following scheme:

D0
(
vn+1
j − vnj

)
= 12λ

(
D0vn+1

j −D+D−un+1
j

)
,

D0un+1
j =

(
I +

1

6
h2D+D−

)
vn+1
j ,

j = 1, . . . , N − 1,(3.5)

where D0,D± are the standard central-, forward-, and backward-difference operators,
λ = k/h2, and u0 = uN = v0 = vN = 0 at the boundary points. Equation (3.5)
is a discrete differential-algebraic system; the first equation is an evolution equation,
whereas the second is a constraint.

To prove that the numerical scheme (3.5) is convergent we first analyze its con-
sistency and stability properties. Convergence follows from a generalization of Lax’s
theorem.

Lemma 3.1. The numerical scheme (3.5) is consistent with truncation error
τ = O(h2, k).

Proof. Let u(x, t) be a smooth solution of uxxt = uxxxx, and let the discrete
auxiliary field vj(t) be defined implicitly by

D0u(xj , t) =

(
I +

1

6
h2D+D−

)
vj(t)

with v0(t) = vN (t) = 0. A Taylor expansion gives

(
I +

1

6
h2D+D−

)
[ux(xj , t) − vj(t)] = O(h4),

from which we conclude that

vj(t) = ux(xj , t) + O(h4).(3.6)

Substituting (3.6) into the first equation in (3.5) and performing another Taylor ex-
pansion, we finally obtain

D0 [vj(t + k) − vj(t)] = 12λ
[
D0vj(t + k) −D+D−u(xj , t + k)

]
+ k τn

j

with τn
j = O(h2, k).

Lemma 3.2. The numerical scheme (3.5) is unconditionally stable.
Proof. It is possible to construct two families of eigenvectors analogous to (3.3),

(3.4) that span the space of solutions of (3.5). Specifically,

un
j =

∑
q

αqϕ̃q(xj) Ω̃n
q ,

where the eigenvectors that correspond to (3.3) are

ϕ̃(1)
q (xj) = 1 − cos(πqxj)(3.7)

for q = 2, 4, . . . , N − 1, and the eigenvectors that correspond to (3.4) are

ϕ̃(2)
q (xj) = (2/Aq) sin(πqxj) − cos(πqxj) − 2xj + 1(3.8)
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with

tan
πq

2
=

Aq

2
, Aq =

3 sin(πqh)

h [2 + cos(πqh)]
.

The amplification factor Ω̃q is given in both cases by

Ωq =

(
1 +

4k

h2
tan2 πqh

2

)−1

.

It is readily verified that (3.7) and (3.8) form a total of n − 1 eigenvectors and
thus span the space of solutions. For all values of q the amplification factor |Ωq| is
strictly less than one, from which follows that all eigenmodes decay and the scheme is
stable.

Theorem 3.3. The numerical scheme (3.5) is convergent.
Proof. The proof is essentially a generalization of Lax’s theorem. It relies on

the facts that the truncation errors are small (consistency), and that there is no
mechanism that amplifies errors (stability).

Let u(x, t) be a smooth solution of (3.1), let un
j be a numerical solution of (3.5),

and let enj = u(jh, nk) − un
j be the global error. By virtue of Lemma 3.1 and the

linearity of (3.5), we obtain the equation for the error

D0
(
wn+1

j − wn
j

)
= 12λ

(
D0wn+1

j −D+D−en+1
j

)
+ k τn

j ,

D0en+1
j =

(
I +

1

6
h2D+D−

)
wn+1

j ,
(3.9)

where wn
j is the auxiliary field associated with enj .

We next expand the error in the discrete eigenmodes (3.7), (3.8),

enj =
∑
q

αn
q ϕ̃q(xj).(3.10)

Substitution of (3.10) into the auxiliary equation in (3.9) gives

wn
j =

∑
q

αn
q ψ̃q(xj),(3.11)

where

ψ̃(1)
q (xj) = Aq sin(πqxj),

ψ̃(2)
q (xj) = 2 cos(πqxj) + Aq sin(πqxj) − 2

are the two families of functions that correspond to ϕ̃
(1)
q and ϕ̃

(2)
q . Noting that

D0ψ̃q(xj) =
hAq

4

sin(πqh)

sin2(
1

2
πqh)

D+D−ϕ̃q(xj) =
3 cos2(

1

2
πqh)

1 + 2 cos2(
1

2
πqh)

D+D−ϕ̃q(xj),

we substitute (3.11) into the first equation in (3.9) and obtain after some basic ma-
nipulations

∑
q

(
Ω̃−1

q αn+1
q − αn

q

)
D0ψ̃q(xj) = k τn

j , j = 1, 2, . . . , N − 1.(3.12)
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Now let χq(xj) = D0ψ̃q(xj); these functions span the space of grid functions

defined over the N − 1 inner points xj , j = 1, 2, . . . , N − 1. Let (f, g) =
∑N−1

j+1 hfjgj
denote the discrete inner product, and let B be the (N − 1) × (N − 1) matrix whose
entries are Bq,q′ = (χq, χq′).

To obtain an explicit recursion relation for the αn
q , we take the scalar product of

(3.12) with χq′ and invert by multiplying on the left by B−1; thus

αn+1
q = Ω̃qα

n
q + k Ω̃q

∑
q′

B−1
q,q′(χq′ , τ

n),

which by the discrete Duhammel principle gives

αn
q = Ω̃n

qα
0
q + k

n−1∑
r=0

Ω̃n−r
q

∑
q′

B−1
q,q′(χq′ , τ

r).(3.13)

The first term of the right-hand side represents the amplification of the initial error,
whereas the second represents the accumulation of the local truncation errors.

The vector which we are going to estimate is D0wn =
∑

q α
n
qχq, which is equiva-

lent to the second derivative of the error en. If
∥∥D0wn

∥∥
2
→ 0 as h, k → 0, then the

scheme converges in the H2 norm, which is indeed the relevant norm for u [4]. Using
(3.13), the Cauchy–Schwarz inequality, and the fact that 0 < Ωq < 1, we find

∥∥D0wn
∥∥2

2
=

∑
q,q′

αn
qBq,q′α

n
q′

≤ ∥∥D0w0
∥∥2

2
+ 2 kn

∥∥D0w0
∥∥

2
‖τ‖2 + (kn)2 ‖τ‖2

2 ,

where ‖τ‖2 = maxn ‖τn‖2. We need only the initial conditions to converge at least as
O(h2) to conclude with the aid of Lemma 3.2 that the scheme converges in H2, and
that the order of convergence is O(h2, k).

4. The numerical scheme. Inspired by the model equation presented in the
previous section, we construct an approximation scheme for (2.8). The temporal
and the spatial discretizations are considered separately; this is legitimate when the
scheme has a well-behaved semidiscrete limit [16].

4.1. Temporal discretization. Let ψn denote the stream function at time tn.
We approximate (2.8) by a discretization that is second-order in time:(

∆ − 1

4
νk ∆2

)
ψn+ 1

2 =

(
∆ +

1

4
νk ∆2

)
ψn − 1

2
k [(u ·∇)ω]

n
,

(
∆ − 1

2
νk ∆2

)
ψn+1 =

(
∆ +

1

2
νk ∆2

)
ψn − k [(u ·∇)ω]

n+ 1
2 ;

(4.1)

that is, we use Crank–Nicholson for the viscous term and a midpoint rule for the
advection term.

4.2. Spatial discretization. We discretize the system on a rectangular grid
with fixed mesh spacing, ∆x = ∆y = h; a generalization to more complicated metrics
will be presented elsewhere. The examples below are for a square domain, where the
outermost grid points coincide with the boundaries of the system. We assume that
at the beginning of each time step we possess second-order approximations for ψ and
its first derivatives—the two velocity components—at the grid points (xi, yj), which
we denote by ψi,j , ui,j , and vi,j , respectively.
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4.2.1. The advection term. We start with the advection term, which describes
the conservative transport of vorticity along streamlines. Due to the incompressibility
of the flow, it can be written in an equivalent conservative form,

(u ·∇)ω = ∇ · (ωu),

where the vector field ωu is the vorticity flux.
The numerical analysis of nonlinear advection has been studied extensively in the

context of hyperbolic systems of conservation laws (see, e.g., [10, 17]). Considerable
effort has been devoted to the construction of so-called high-resolution schemes, which
are designed to capture the structure of singularities, such as shocks and rarefaction
waves. Although incompressible flows do not form shocks, experience shows that a
careful treatment of the advection is still of primary importance in the presence of
sharp gradients. Indeed, sharp gradients seem as discontinuities on the scale of a mesh
spacing.

Our discretization of the advection term is based on the central-difference scheme
introduced by Kurganov and Tadmor (KT) [16]. Central schemes tend to be simpler
than their upwind counterpart and can more easily be used and adapted as “black
box” solvers. The KT scheme was found to introduce less numerical viscosity than
earlier central schemes [19, 14]; its other advantage is that it can be brought to a simple
semidiscrete formulation by letting the time step k tend to zero; thus it is possible
to consider the spatial discretization independently from the temporal discretization,
which can then be implemented by any standard ODE solver.

Conservative schemes are based on an integral representation of the conserva-
tion law; the discrete variables represent averages of the conserved quantities—here
vorticity—over control cells. Due to conservation, the rate of change of the mean
vorticity equals to the integral of the vorticity flux over the cell’s boundaries. We
take for control cells squares centered at the grid points. Every time step consists of
the following steps. (i) Reconstruction of point values from the given cell averages;
for a second-order scheme the reconstructed field is piecewise-linear. (ii) Evaluation
of the fluxes at the cell’s boundaries; because the reconstructed solution might be
discontinuous, a careful treatment is necessary. The KT scheme introduces at the
cells’ interfaces local control volumes of adaptive size over which the discontinuous
behavior is integrated; thus, Riemann solvers are avoided. (iii) Update of cell averages
by integrating the fluxes using an appropriate quadrature rule.

Specifically, the spatial discretization of ∇ · (ωu) proceeds as follows.
• Using the standard 5-point Laplacian, we obtain a second-order approxima-

tion for the cell-average vorticity,

ωi,j = ∆hψi,j =
1

h2
(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j) ,(4.2)

valid in all interior cells, i, j = 1, . . . , N − 1; our scheme does not require the
evaluation of vorticity at boundary cells.

• We proceed with a piecewise-linear reconstruction of the vorticity,

ω(x, y) =
∑
i,j

[ωi,j + (ωx)i,j(x− xi) + (ωy)i,j(y − yj)]χi,j(x, y),

where χi,j is the indicator function of the (i, j) cell. The numerical slopes,
(ωx)i,j and (ωy)i,j , can be evaluated by simple central differencing when the
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solution is smooth (on the scale of a mesh spacing). Otherwise, nonlinear
slope limiters should be used—for example, the min-mod limiters

(ωx)i,j =
1

h
minmod

[
θ (ωi+1,j − ωi,j) ,

1

2
(ωi+1,j − ωi−1,j) , θ (ωi,j − ωi−1,j)

]

with 1 < θ < 2. In particular, we evaluate the vorticity at the centers of the
cells’ edges:

ωE,W
i,j = ωi,j ± 1

2
h(ωx)i,j ,

ωN,S
i,j = ωi,j ± 1

2
h(ωy)i,j

with the superscripts W=“west,” E=“east,” S=“south,” and N=“north”
referring to the orientations of the four edges.

• We then evaluate the normal velocities on the cells’ edges by simple second-
order averaging [18]:

ui− 1
2 ,j

=
1

2
(ui,j + ui−1,j) ,

vi,j− 1
2

=
1

2
(vi,j + vi,j−1) .

• At each edge we define a numerical flux

Hi− 1
2 ,j

=
1

2

(
ωW
i,j + ωE

i−1,j

)
ui− 1

2 ,j
− 1

2
|ai− 1

2 ,j
| (ωW

i,j − ωE
i−1,j

)
,

Hi,j− 1
2

=
1

2

(
ωS
i,j + ωN

i,j−1

)
vi,j− 1

2
− 1

2
|ai,j− 1

2
| (ωS

i,j − ωN
i,j−1

)
,

where the first term on the right-hand side is the average of the one-sided flux
evaluations, whereas the second term is a correction that arises from the more
precise treatment at the discontinuous boundaries; the prefactors ai− 1

2 ,j
and

ai,j− 1
2

correspond to the local characteristic speeds at the cells’ interfaces,
which in our case are simply the normal velocities, u and v, respectively.

• Finally, the divergence of the flux is approximated by

[∇ · (ωu)]i,j =
Hi+ 1

2 ,j
−Hi− 1

2 ,j

h
+

Hi,j+ 1
2
−Hi,j− 1

2

h
.

4.2.2. The viscous term. We next address the spatial discretization, ∆2
h, of

the biharmonic operator. The standard second-order discretization uses a 13-point
stencil. Noncompact stencils are problematic from the point of view of linear solvers.
An alternative representation of the discrete biharmonic operator that uses a compact
9-point stencil was developed by Altas et al. [1], and its one-dimensional version was
presented in section 3. The idea is to express ∆2

hψi,j in terms of the grid values of ψ
and its first derivatives, ψx = v and ψy = −u. A second-order approximation of the
biharmonic operator can then be written as

∆2
hψi,j =

12

h2

(
−4

3
∆hψi,j +

1

3
∆̃hψi,j + D0

xvi,j −D0
yui,j

)
,(4.3)
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where D0,±
x,y are the standard differencing operators and ∆̃h is the star-Laplacian

∆̃hψi,j =
1

2h2
(ψi+1,j+1 + ψi−1,j+1 + ψi+1,j−1 + ψi−1,j−1 − 4ψi,j) .

In addition, we need fourth-order expressions for ui,j and vi,j :

(
I +

1

6
h2D+

x D−
x

)
vi,j = +D0

xψi,j ,

(
I +

1

6
h2D+

y D−
y

)
ui,j = −D0

yψi,j .

(4.4)

These approximations are valid for all interior points; at boundary points ψ, u, and
v are prescribed by the boundary conditions.

4.3. The linear solver. From a computational point of view, the most time-
consuming part of the computation is the solution of a linear system of the form

(∆h − α∆2
h)ψi,j = rhsi,j ,

which results from the spatial discretization of (4.1); two such linear systems need to
be solved at every time step. Standard iterative methods are known to converge very
slowly, if at all, for biharmonic operators.

Biharmonic systems that use the compact stencil representation (4.3), (4.4) can
be solved very efficiently with AMG solvers. AMG methods are powerful techniques
for the solution of sparse linear systems. They are “black box” solvers, in the sense
that they treat the problem to be solved as a pure algebraic system, without reference
to the geometrical interpretation of the transition between coarse and fine grids. The
advantage of such an approach is that it is readily portable to more complicated
systems of coordinates and geometries.

The principle of AMG methods can be summarized as follows. Given an n-
dimensional linear system Ax = b, an m× n restriction matrix R is generated by an
algorithm that inspects the graph of the matrix A. The m-dimensional vector Rx
is the projection of x on the restricted (“coarse”) subspace. The transpose of the
restriction matrix, I = RT , is used as an interpolation matrix to revert back to the
original (“fine”) space. AMG methods are based on the presumption that if the right-
hand side vector, b, is sufficiently “smooth” (in a sense that needs to be specified),
then the solution x is close to the range of the interpolation matrix I, i.e., there exists
an m-dimensional vector y such that x ≈ Iy. Multiplying the system Ax = b by R
on the left and approximating x by Iy, we obtain the restricted system

(RAI)y = Rb.

This two-level approach can be applied recursively to form a multilevel method. It
then remains to introduce an appropriate “smoother” to operate on the solution before
and after being projected to the lower-dimensional subspace.

AMG solvers vary in the way they generate the restriction matrix, in the choice of
smoothers, and in the choice of multigrid cycles. Our coarsening method is based on
a red-black coloring algorithm developed by Kickinger [13]. Gauss–Seidel iterations
have been used for smoothing. Each multigrid cycle starts from the finest level down
to the coarsest level and back up (V-cycle). For a 128 × 128 grid (that is, a linear
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system of dimension 3 × 128 × 128), about ten multigrid cycles with two pre- and
postsmoothing steps were needed to reduce the error norm to 10−8.

There are a number of implementational issues. As long as the time step is not
modified, the linear operator is unchanged. In such a case, it is efficient to compute
the set of restriction matrices, R, with the corresponding linear operators, RAI, once,
and store them. Most of the computational time is then spent on sparse matrix-vector
multiplications, which can be parallelized easily.

5. Numerical results. We have tested our numerical scheme on a classical
benchmark problem: flow in a lid-driven cavity. The fluid is confined in a square
domain, Ω = [0, 1]2, and is driven by the transversal motion of its boundaries. This
setup is a challenging test problem, in particular, because the velocity field is discon-
tinuous at the corners adjacent to the moving boundaries, and the viscous stresses
diverge logarithmically. (In a method that uses the primitive variables (u, p), one
faces the logarithmic divergence of the pressure.)

We first conducted convergence tests to obtain error estimates and assess the
order of accuracy. In Table 1 we show the discrete L2 norm ‖ψN+1 − ψ2N+1‖2, where
ψM denotes the computational solution on an M ×M grid. The initial conditions are

ψ(x, y, 0) =
1

π
sin2(πx) sin2(πy),(5.1)

and the boundaries are stationary; the Reynolds number here is 103. For short times
the convergence rate seems to be less than expected; this is because the errors are
very small and therefore dominated by the tolerance specified for the linear solver. For
times longer than t = 0.4 we get an estimated second-order convergence, as expected.
Similar results were found for a range of Reynolds numbers between 102 and 104.

Table 1
Error estimate and convergence test for the initial conditions (5.1) and Reynolds number 103.

Time ‖ψ33 − ψ65‖2 ‖ψ65 − ψ129‖2 Rate
0.1 4.1× 10−5 1.3× 10−5 1.64
0.2 7.2× 10−5 2.1× 10−5 1.81
0.3 9.5× 10−5 2.5× 10−5 1.90
0.4 1.2× 10−4 2.9× 10−5 1.99
0.5 1.4× 10−4 3.3× 10−5 2.08

We next display results for lid-driven flows. For low enough Reynolds numbers
the flow approaches a steady state; the lower the Reynolds number is, the shorter the
transient is. In Figure 1(a) we display stream function contour lines in the steady
state for Re = 400. The fluid is initially at rest, and it is driven impulsively by the
rightward motion of the top boundary. For comparison we display the same level sets
as in [9, Figure 3 and Table III]. In Figure 1(b), (c) we plot the steady-state profile
of the u(v) component of the velocity as a function of y(x) at x = 0.5 (y = 0.5).
The solid line represents our results, whereas the symbols are data reported in [9]).
The agreement is excellent. In Table 2 we list the minimum value of the stream
function, which takes place in the core of the primary vortex, at different times and
for three different grid sizes. For a grid size of 128 × 128 the results seem to have
fully converged. It takes about 35 time units to reach a steady flow; the minimum
value of the stream function is then −0.1140; in [9] the reported value is −0.1139; the
same value has also been reported by Pan and Glowinski for a slightly regularized
flow [20]. We also compare extremal values of the stream function for the secondary
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Fig. 1. (a) Contour plots of the stream function at time t = 40 after an impulsive start at
Reynolds number Re = 400. The top boundary moves to the right with velocity u = 1. (b) Steady-
state profile of the u velocity component as a function of y at x = 0.5. (c) Steady-state profile of the
v velocity component as a function of x at y = 0.5.

Table 2
Minimum value of the stream function at different times and for different mesh sizes. The

Reynolds number is Re = 400.

Time 64× 64 96× 96 128× 128
t = 5.0 −0.09062 −0.09074 −0.09076
t = 15.0 −0.11164 −0.11173 −0.11174
t = 25.0 −0.11378 −0.11385 −0.11385
t = 35.0 −0.11393 −0.11400 −0.11401

vortices. For the bottom-right secondary vortex the maximum value of the stream
function is 6.579×10−4, and it is 1.404×10−5 for the bottom-left vortex; the numbers
reported in [9] are 6.423 × 10−4 and 1.419 × 10−5, respectively. In [11] the time to
reach a steady state was estimated to be about 46 time units. A precise quantitative
comparison is hard to perform due to the arbitrary nature of the stopping criterion.

Similar calculations were carried out for Re = 5000. In Figure 2(a) we plot the
minimum value of the stream function versus time. Steady-state velocity profiles are
shown in Figure 2(b), (c). Snapshots of stream function contour lines are presented
in Figure 3. Note the much longer transient; its takes about 340 time units to reach



A PURE STREAM FUNCTION FORMULATION 13

0 50 100 150 200 250 300
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

time

m
in

(ψ
)

Re = 5000

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

v

Fig. 2. (a) Minimum value of the stream function versus time for Re = 5000. (b) Steady-state
profile of the u velocity component as a function of y at x = 0.5. (c) Steady-state profile of the v
velocity component as a function of x at y = 0.5.

a steady flow. Note also the nonmonotonic behavior of the minimum value of the
stream function, which reflects the fact that recirculation zones are created and an-
nihilated along the side and bottom walls until the final vorticity pattern emerges.
Such dynamics were also reported in [11] and are consistent with subcritical behavior
prior to an oscillatory instability, whose occurrence has been predicted in [21, 20].
Eventually, the stream function reaches the value of −0.122160; in [9] the predicted
value is −0.118966, whereas in [20] it is −0.121218. The velocity profiles are again in
excellent agreement with the data reported in [9].

In a recent paper, Pan and Glowinski [20] obtained limit cycle solutions for Re =
8500. The occurrence of a Hopf bifurcation has been speculated before [21] but was
believed to take place at a significantly higher Reynolds number. Our results for
Re = 8500 support the findings of [20]. In Figure 4 we plot the time evolution of the
kinetic energy over a time interval of t = 3; the function is oscillatory with a period of
about 2.5; the period reported in [20] is 2.27. In Figure 5 we show a complete cycle of
stream function contours during a time interval of 2.5. The primary vortex remains
practically unchanged, variations being noticeable only within the secondary vortices.
It takes about 200 time units to reach this state starting from a fluid at rest.
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Fig. 3. Contour plots of the stream function. The top boundary moves to the right with velocity
u = 1. The Reynolds number is Re = 5000. The contours are shown for time t = 10, t = 20, t = 30,
and t = 300. The grid size is 128× 128.
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Fig. 5. Contour plots of the stream function. The top boundary moves to the right with velocity
u = 1. The Reynolds number is Re = 8500. This sequence covers one period of the limit cycle. The
grid size is 128× 128.

For even higher Reynolds numbers the flows are much more complex. An Re =
20000 flow is shown in Figure 6, where we display snapshots of vorticity contour
lines for a fluid that is driven by the upward motion of its left and right boundaries.
Narrow and concentrated shear layers are generated along the moving boundaries and
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Fig. 6. Contour plots of vorticity. The left and right walls move upward with velocity v = 1.
The Reynolds number is Re = 20000. The contours are shown for time t = 2, t = 6, t = 10, t = 14,
and t = 18. The grid size is 128× 128.

transported with the flow. The shear layers are unstable and rapidly intermingle to
form a convoluted vorticity pattern. This sequence of vorticity contours demonstrates
the robustness of the scheme. The vorticity gradients are large with sharp variations
over single cells.
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6. Concluding remarks. The present scheme is based on the paradigm that has
been established in [4], whereby vorticity dynamics should be viewed as a projection of
stream function dynamics; thus vorticity boundary conditions are totally avoided, and
natural boundary conditions are imposed on the stream function. Numerical methods
based on stream function variables are by themselves not a novel idea. What have
been missing for many years are accurate and efficient ways of implementation. We
make no claim, however, that methods based on vorticity boundary conditions are
invalid. Such methods have been proven to work within the frameworks of both
difference schemes and vortex methods.

An important property of the proposed scheme is its modularity. It is not re-
stricted to a specific type of hyperbolic or biharmonic solver, and each of its elements
can be implemented in various ways. In particular, higher-order spatio-temporal
discretizations are relatively easy to implement (see, e.g., [1] for a fourth-order dis-
cretization of the biharmonic equation and [15] for a third-order version of the KT
scheme). Finally, an extension to three dimensions seems realizable.
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